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Abstract: In this paper, we consider the problem of estimating multiple Gaussian Graphical Models
from high-dimensional datasets. We assume that these datasets are sampled from different distri-
butions with the same conditional independence structure, but not the same precision matrix. We
propose jewel, a joint data estimation method that uses a node-wise penalized regression approach.
In particular, jewel uses a group Lasso penalty to simultaneously guarantee the resulting adjacency
matrix’s symmetry and the graphs’ joint learning. We solve the minimization problem using the
group descend algorithm and propose two procedures for estimating the regularization parameter.
Furthermore, we establish the estimator’s consistency property. Finally, we illustrate our estimator’s
performance through simulated and real data examples on gene regulatory networks.

Keywords: Gaussian Graphical Model; group Lasso; joint estimation; network estimation

1. Introduction

Network analysis is becoming a powerful tool for describing the complex systems that
arise in physical, biomedical, epidemiological, and social sciences, see in [1,2]. In particular,
estimating network structure and its complexity from high-dimensional data has been
one of the most relevant statistical challenges of the last decade [3]. The mathematical
framework to use depends on the type of relationship among the variables that the network
should incorporate. For example, in the context of gene regulatory networks (GRN),
traditional co-expression methods are useful to capture marginal correlation among genes
without distinguishing between direct or mediated gene interactions. Instead, graphical
models (GM) constitute a well-known framework for describing conditional dependency
relationships between random variables in a complex system. Therefore, they are more
suited to describe direct relations among genes, not mediated by the remaining genes.

In the GMs’ framework, an undirected graph G = (V, E) describes the joint distribu-
tion of the random vector (X1, . . . , Xp), the individual variables being the graph’s nodes
and the edges reflecting the presence/absence of conditional dependency relation among
them. When the system of random variables has a multivariate Gaussian distribution
(X1, . . . , Xp) ∼ N(0, Σ), we refer to Gaussian Graphical Models (GGMs). In such a case,
the graph estimation is equivalent to estimating the precision matrix’s support, namely, the
inverse of the covariance matrix associated with the multivariate Gaussian distribution.

There is extensive literature on learning a GGM, and we refer to the works in [4–7]
for an overview. In brief, under high-dimensional setting and sparsity assumptions on
the precision matrix, we can broadly classify the available methods into two categories:
methods that estimate the entire precision matrix Ω and those that estimate only its support
(i.e., the edge set E). Methods in the first category usually impose a Lasso type penalty on
the inverse covariance matrix entries when maximizing the log-likelihood, as the GLasso
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approach proposed in [8,9]. Methods in the second category date back to the seminal paper
of Meinshausen and Bühlmann [10] and use the variable selection properties of Lasso
regression.

In recent years, the focus shifted from the inference of a single graph given a dataset
to the inference of multiple graphs given different datasets, assuming that the graphs share
some common structure. This setting encompasses cases where datasets measure similar
entities (variables) under different conditions or setups. It is useful for describing various
situations encountered in real applications, such as meta-analyses and heterogeneous data
integration. For example, in GNR, a single dataset might represent the gene expression
levels of n patients affected by a particular type of cancer, and the inference aims to
understand the specific regulatory mechanisms. International projects, such as The Cancer
Genome Atlas (TGCA), or large repositories, such as Gene Expression Omnibus (GEO),
make available tens of thousands of gene expression samples. Therefore, it is easy to find
several datasets (i.e., different studies collected using different high-throughput assays or
performed in different laboratories) on the experimental condition of interest. Assuming
that, despite the difference in the technologies and preprocessing, the hidden regulatory
mechanisms investigated in the different studies are similar if not the same, it is worth
integrating them to improve the inference. A similar type of challenge is also present
in the integrative multi-omics analysis. For instance, one can measure gene expression,
single nucleotide polymorphisms (SNPs), methylation levels, etc. on the same set of
individuals and want to combine the information across the different omics. In both cases,
it is possible to develop multitasking or joint learning approaches to gain power in the
inference (see [11,12] to cite few examples).

More specifically, in multiple GGMs inference, we have K ≥ 2 different datasets
X(1), . . . , X(K), each drawn from a Gaussian distribution N(0, Σ(k)). Each dataset measures
(almost) the same sets of variables in a specific class (or condition) k. The aim is to estimate
the underlying GGMs under the assumption that they share some common structure across
the classes.

Several methods are already available in the literature to deal with such a problem.
They differ on the assumptions on how the conditional dependency structure is shared
across the various distributions. The majority of these methods extend maximum like-
lihood (MLE) approaches to the multiple data framework. Among the most important
contributions, we cite the work in [13] that penalizes the MLE by a hierarchical penalty
enforcing similar sparsity patterns across classes, allowing some class-specific difference.
However, as the penalty is not convex, convergence is not guaranteed. JGL [14] is another
important method that proposes two alternatives. The first penalizes the MLE by a fused
Lasso penalty, and the second penalizes the MLE by combining two group Lasso penalties.
In this last alternative, the two penalties enforce a similar sparsity structure and some
differences, respectively. Two other approaches are [15], which penalizes the MLE by an
adaptive Lasso penalty whose weights are updated iteratively, and the work in [16], which
penalizes the MLE by a group Lasso penalty. On the other hand, the work in [17,18] extends
the regression-based approach in [10] to the multiple data setting. In particular, in [17],
the authors constructed a two-step procedure. In the first step, they infer the graphical
structure using a regression-based approach with a group Lasso penalty for exploiting the
common structure across the classes. In the second step, they penalize the MLE subject
to the first step edges’ set. The authors of [18] proposed regression-based minimization
problem with cooperative group Lasso penalty. The first term is the standard group Lasso
penalty which enforces the same structure across classes by penalizing elements of preci-
sion matrices. The second one penalizes negative elements of those matrices to promote
differences between classes. By authors’ hypothesis, swap in the sign can occur only for
class-specific connections, justifying such penalty.

In this paper, we propose jewel, a new technique for jointly estimate a GGM in the
multiple dataset framework. We assume that the underlying graph structure is the same
across the K classes. However, each class preserves its specific precision matrix. We extend



Mathematics 2021, 9, 2105 3 of 24

the regression-based method proposed in [10] to the case of multiple datasets, in the same
spirit as in [18] and the first step of the procedure in [17], which mainly differ in the
definition of variables’ groups. More specifically, in [17,18] the groups are determined
by the ij positions across the K precision matrices and in our approach, the groups are
determined by both ij and ji positions across the K precision matrices. Consequently,
both [17,18] do not provide symmetric estimates of precision matrices’ supports and require
postprocessing. Instead, jewel grouping strategy exploits both the common structure across
the datasets and the symmetry of the precision matrices support. We consider this a
valuable improvement compared to the competitors as such an approach allows to avoid
the need for postprocessing.

The rest of the paper is organized as follows. In Section 2, we derive the jewel method
and present the numerical algorithm for its solution, as well as establish the theoretical
properties of the estimator in Section 2.4 and discuss the choice of the tuning parameter in
Section 2.5. Code is provided in Section 2.6. Finally, in Section 3, we illustrate our method’s
performance in a simulation study comparing it with some other available alternatives and
describe a real data application from gene expression datasets.

2. Jewel: Joint Node-Wise Estimation of Multiple Gaussian Graphical Models

This section describes the mathematical setup, the proposed method for the joint
estimation of GGMs (jewel), the numerical algorithm adopted, the theoretical property of
the proposed estimator and approaches of estimating the regularization parameter.

2.1. Problem Setup

Let X(1), X(2), . . . , X(K) be K ≥ 2 datasets of dimension nk × pk, respectively, that
represent similar entities measured under K different conditions or collected in distinct
classes. Each dataset X(k) represents nk observations x(k)1 , . . . , x(k)nk , where each x(k)i =

(x(k)i1 , . . . , x(k)ipk
) is a pk-dimensional row vector. Without loss of generality, assume that each

data matrix is standardized to have columns with zero mean and variance equal to one.
The proposed model assumes that x(k)1 , . . . , x(k)nk represent independent samples from

a N (0, Σ(k)), with Σ(k) � 0. Moreover, we also assume that most of the variables are in
common in all the K datasets. For example, this assumption includes datasets that measure
the same set of p variables under K different conditions; however, few variables might not
be observed in some datasets due to some technical failure. Under this setup, the model
assumes that the variables share the same conditional independence structure across the
K datasets.

Precisely, let Gk = (Vk, Ek) be the undirected graph that describes the conditional
independence structure of the k-th distribution N (0, Σ(k)), i.e., Vk = {X1, . . . , Xpk} and
(i, j) /∈ Ek ⇐⇒ Xi ⊥⊥ Xj|X{l, l 6=i, j} where {Xi, Xj} ⊆ Vk. Note that we use notation (i, j)
to denote the undirected edge incident to vertices i and j, or equivalently j and i (if such
edge exists). We use notation {i, j} to denote the pair of vertices or variables {Xi, Xj}. We
assume that there exists a common undirected graph G = (V, E) with V = V1 ∪ · · · ∪VK
and E ⊆ V ×V such that (i, j) /∈ E ⇐⇒ Xi ⊥⊥ Xj|X{l, l 6=i, j} with {Xi, Xj} ⊆ V. In other
words, two variables of V are conditionally independent in all the distributions of which
they are part or they are never conditionally independent in any. However, when they
are not conditionally independent, the conditional correlation might be different in the
different datasets to model relations that can be differently tuned depending on specific
experimental condition or set-up.

Let us denote Ω(k) = (Σ(k))−1 the true precision matrix for k-th distribution. As
inferring a GGM is equivalent to estimating the support of the precision matrix, estimating
a GGM from multiple datasets translates into simultaneously inferring the support of all
precision matrices Ω(k), with the constraint Ω(k)

ij = Ω(k)
ji = 0 for all k such that {Xi, Xj} ⊆

Vk. We emphasize here that the aim is to estimate only the structure of the common
network, not the entries of precision matrices.
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2.2. Jewel

jewel is inspired by the node-wise regression-based procedure proposed in [10] for
inferring a GGM from a single dataset. Let us first revise this method. Let fix a single
dataset, say k, and define Θ(k), the pk × pk zero diagonal matrix with extra-diagonal entries
Θ(k)

ij = −Ω(k)
ij /Ω(k)

jj . As Ω(k)
jj > 0 for the positiveness of Σ(k), the support of Ω(k) coincides

with the support of Θ(k). In [10], the authors proposed to learn matrix Θ(k) instead of Ω(k).
To this aim, they solved the following multivariate regression problem with the Lasso
penalty

Θ̂(k) = arg min
Θ(k)∈Rpk×pk

diag=0

{
1

2nk
||X(k) − X(k)Θ(k)||2F + λ ∑

i 6=j
|Θ(k)

ij |
}

, (1)

where λ is a tuning regularization parameter and || · ||F is the Frobenius norm. Note that
problem in Equation (1) is separable into pk independent univariate regression problems
where each column of matrix Θ(k) is obtained independently from the others. Although
computationally efficient, such an approach does not exploit either guarantee the symmetry
of the solution. Therefore, the authors proposed to post-process the solution to restore
the symmetry, for example by the “AND” or “OR” rules. More recently, the authors
of [19] proposed a modified approach where Θ(k) is obtained by solving the following
minimization problem:

Θ̂(k) = arg min
Θ(k)∈Rpk×pk

diag=0

{
1

2nk
||X(k) − X(k)Θ(k)||2F+

λ
√

2
p

∑
i<j=1

√(
Θ(k)

ij

)2
+
(

Θ(k)
ji

)2
}

,

(2)

that corresponds to a multivariate regression problem with a group Lasso penalty. In
Equation (2), the number of unknown parameters, i.e., the extra-diagonal terms of Θ(k),
are pk(pk − 1) and are arranged into (pk

2 ) groups of dimension 2, each group including

Θ(k)
ij and Θ(k)

ji . As a consequence, the minimization problem in Equation (2) results in a

group sparse estimate of Θ̂(k) which exploits and hence guarantees the symmetry of the
estimated support.

In this work, we further extend the approach in [19] to simultaneously learn the K
zero-diagonal matrices Θ(k), each with pk(pk − 1) unknowns parameters. Let p = |V| be
the cardinality of V and divide its elements into (p

2) groups. Each group consists of pairs

of variables Θ(k)
ij and Θ(k)

ji across all the datasets that contain them. More precisely, for all

1 ≤ i < j ≤ p, we group together variables {Θ(k)
ij , Θ(k)

ji : {Xi, Xj} ⊆ Vk} and denote gij the
group’s cardinality. Based on our hypothesis, we have that the vector of each group of
variables coincides with the zero vector when the variables Xi and Xj are conditionally
independent in all the datasets that contain them (i.e., when (i, j) /∈ E), or it is different
from zero when the variables Xi and Xj are conditionally dependent in all the data sets
that contain them (i.e., when (i, j) ∈ E). In the latter case, each data set can modulate the
strength of the dependency in a specific way because, when not equal to zero, the group
elements are not forced to be equal. This is another advantage of our proposal to treat
groups as symmetric pairs across all the datasets.
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Therefore, in this paper we propose jewel, which estimates simultaneously Θ̂(1), . . . , Θ̂(K)

by solving the following minimization problem:

(Θ̂(1), . . . , Θ̂(K)) = arg min
Θ(1)∈Rp1×p1

...
Θ(K)∈RpK×pK ,

diag=0

{
1
2

K

∑
k=1

1
nk
||X(k) − X(k)Θ(k)||2F+

λ
p

∑
i<j=1

√
gij

√√√√ ∑
k:{Xi ,Xj}⊆Vk

(
Θ(k)

ij

)2
+
(

Θ(k)
ji

)2
}

.

(3)

The estimated edge set Ê is obtained as supp(Θ̂(1)) = · · · = supp(Θ̂(K)), that are
equal by construction. Indeed, the problem in Equation (3) corresponds to a multivariate
regression problem with a group Lasso penalty that enforces the same support for the
estimates Θ̂(k) naturally exploiting and guaranteeing the symmetry of the solution.

Note that, although the minimization problem in Equation (3) can be written and
solved for a number of variables pk that is different in each dataset, the notations and
the formulas simplify a lot when we assume that all variables coincide in the K datasets.
Under this assumption, for all k we have pk = p and Vk = V, then each group {Θ(k)

ij , Θ(k)
ji :

{Xi, Xj} ⊆ Vk} has cardinality gij = 2K, and G = (V, E) is the GGM associated to each and
all the datasets. Consequently, while the general formulation of Equation (3) can be useful
for some applications where the variables of the different datasets may partly not coincide
due to missing values or other reasons, for the sake of clarity from now on, we will use the
simplified formulation, referring to remarks notes about the general formulation.

We use the following notations through the rest of the paper:

- With bold capital letters we represent matrices, with bold lower case letters—vectors,
which are intended as columns if not stated otherwise;

- θ =
(

Θ(1)
21 , . . . , Θ(1)

p1 , . . . , Θ(K)
1p , . . . , Θ(K)

(p−1)p

)T
, dim(θ) = p(p− 1)K× 1, is the vector

of the unknown coefficients;
- θ[ij] denotes the restriction of vector θ to the variables belonging to the group i < j;

specifically θ[ij] = (Θ(1)
ij , Θ(1)

ji , ..., Θ(K)
ij , Θ(K)

ji ), thus it has length gij = 2K;

- λ stands for
√

2Kλ,

- X(k)
.i corresponds to the i-th column of matrix X(k) and X(k)

.−i corresponds to the subma-
trix of X(k) without the i-th column;

- y =

(
X(1)

.1

T
, . . . , X(1)

.p
T

, . . . , X(K)
.1

T
, . . . , X(K)

.p
T
)T

, dim(y) = Np × 1, N = ∑K
k=1 nk,

denotes the vector concatenating the columns of all data matrices;
-

X =




X(1)

.−1 0 . . . 0

0 X(1)
.−2 . . . 0

...
. . .

0 . . . X(1)
.−p


. . . 

X(K)
.−1 0 . . . 0

0 X(K)
.−2 . . . 0

...
. . .

0 . . . X(K)
.−p




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denotes the block-diagonal matrix made up by the block-diagonal matrices X(k)
.−j,

k = 1 . . . K, j = 1 . . . p, dim(X) = Np× p(p− 1)K;

- D = blkdiag
(

1√
nk

Ink p

)
k=1...K

, dim(D) = Np× Np;

- ||u||2 = ||u|| for any vector u;
- ||u||2D = uTD2u = ||Du||22, for all u ∈ RNp.

With these notations, √gij = 2K ∀i, j and λ reparametrized as λ
√

2K, the penalty in

Equation (3) can be easily rewritten using vector θ[ij] = (Θ(1)
ij , Θ(1)

ji , . . . , Θ(K)
ij , Θ(K)

ji ) as

p

∑
i<j=1

√√√√ K

∑
k=1

(
Θ(k)

ij

)2
+
(

Θ(k)
ji

)2
=

p

∑
i<j=1

||θ[ij]||. (4)

Moreover, the goodness-of-fit term becomes

K

∑
k=1

1
nk
||X(k) − X(k)Θ(k)||2F = ||y− Xθ||2D. (5)

Combining Equations (4) and (5), we rewrite the minimization problem in Equation (3)
as follows:

θ̂ = arg min
θ∈Rp(p−1)K

1
2
||y− Xθ||2D + λ

p

∑
i<j=1

||θ[ij]||.︸ ︷︷ ︸
F(θ)

(6)

This alternative formulation will be useful to present the algorithm and to study
theoretical properties of jewel.

2.3. Numerical Algorithm

Function F(θ) in Equation (6) is convex and separable in terms of the groups. More-
over, we note that matrix X, used in the formulation of Equation (6), satisfies the orthogonal
group hypothesis that requires the restriction of X to the columns of each group to be
orthogonal—indeed, X·[ij] is orthogonal by construction. Therefore, given λ, we can solve
the minimization problem by applying the iterative group descent algorithm proposed
in [20] which consists of updating one group of variables i < j at a time freezing the other
groups at their current value, cycling until convergence.

More precisely, given a starting value for vector θ, the jewel algorithm updates the
group of variables i < j minimizing function F(θ) for that group, considering the rest
of the variables fixed to their current value. Consider the group i < j and compute the
subgradient of F(θ) with respect to the variables θ[ij]. We have that the subgradient is a
vector of gij = 2K components defined as follows:

∂F

∂Θ(k)
ij

=


− 1

nk
X(k)

.i

T
(X(k)

.j − X(k)Θ(k)
.j ) + λ

Θ(k)
ij

||θ[ij]||
if ||θ[ij]|| 6= 0

− 1
nk

X(k)
.i

T
(X(k)

.j − X(k)Θ(k)
.j ) + λu if ||θ[ij]|| = 0

(7)

where u is the relative entry of a vector u ∈ R2K with ||u|| ≤ 1.
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Now define vector z = (z(1)ij , z(1)ji , . . . , z(K)ij , z(K)ji )T ∈ R2K with entries

z(k)ij =− 1
nk

X(k)
.i

T
(

X(k)
.j − ∑

m 6=i,j
X(k)

.m Θ(k)
mj

)

z(k)ji =− 1
nk

X(k)
.j

T
(

X(k)
.i − ∑

m 6=i,j
X(k)

.m Θ(k)
mi

)
.

(8)

Vector z depends on the observed data X(k), k = 1 . . . K, and the current values of Θ(k)
ml

not involving the pairs of variables (i, j) we are seeking.
From the work in [20], we have that the minimizer of function F(θ) with respect to

the variables θ[ij] is the following multivariate soft-thresholding operator

Θ̂(1)
ij

Θ̂(1)
ji
...

Θ̂(K)
ij

Θ̂(K)
ji


=

(
1− λ

||z||

)
+

z. (9)

The soft-thresholding operator (·)+ acts on vector z by shortening it towards 0 by an
amount λ if its norm is greater or equal to λ and by putting it equal to zero if its norm is
less than λ.

For a fixed value of λ, Equations (8) and (9) represent the updating step for each
group i < j. The update is cyclically repeated for all groups. The entire cycle represents
the generic update step of the iterative procedure. Thus, it is repeated until convergence.
Precisely, we stop the procedure when the relative difference between two successive
approximations of vector θ is less than a given tolerance tol, or when the algorithm reaches
a maximum number of iterations.

Remark 1. The numerical algorithm can be easily extended to minimize the general model of
Equation (3). When the data matrices include different number of variables pk, then vector z has
dimension gij that can be different for each pair {i, j}. Indeed, z and θ̂[ij] incorporate only those k
datasets for which the pairs of variables {i, j} were observed. Equation (9) is still valid with λ · √gij
in place of λ as each update step is done independently for each pair and √gij is a constant that
does not influence the convergence of the algorithm.

Although jewel’s formal description involves large matrices and several matrix-vector
products at each step, its implementation remains computationally feasible even for large
datasets. Indeed, vectors y, θ and matrix X used in Equation (6) do not need to be explicitly
built and the scalar products in Equation (8) can be obtained by modifying previously
computed values.

Moreover, in our implementation of the group descend algorithm, we adopted the
active shooting approach, as proposed in [9,21]. In this strategy, one exploits the problem’s
sparse nature efficiently, providing an increase in computational speed. The idea is to divide
all pairs of variables into “active”— those which are not equal to zero at the current step—
and “non-active”—those which are equal to zero at the current step—and update only
the first ones. From a computational point of view, we define the upper triangular matrix
Active of dimension p× p, which takes trace of the current support of Θ(k), k = 1 . . . K.
Active can be initialized by setting all up extra-diagonal elements equal to 1, meaning
that at the beginning of the procedure, all the groups i < j are “active”. Then, if the
soft-thresholding operator zeroes group {2, 3} during the iterations, the corresponding
matrix element is set to zero, Active23 = 0, indicating that the group {2, 3} is no longer
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active and its status will be no more updated. At the end of the algorithm, matrix Active
contains the estimate of the edge set E, as (i, j) ∈ Ê ⇐⇒ Activeij = 1.

We provide the pseudocode for the algorithm we implemented for a fixed parameter
λ. We also show how vector z can be efficiently updated using the residuals R(k) of the
linear regressions.

Note that at the end of each iteration, we evaluate the difference between two suc-
cessive approximations with ∑k

∣∣∣Θ(k, t+1) −Θ(k,t)
∣∣∣/ ∑k

∣∣∣Θ(k,t)
∣∣∣ < tol. In the simulation

study we discover that tol has small influence on the final estimate of Active, thus we use
tol = 0.01 to speed-up the calculations. However, as it might influence the evaluation of
the residual error used to apply the BIC criterion, in Section 2.5 we set tol = 10−4.

Remark 2. Due to separability of the function F(θ) in Equation (6), if the graph structure is block-
diagonal (i.e., the adjacency matrix encoding the graph is block-diagonal), then the minimization
problem in Equation (6) can be solved independently for each block. In the case of ultrahigh-
dimensional data, this strategy turns to be very computationally efficient since each block could be,
in principle, solved in parallel. The work in [22] provides the conditions to split the original problem
into independent subproblems.

2.4. Theoretical Property

In this subsection, we establish the consistency property for the jewel estimator. Our
findings are largely based on [23], where a GGM is inferred for temporal panel data.
We start with formulation of the minimization problem given in Equation (6) in term of

vector θ =
(

Θ(1)
21 , . . . , Θ(1)

p1 , . . . , Θ(K)
1p , . . . , Θ(K)

(p−1)p

)T
. Before presenting the main result in

Theorem 1, let us introduce some auxiliary notations and Lemma 1, which will be useful in
the proof of the theorem.

Let us denote θ0 the true parameter vector of dimension Kp(p − 1) × 1. θ0 is our
unknown, and its non-zero components describe the true edge set E of the graph. θ0

is naturally divided into (p
2) groups, each consisting of the true parameters θ0

[ij] whose
row/column index refer to the same pair {i, j}. Let s denote the true number of edges in E
and define the sets of “active” and “non-active” groups as

S = {(i, j) : i < j, θ0
[ij] 6≡ 0} = {(i, j) : i < j, (i, j) ∈ E}

Sc = {(i, j) : i < j, θ0
[ij] ≡ 0} = {(i, j) : i < j, (i, j) /∈ E}

respectively, with |S| = s and |Sc| = p(p− 1)
2

− s = q. Therefore, S contains all pairs of
nodes for which there is an edge in E and Sc contains all pairs of nodes for which there is
an absence of edge.

Now, referring to the linear regression problem formulation of jewel given in Equation (6),
we define the additive Gaussian noise vector ε by the following:

ε = ( ε
(1)
1

T
, . . . , ε

(1)
p

T︸ ︷︷ ︸
∼Nn1 p(0,Λ(1)⊗In1)

, . . . , ε
(K)
1

T
, . . . , ε

(K)
p

T︸ ︷︷ ︸
∼NnK p(0,Λ(K)⊗InK )

)T , dim(ε) = Np× 1

ε ∼ NNp

(
0, blkdiag

(
Λ(k) ⊗ Ink

)
k=1...K

)
,

with matrices

Λ(k) = diag

 1

Ω(k)
11

, . . . ,
1

Ω(k)
pp

.

Given these definitions, the data model can be rewritten as y = Xθ0 + ε and the
following lemma holds:
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Lemma 1 (Group Lasso estimate characterization, cfr. Lemma A.1 in [23]). A vector θ̂ is a
solution to convex optimization problem in Equation (6) if and only if there exists τ ∈ Rp(p−1)K

such that [XTD2(y− Xθ̂)] = λτ and

τ[ij] =

{
dir
(

θ̂[ij]

)
, i f θ̂[ij] 6≡ 0

u, u ∈ R2K, ||u|| ≤ 1 i f θ̂[ij] ≡ 0,

where dir(u) = u/||u|| is the directional vector of any non-zero vector u.

We can now state the main result, which has been inspired by Theorem 4.1 of [23]. In
the following, the analog of empirical covariance matrix C and some auxiliary stochastic
matrices and vectors which will be part of the main theorem:

C = XTD2X, dim(C) = p(p− 1)K× p(p− 1)K

ζ = XTD2ε, dim(ζ) = p(p− 1)K× 1

w = ζSc − CScSC−1
SS ζS, dim(w) = 2Kq× 1

v = C−1
SS ζS, dim(v) = 2Ks× 1,

where ζA and CAA denote the restriction of vector ζ and matrix C to the rows and columns
in the set A.

Theorem 1. Let θ̂ be the solution of problem in Equation (6), with y = Xθ0 + ε. Suppose that
there exists δ > 0 such that, with probability at least 1− e−δ log(p)/N , one has

1. CSS is invertible.
2. (Irrepresentable condition): ∃ α ∈ (0, 1) : ∀(i, j) ∈ Sc

(a)
∣∣∣∣∣∣[CScSC−1

SS τ]ij

∣∣∣∣∣∣ ≤ α ∀τ ∈ R2Ks : max
(i,j)∈S

||τ[ij]||2 ≤ 1

(b) λ ≥ 2
1− α

||w[ij]||

3. (Signal strength): ∀ (i, j) ∈ S it holds

λ <
{
||θ0

[ij]||2 − ||v[ij]||
}∣∣∣∣∣∣∣∣[C−1

SS τ
]
[ij]

∣∣∣∣∣∣∣∣−1
∀τ ∈ R2Ks : max

(i,j)∈S
||τ[ij]||2 ≤ 1

then, P(Ê = E) ≥ 1− e−δ log(p)/N , where
E = {(i, j) : θ0

[ij] 6≡ 0} is the true edge set and

Ê = {(i, j) : θ̂[ij] 6≡ 0} is the estimated edge set.

Proof. To prove set equality Ê = E, we verify separately the two inclusions, Ê ⊆ E and
Ê ⊇ E. Let us first prove inclusion Ê ⊆ E ⇐⇒ θ̂[ij] ≡ 0 ∀(i, j) ∈ Sc.

Define θ̂
S be the solution of the following restricted problem:

θ̂
S := arg min

θ∈R2Ks

1
2
||y− X.Sθ||2D2 + λ ∑

(i,j)∈S
||θ[ij]||.

By Lemma 1, ∃ τS ∈ R2Ks such that −XT
.SD2(y− X.Sθ̂

S
) + λτS = 0 and

τS
[ij] =

{
θ̂

S
[ij]/||θ̂

S
[ij]||, i f θ̂

S
[ij] 6≡ 0

u ∈ R2K, ||u|| ≤ 1, i f θ̂
S
[ij] ≡ 0.
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Define θ̂ ∈ Rp(p−1)K such that its restriction to the set of active groups coincides with
θ̂

S, while its restriction to the set of non-active groups is zero, i.e.,

θ̂[ij] =

{
θ̂

S
[ij], i f (i, j) ∈ S

0 i f (i, j) ∈ Sc.

To get the first inclusion, we need to prove that θ̂ is a solution of the full problem in
Equation (6). By Lemma 1 it is sufficient to prove that ∃ τ ∈ Rp(p−1)K : −XTD2(Y− Xθ̂) +
λτ = 0 and

τ[ij] =

{
θ̂[ij]/||θ̂[ij]||, i f θ̂[ij] 6≡ 0
u ∈ R2K, ||u|| ≤ 1, i f θ̂[ij] ≡ 0.

(10)

When θ̂[ij] 6≡ 0, the conditions in Equation (10) are satisfied by construction of θ̂.
When θ̂[ij] ≡ 0, the conditions in Equation (10) need to be verified. To this aim, substitute
y = Xθ0 + ε into −XTD2(y− Xθ̂) + λτ = 0 and get

−XTD2(Xθ0 + ε− Xθ̂) + λτ = 0

−XTD2Xθ0 − XTD2ε + Xθ̂+ λτ= 0

XTD2X︸ ︷︷ ︸
C by def

(θ̂− θ0)− XTD2ε︸ ︷︷ ︸
ζ by def

+λτ = 0

C(θ̂− θ0)− ζ + λτ = 0 (11)

After properly permuting the indexes of C, ζ and τ, i.e., placing all the variables
belonging to the active groups at the beginning and the non-active ones at the end,
Equation (11) becomes(

CSS CSSc

CScS CScSc

)(
θ̂− θ0

0

)
−
(

ζS
ζSc

)
+ λ

(
τS
τSc

)
=

(
0
0

)
.

This is equivalent to {
CSS(θ̂− θ0)− ζS + λτS = 0
CScS(θ̂− θ0)− ζSc + λτSc = 0

Solving the first equation for θ̂− θ0, and substituting into the second, we obtain

θ̂− θ0 = C−1
SS (ζS − λτS) (12)

and then

CScSC−1
SS (ζS − λτS)− ζSc + λτSc = 0

τSc = − 1
λ

CScSC−1
SS (ζS − λτS) +

ζSc

λ

τSc =
1
λ
(ζSc − CScSC−1

SS ζS)︸ ︷︷ ︸
w

+CScSC−1
SS τS,

By using hypothesis 2, we get ∀(i, j) ∈ Sc

||τSc

[ij]|| ≤
1
λ
||w[ij]||+ ||

[
CScSC−1

SS τS

]
[ij]
|| < α + 1

2
< 1.
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The second inclusion requires Ê ⊇ E ⇐⇒ θ̂[ij] 6≡ 0 ∀(i, j) ∈ S. We observe that it
is implied by ||θ̂[ij] − θ0

[ij]|| < ||θ
0
[ij]|| ∀ (i, j) ∈ S which is a stronger requirement called

direction consistency in the original paper [23]. Starting from Equation (12), we get

θ̂− θ0 = C−1
SS (ζS︸ ︷︷ ︸

v

−λτS) = v− λC−1
SS τS.

Then, by hypothesis 3, we have that ∀(i, j) ∈ S

||θ̂[ij] − θ0
[ij]|| ≤ ||v[ij]||+ λ||

[
C−1

SS τS

]
[ij]
|| < ||θ0

[ij]||.

Remark 3. We stress that the hypotheses of Theorem 1 are weaker than the hypotheses of Theorem 4.1
in [23]. In fact, in our setting, the stochastic matrix C and vector ζ do not inherit the Gaussian
distribution from data. Therefore, our results are based on a probabilistic assumption on these
stochastic objects and not on the underlying families of Gaussian distributions, i.e., on their covari-
ance matrices Σ(k), k = 1 . . . K. However, if, on one hand, this could be a limitation, on the other
hand, our result gives explicit conditions on the data that, in principle, could be verified given an
estimate of vector θ. The same would not be possible when the assumptions involve the population
matrices Σ(k) instead of the population vector θ0, because we do not estimate covariance matrices.

Remark 4. In machine learning language, hypothesis 2 implies that λ must be chosen small enough
to control the Type I error (i.e., the first inclusion) to avoid killing real edges. Hypothesis 3 implies
that λ must be chosen large enough to control the Type II error (the second inclusion) to avoid
including in the model false edges. Unfortunately, as it always happens in literature, from theoretical
results we have no explicit expression for λ, thus we will select it through data-driven criteria, as
exposed in the next section.

2.5. Selection of Regularization Parameter

Like any other penalty-based method, jewel requires selecting the regularization
parameter λ, which controls the resulting estimator’s sparsity. A high value of λ results in
a more sparse and interpretable estimator, but it may have many false-negative edges. By
contrast, a small value of λ results in a less sparse estimator with many false-positive edges.

Some authors have proposed using λ =
√

log p/n or suggested empirical application-
driven choices so that the resulting model is sufficiently complex to provide novel infor-
mation and, at the same time, sufficiently sparse to be interpretable. However, the best
choice remains to select λ by Bayesian Information Criterion (BIC), Cross-Validation (CV),
or other data-driven criteria (e.g., quantile universal threshold (QUT) [24]). In this work,
we propose the use of BIC and CV approaches.

Bayesian Information Criterion (BIC): Following the idea in [21], we can define the
BIC for the K classes as the weighted sum of the BICs of the individual classes. For each
class, the BIC comprises two terms: the logarithm of the residual sum of squares (RSS) and
the degree of freedom. For any value of λ, Algorithm 1 provides not only the solution θ̂,
but also the RSS stored in the matrices R(k) and the degree of freedom as the number of
non-zero pairs in the Active matrix. Therefore, the expression for BIC is given by

BIC(λ) =
K

∑
k=1

nk

p

∑
i=1

log
∣∣∣∣∣∣R(k)

.i (λ)
∣∣∣∣∣∣2 + #{Activeij(λ) 6= 0}

K

∑
k=1

log nk.
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Algorithm 1 The jewel algorithm

INPUT: X(1), . . . , X(K), λ, tol and tmax

INITIALIZE:
Θ(1, 0), . . . , Θ(K, 0)

R(k) = X(k) − X(k)Θ(k,0), k = 1 . . . K

Active =


0 1 . . . 1
0 0 1
...

. . .
...

0 0 . . . 0


REPEAT UNTIL CONVERGENCE
for j = 1 . . . p do

for i = j + 1 . . . p : do
if Activeij 6= 0

evaluate z =
(

z(1)ij , z(1)ji , . . . , z(K)ij , z(K)ji

)
by

z(k)ij =
1
nk

X(k)
.i

T
R(k)

.j + Θ(k, t)
ij

z(k)ji =
1
nk

X(k)
.j

T
R(k)

.i + Θ(k, t)
ji

evaluate threshold = 1− λ/‖z‖
if threshold < 0 then

Activeij ← 0 and z← 0
else

z← z · threshold
end if
update residuals

R(k)
.j = R(k)

.j + X(k)
.i

(
Θ(k,t)

ij − z(k)ij

)
R(k)

.i = R(k)
.i + X(k)

.j

(
Θ(k,t)

ji − z(k)ji

)
update coefficients (Θ(1, t)

ij , Θ(1, t)
ji , ..., Θ(K, t)

ij , Θ(K, t)
ij )← z

end for
end for

Stop if
∑k

∣∣∣Θ(k, t+1) −Θ(k,t)
∣∣∣

∑k
∣∣Θ(k,t)

∣∣ < tol or t > tmax

OUTPUT: Active

Given a grid of parameters λ1 < λ2 · · · < λL, we choose λBIC = arg min
λl , l=1...L

BIC(λl).

Cross-Validation (CV): The idea of cross-validation (CV) is to split the data into F
folds and consequentially use one fold as a testing set and all the others as training set.
In our jewel procedure, we divide each data set X(k) into F folds of dimension n f

k × p and
the f -th fold is the union of the f -th folds of each class. As in standard CV procedure, for
each parameter λl of the grid λ1 < · · · < λL and for each fold (X(k)

f )k = 1,...,K we estimate

Θ̂
(k)
− f (λl) and then evaluate its error as

err( f , l) =
K

∑
k=1

1

n f
k

∣∣∣∣∣∣X(k)
f − X(k)

f Θ̂
(k)
− f (λl)

∣∣∣∣∣∣2
F
.



Mathematics 2021, 9, 2105 13 of 24

Errors are then averaged over folds CV(λl) =
1
F ∑F

f=1 err( f , l) and the optimal pa-

rameter is chosen as λCV = arg min
λl , l=1...L

CV(λl).

As part of our numerical procedure, for both criteria, we start from the same grid of
values λ1 < · · · < λL, and we adopt the warm start initialization procedure combined
with the active shooting approach. Warm start initialization procedure means that we
first apply Algorithm 1 with the smaller value of λl , obtaining solution θ̂λl and Activeλl .
Then, when moving to the next value λl+1, we initialize Algorithm 1 with Activeλl and
θ̂λl . Starting with a sparse Active matrix instead of a full one, allows the algorithm to cycle
over a smaller number of groups, accelerating the iteration step. Note that with warm start
initialization not only we reduce the computational cost but also get nested solutions.

2.6. Code Availability

jewel is implemented as an R package jewel which is freely available at https://github.
com/annaplaksienko/jewel accessed on 11 July 2021.

3. Results
3.1. Simulation Studies

This section presents simulation results to demonstrate the empirical performance of
jewel from different perspectives. Specifically, we conducted three types of experiments.
In the first, we show the performance of jewel as a function of the number of classes K,
assessing the advantages of using more than one dataset. In the second, given the same
K datasets, we show that the joint approach is better than performing K independent
analyses with a voting strategy or fitting a single concatenated dataset. Finally, in the third
experiment, we compare the performance of jewel with two existing methods, the joint
graphical lasso (JGL) [14] and the proposal of Guo et al. [13]. We used JGL package for the
first and the code, kindly provided by the authors of [13], for the second.

Before presenting the results, we briefly describe the data generation and the metrics
we use to measure performance.

Data generation: Given K, p, and nk, we generated a “true” scale-free network G =
(V, E) with p nodes according to the Barabasi–Albert algorithm with the help of igraph
package [25]. If not stated otherwise, the number of edges added at each step of the
algorithm, m, and the power of the preferential attachment, power, were both set to 1.
The resulting graph G was sparse and had mp− (2m− 1) edges. Then, we generated K
precision matrices Ω(k). To this purpose, for each k, we created a p× p matrix with 0 s
on the elements not corresponding to the network edges and symmetric values sampled
from the uniform distribution with support on [−0.8,−0.2] ∪ [0.2, 0.8] for the elements
corresponding to the existing edges. To ensure positive definiteness of Ω(k), we set its
diagonal elements equal to |µmin(Ω

(k))|+ 0.1, with µmin(A) being the minimum eigenvalue
of matrix A. We invert Ω(k) and set Σ(k) with elements

Σ(k)
ij =

(
Ω(k)

)−1

ij√(
Ω(k)

)−1
ii

(
Ω(k)

)−1
jj

.

Finally, for each k, we sampled nk independent, identically distributed observations
from N (0, Σ(k)).

Performance measures: We evaluated the estimate of the graph structure Ê using the
true positive rate and the false positive rate, defined, respectively, as

TPR =
TP

TP + FN
and FPR =

FP
FP + TN

,

https://github.com/annaplaksienko/jewel
https://github.com/annaplaksienko/jewel
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with
TP = |{(i, j) : (i, j) ∈ E ∩ Ê}|, TN = |{(i, j) : (i, j) ∈ Ec ∩ Êc}|,
FP = |{(i, j) : (i, j) ∈ Ec ∩ Ê}|, TN = |{(i, j) : (i, j) ∈ E ∩ Êc}|,

where Ac is the complement of set A. TPR shows the proportion of edges correctly
identified, and FPR shows the proportion of edges incorrectly identified. As usually done
in the literature, to judge the method’s performance without being influenced by λ, we used
the ROC-curve (receiver operating characteristic), i.e., TPR against the FPR for different
values of λ. Our experiments used a grid of λs equispaced in log scale, consisting of
50 values ranging from 0.01 to 1. We averaged both performance metrics and running time
over 20 independent realizations of the above data generation procedure. Running time
was measured on the 4-core 3.6 GHz processor and 16 GB RAM computer.

3.1.1. More Datasets Provide Better Performance

This first experiment aims to quantify the gain in estimating E when the number of
datasets K increases. The simulation settings for this first experiment are as follows. We
simulated 10 datasets as described above for two different dimensional cases: p = 100 with
nk = 50 ∀ k (nk/p = 1/2) and p = 500 with nk = 100 ∀ k (nk/p = 1/5). We repeated the
datasets generation 20 times. For each case, we first applied jewel to the K = 10 datasets
and each of the 20 runs. We computed the average TPR and FPR. Then, we sampled
K = 5 matrices (in each run) and repeated the procedure. We subsampled K = 3 matrices
out of the previous 5, then K = 2 out of 3 and K = 1 out of 2. In other words, for each
value of K = 10, 5, 3, 2, 1 we applied jewel to 20 realizations and evaluated the average TPR
and FPR.

The average ROC curve in Figure 1 illustrates the performances as a function of K.
Results in Figure 1 show the trend of improvement as K grows (which we expect, given
the increasing amount of available data) and demonstrate that a limited increase in the
number of datasets can provide a significant gain in performance. Indeed, we observed a
remarkable improvement going from K = 1 to K = 2 or K = 3. Of course, this improvement
comes at a price on an increasing computational time. However, this price is not excessive
because it increases from≈40 min for K = 1 to≈1.5 h for K = 3 considering the whole grid
of 50 λ parameters. The grid of λ is uniform in log-scale and starts from 0.01. Therefore,
half of the values are between 0.01 and 0.1. Starting from a bigger λ1 or using fewer values
would decrease running time to minutes and make the price in terms of computational
cost not excessive. Note also that these running times refers to the case where we use jewel
over the entire grid of λ without the warm start procedure.

Figure 1. ROC-curve for jewel method applied to the different number of datasets K (denoted by
different colors). Left panel: performance for p = 100, nk = 50 ∀k. Right panel: performance for
p = 500, nk = 100 ∀k.
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3.1.2. The Joint Approach Is Better That Voting and Concatenation

In the same spirit of [26], this second experiment shows the importance of considering
a joint approach when analyzing multiple datasets instead of other naive alternatives.

More precisely, given K datasets sharing the same network structure E, we want to
show that the joint analysis performed by jewel has important advantages with respect to
the two following alternatives. The first is the concatenation approach, where all data sets
are combined into one extended matrix of size ∑k n×p and jewel is applied with K = 1.
The second is the voting approach, where each dataset is processed independently by jewel
with K = 1 obtaining K estimates of the adjacency matrices. Then, we build a consensus
matrix by setting an edge if it is present in at least dK/2e of the estimated matrices. Figure 2
illustrates a schematic representation of these approaches.

Figure 2. Different approaches that can be used for analyzing multiple datasets. Top panel: concate-
nation. Middle panel: voting. Bottom panel: joint approach.

The simulation setting for this second experiment is the following. We generated
20 independent runs, each with K = 3 data sets. We considered two dimensional scenario,
p = 100 with nk = 50 and p = 500 with nk = 100. For the concatenation approach, as a
first step, we constructed the long Knk × p matrix and then applied jewel. For the voting
approach, we applied the method separately to each data matrix X(k), k = 1 . . . 3, and then
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put an edge in the resulting adjacency matrix only if it was present in 2 out of 3 estimated
adjacency matrices. The ROC curves represent each approach’s performance in the left and
right panel of Figure 3 for the two-dimensional scenario, respectively.

First, we note that performance in the first scenario (left panel) is superior to the
second scenario (right panel) due to the high-dimensional regime that is more severe in the
second case. Second, we observe a significant advantage in processing the datasets jointly
with respect to the other two approaches. Indeed, with the same amount of data, jewel
correctly exploits the commonalities and the differences in K distributions and provides a
more accurate estimate of E. Instead, the concatenation approach ignores the distributional
differences creating a single data matrix (from not identically distributed datasets), and
the voting approach exploits the common structure of the network only during the post-
processing (voting) of the estimator. As a consequence, both concatenation and voting
approaches result in a loss of performance.

Figure 3. ROC curve for different approaches of inferring the graph from K = 3 datasets: joint
estimation, voting and concatenation (denoted in different colors). Left panel: performance for
p = 100, nk = 50 ∀k. Right panel: performance for p = 500, nk = 100 ∀k.

3.1.3. Comparison of Jewel with Other Joint Estimation Methods

In this third experiment, we compare the performance and runtime of jewel with two
other methods for joint estimation: joint graphical lasso (JGL) with group penalty [14] and
the proposal of Guo et al. [13]. JGL requires two tuning parameters λ1 and λ2 where the
first one is responsible for differences in the supports of Θ(k), k = 1 . . . K. Thus, according
to our hypothesis, as the patterns of non-zero elements are identical across classes, we
set λ1 = 0 and vary only λ2. For the proposal of Guo et al., we consider the union of the
supports of Θ(k) as the final adjacency matrix estimation (OR rule).

For sake of brevity, in this section we discuss only the dimensional setting K = 3,
p = 500, nk = 100 ∀k (n/p = 1/5). The other settings show analogous results and do not
add value to our exposition. Instead, as an added value to this study, we explored the
influence of the type of “true” graph on methods’ performance. Specifically, we compared
results obtained for different scale-free graphs obtained changing parameters m and power.
The first one, m, controls the graph’s sparsity as the number of edges in the resulting graph
is equal to mp− (2m− 1). The power parameter controls graph’s hub structure—bigger
power, bigger hubs. We considered six different m − power scenarios, with parameter
m = 1, 2 (resulting in 499 edges with 0.4% sparsity and 997 edges with 0.8% sparsity,
respectively) and parameter power = 0.5, 1, 1.5. In each of these scenarios, we generated
the “true” underlying graph for 20 independent realizations, see Figure 4 for a random
realization in each scenario. We then proceeded with the same scheme described before,
generating the data, to which we applied jewel, JGL, and Guo et al. methods, finally
evaluating the average performance and running time.
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In Figure 5, we show results of this third experiment and observe that on average jewel
and JGL are comparable in performance, both being superior to the proposal of Guo et al.
This observation remains true even in the worst-case scenario, i.e., power = 1.5. Overall,
Figure 5 illustrates the good performance of this class of methods in the sparse regime,
although increasing m, the performance decreases (in the worst case, it becomes similar to a
random guess for all methods). More specifically, we note that increasing power, i.e., hubs
size, leads to a significant loss in performance for all the methods. This observation agrees
with the recent paper [27] for the case of one dataset that explores classical methods, like
the one treated in this paper, for inferring a network with big hubs and comes to the same
discovery. This observation is quite important since, in many real-world networks, the
power is often estimated between 2 and 3. We could introduce degree-induced weights into
the penalty to overcome this limitation, but this possibility is not explored in this paper.

Figure 4. Scale-free graphs with p = 500 nodes generated with different values of parameters m (in
rows) and power (in columns). The graphs correspond to one of the 20 random realizations generated
in this simulation setup.

Figure 5. ROC-curve for different joint estimation methods: jewel, JGL [14] and Guo et al.
proposal [13] for K = 3, p = 500, nk = 100 ∀k. Each panel demonstrates performance in differ-
ent m− power setting.
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In Table 1, we report the running time results for some specific values of λ and for
the entire grid of λ in the case m = 1, power = 1 (we omit other cases as these parameters
do not influence the running time). As the tolerance influences the running time, we
report that for each method we used its default stopping criteria threshold value which
is tol = 0.01 for both jewel and Guo et al. method and tol = 10−4 for JGL. As we can see,
without using the warm start, jewel is approximately two times faster than JGL and several
times faster than Guo et al. for small values of λ. This does not hold for the higher values of
λ where jewel has to pay the price for the full initialization of the Active matrix. However,
in real data applications, it is unlikely to use such large values of λ since it implies setting
most of the connections to zero and, hence, many false negatives. In practical applications,
interesting values for λ lay in the range for which jewel is faster than both its competitors.

Table 1. Running time for different joint estimation methods: jewel, JGL [14], and Guo et al.’s
proposal [13] for K = 3, p = 500, nk = 100, m = 1 and power = 1 over the uniform in log-scale grid
of 50 parameters λ from 0.01 to 1.

jewel JGL Guo et al.

λ = 0.01 ≈7 min ≈11.5 min ≈66 min
λ = 0.1 41.16 s 80.16 s ≈2.6 min
λ = 0.2 26.28 s 73.76 s 73.68 s

λ = 0.52 26.32 s 0.31 s 22.91 s
λ = 0.83 26.3 s 0.099 s 12.08 s

λ = 1 22.65 s 0.099 s 10.88 s

grid of 50 λ ≈1.5 h ≈3.4 h ≈8.4 h

To summarize, we can assert that jewel demonstrated performance comparable to JGL
and superior to Guo et al.’s proposal while showing a significant advantage in terms of
running time in respect to both methods.

3.1.4. Tuning Parameter Estimation

Here, we show results obtained using BIC and CV criteria described in Section 2.5.
jewel package has both criteria built-in. By default, we fixed 5-folds for the CV and
implemented parallelization on a 4-core machine. Warm start procedure was implemented
for both criteria.

The simulation setting is the following: for p = 500, nk = 100, K = 3 we generated 20
independent runs as described before with default values m = 1 and power = 1. We used
a grid of 50 λs uniformly spaced in log-scale from 0.1 to 1. We set the stopping criterion
threshold tol = 10−4 instead of default value tol = 10−2 to achieve higher accuracy for the
estimation of regression coefficients Θ̂(k) and residuals R(k), k = 1 . . . K, which are required
by both criteria BIC and CV.

In Figure 6, we plot values of BIC and CV error for each λl value for one realization
of data randomly chosen out of twenty independent runs. In Table 2, instead, we report
results averaged over all 20 runs. For each run, we first estimated λBIC and λCV by the
two criteria, then ran jewel with these values and evaluated performance in terms of
accuracy, precision, recall (accuracy = (TP + TN)/(TP + TN + FP + FN), precision =
TP/(TP + FP), recall = TP/(TP + FN)) and running time.



Mathematics 2021, 9, 2105 19 of 24

Figure 6. Left panel: values of BIC obtained with warm start for jewel. Right panel: CV error
obtained with warm start. Results are reported for one randomly chosen realization with K = 3,
p = 500, nk = 100, m = 1, power = 1. Red circles denote the estimated optimal λOPT .

Table 2. Results of BIC and CV procedures with and without warm start for jewel in the case K = 3,
p = 500, nk = 100, m = 1, power = 1. Performance metrics and runtime were evaluated with
estimated λOPT .

λOPT Accuracy Precision Recall Runtime

BIC with w.s. 0.268 0.996 0.548 0.134 ≈3.6 min
CV with w.s. 0.193 0.992 0.229 0.382 ≈3.5 min

As we can see from Figure 6, both curves show a clear and well-defined minimum and
provide λOPT estimation. From Table 2 we also observe that runtime is around ≈3.5 min,
while the estimation without warm start would take around 3.5 h. Thus, we suggest using
warm start initialization for both criteria.

On average both estimates λBIC and λCV are quite close to λ =
√

log p/n =
√

log 500/100 =

0.249,which some authors adopt as regularization parameter (without applying data-driven
selection criteria). However, this choice seems too large because it eliminates too many
correct edges reaching high accuracy but relatively low precision and recall. This fact
indicates that the choice of regularization parameter is still an open problem and a crucial
one, and thus we conclude that, although BIC and CV are fundamental for choosing λ in
the absence of any other information, their performance is not yet optimal.

3.2. Real Data Analysis

This section shows the application of jewel to gene expression datasets of patients with
glioblastoma, which is the most common type of malignant brain tumor. We used three
microarray datasets from Gene Expression Omnibus (GEO) database [28]: GSE22866 [29]
(Agilent Microarray), GSE4290 [30], and GSE7696 [31,32] (both Affymetrix Array). We
annotated the probes using the biomaRt R package. In case of multiple matches between
probes and Ensembl gene ids, we gave preference to genes in common among all datasets
or, in case of further uncertainty, to those present in selected pathways (see below). Then,
we converted Ensembl gene ids to gene symbols, and we averaged gene expression over the
probes, obtaining K = 3 matrices with dimensions 40 × 20,861, 77 × 16,801, 80 × 16,804,
respectively. For the sake of simplicity, we considered only the p = 13,323 genes in common
to all three datasets.

For this illustrative analysis, we limited the attention to the genes belonging to seven
pathways from the Kyoto Encyclopedia of Genes and Genomes database [33] which were as-
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sociated with cancer: p53 signaling pathway (hsa04115), glutamatergic synapse (hsa04724),
chemokine signaling pathway (hsa04062), PI3K-Akt signaling pathway (hsa04151), glioma
pathway (hsa05214), mTOR signaling pathway (hsa04150), and cytokine–cytokine receptor
interaction (hsa04060). These pathways involve 920 genes in total; out of them, p = 483
were present in our datasets. Therefore, we applied jewel on this subset of genes. As
described in the previous section, we selected the regularization parameter λ with both
BIC and CV procedures. Finally, we compared the two estimated networks with a network
obtained from the STRING database. In the following are the details.

First, when we used BIC (with the warm start) to estimate the optimal value of λ, we
obtained λBIC = 0.2223 (see Figure 7). Therefore, the estimated graph GBIC is the solution
of jewel corresponding to this parameter. It has 3113 edges (about 2.7% of all possible
edges), and all 483 vertices have a degree of at least 1.

When we used CV (with the warm start) to estimate the optimal value of λ, we
obtained λCV = 0.1151 (see Figure 7). We ran jewel with this value of the regularization
parameter. Resulting graph GCV has 7272 edges (about 6.2% of all possible edges) and all
483 vertices have a degree of at least 1. As, in this example λCV < λBIC, GCV has more
connections than GBIC.

Then, to better understand the identified connections, we analyzed the p = 483 genes
in the STRING database [34]. STRING is a database of known and predicted protein–
protein interactions that can be physical and functional and derived from lab experiments,
known co-expression, and genomic context predictions and knowledge in the databases
text mining. We limited the query to connections from “experiments” and “databases” as
active interaction sources setting the minimum required interaction score to the highest
value of 0.9. The resulting STRING network had 415 out of 483 vertices connected to any
other node and 4134 edges.

Figure 7. Left panel: values of BIC obtained for glioblastoma datasets with K = 3, p = 483 and
n1 = 40, n2 = 77, n3 = 80 over the uniform in log-scale grid of 50 parameters of λ from 0.01 to 1.
Right panel: CV error obtained with the same settings. Red circles denote estimated optimal λOPT .

We measured the number of connections common to our estimated network and
the network from the STRING database. For each case, Figure 8 shows the connections
identified by jewel that were present also in the STRING database. For GBIC, we observed
170 edges in common, while for GCV , we had 297 common edges (see all the results
summarized in Table 3).
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Figure 8. Intersection of the networks estimated with jewel from glioblastoma datasets and the one
obtained from the STRING database. Regularization parameter, used in the estimation, was obtained
with BIC (on the left) and with CV (on the right).

Table 3. Results of BIC and CV procedures obtained for K = 3 glioblastoma datasets with p = 483
over the uniform in log-scale grid of 50 parameters of λ from 0.01 to 1. The p-values is the results of
the hyper-geometric test to assess the significance of the edge overlap.

λOPT # Est. Edges # Edges in
Intersection p-Value

BIC 0.2223 3113/116,403 170/4134 3.29255 × 10−8

CV 0.1151 7272/116,403 297/4134 0.00697

Although the number of edges in the intersection can be considered low at first sight,
it is significant according to the hypergeometric test. Nevertheless, we should note two
things: First, jewel seeks to identify conditional correlation among variables or equivalently
linear relationships between two genes not mediated by other factors (i.e., other genes).
Meanwhile, connections from the STRING database are not necessarily of such nature.
Second, STRING contains general protein–protein interactions, i.e., interactions that are not
necessarily present in the tissue/condition studied in used datasets. Therefore, we do not
expect to identify mechanisms that might occur in other biological conditions (our gene
expressions are glioblastoma).

However, we notice many groups of genes identified consistently, such as collagen
alpha chains, ionotropic glutamate receptors, frizzled class receptors, interleukin 1 re-
ceptors, and fibroblast growth factors, collagen, and others. The biggest hubs in GBIC
include PPP3CC (frequently underexpressed in gliomas), RCHY1 (vice versa, typically
highly expressed in this condition), and IL4R (is associated with better survival rates). In
GCV , the biggest hubs are TNN (that is considered a therapeutic target since an increase
in expression can suppress brain tumor growth), CALML6, and BCL-2 (that can block
apoptosis, i.e., cell death, and therefore may influence tumor prognosis).

To conclude, jewel demonstrated its ability to identify connections from the gene
expression microarray data. However, it is possible that the choice of the regularization
parameter still deserves improvements to achieve better results.

4. Discussion

The proposed method jewel is a methodological contribution to the GGM inference
in the context of multiple datasets. It provides a valid alternative if the user is interested
only in the structure of the GGM and not in covariance estimation. The proposed method
is easy to use with the R package jewel.
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There are still some aspects that can be improved and constitute directions for future
work. As the performance of any regularization method depends on the choice of the
tuning parameter, jewel could be improved with the better choice of λ. For example, in [24]
the authors suggest quantile universal threshold, λQUT , which is the upper α-quantile of the
introduced zero-thresholding function under the null model. When not only the response
vector but also the design matrix is random (as in jewel), bootstrapping within the Monte
Carlo simulation can be used to evaluate λQUT .

Moving to more methodological improvements, we can incorporate degree-induced
weights into the minimization problem to account for the underlying graph’s hub structure.
In this way, we could overcome the decrease in performance demonstrated by all analyzed
methods. Furthermore, we can consider other grouping approaches as the neighbor-
dependent synergy described in [35]. Another possible improvement, when the underlying
graphs are not the same across all the K datasets, is to decompose Θ(k) as a sum of two
factors, one describing the common part and another the differences between the K graphs,
then add a second group Lasso penalty term to capture differences between the networks.
Other intriguing improvements regard the incorporation of specific prior knowledge,
which would lead to different initialization of the Active matrix. For example, using
variable screening procedures, i.e., a preliminary analysis of the input data that identifies
connections that are not “important” with high probability, we can reduce the problem’s
dimensionality. Other aspects concern implementing the block-diagonalization approach,
i.e., identifying blocks in the underlying graph and perform independent execution of jewel
to each block. Such a choice does not influence performance but can significantly decrease
the running time, especially if we parallelize the execution of jewel to different blocks.

Finally, another point that might greatly impact the applications of jewel to the analysis
of gene expression has to do with the Gaussian assumption. Nowadays, RNA-seq data have
become popular and are replacing the old microarray technology. However, RNA-seq are
counts data. Therefore the Gaussian assumption does not hold. Methods such as voom [36]
can be used to transform the RNA-seq data and stabilize the variance. voom estimates
the mean-variance relationship of the log-counts, generates a precision weight for each
observation and enters these into the limma [37] empirical Bayes analysis pipeline. With this
transformation, the RNA-seq can be analyzed using similar tools as for microarrays, jewel
included. As a more appealing alternative, one could develop a joint graphical approach in
the context of count data, such as in [38–40].
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