
mathematics

Article

Polynomial Analogue of Gandy’s Fixed Point Theorem

Sergey Goncharov *,† and Andrey Nechesov *,†

����������
�������

Citation: Goncharov, S.; Nechesov, A.

Polynomial Analogue of Gandy’s

Fixed Point Theorem. Mathematics

2021, 9, 2102. https://doi.org/

10.3390/math9172102

Academic Editors: Francesco Aldo

Costabile, Maria I. Gualtieri and

Anna Napoli

Received: 20 July 2021

Accepted: 27 August 2021

Published: 31 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Sobolev Institute of Mathematics, Academician Koptyug Ave., 4, 630090 Novosibirsk, Russia
* Correspondence: s.s.goncharov@math.nsc.ru (S.G.); nechesov@math.nsc.ru (A.N.)
† These authors contributed equally to this work.

Abstract: The paper suggests a general method for proving the fact whether a certain set is p-
computable or not. The method is based on a polynomial analogue of the classical Gandy’s fixed
point theorem. Classical Gandy’s theorem deals with the extension of a predicate through a special
operator ΓΩ∗

Φ(x) and states that the smallest fixed point of this operator is a Σ-set. Our work uses
a new type of operator which extends predicates so that the smallest fixed point remains a p-
computable set. Moreover, if in the classical Gandy’s fixed point theorem, the special Σ-formula Φ(x)
is used in the construction of the operator, then a new operator uses special generating families of
formulas instead of a single formula. This work opens up broad prospects for the application of the
polynomial analogue of Gandy’s theorem in the construction of new types of terms and formulas, in
the construction of new data types and programs of polynomial computational complexity in Turing
complete languages.

Keywords: polynomial computability; p-computability; Gandy’s fixed point theorem; semantic
programming; polynomial operators; ∆p

0 -operators; computer science

1. Introduction

In both mathematics and programming, we are increasingly confronted with induc-
tively given constructs. These constructs can be, for example, new types of terms and
formulas in logic or programs and new data types in high-level programming languages
that are inductively defined using basic tools. All these inductively generated sets can be
viewed as the smallest fixed points of a suitable operator. Classical Gandy’s theorem [1,2]
allows us to inductively define some abstract set through the special operator ΓΩ∗

Φ(x) [1]
where the smallest fixed point will be a Σ-set. The Σ-set is most often not a computable set
and, moreover, not a p-computable set. Therefore, the question arises of how to modify
Gandy’s theorem so that the smallest fixed point be a computable or a p-computable set. In
this paper, we just talk about the construction of a ∆p

0 -operator with the smallest fixed point
being a p-computable set, which allows us to consider many inductive formulas definable
constructions as some polynomially computable set.

2. P-Computability

Let Σ be a finite alphabet and A, B ⊆ Σ∗ where Σ∗ is the set of finite words over
the alphabet Σ. We say that a function f : A → B is p-computable [3–5] if there exists a
one-tape/multi-tapes deterministic Turing machine T over the alphabet Σ and numbers
C, p ∈ N such that for all a from A the value of the function f (a) is computed on T in at
most C · |a|p steps, where |a| ≥ 1. The set A is called p-computable if its characteristic
function χA : Σ∗ → {0, 1} is p-computable. The class P of problems which can be solved
in polynomial time will often be denoted by ∆p

0 (accepted notation for the polynomial
hierarchy). Therefore, the notation ∆p

0 -function for a p-computable function and ∆p
0 -set

for a p-computable set will also be used. A partial function f : A → B is called a partial
p-computable function, if there exists a set D ⊆ A such that f : D → B is a p-computable
function (the Turing machine which represents f computes f (a) and stops at the final state

Mathematics 2021, 9, 2102. https://doi.org/10.3390/math9172102 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-2954-0900
https://orcid.org/0000-0001-7631-7440
https://doi.org/10.3390/math9172102
https://doi.org/10.3390/math9172102
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9172102
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9172102?type=check_update&version=2

Mathematics 2021, 9, 2102 2 of 11

q0) and f (a) is undefined (notation f (a) ↑p or simple ↑p) if a ∈ A\D, while the Turing
machine on the element a ∈ A\D stops at the final state q1 and number of steps does not
exceed C ∗ |a|p steps. As we can see, the partial p-computable function is a p-computable
function, but sometimes it is convenient to assume that the value of a p-computable
function is undefined. We will also denote partial p-computable functions as ∆p

0 -functions.

3. Word Splitting

Now let Σ0 be some finite alphabet and Σ = Σ0 ∪ {<,>} ∪ {, } is a new alphabet
obtained by adding new symbols (brackets and comma) to Σ0. Word splitting is the
following partial function R : Σ∗ → (Σ ∪ {#})∗ such that:

R(w) =

{
w1#...#wn, where w =< w1, . . . , wn > and every wi ∈ Σ∗ satisfies (1) or (2)
↑, otherwise

(1) wi ∈ Σ∗0
(2) wi starts with a left bracket and the number of left brackets in the word is equal to the
number of right brackets, while for any initial subword αi such that wi = αiβi it is not
implemented, where the word wi can be represented as some concatenation of the words
αi, βi ∈ Σ∗ and |αi| ≥ 1.

Proposition 1. The word splitting is unique.

Proof. Prove by contradiction. Let there be two different splittings R(w) = w1# . . . #wn
and R(w) = l1# . . . #lk such that w =< w1, . . . , wn > and w =< l1, . . . , lk >. Then, by
definition, either w1, l1 ∈ Σ∗0 , or w1 and l1 start with a left bracket and the number of right
and left brackets for each word is the same. In the first case, w1 and l1 are the same. In
the second case, w1 is the subword of l1 or l1 is the subword of w1. Then, by definition,
no proper subword starting with a left bracket can have an equal number of right and left
brackets. Equality of words was also obtained. Further, in a similar way, we show that the
remaining wi = li and at the same time n = k.

Proposition 2. R(w) is ∆p
0 -function.

Proof. Consider a Turing machine T with two semi-tapes (hereafter called tapes) over the
alphabet Σ ∪ {1, B, #} where B is an empty symbol:
(1) The 1st tape: we will store the word w.
(2) The 2nd tape: we will store the difference between the number of left and right brackets
of the word w.
Algorithm of the multi-tapes machine:
(1) If the first symbol on the first tape is not a left bracket, then T stops the work in the final
state q1. Otherwise, T replaces it on B symbol and goes on to the next steps.
(2) If the second symbol in the word w is from Σ0, then T reads the word w until it meets a
symbol, not from Σ0. If it is not a comma or a right bracket then T stops the work in state q1.
(3) If the second symbol is not from Σ0 and is not a left bracket, then T stops the work in
the state q1.
(4) When T reads the left bracket of the word w, then T adds 1 on the second tape and shifts
the head of the second tape to the right and when T reads the right bracket of the word w,
then T replaces symbol 1 with B of the second tape and shifts the head of the second tape
to the left.
(5) If there are no more symbols 1 on the second tape when T reads the right bracket from
the first tape, then the machine replaces the right bracket with B on the first tape. If there
are no other symbols from Σ after this right bracket, then the machine stops work in the
final state q0, otherwise, in the final state q1.
(6) If T meets a comma on the first tape and there are no symbols 1 on the second tape, then
T replaces this comma with # symbol.

Mathematics 2021, 9, 2102 3 of 11

Computational complexity R(w):
(1) T reads the word w on the first tape periodically replacing the comma or brackets with
symbol #. The number of such steps does not exceed |w|.
(2) On the second tape T writes or erases symbols 1. The number of such additions and
removals does not exceed |w|.
(3) Steps from (1) and (2) taken simultaneously. It turns out that the computational com-
plexity t(R(w)) ≤ |w|.

Inductively define the notion rank of element r(w) for w ∈ Σ∗:

r(w) =

{
0, if R(w) ↑p

sup{r(w1), . . . , r(wk)}+ 1, if R(w) = w1# . . . #wk

4. Generating Formulas and Families. False Element

Let M be a model of signature σ = {c1, . . . , cr, f (m1)
1 , . . . , f (ms)

s , R(p1)
1 , . . . , R(pt)

t , P(1)
1 , . . . ,

P(1)
n } with the basic set M ⊆ Σ∗0 , where cl is constant symbols (l ∈ [1, . . . , r]), fi is func-

tional symbols (i ∈ [1, . . . , s]), Rj is predicate symbols (j ∈ [1, . . . , t]), Pk is unary predicate
symbols, k ∈ [1, . . . , n]. P(Σ∗) is the set of all subsets of the set Σ∗. FP+

1
, . . . , FP+

n
is fam-

ilies(generating families) positive quantifier-free formulas (hereafter called generating
formulas) of signature σ which can include unary predicates P1,. . . ,Pn with inputs of the
form Pj(xi). Moreover, we require that for any free variable xi in the formula ϕm ∈ FP+

k
there should be no occurrences of the form Pj(xi) and Ph(xi) for each xi, where j 6= h. This
property will be called predicate separability.

The idea is to generate new elements in the form of lists < a1, . . . , anm > obtained
from a1, . . . , anm ∈ M such that M |= ϕm(a1, . . . , anm) and then add this set of elements Qi
to the main set of the model where:

Qi = ∪ϕm(x1,...,xnm)∈FP+i
{< a1, . . . , anm > |M |= ϕm(a1, . . . , anm)}

If we are to extend the main set of elements M of the model M to this new set of
elements Qi, then we need to redefine the functions on these new elements and redefine
the truth of the predicates. It is clear that the functions on new elements will not be defined,
so we will expand the basic set of elements M of the M model of signature σ with a special
f alse-element to M∪ { f alse}. Next, we define the semantic meaning of terms and formulas
in the M f alse model for all elements from Σ∗ ∪ { f alse} and not only for M ∪ { f alse}.

Since everywhere below only positive quantifier-free formulas with a positive occur-
rence in the form of Pi(xj) for some Pi and xj appear, then for these formulas on the model
M f alse we inductively define the values of functions and the truth of predicates as well as
the truth of positive quantifier-free formulas ϕi, i ∈ I:
(1) M |= ϕi(a1, . . . , ak) if and only if M f alse |= ϕi(a1, . . . , ak) where a1, . . . , ak ∈ M.
(2) the function value f j(a1, . . . , anj) equal f alse, if at least one ai ∈ Σ∗ ∪ { f alse}\M,
j ∈ [1, . . . , s]
(3) the function value f j(t1(a), . . . , tn(a)) equal f alse if at least the value of one of the terms
tj(a) equals f alse.
(4) the formulas of the form f alse = t(a1, . . . , an) including f alse = f alse will be consid-
ered false.
(5) the formulas of the form a = a will be considered true for a ∈ M and false otherwise.
(6) the formulas of the form Ri(t1(a), . . . , tni (a)) will be considered false if at least one of
the terms tj(a) has value f alse.
(7) M |= P(a) if and only if M f alse |= P(a) where a ∈ M.
(8) Φ&Ψ, Φ ∨Ψ retain their standard definitions of truth.
Let us denote enrichment of the model M f alse by < M f alse, Q > such that:
(1) M ∪ { f alse} ∪Q is a new main set.
(2) All predicates Ri(t1, . . . , tni) remain unchanged if the values of the terms t1, . . . , tni are
from M and are f alse otherwise.

Mathematics 2021, 9, 2102 4 of 11

(3) All predicates Pj(a) remain unchanged if a ∈ M and Pj(a) are f alse otherwise.
(4) All functions fi(a1, . . . , an) remain unchanged for a1, . . . , an ∈ M and have a f alse
value otherwise.

Denote the expression < M f alse, Q, Pi > it is < M f alse, Q > enrichment at which the

truth set of the predicate Pi is extended to P
M f alse
i ∪Q.

5. Fixed Points of Monotone Locally Finite Operators

Let M f alse be a model of signature σ and Q = (Q1, . . . , Qn), Qi ⊆ Σ∗, i ∈ [1, . . . , n].

Then we introduce the notation: M(Q1,...,Qn)
f alse =<< · · · < M f alse, Q1, P1 > · · · >, Qn, Pn >.

Construct an operator:

ΓM
FP+1

,...,FP+n
: P(Σ∗)× · · · × P(Σ∗)→ P(Σ∗)× ...× P(Σ∗), (1)

which transfers n-th sets (Q1, . . . , Qn) to n-th sets (Q′1, . . . , Q′n) according to the following

rule: Q′i = Qi ∪
⋃

ϕm(x1,...,xkm)∈FP+i
{< a1, . . . , akm > | M(i−1)

f alse |= ϕm(a1, . . . , akm)}.

where ϕm ∈ FP+
i

, a1, . . . , akm ∈ M(i−1) and M
(i−1)
f alse is built on the model M f alse of signature

σ in the following way:

M
(0)
f alse = M f alse, . . . , M(i)

f alse =< M
(i−1)
f alse , Q′i, Pi >, where i ∈ [1, . . . , n].

We fix a partial order ≤n: (Q1, . . . , Qn) ≤n (R1, . . . , Rn), if Qi ⊆ Ri for all i ∈ [1, . . . , n]

Remark 1. Operator ΓM
FP+1

,...,FP+n
is monotone with respect to the order ≤n, i.e.,

(Q1, . . . , Qn) ≤n (R1, . . . , Rn)⇒ ΓM
FP+1

,...,FP+n
(Q1, . . . , Qn) ≤n ΓM

FP+1
,...,FP+n

(R1, . . . , Rn).

Remark 2. Operator ΓM
FP+1

,...,FP+n
possesses the property of a fixed point, i.e.:

(Q1, . . . , Qn) ≤n ΓM
FP+1

,...,FP+n
(Q1, . . . , Qn).

Associate the operator ΓM
FP+1

,...,FP+n
with the sequence: Γ0, Γ1, . . . , Γt, . . . :

Γ0 = {∅, . . . , ∅} ≤n · · · ≤n Γt+1 = ΓM
FP+1

,...,FP+n
(Γt) ≤n · · · ≤n Γw = ∪k<wΓk. (2)

Let us denote projection onto the j-th coordinate by Ij(Γk) = Qj.

We will say that operator Γ : P(Σ∗) × ...× P(Σ∗) → P(Σ∗) × ...× P(Σ∗) is locally
finite if for any X1, . . . , Xn ⊆ Σ∗ and any j ∈ [1, . . . , n] is done:

Ij(Γ(X1, . . . , Xn)) = ∪X′1⊆X1
· · · ∪X′n⊆Xn

Ij(Γ(X′1, . . . , X′n)), (3)

where X′1, . . . , X′n are finite sets.

Proposition 3. Operator ΓM
FP+1

,...,FP+n
is locally finite.

Proof. Let X1, . . . , Xn ⊆ Σ∗, where X′i are finite sets.
⇐ Inclusion in equality (3) for operator ΓM

FP+1
,...,FP+n

in one way is fulfilled by construction of

our operator ΓM
FP+1

,...,FP+n
.

Mathematics 2021, 9, 2102 5 of 11

⇒ Let w be from Ij(ΓM
FP+1

,...,FP+n
(X1, . . . , Xn)). We get that w is a finite list made up of a

finite number of elements from M ∪ X1 ∪ · · · ∪ Xn. Mark all the elements involved in
constructing w from Xj as Cj for all j ∈ [1, . . . , n]. Note that all sets Cj are finite and Cj ⊆ Xj.
Therefore, narrowing our sets Xi to Ci we get w ∈ Ij(ΓM

FP+1
,...,FP+n

(C1, . . . , Cn)).

Proposition 4. The smallest fixed point of the operator ΓM
FP+1

,...,FP+n
is reached in w steps.

Proof. Claim that the fixed point of the operator ΓM
FP+1

,...,FP+n
is reached in w steps following

automatically from the fact that the operator ΓM
FP+1

,...,FP+n
is monotone, has the fixed point

property and is locally finite.

6. Formulas Families F∗
P+

i

Further, we will consider generating families of formulas of the form
FP+

i
= {ϕm(x1, ..., xnm)}|m ∈ N} where xi is encoding the variable xi with a string of

v symbols length i. Let ε be a string of symbols above the alphabet {0, 1} length nm. Then
the formula ϕε

m(x1, . . . , xnm) is obtained from ϕm(x1, ..., xnm) replacing all occurrences of
the form Pj(xi) on i-th symbol in word ε. The number of free variables in this formula may
be less, nevertheless we leave their number in the notation for ϕε

m as before.

F∗
P+

i
= {ϕε

m(x1, . . . , xnm)| ϕm(x1, . . . , xnm) ∈ FP+
i

, ε ∈ {0, 1}∗ and |ε| = nm}

The formula ϕε
m(l1, . . . , lnm) is obtained from ϕε

m(x1, . . . , xnm) substituting free vari-
ables xi by the corresponding values li for all i ∈ [1, . . . , nm]. Due to the predicate separa-
bility of the formula ϕm the maximum number of such occurrences in ϕε

m may not be more
than nm.

Define Ω = Σ ∪ σ ∪ {0, 1} ∪ {v} ∪ {#} ∪ {∨, &} ∪ {(,)} as a set of symbols such that
any formula of the form ϕm(x1, . . . , xnm), ϕm(l1, . . . , lnm), ϕε

m(x1, . . . , xnm), ϕε
m(l1, . . . , lnm)

∈ Ω∗, where l1, . . . , lnm ∈ Σ∗, ϕm ∈ FP+
j

for some j ∈ [1, . . . , n].

Define a potentially generating formula as a formula ϕm(x1, . . . , xk) potentially gener-
ating an element l ∈ Σ∗ such that R(l) = l1# . . . #lk and the following holds:

M f alse |= ϕε
m(l1, . . . , lk)

for some signification ε. If for any l ∈ Σ∗ there is only one potentially generating formula
in the family, then we can define a partial function γi : Σ∗ → Ω∗ that constructs from an
element l ∈ Σ∗ its potentially generating formula ϕm(x1, . . . , xk) if such a formula exists
and is undefined otherwise γi(l) ↑. In the next chapter we will require for functions γi to
be p-computable.

7. ∆
p
0 -Models and ∆

p
0 -Operators

Model M of the finite signature σ will be called a p-computable model (∆p
0 -model)

[4–7] if all functions are p-computable functions, all predicates and the main set are ∆p
0 -sets.

If we want to mark the degree of the polynomial n and the constant C, we will write
C-n-∆p

0 -model instead of writing ∆p
0 -model. Sometimes, there will be records of the form

C-p-∆p
0 . In the first case, p is the degree of the polynomial and in the second, ∆p

0 is the
designation for the first level of the polynomial hierarchy. Designation of C-p-∆p

0 -function
will be also applied for functions and C-p-∆p

0 -set will be also applied for sets. Note that
M f alse will be a C-p-∆p

0 -model if such is the model M.
Let us call ∆p

0 -operator the operator ΓM
FP+1

,...,FP+n
from (1) if for some C, p ∈ N the fol-

lowing four properties hold:
(1) p-computable model: M is a C-p-∆p

0 -model.

Mathematics 2021, 9, 2102 6 of 11

(2) predicate separability, quantifier-free and positivity: each family FP+
1

, . . . , FP+
n

is either a
finite or countable family of formulas, all formulas ϕj ∈ FP+

i
are positive, quantifier-free,

predicate-separable.
(3) uniqueness of the generating formula: for any two formulas ϕ1(x1, . . . , xk), ϕ2(x1, . . . , xk)
∈ FP+

i
with the same number of free variables and for any signification E : Pj(xi)→ {0, 1},

i ∈ [1, . . . , k], j ∈ [1, . . . , n] it is not true that there exists such significations as ε1 and ε2
consistent with E such that:

there exists l1, . . . , lk from M such that M f alse |= ϕε1
1 (l1, . . . , lk)&ϕε2

2 (l1, . . . , lk)

(4) p-computability of element: we also require that all functions γi should be C-(p-1)-∆p
0 -

functions and families F∗
P+

i
- C-p-∆p

0 -families (time for checking t(M f alse |= ϕε
m(l1, . . . , lk)) ≤

C · |l|p, for all ϕm ∈ FP+
i

and li ∈ Σ∗ ∪ { f alse}), i ∈ [1, ..., k].

Note that the ∆p
0 -operator thus defined retains all the original properties: it is mono-

tone, has a fixed point property and is locally finite, and therefore the smallest fixed point
of the operator is reached in w steps.

We say that the smallest fixed point Γw = (P1, . . . , Pn) will be ∆p
0 -set if any Pi is a

∆p
0 -set, where i ∈ [1, . . . , n]. Let γi be the C-(p-1)-∆p

0 -function for ∆p
0 -operator ΓM

FP+1
,...,FP+n

and ϕm(x1, . . . , xk) ∈ FP+
i

- potential generating formula for l, where R(l) = l1# . . . #lk and
all l1, . . . , lk ∈ Σ∗. Then the following lemma is true for any signification ϕε

m(x1, . . . , xk):

Lemma 1. ϕε
m(x1, . . . , xk) is built according to the formula ϕm(x1, . . . , xk) and by signification ε

for the time not exceeding 12 · C · |l|p−1.

Proof. Consider the Turing machine T over Ω alphabet consisting of five semi-tapes (here-
after called tapes):
(1) the 1st tape: the formula ϕm(x1, . . . , xk) is written out.
(2) the 2nd tape: the word ε of length k is written out.
(3) the 3rd tape: for variables.
(4) the 4th tape: remembers the last position of the first tape.
(5) the 5th tape: builds a new formula ϕε

m(x1, . . . , xk).

Let the formula ϕm(x1, . . . , xk) be written out on the first tape and the second tape
should contain the word ε. The machine T starts to work in the extreme left position and
reads the formula from the first tape. As soon as T reaches the word of the form Pj(xi), T
begins to read this word and writes out in parallel symbol 1 on the fourth tape for each
symbol of Pj(xi) and symbol 1 for each symbol v of Pj(xi) on the third tape, moving in
parallel, the machine head on the second tape containing the word ε with a single delay.
When all the symbols v...v (xi) are read, the head on the second tape will observe symbol
εi1 which must be substituted for the word Pj(xi). Since the head position of the first tape
is recorded on the fourth tape, T starts to overwrite on the first tape the word Pj(xi) on
symbols # and reduce in parallel the number of symbols 1 on the fourth tape. One as soon
as there are no one-symbols left on the fourth tape, then T write the symbol εi1 to the first
tape. Then T returns the heads of second, third and fourth tapes to the extreme left position
and continue to sequentially find and replace the remaining occurrences of the form Pj(xr)
on the first tape and replace them with symbols # and εr. After all the replacements T must
return the head of the first tape to the extreme left position and starts copying the formula
of the first tape to the fifth tape while skipping the symbols #.

Calculate the total operating time of such a machine T:
(1) The machine T works with the formula ϕm(x1, . . . , xnm) on the first tape which includes
words such as Pj(xi). The length of this formula does not exceed C · |l|p−1. In total, the
number of steps does not exceed three lengths of ϕm(x1, . . . , xnm).
(2) On the second tape, the machine does not change the word ε, simply reads it in parallel

Mathematics 2021, 9, 2102 7 of 11

with the symbols v from the first tape and periodically returns the head to the extreme left
position. The total number of shifts to the right of the machine head of the second tape
does not exceed the length of the word on the first tape. The same goes for the number
of the machine head shifts to the left. Therefore, on this tape, there will be no more than
2 · C · |l|p−1 steps.
(3) On the third tape, the last monitored variable is written out. The number of the machine
head shifts to the right and to the left does not exceed 2 · C · |l|p−1 on this tape.
(4) For the fourth tape it is also does not exceed 2 · C · |l|p−1.
(5) To copy the final word from the first tape to the fifth and taking into account the
preliminary setting of the head of the first tape to the extreme left position, it will also take
no more than 2 · C · |l|p−1.

Let ϕm(x1, . . . , xk) ∈ FP+
i

be potentially generative formula for an element l.

Lemma 2. ϕε
m(l1, . . . , lk) is built by word l and the formula ϕε

m(x1, . . . , xk) for the time not
exceeding 4 · C · |l|p.

Proof. Consider a Turing machine T over alphabet Ω that also consists of three semi-tapes
(hereafter called tapes):
(1) the 1st tape: the formula ϕε

m(x1, . . . , xk) is written out, where the length of the formula
does not exceed C · |l|p−1.
(2) the second tape: the word w2 = #R(l) = #l1# . . . #lk written out, where the length of the
word does not exceeding |l|.
(3) the third tape: builds a new formula ϕε

m(l1, . . . , lk).
The machine starts to work with the formula of the first tape, if necessary simultane-

ously copying the result to the third tape. If the machine T on the first tape reads a symbol
that is not v, then T copies it to the third tape. If T reads the symbol v on the first tape, then
T starts the process of finding the corresponding li for replacement. When the machine T
reads the i-th symbol v successively from the first tape, T transfers the machine head of
second tape to the i-th symbol # that comes before the corresponding li. When T reads all
symbols v successively from first tape, then the machine will write the corresponding ls
from second tape to the third tape. By repeating this algorithm on the third tape the word
ϕε

m(l1, . . . , lk) will eventually be written.
Calculate the total operating time of such a machine T:

(1) the machine T reads a word from the first tape or just stands and waits for further
reading. The number of movements to the right does not exceed C · |l|p−1

(2) on the second tape, the machine head moves both to the right and to the left, but again
only reading. Therefore, the number of steps does not exceed C · |l|p−1× 2 · |l| ≤ 2 ·C · |l|p.
(3) the third tape: the number of steps does not exceed C · |l|p−1.

8. A Polynomial Analogue of Gandy’s Theorem

Let Γw from equality (2) be the smallest fixed point of ∆p
0 -operator ΓFP+1

,...,FP+n
, then the

next theorem is true:

Theorem 1 (polynomial analogue of Gandy’s theorem). The smallest fixed point Γw of ∆p
0 -

operator ΓFP+1
,...,FP+n

is a ∆p
0 -set.

Proof. The main idea of the proof is to show that the time for checking the truth of the
formula Pi(l) on MΓw

f alse does not exceed the time k · C · r(l) · |l|p, where k and C are fixed
constants and r(l) is the rank of the element l and r(l) ≥ 1, i ∈ [1, . . . , n]. Since the rank
r(l) < |l|, we get that for any l the complexity does not exceed k · C · |l|p+1.

Without loss of generality, we show this for P1(l), assuming in the induction step that
this estimate is true for all Pi(lj), where r(lj) < r(l) and i ∈ [1, . . . , n].
Using the induction by complexity r(l) we show that t(P1(l)) ≤ 25 ·C · r(l) · |l|p, where the

Mathematics 2021, 9, 2102 8 of 11

constant C is the maximum for all constants that participate in the splitting function R(l),
in functions γi and in the algorithm for checking the truth of the formula ϕε

m(l1, . . . , lnm).
Induction base r(l) = 1:

Case 1: γi(l) ↑p, then the formula P1(l) is false.
Case2: γi(l) = ϕm(x1, . . . , xk), then R(l) = l1# . . . #lk and all elements of li (where i ∈
[1, . . . , k]) are either elements of the base set M or elements from Σ∗ for which R(li) ↑p.
Given all Pi(lj) are false on MΓw

f alse, we can create ϕε
m(x1, . . . , xk) from the potentially gener-

ating formula ϕm(x1, . . . , xk) for element l, where ε = 0 . . . 0 and |ε| = k. We get:

MΓw
f alse |= P1(l) if and only if MΓw

f alse |= ϕm(l1, . . . , lk) if and only if MΓw
f alse |= ϕε

m(l1, . . . , lk)
if and only if M f alse |= ϕε

m(l1, . . . , lk)

The time required to construct a potentially generating formula ϕm(x1, . . . , xk) using
l does not exceed C · |l|p−1. Next, we build ϕε

m(x1, . . . , xk) and ϕε
m(l1, . . . , lk). The time

required for this does not exceed 12 ∗C ∗ |l|p−1 and 4 ∗C ∗ |l|p (Lemmas 1 and 2). Verifying
the truth of the last formula for M f alse does not exceed C ∗ |l|p. Summing everything up,
we get that the verification time does not exceed 25 ∗ C ∗ r(l) ∗ |l|p.

The induction step: let our assumption be true for r(l) = s. We will show this for
s + 1:
Case 1: γi(l) ↑p, then the formula P1(l) is false. We get it in time:

t(P1(l)) ≤ C · |l|p−1 ≤ 25 · C · r(l) · |l|p

Case 2: γi(l) = ϕm(x1, . . . , xk)

MΓw
f alse |= P1(l) if and only if MΓw

f alse |= ϕm(l1, . . . , lk) if and only if MΓw
f alse |= ϕε

m(l1, . . . , lk)
if and only if M f alse |= ϕε

m(l1, . . . , lk)

where ε string of symbols εi such that εi = 1 if formula Pj(li) is true on MΓw
f alse and 0

otherwise.
Let’s calculate the time spent on all transitions:

(1) constructing a potentially generating formula ϕm(x1, . . . , xk) using l in time C · |l|p−1

(2) determining the truth of all predicates Pi1(l1), . . . , Pik (lk) which are included in the
formula. By the induction hypothesis, we obtain:

∑k
j=1 t(Pij(lj)) ≤ ∑k

j=1 25 · C · r(lj) · |lj|p ≤ 25 · C · (r(l)− 1) · |l|p.

(3) further, we fix the signification ε : Pij(xi)→ {0, 1} considering whether the predicate
Pij(li) is true or false, if the formula does not include any of the predicates Pji for the
variable xi, then we determine the truth for P1(xi) by default.
(4) By the formula ϕm(x1, . . . , xk) and by the signification ε we construct ϕε

m(x1, . . . , xk).
The time required for this does not exceed 12 · |l|p−1 ≤ 12 · |l|p.
(5) By the formula ϕε

m(x1, . . . , xk) and l we construct ϕε
m(l1, . . . , lk). The time required for

this does not exceed 4 · C · |l|p.
If we sum up all the time of calculations, then we get the following:

t(P1(l)) ≤ ∑k
i=1(25 · C · r(li) · |li|p) + 25 · C · |l|p ≤

≤ 25 · C · (r(l)− 1) · |l|p + 25 · C · |l|p ≤ 25 · C · r(l) · |l|p

We have shown that for any element l of rank r(l) in time 25 ·C · r(l) · |l|p we determine
the fact whether it belongs to the predicate P1. Since r(l) is always less than |l|, we can
write the following:

t(P1(l)) ≤ 25 · C · r(l) · |l|p ≤ 25 · C · |l|p+1.

Mathematics 2021, 9, 2102 9 of 11

9. Corollaries and Applications

For the ∆p
0 -model M as an application of the polynomial analogue of Gandy’s theorem,

we present several corollaries. Some of these corollaries have already been proven earlier
by other authors using other methods, some are presented for the first time.

Let the model M have a one-place predicate U that selects the elements of the main
set M and a distinguished one-place predicate List = ∅ (a predicate that will select list
elements), then we will show how easy it is to prove the following statement on hereditarily
finite lists HW(M) which was already proven earlier in [8] but using a different technique:

Corollary 1. If M is a ∆p
0 -model, then HW(M) is a ∆p

0 -set.

Proof. A countable generating family of formulas FList+ is as follows:

ϕn : &n
i=1(U(xn) ∨ List(xn)), n ∈ N

This family of formulas is predicate-separable, all formulas are positive quantifier-free,
and the predicate List is included in formulas positively. We can easily see that the operator
ΓM

FList+
is a ∆p

0 -operator.

Let the signature σ have the form: σ = {c0, . . . , ck, f (m1)
1 , . . . , f (ms)

s , R(p1)
1 , . . . , R(pt)

t }.
Consider the model N with the basic set of elements N and signatures σ = {1, s(1)}. The
interpretation of the constant 1 will be 1 and s-the standard successor function. Further, an
entry of the form n + 1 will mean a term of the form n-fold application of the function s to 1.

Corollary 2. The set of quantifier-free formulas of signature σ is a ∆p
0 -set.

Proof. The process of constructing auxiliary ∆p
0 -sets using generating families for the

corresponding predicates in the ∆p
0 -model N is as follows:

(1) Constants: FCons+ : ϕi : (x1 = 1)&(x2 = i), i ∈ [1, . . . , k]
(2) Variables: FVar+ : ϕi : (x1 = 2)&(x2 = i), i ∈ N
(3) Function symbols: FFunc+ : ϕi : (x1 = 3)&(x2 = i), i ∈ [1, . . . , s]
(4) Predicate symbols: FR+ : ϕi : (x1 = 4)&(x2 = i), i ∈ [1, . . . , t].
(5) Terms that are not constants and variables:

FTerm+
1

: ϕi : (x1 = 5)&Func(x2)&
ni+2
i=3 (Term1(xi) ∨ Cons(xi) ∨Var(xi))

(6) The set of standard terms: FTerm+ : FTerm+
1
∪ FCons+ ∪ FVar+

Generating family for quantifier-free formulas FFree+ :
(1) ϕ1(Ri) : (x1 = 8)&R(x2)&

pi+2
i=3 Term(xi)

(2) ϕ2(Pi) : (x1 = 9)&P(x2)&Term(xi)
(3) ϕ3(=) : (x1 = 10)&Term(x2)&Term(x3)
(4) ϕ4(&) : (x1 = 11)&Free(x2)&Free(x3)
(5) ϕ5(∨) : (x1 = 12)&Free(x2)&Free(x3)
(6) ϕ6(→) : (x1 = 13)&Free(x2)&Free(x3)
(7) ϕ7(¬) : (x1 = 14)&Free(x2)&Free(x3)

Define the signature σ′ = σ ∪ {Cons, Var, Func, Term, Free} ∪ {∈(2),⊆(2)}.

Corollary 3. The set of ∆0-formulas [9] signature σ′ is a ∆p
0 -set.

Proof. Define a family of ∆0-formulas FD0+ . Just as in Corollary 2, we write out generating
formulas for terms and formulas, with the only difference that we also add formulas for
the above predicates:
(8) ϕ8(∈) : (x1 = 15)&Term(x2)&Term(x3)
(9) ϕ9(⊆) : (x1 = 16)&Term(x2)&Term(x3)

Mathematics 2021, 9, 2102 10 of 11

We also write out generating formulas for (∃xk ∈ t)ϕ(x), (∀xm ∈ t)ϕ(x), (∃xt ⊆
t)ϕ(x), (∀xt ⊆ t)ϕ(x):
(10) ϕ10(∃xk ∈ t(x)) : (x1 = 17)&Var(x2)&Term(x3)&D0(x4)
(11) ϕ11(∀xm ∈ t(x)) : (x1 = 18)&Var(x2)&Term(x3)&D0(x4)
(12) ϕ12(∃xt ⊆ t(x)) : (x1 = 19)&Var(x2)&Term(x3)&D0(x4)
(13) ϕ13(∀xt ⊆ t(x)) : (x1 = 20)&Var(x2)&Term(x3)&D0(x4)

Corollary 4. The set of conditional terms of signature σ′ and ∆∗0-formulas is a ∆p
0 -sets [9].

Proof. This is where the approach gets more interesting. We need to simultaneously gen-
erate both conditional terms and formulas containing these conditional terms. Therefore,
we construct two generating families: FTCond+ , FFCond+ . In addition to generating formulas
for standard terms in FTCond+ , we add countably many generating formulas for condi-
tional terms:
(8) ϕk+8: (x1 = 21)&k

i=1(TCond(x2i)&FCond(x2i+1))&TCond(x2k+2), k ∈ N.
The family FFCond+ is defined by the same generating formulas as the family FD0+ , with

the only difference that the predicates Term must be replaced with TCond everywhere.

10. Conclusions

This work is a starting point for building a methodology for developing fast and
reliable software. In this work, we study sufficient conditions for the ∆p

0 -operator under
which the smallest fixed point remains a ∆p

0 -set. This allows us to create new elements
and data types. Moreover, there are polynomial algorithms for checking the fact whether
a certain element belongs to a given data type or not. The question of programming
methodology is also of interest: which constructs can be used and which not for creating
programs, if we want our programs to be polynomially computable. With the help of
the main theorem of our paper and the theorems from the works [8–14] it is already
possible to develop logical programming languages, with programs being of polynomial
computational complexity.

Author Contributions: Conceptualization, S.G. and A.N.; methodology, S.G. and A.N.; formal
analysis, S.G.; validation, S.G.; investigation, S.G. and A.N.; writing—original draft preparation,
A.N.; writing—review and editing, A.N.; supervision, S.G.; project administration, S.G.; software,
A.N. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Barwise, J. Admissible Sets and Structures; Springer: New York, NY, USA, 1975.
2. Ershov, Y.L. Definability and Computability; Springer: New York, NY, USA, 1996.
3. Lewis, H.; Papadimitriou, C. Elements of the Theory of Computation; Prentice-Hall: Upper Saddle River, NJ, USA, 1998.
4. Alaev, P.E. Structures Computable in Polynomial Time. Algebra Log. 2017, 55, 421–435. [CrossRef]
5. Alaev, P.E. Existence and Uniqueness of Structures Computable in Polynomial Time. Algebra Log. 2016, 55, 72–76. [CrossRef]
6. Alaev, P.E.; Selivanov, V.L. Polynomial computability of fields of algebraic numbers. Dokl. Math. 2018, 98, 341–343. [CrossRef]
7. Cenzer, D.; Remmel, J. Polynomial-time versus recursive models. Ann. Pure Appl. Log. 1991, 54, 17–58. [CrossRef]
8. Ospichev, S.S.; Ponomaryov, D.K. On the complexity of formulas in semantic programming. Sib. Electron. Math. Rep. 2018, 15,

987–995.
9. Goncharov, S.S. Conditional Terms in Semantic Programming. Sib. Math. J. 2017, 58, 794–800. [CrossRef]
10. Ershov, Y.L.; Goncharov, S.S.; Sviridenko, D.I. Semantic programming. In Proceedings of the Information Processing 86: IFIP 10th

World Computer Congress, Dublin, Ireland, 1–5 September 1986; Volume 10, pp. 1113–1120

http://doi.org/10.1007/s10469-017-9416-y
http://dx.doi.org/10.1007/s10469-016-9377-6
http://dx.doi.org/10.1134/S1064562418050137
http://dx.doi.org/10.1016/0168-0072(91)90008-A
http://dx.doi.org/10.1134/S0037446617050068

Mathematics 2021, 9, 2102 11 of 11

11. Goncharov, S.S.; Sviridenko, D.I. Logical language of description of polynomial computing. Dokl. Math. 2019, 99, 121–124.
[CrossRef]

12. Goncharov, S.S.; Sviridenko, D.I. Recursive terms in semantic programming. Sib. Math. J. 2018, 59, 1014–1023. [CrossRef]
13. Goncharov, S.S.; Ospichev, S.S.; Ponomaryov, D.K.; Sviridenko, D.I. The expressiveness of looping terms in the semantic

programming. Sib. Electron. Math. Rep. 2020, 17, 380–394. [CrossRef]
14. Goncharov, S.S.; Sviridenko, D.I. Σ-programming. Transl. II. Ser. Am. Math. Soc. 1989, 142, 101–121.

http://dx.doi.org/10.1134/S1064562419020030
http://dx.doi.org/10.1134/S0037446618060058
http://dx.doi.org/10.33048/semi.2020.17.024

	Introduction
	P-Computability
	Word Splitting
	Generating Formulas and Families. False Element
	Fixed Points of Monotone Locally Finite Operators
	Formulas Families F*Pi+
	0p-Models and 0p-Operators
	A Polynomial Analogue of Gandy's Theorem
	Corollaries and Applications
	Conclusions
	References

