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Abstract: To reduce the reliance on fossil fuel-based generation, many countries expand the use of
renewable energy sources (RES) for electricity production. The stochastic and intermittent nature of
such sources (i.e., wind and solar) poses challenges to the stable and reliable operation of the electric
power system (EPS) and requires sufficient operational flexibility. With continuous and random
changes in the EPS operational conditions, evaluating the system flexibility in a standardized manner
may improve the robustness of planning and operating procedures. Therefore, the development of
fast algorithms for determining system flexibility is a critical issue. In this paper, the flexibility of the
EPS with high wind energy penetration is calculated in real time. In this context, the EPS flexibility
is understood as the ability of the system to maintain a balance under irregular and short-term
active power variations during a specified time by using the flexibility resources. The EPS flexibility
calculation relies on a deterministic method developed to qualitatively and quantitatively assess the
EPS readiness to changes in load. Accurate wind power forecasts and the observance of the electric
circuit law when solving the optimization problem allow for determining the actual value of the EPS
flexibility during a considered time.

Keywords: electric power system; renewable energy sources; flexibility; wind power forecasting;
state estimation

1. Introduction

With the government targets set to reduce the dependency on fossil fuel energy
sources, there is a rapid increase in using renewable energy sources (RES) for electricity
generation. The most abundant renewable energy sources, wind and solar, are well
received for deployment in many existing power systems (for example, Denmark, Ireland,
and Germany) [1]. These sources are stochastic and intermittent in nature, which implies
that in addition to traditionally variable demand, the power systems have to deal with
rising variabilities in the power supply [2].

For the efficient management of electric power systems, including those with RES,
forecasting of electric demand and wind and solar power outputs is utilized. Based on
such forecasts, scheduling of controllable and flexible sources of energy (e.g., conventional
power plants, batteries, etc.) is performed. The actual operation of the system elements,
however, differs from the predicted (planned) one due to forecast errors, which consist
of errors in the forecasting method, an unexpected change in electric demand, and an
unexpected change in the generation at a wind (solar) power output. Forecast errors cannot
be predicted, therefore, they belong to the category of uncertainties in the form of irregular
and short-term changes in active power. While increasing RES penetration, it is essential to
take measures to improve the system flexibility and prevent future stability and reliability
issues.

The stable and safe operation of the electric power system (EPS) is possible if there
are reserves to maintain the power balance between the generation and consumption
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under normal and post-emergency conditions. The contingency reserves utilized under
normal operating conditions (to perform regulation services) can pose a threat to the system
functioning. This situation, however, can be avoided. To this end, the imbalances caused
by uncertainties should be compensated for at the expense of the flexibility sources, i.e., the
power regulation reserves that are not planned to be used under emergencies. The flexibility
sources include [3] the power system reserve [4,5], demand-side management [6,7], energy
storage systems, dispatchable distributed generators, grid interconnection [8], and multi-
energy systems [9].

The problems associated with the flexibility of power systems are solved by researchers
in many countries. They have developed probabilistic and deterministic methods for
calculating flexibility, as well as methods based on artificial intelligence.

A unified four-element framework (time, uncertainty, action, and cost) for determining
the power system flexibility is presented in [10]. Based on this framework, the authors
of [10] have developed a flexibility metric that factors in the system operation and trans-
mission network constraints. The proposed metric quantifies the broadest variation range
of uncertainty the power system can meet. The robust optimization technique is used to
compute this metric [10].

The study in [11] examines the power system flexibility that becomes available via
demand response. The authors consider the thermostatically controlled loads (TCLs)
as an important class of demand response. The proper coordination of TCLs plays a
significant role in providing different services to the grid (renewable integration, peak
shaving, etc.). The control model of TCLs is integrated into the system-level operation and
control is calculated. The set of valid power profiles of individual TCLs is represented by
a polyhedron. The Minkowski sum is calculated to determine the aggregated flexibility.
The study [11] relied on an optimization algorithm for approximating a polynomial by
homotheties of a given convex set represented by a virtual battery model.

The insufficient ramping resource expectation (IRRE) metric is developed to measure
the flexibility of a power system [12]. It is used to recognize the time intervals during which
the power system experiences a shortage of flexible resources, and, consequently, there is a
probability that it will not be able to cope with the predicted or unpredicted changes in the
net load. The value of the abovementioned probability is calculated from the cumulative
probability. The authors [12] give a detailed description of the algorithm for calculating
IRRE for the time horizons of interest.

In [13], the flexibility metric is developed and used to accurately estimate the flexibility
level of a power system for various time horizons and directions. This metric is based
on a kernel density estimator and means that the EPS has insufficient ramp resources
if the probability of the flexibility residual is less than zero. The flexibility residual is
considered to be a mismatch between the available flexibility and the forthcoming net load
ramps. The kernel density estimator needs to estimate the probability density function of
the time series, where the Gaussian kernel is chosen as the kernel function. The authors
of [14] simulate multiple scenarios considering different demand and generation profiles
to calculate a flexibility metric.

The papers [15–20] are devoted to the use of an artificial neural network (ANN) to
calculate the flexibility of an EPS. In [15–17], an ANN is used to model the flexibility of
distributed energy sources. The trained ANN assesses whether the flexibility of specific
distributed energy resources is available for a given load curve. The advantage of this
approach is that there is no need to create accurate models of the allocated resources. The
authors [18] explore and define the flexibility of distributed energy resources. In [19] a
new approach for quantifying the network flexibility potential is introduced. In that work,
historical demand data are classified using an ANN.

Many of the abovementioned methods share some similarities where in order to
calculate the EPS flexibility, the simulation of multiple scenarios has to be performed.

In this research, the flexibility of an EPS with a wind farm (i.e., the ability of the system
to maintain a balance with irregular and short-term changes in active power during a
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specified time at the expense of flexibility sources) is calculated in real time for n minutes
ahead. Since the flexibility metric is assumed to be calculated in real time using the current
state variables and very short-term forecast variables, there is no need to simulate any
scenario. The focus is on forecasting the power generated by a wind farm. There is a whole
host of studies on the creation of an ANN for wind power forecasting in the world [21].

This paper shows the significance of assessing the flexibility of an electric power
system with a wind farm and a battery in real time for n minutes. The battery is one of
the essential components for providing the flexibility of such power systems. The EPS
flexibility calculation involves the development of a deterministic method to qualitatively
and quantitatively assess the EPS readiness to the load variation. A criterion is proposed
for determining the combination of imbalances arising from forecast errors (uncertainties),
which, when exceeded, make the EPS incapable of maintaining the power balance (cause
flexibility losses). This problem is solved as an optimization problem with equality and
inequality constraints. To check if the constraints, which are the electrical circuit equations,
are met, a load flow solution is found. The optimization parameters are the components of
vector z, which are used for modeling a variety of loads.

The main contributions of this paper are as follows:

1. A methodology for real-time flexibility assessment for a power system with high wind
energy penetration is developed. This methodology uses measurements as input data,
handles them, and then provides information about the EPS flexibility for n minutes
ahead, taking into account the battery control strategy;

2. Wind power forecasting integrated within the methodology is performed using state
of the art forecasting method (variational mode decomposition and long short-term
memory (VMD-LSTM));

3. A new term “operating state with minimum flexibility” is introduced.

The paper has the following structure. The second section presents the purpose and
concept of the research. The third section focuses on the EPS flexibility calculation and
describes the modeling of the EPS flexibility sources. This section also presents, in a general
form, information related to the processing of measurement data (data collection system
and state estimation); and makes a forecast of the active power at the wind farm. The
same section gives the main idea of the method, presents the optimality criterion and the
objective function for calculating the maximum loads, and sets the constraints. The fourth
section discusses the research results. The conclusion contains the analysis of the work
performed.

2. Purpose and Concept of the Research

The flexibility assessment is one of the most significant issues in the operational
dispatch control of an EPS with renewable energy sources. Current information on the EPS
flexibility can become critical when making a decision on adjusting the operating states in
unforeseen situations of the EPS functioning.

This research proposes calculating the flexibility with a method based on the statement
that the EPS has flexibility if the power balance is maintained during the considered time
under uncertainties on the part of power consumers and producers. First, we determine
the combinations of loads for the given values of generating capacities (dispatch solution),
in which the balance is ensured by putting into operation the entire power reserve intended
to smooth out the uncertainties. This EPS operating state is characterized by the minimum
flexibility (hereinafter referred to as the operating state with minimum flexibility) since an
insignificant excess of load at a node will lead to a power shortage in the EPS or to the use
of an emergency reserve. The latter is unacceptable as it will pose a threat to the EPS’s safe
operation. Then the flexibility metric is calculated.

The power system flexibility in a normal operating state at the time t + n moment,
with known information about the configuration and parameters of the EPS equivalent
circuit (in Figure 1. EPS description), is calculated according to the following methodology
(Figure 1):
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• Collect information about the operating parameters, perform a state estimation (blocks
I, II);

• Specify the scheduled operating state according to the measurement information
(blocks III, IV). To do this, forecast the power at the wind farm using an ANN and find
a load flow solution;

• Calculate the flexibility of the refined planned operating state (blocks V, VI). First,
determine the operating state with minimum flexibility. This means calculating the
steady-state variables (SSV) that include the largest loads for a given generation. This
is an optimization problem with equality and inequality constraints.
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Further, the process of operating a state flexibility assessment at the considered time
(t: t + n) is described in detail using the developed algorithm.

3. Real-Time Flexibility Assessment
3.1. Data Acquisition

Traditionally, electricity is generated by large power plants and delivered to the end
user via transmission and distribution networks [22]. These networks are equipped with
measurement devices (e.g., remote terminal units (RTUs), intelligent electronic devices
(IEDs), and phasor measurement units (PMUs)) connected to a local area network (LAN)
along with supervisory control and data acquisition (SCADA) systems [23].

There are several sources of measurements in the EPS (Figure 2):

• SCADA systems, IEDs, PMUs, and RTUs provide real-time voltage, current, and
power flows measurements;

• Meter data management systems (MDMS) along with a customer information system
(CIS) are used to monitor the network consumption and distributed energy resources
(DER) output. In case of insufficient data redundancy, a pseudo measurement genera-
tor is used;

• Automated mapping and facility management (AM/FM) systems along with geo-
graphic information and outage management systems (GIS and OMS, respectively)
monitor the equipment connectivity status.
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3.2. State Estimation

The state estimator is the data processing algorithm used to filter raw measurements
from noise, detect and eliminate gross errors, and determine the optimal estimates for the
system state. It includes topology processing, an observability analysis, a state estimation,
and bad data detection [24,25].

The measurement set used by the state estimator looks as follows:

y =
(
Ui, Pi, Qi, Pij, Qij, δi

)
, (1)

where Pi = Pl(i) + Pg(i), Qi = Ql(i) + Qg(i), Ui is the magnitudes of nodal voltages;
Pg(i), Qg(i) are the active and reactive power generation at the nodes; Pl(i), Ql(i) are the
active and reactive power load at the nodes; Pij, Qij are power flows in the transformers
and the lines; δi is the voltage phases at the nodes.

The objective function used in the traditional state estimation is as follows:

J(x) = (y− y(x))T R−1
y (y− y(x)), (2)

where Ry is a covariance matrix of measurement errors (diagonal matrix), x = (U, δ) is
the state vector (a part of the state variables, which is used to find the load flow solution).

The state vector calculation involves the minimization of criterion Equation (2) with
respect to the voltage phase and magnitude.

J(x)→ min. (3)

The derivative ∂J(x)/∂x is set to zero, and the system of non-linear equations is
solved:

HT R−1
y (y− y(x)) = 0 (4)

subject to
w(y, y1) = 0,

where H = ∂y/∂x is a Jacobi matrix, w(y, y1) = 0 represents the equations of the electric
circuit connecting the measured (y) and unmeasured (y1) variables.

The system Equation (4) is linearized at each iteration i. The system of linear equations
is solved, where the correction vector is calculated by the equation:

∆x(i) =
(

HT(i)R−1
y H(i)

)−1
(HT(i)R−1

y

(
y− y

(
x(i)

))
. (5)
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The components of the state vector are calculated by the equation:

x(i+1) = x(i) + ∆x(i). (6)

If ∆x < εx, the iteration process converges, where εx is the accuracy of the iterative
process. Then, a load flow solution is obtained using the state vector.

3.3. Wind Power Forecasting Using VMD-LSTM

The wind farms power outputs have both fluctuating and random components. There-
fore, forecasting of the future wind energy production might be a challenging task. To
adequately determine the EPS flexibility, it is particularly important for system operators
to have as accurate forecasts of power outputs as possible.

The forecasting technique used in this paper is based on the hybrid variational mode
decomposition and long short-term memory (VMD-LSTM) artificial neural network [26].
Hybrid models can recognize hidden signal features in time series (including wind power
time series) and learn from them. The original wind power time-series signal is decom-
posed into multiple sub-series, which are less chaotic and, consequently, more predictable.
For this purpose, variational mode decomposition (further VMD method) is used. The
VMD method is described in detail in [27]. To implement this method, the following
mathematical functions are used: Wiener filtering, Hilbert transform and frequency mixing,
and heterodyne demodulation.

The wind power time series are decomposed according to the physical signal prop-
erties. With such a decomposition, the original wind power signal is divided into three
components: the long-term trend, short-term fluctuation, and ultra-short randomness.

The algorithm for forecasting wind power consists of five steps, described below.

1. Select an ANN type. This study uses an LSTM ANN. It is a kind of recurrent neural
network that overcomes the memory limitations by adding particular cells aimed at
filtering new information (preserve or ignore);

2. Form a data set for training, validation, and testing. In this study, historical wind
power measurements are used as a data set;

3. Initialize LSTM. Determine the LSTM starting parameters. The starting parameters
are as follows: σs and σt are activation functions (σs denotes the state (sigmoid), and
σt denotes the gate (hyperbolic tangent)); W, M, and b are input weights, the recurrent
weights, and the bias of each component, respectively; and ct is the cell memory state,
ht is the hidden state, xt is a time-series vector.

4. Train LSTM. Use the method of backpropagation for training LSTM. The key element
of LSTM is a cell state. During the LSTM training, the memory cell state changes.
LSTM is considered to be trained if the memory cell stops changing. The following
equations describe the forward pass of an LSTM unit with the input, output, and
forget gates and with the memory cells at each time step t (Figure 3):

The sigmoid layer of the LSTM cell determines what information should be removed
from the cell of state

ft = σs

(
W f xt + M f ht−1 + b f

)
. (7)

The input gate determines what part of the new information needs to be added to the
memory

it = σs(Wixt + Miht−1 + bi). (8)

The tanh layer creates the cell candidate

gt = σt
(
Wgxt + Mght−1 + bg

)
. (9)

The new information is added

ct = ftct−1 + itgt (10)
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The output gate defines the extent to which the existing part of the memory contributes
to the output

ot = σs(Woxt + Moht−1 + bo). (11)

The hidden state is:
ht = otσt(ct). (12)

5. Test LSTM.
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Figure 4 shows a schematic representation of the VMD-based LSTM wind power
forecasting where two measurements are used to predict one point.
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Figure 4. Schematic representation of wind power forecasting.

The wind power forecasting process may be divided into several steps.
Step 1. Select the input data. Use several previous measurements (two in Figure 4) to

predict the wind power output t + 1 min ahead.
Step 2. Perform the VMD to decompose each input datum into three features. These

features are as follows: the long-term trend (Prand
t−1 , Prand

t ), short-term fluctuation (P f luc
t−1 ,

P f luc
t ), and ultra-short randomness (Ptrand

t−1 , Ptrand
t ).

Step 3. Forecast wind power. Three components of wind power are predicted using
an LSTM artificial neural network.

Step 4. Build the predicted point Pt+1 from Prand
t+1 , P f luc

t+1 , and Ptrand
t+1 .
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3.4. Computing Load Flow Solution t + n Minute Ahead

The load flow calculation aims to clarify the scheduled state variables at time t + n
according to the information available at time t. In this case, the scheduled state variables
are referred to as the load patterns and generation profiles (unit commitment solutions),
to which the time instant t + n belongs. In the load flow calculation, injections of active
and reactive power at all the nodes, except for the slack one, are used as independent state
variables. The variables are refined in the following order:

• The wind farm injections are predicted for n minutes ahead;
• The capacity values for the load and generator units are taken from the data of the

scheduled operating state;
• The battery power is calculated according to the control strategy for the battery energy

storage system (BESS) based on the forecast data on the wind farm power and the
scheduled load data. The BESS control strategy can vary. For example, the strategy
can suggest the use of a BESS to maximize the renewable energy penetration or to
smooth a profile of power output from the wind and solar power plants. This study
uses the former [28];

• The reactive power values are calculated based on the rule of maintaining the propor-
tion between active and reactive power;

• The initial voltage approximations are set. The initial approximations are the voltages
calculated with the state estimation at time t;

• Based on the known active and reactive injections at the nodes, the load flow solution
is computed.

3.5. The Flexibility Assessment

The power system flexibility is characterized by the following three indices: ramping
limit (∆R), power capacity (P), and energy capacity (E). Each index is a time derivative of
the previous index [3].

The calculation of the flexibility of the EPS resources:

• Assumes that the ramping limit of the flexible source (∆R) is equal to the lead time for
which the flexibility is calculated;

• Factors in the maximum and minimum generation (P) index;
• Takes into account that the final energy capacity of the battery (E) limits its capabilities.

3.5.1. Modeling the Flexibility of EPS Components

Model of generator flexibility of a conventional power plant
The flexibility available from each generator Fg is determined by the power that can

be additionally generated over the time under consideration and is calculated using the
equation:

Fg = Pg(per) − Pg(c), (13)

where Pg(per) is the regulating reserve (employed in normal condition), Pg(c) is the active
power of the generator at the moment in question.

Model of battery flexibility
The flexibility available from the battery FB is determined by the state of charge and

the current power. If the battery is charged within the specified limits:

SoCmin < SoC(t) < SoCmax, (14)

then the power output is calculated using the equation:

FB = PB(max) − PB(c), (15)

otherwise,
FB = 0, (16)
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where SoC is the state of charge, SoCmin is the minimum level of charge, SoCmax is the
maximum level of charge, PB(c) is the active power of the battery at the moment in question.

Model of system flexibility at the time in question
The power system flexibility at the time in question (FSys) is determined as a sum of

flexibilities of all the facilities in the system. When two kinds of flexibility are available in
the system, FSys is calculated by the equation:

FSys =
n1

∑
1

Fg +
n2

∑
1

FB, (17)

where n1 is the number of generators at conventional plants, n2 is the number of batteries.

3.5.2. Metric of Flexibility

Whether the power system is flexible or not during the time [t: t + n] is determined by
calculating a flexibility metric:

FS = Pmax
calc − PL, (18)

where Pmax
calc is the largest active loads when the power system can remain flexible, PL is the

active powers in a scheduled operating state.

Pmax
calc =

n3

∑
i=1

Pi(zi), (19)

PL =
n3

∑
i=1

PL(i), (20)

where Pi(zi) is the maximum load at node i, at a set loading of generators (at a given
dispatch solution), n3 is the number of load nodes.

If FS > 0, then the considered EPS is flexible (during the time [t: t + n]). The value FS is
the largest range of uncertainty, within which there is no danger for the power system. FS
shows how much flexibility the power system has.

3.5.3. Determination of Operating State with Minimum Flexibility. Objective Function

The operating state with the minimum flexibility is calculated as a problem of nonlin-
ear optimization (we have non-linear constraints). The optimality criterion is the maximum
difference between the values of active powers at nodes with uncertainty in the scheduled
operating state and in the operating state with minimum flexibility. The optimization
parameters are the components of vector z, which are responsible for modeling the load
value at load nodes from the minimum to maximum values.

The objective function, i.e., the maximum sum of differences between the modeled
and scheduled powers at nodes with uncertainty, is written as follows:

J(z) = ∑r
i=1

(
Pi(zi)−

−
Pi

)
= ∑r

i=1 ∆Pi(zi)→ max, (21)

where r is the number of nodes with uncertainty. In this case, these are the load nodes, nodes
where control actions are performed, and a slack node, Pi(zi) is calculated as follows [10]:

Pi(zi) = ziPmin
i + (1− zi)Pmax

i . (22)

A distinctive feature of the research is the method of forecasting the active power of a
wind farm, which gives more accurate results in comparison with load forecasts. Therefore,
wind farm power is considered to be an exact value and is not entered into the objective
function. The predicted battery power value calculated based on the predetermined battery
control strategy is also not input to the objective function. The uncertainties associated
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with an error in a forecast of power at the wind farm and battery are compensated for at
the balancing power plant.

Each component Equation (21), given Equation (22), can be represented as follows:

J(z) = ∆Pi(zi) =
(

Pi(zi)− Pi
)
= Pmax

i − ziPmax
i + ziPmin

i − Pi. (23)

When all the values independent of the optimization parameters are excluded, the
objective function has the form:

max
z

r

∑
i=1
−(Pmax

i − Pmin
i )zi ∀z ∈ [0, 1]. (24)

In Equations (23) and (24), i is the number of a node with uncertainty, Pi is the
value of active power at node i in the scheduled operating state; Pi(zi) is the relationship
between active power and value z responsible for the variation in values of power at node
i, Pmax

i , Pmin
i are the maximum (minimum) values of consumed (generated) power at node

i. The maximum generated power is the maximum power that can be used in the normal
operating state, in particular, to compensate for the uncertainties.

The search for optimal parameters is performed given the equality and inequality
constraints. The equality constraints are the balance of active power in system Equation (25)
and the equation that controls the implementation of the electric circuit laws Equation (26).
The inequality constraints are introduced to control the transfer capability of the lines and
the power limits at nodes with uncertainty Equations (27)–(29).

The constraints have the following form:

∆Ps = ∑n−r
j=1 Pj + ∑r

i=1 Pi(zi) + π = 0, (25)

Pi(zi)− Pi(Ui, δi) = 0, (26)

Pl−j < Pmax
l−j , (27)

Pmin(CA)
i < PCA

i < Pmax(CA)
i , (28)

Pmin(S)
i < PS

i < Pmax(S)
i , (29)

where n is the number of nodes in the grid; ∆Ps is the active power balance in the system;
Pi(zi) is the node i power value obtained from solving the optimization problem; Pi(Ui, δi)
are state variables at node i; Ui, δi are the voltage magnitude and phase at node i; Pmax

l−j is the

transfer capability limit of the transmission line limited by nodes l, j; Pmin(CA)
i , Pmax(CA)

i ,

Pmin(S)
i , Pmax(S)

i are the maximum and minimum active power at the controlled and slack
nodes, respectively.

The power balance in system Equation (25), given Equation (22) and after some
transformations, is written as follows:

∑r
1 Bizi = ∑r

1 Pmax
i + ∑n−r

1 Pj + π , (30)

where n is the number of nodes in the system, π is the system active power losses calculated
in the operating state. Bi = (Pmax

i − Pmin
i ) is for the load nodes, Bi = (−Pmax

i + Pmin
i ) is for

the generator nodes.
Equation (26) guarantees the observance of Ohm’s and Kirchhoff’s laws since it

includes the steady-state variables. To calculate the steady-state variables, a system of
nodal equations is built in the form of power balances:

U2
l Gl + ∑m

j=1 Pl−j ≤ ξP, (31)

U2
l Dl + ∑m

j=1 Ql−j ≤ ξQ, (32)
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where Gl , Dl are the active and reactive conductivity of the shunt at node l; Pl−j, Ql−j are
the active and reactive power in the lines limited by nodes l, j; m is the number of adjacent
nodes. This system of equations is solved by Newton’s iterative method, where ξP, ξQ
is the accuracy of the iteration process. The achieved accuracy of Equations (31) and (32)
means the end of the iterative process.

4. Case Study
4.1. Description of a Scheme and a Scenario

The developed method is applied to calculate the power system flexibility in the
normal operating state and is verified using the test scheme shown in Figure 5:
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Figure 5. Test scheme.

The scheme consists of six tie lines and six nodes, including a wind farm (node 1), a
battery (node 5), conventional plants (nodes 2 and 6), and loads (nodes 3 and 4). Nodes 2,
3, 4, and 6 are assigned to be the nodes with uncertainty. Nodes 1 and 5 are considered to
be the nodes without uncertainties since the uncertainties associated with the wind farm
and the battery are assumed to be compensated for at the balancing power plant (node 6).

The calculations are performed according to the scenario: calculate the power system
flexibility in two normal operating states 10 min ahead. The operating states differ from
each other by the power of the battery. The load uncertainties are compensated for at the
controlled plant. The uncertainties exceeding the permissible size of the control action are
compensated for by the power at the balancing power plant.

The ramping limit (∆R) is assumed to be 10 min. This means that in 10 min, the entire
reserve available at a conventional plant, designed to compensate for uncertainties, is
turned on, and the battery delivers the maximum power. The maximum and minimum
values of active power at nodes with uncertainty and the active powers of two operating
states are shown in Table 1. The powers are taken from the operating state scheduled
10 min ahead.

Table 1. Initial information (MW).

Number of the Node Pmax Pmin
Operating States

1 2

1 16.14 (16.04) 15.12 (15.0)
2 30 21 22.98 21.52
3 −32 −26 −24.59 −23.05
4 −22 −16 −18.39 −19.63
5 0.05 6.39
6 10 6 7.8 4.67

4.2. Flexibility Calculation for a Six-Node System

This problem-solving process can be represented by several steps.
Step 1. Acquire the data. Perform the state estimation.



Mathematics 2021, 9, 2056 12 of 16

Step 2. Forecast the wind power. Make a very short-term forecast (10 min ahead). Use
the historical wind power measurements as a training data set. The answers of trained
LSTM are 16.14 and 15.12. (The real values of wind power output are 16.04 and 15.0).

Step 3. Determine the state variables 10 min ahead. The results are shown in Table 1,
columns 4 and 5. The real values of wind power output are shown in brackets.

Step 4. Describe the objective function and constraints following the requirements for
the input data of the software programs used.

The objective function(
P2(z2)− P2

)
+

(
P3(z3)− P3

)
+

(
P4(z4)− P4

)
+

(
P6(z6)− P6

)
→ max, (33)

is written as follows:
max

z ∑4
i=1(−Bizi) , ∀z ∈ [0, 1], (34)

where Bi = Pmax
i − Pmin

i , i = 2, 3, 4, 6.
The power balance in the system is written in the following way:

∑4
i=1(Bizi) = Pmax

3 + Pmax
4 − Pmax

2 − Pmax
6 − P1 − P5 − π. (35)

The constraints that control the power balances at the nodes have the form

P2(z2) − P2(U2, δ2) ≤ ξ, (36)

P3(z3) − P3(U3, δ3) ≤ ξ, (37)

P4(z4) − P4(U4, δ4) ≤ ξ, (38)

P6(z6) − P6(U6, δ6) ≤ ξ, (39)

where z2, z3, z4, z6 are optimization parameters, P2(U2, δ2), P3(U3, δ3), P4(U4, δ4), P6(U6, δ6)
are active powers at the nodes, which are the steady-state variables. The constraints (31)
and (32) are factored in in the load flow calculation.

The constraints of the form Equations (27)–(29) are built relying on the data from
Table 1.

Step 5. Solve the optimization problem considering the set constraints. The Matlab
environment is employed with the function fmincon. The result of the optimization
problem is z2, z3, z4, z6. Equation (22) is then used to compute the optimal steady-state
variables, which are the variables of the operating state with minimum flexibility.

Step 6. Assess the flexibility. Equation (18) is used to measure the flexibility of the
power system for 10 min.

4.3. Analysis of Results and Discussion

The results are summarized in Table 2. Columns 2 and 4 contain the active power
values determined in accordance with Equation (22), where z is the result of optimization.
Columns 3 and 5 show flexibility FS(i). The last line indicates the total EPS flexibility
calculated according to Equation (18).

Figure 6 shows the maximum power values (Table 1, column 2) and the optimization
results (Table 2, columns 2 and 4).
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Table 2. Calculation results (P (MW)).

Number of the Node
Operating State 1 Operating State 2

Pcalc
i (z) FS(i) Pcalc

i (z) FS(i)

1
2 29.2 29.6
3 −28.0 3.41 −32.0 8.95
4 −22.0 3.61 −22.0 2.37
5
6 9.69 9.12
FS 7.02 11.32
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The analysis of the results presented in Table 2 and Figure 6 shows that:

• A comparison of the preset maximum loads (Table 1, italics) with the maximum
possible loads (Table 2, bold type) demonstrates: 1) the calculated loads do not exceed
the maximum values; 2) if we take the value of loads in the scheduled operating state
as 100%, then, the maximum load deviations, given the constraints set, are 13.87% and
19.63% in operating state 1 (38.82% and 12.07% in operating state 2) at nodes 3 and 4,
respectively;

• The flexibility of the considered system is equal to 7.02 MW and 11.32 MW for op-
erating state 1 and operating state 2, respectively. This means that when the battery
delivers the maximum power, the highest load deviation, provided that the balance
can be restored, is 11.32 MW; when the battery supplies the minimum power, the
maximum load deviation is 7.02 MW.

The flexibility was calculated for 25 snapshots (sets of measurements taken simultane-
ously). In this case, the measurements were taken 25 times every 10 min. Figure 7 shows
the active power at all the nodes in 25 normal operating states. Figure 8 shows the active
power at all the nodes in the operating states with minimum flexibility. Figure 9 shows the
difference between two operating states, where the difference between the active power at
nodes 3 and 4 is used to calculate the flexibility (Fs). The analysis of the results, presented
in Figures 7–9, shows how the EPS flexibility differs at different time.
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Figure 7. Active powers in normal operating states.
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The developed methodology provides information about the upward flexibility. In
some cases, it is important for system operators to have the knowledge of the downward
flexibility, which can be a subject of further research.

In this work, the utilized BESS control strategy was used for illustrative purposes.
To determine the effect of implementing different control strategies on the EPS flexibility,
further research is needed.

5. Conclusions

The paper presents a method for the real-time calculation of the flexibility of an electric
power system with a wind farm. An optimality criterion has been developed to identify
the combination of loads that are the maximum for the planned generating capacities in the
period at issue. The problem of flexibility calculation is solved as an optimization problem
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with a linear objective function and equality and inequality constraints. The developed
method enables a quantitative metric of flexibility to be calculated.

When solving the optimization problem, the observance of Ohm’s and Kirchhoff’s laws
is guaranteed by introducing a constraint as a function representing the load flow solution.
The calculation of the steady-state variables involves the construction of a system of nodal
equations, which is solved by Newton’s method. The state variables are maintained within
the specified limits by introducing inequality constraints.

The size of flexibility is calculated for the normal operating state disregarding emer-
gencies in the EPS. At the same time, when using the obtained information to adjust the
state variables, the system is guaranteed not to be exposed to the threat of a system failure
during the considered time. The active power balance is maintained at the expense of
the flexibility sources. The emergency reserve remains unchanged, which is achieved by
correctly set power constraints at the slack node (the available power is reduced by the
emergency reserve magnitude).

The wind farm active power has been forecast. The developed method for its fore-
casting is sufficiently accurate (the error of 0.6% in the first operating state, and 0.8% in
second (Table 1)). The ability of the forecasting system to predict wind power has been
improved by decomposing the original wind power measurements into three components:
the long-term trend, fluctuation component, and signal randomness.

The flexibility of a six-node system, which includes a wind power plant, a storage
battery, two loads, and two generating plants, has been calculated. A comparative analysis
of the flexibility values calculated for the different operating states shows that the EPS
flexibility value depends on the state variables at the considered time instant. This confirms
the need to determine flexibility in real time for some time in advance.
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AM/FM Automated Mapping and Facility Management
BESS Battery Energy Storage System
CIS Customer Information System
DER Distributed Energy Resources
EPS Electric Power System
GIS/OMS Geographic Information System and Outage Management System
IED Intelligent Electronic Devices
LFS Load Flow Solution
LAN Local Area Network
MDMS Meter Data Management Systems
PMU Phasor Measurement Units
RES Renewable Energy Sources
RTU Remote Terminal Units
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