Packing Three Cubes in D-Dimensional Space

Zuzana Sediačková ${ }^{1, *(\mathbb{D}}$ and Peter Adamko ${ }^{2(D)}$
1 Department of Applied Mathematics, Faculty of Mechanical Engineering, University of Žilina, Univerzitná 1, 01026 Žilina, Slovakia
2 Department of Quantitative Methods and Economics Informatics, Faculty of Operation and Economics of Transport and Communications, University of Žilina, Univerzitná 1, 01026 Žilina, Slovakia; peter.adamko@fpedas.uniza.sk
* Correspondence: zuzana.sedliackova@fstroj.uniza.sk

Citation: Sedliačková, Z.; Adamko, P. Packing Three Cubes in D-Dimensional Space. Mathematics 2021, 9, 2046.
https:/ /doi.org/10.3390/math9172046

Academic Editor: Gabriel Eduard Vilcu

Received: 8 July 2021
Accepted: 20 August 2021
Published: 25 August 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:/ / creativecommons.org/licenses/by/ 4.0/).

Abstract

Denote $V_{n}(d)$ the least number that every system of n cubes with total volume 1 in d-dimensional (Euclidean) space can be packed parallelly into some rectangular parallelepiped of volume $V_{n}(d)$. New results $V_{3}(5) \doteq 1.802803792, V_{3}(7) \doteq 2.05909680, V_{3}(9) \doteq 2.21897778$, $V_{3}(10) \doteq 2.27220126, V_{3}(11) \doteq 2.31533581, V_{3}(12) \doteq 2.35315527, V_{3}(13) \doteq 2.38661963$ can be found in the paper.

Keywords: packing of cubes; extreme

PACS: 52C17

1. Introduction

In 1966, L. Moser [1] raised the following problem: Determine the smallest number A so that any system of squares of total area 1 can be packed parallelly into some rectangle of area A. This problem can also be found in [2-6]. The problem has been extended to higher dimensions and has been studied for a specific number of squares (cubes). To distinguish the number of dimensions and cubes we denoted $V_{n}(d)$ the least number that every system of n cubes with total volume 1 in d-dimensional (Euclidean) space can be packed parallelly into some rectangular parallelepiped of volume $V_{n}(d) . V(d)$ denotes the maximum of all $V_{n}(d), n=1,2,3, \ldots$.

Some results are known in 2-dimensional space. Kleitman and Krieger [7] proved that every finite system of squares with total area 1, can be packed into the rectangle with sides of lengths $\frac{2}{\sqrt{3}}$ and $\sqrt{2}$, so $V(2) \leq \frac{4}{\sqrt{6}} \doteq 1.632993162$. After twenty years Novotný [8] showed that $V_{3}(2)=1.2277589$ and $V(2) \geq \frac{2+\sqrt{3}}{3}>1.244$. The exact results are known also for $n=4,5,6,7,8$, Novotný [9] proved $V_{4}(2)=V_{5}(2)=\frac{2+\sqrt{3}}{3}$ and in Novotný [10] proved $V_{6}(2)=V_{7}(2)=V_{8}(2)=\frac{2+\sqrt{3}}{3}$. The estimate of $V(2)$ was improved by Novotný [11] $V(2)<1.53$. Later, this result was improved by Hurgady [12] $V(2) \leq \frac{2867}{2048}<1.4$.

In 3-dimensional space, the estimate of $V(3)$ was gradually improved. Meir and Moser [13] proved $V(3) \leq 4$ and later Novotný [14] proved $V(3) \leq 2.26$. The exact results are known for $n=2,3,4,5$: Novotný [15] $V_{2}(3)=\frac{4}{3}, V_{3}(3)=1.44009951$, Novotný [16] $V_{4}(3)=1.5196303266$, and in Novotný [14] proved $V_{5}(3)=V_{4}(3)$.

The results for $n=3$ and $d=4,6,8$ are known too: $V_{3}(4)=1.63369662$, Bálint and Adamko in [17]; $V_{3}(6)=1.94449161$, Bálint and Adamko in [18]; $V_{3}(8)=$ 2.14930609, Sedliačková in [19].

Adamko and Bálint proved $\lim _{d \rightarrow \infty} V_{n}(d)=n$ for $n=5,6,7, \ldots$ in [20]. Theorem holds also for $n=2,3,4$.

2. Main Results

The main part of this section is the proof of $V_{3}(5) \doteq 1.802803792$. We use the same method as $[17,18]$. At the end of the section, we offer (without proof) the values of $V_{3}(d)$ for $d \in\{7,9,10,11,12,13\}$.

Theorem 1. $V_{3}(5) \doteq 1.802803792$.
Outline of the proof

1. We show, that there are only two important packing configurations. Their volumes are $W_{1}=x^{4}(x+y+z)$ and $W_{2}=x^{3}(x+y)(y+z)$, see Figure 1. Firstly, we need to find $\min \left\{W_{1}, W_{2}\right\}$ for each $\{x, y, z\}$. The maximum from $\min \left\{W_{1}, W_{2}\right\}$ is the final result, we denote it $\max \min \left\{W_{1}, W_{2}\right\}$;
2. Cubes with sides $x \doteq 0.946629932, y \doteq 0.690148624$, and $z \doteq 0.608279275$ have $W_{1}=W_{2}=1.802803792$. We prove that this volume is sufficient for packing any three cubes with a total volume of 1 in dimension 5 ;
3. We obtain an estimation of the side size of the largest cube: $0.9445 \leq x \leq 0.9939$;
4. Using $1=x^{5}+y^{5}+z^{5}$ and $1>x \geq y \geq z>0$, we obtain constraints $x^{5}+y^{5} \leq 1$ and $x^{5}+2 y^{5} \geq 1$;
5. $\quad z=\left(1-x^{5}-y^{5}\right)^{1 / 5}$. Therefore, it is sufficient to work only with x and $y . M$ is a region of $\{x, y\}$ bounded by constraints from steps 3 and 4 . We obtain a curve C from $W_{1}=W_{2}$, see Figure 2. Curve C divides the region M into continuous regions C_{1} and C_{2}, see Figure 3;
6. We clarify:
(a) $\quad W_{1}(X)<W_{2}(X)$ holds for $X \in C_{1}$. Therefore, $\max \min \left\{W_{1}, W_{2}\right\}=\max W_{1}(X)$, $X \in C_{1}$;
(b) $\quad W_{1}(X)>W_{2}(X)$ holds for $X \in C_{2}$. Therefore, $\max \min \{W 1, W 2\}=\max W_{2}(X)$, $X \in C_{2} ;$
7. We show that the asked maximum is on curve C;
(a) We use critical points for region C_{1};
(b) We were unable to use critical points on the whole C_{2}, so we gradually numerically exclude subregions. We start with comparison of maximum of subregions and 1.8 (packing with $V_{3}(5)>1.8$ exists).

Proof. Consider three cubes with edge lengths x, y, z in the 5-dimensional Euclidean space, where $1>x \geq y \geq z>0$ and the total volume $x^{5}+y^{5}+z^{5}=1$.

We are looking for the smallest volume of a parallelepiped containing all three cubes. Therefore, from several ways of packing, we can ignore the packing that leads in any circumstances to a larger volume.

Let X, Y, Z denote the cubes (sorted from the largest). We attach cubes X and Y to each other, for example, in the direction of the fifth dimension. Parallelepiped containing cubes X and Y has volume $x^{4}(x+y)$.

If we place the cube Z to the cube X in the direction of the fifth dimension, we receive volume $x^{4}(x+y+z)$. We obtain volume $x^{3}(x+y)(x+z)$ for other four directions.

If we place the cube Z to the cube Y in the direction of the fifth dimension, we receive again $x^{4}(x+y+z)$. We obtain (after appropriate shifting of the cube Y) volume $x^{3}(x+y)(y+z)$ for other four directions.

Because $x^{3}(x+y)(y+z) \leq x^{3}(x+y)(x+z)$, we can ignore packings that lead to the volume $x^{3}(x+y)(x+z)$.

If we start with cubes X and Z, or Z and Y, the same results are obtained.
Therefore, it is sufficient to consider only two cases of packing three cubes, see Figure 1a,b. In the first case, the volume $W_{1}=x^{4}(x+y+z)$ is sufficient for packing, in the second case, the volume $W_{2}=x^{3}(x+y)(y+z)$ is sufficient.

Figure 1. Two cases of packing three cubes.
We need to find $\max \min \left\{W_{1}, W_{2}\right\}$ under the conditions $x^{5}+y^{5}+z^{5}=1$, and $1>x \geq y \geq z>0$.

For three cubes with edge lengths $x \doteq 0.946629932, y \doteq 0.690148624, z \doteq 0.608279275$, a volume $W_{1}=W_{2} \doteq 1.802803792$ is necessary. Thus, $V_{3}(5) \geq 1.802803792$.

If $y+z \leq x$ than we can pack the cubes, as shown in Figure 1b, and volume $V_{2}(5)$ is sufficient, $V_{2}(5) \doteq 1.484663669$ for cubes with edge lengths $x \doteq 0.984432006$ and $y \doteq 0.596398035$.

Let us consider only the case that $y+z>x$. From $y^{5} \leq z^{5}+y^{5}=1-x^{5}$ we find $y \leq \sqrt[5]{1-x^{5}}$, and, therefore, $y+z \leq 2 y \leq 2 \sqrt[5]{1-x^{5}}$. Then, $x<y+z \leq 2 \sqrt[5]{1-x^{5}}$ and, therefore, $x^{5}<2^{5}\left(1-x^{5}\right)$. We attain the upper bound for $x, x \leq \frac{2}{\sqrt[5]{33}}$. $x \geq y \geq z$ and $x^{5}+y^{5}+z^{5}=1$, therefore, $x^{5} \geq \frac{1}{3}$ and $x \geq \frac{1}{\sqrt[5]{3}}$. This implies that we can consider only $x \in\left[\frac{1}{\sqrt[5]{3}}, \frac{2}{\sqrt[5]{33}}\right]$, i.e., $0.8027 \leq x \leq 0.9939$.

Equality $W_{1}=W_{2}$ holds if, and only if, $x^{2}=y^{2}+y z$. In this case, $z=\frac{x^{2}-y^{2}}{y}$ and $W_{1}=W_{2}=x^{5}+\frac{x^{6}}{y}$. When we substitute $z=\frac{x^{2}-y^{2}}{y}$ into $x^{5}+y^{5}+z^{5}=1$ we find the curve C: $x^{5} y^{5}+y^{10}-y^{5}+\left(x^{2}-y^{2}\right)^{5}=0$ (Figure 2).

Figure 2. The curve C.
The interval for x can be reduced. If we choose $x \in[a, b], 0<a<b<1$, then $1-b^{5} \leq 1-x^{5} \leq 1-a^{5}$. If $y=z$, then $1-x^{5}=y^{5}+z^{5}=2 y^{5}$ and, therefore, $y=\sqrt[5]{\frac{1-x^{5}}{2}}$. The function $W_{1}=x^{4}(x+y+z)$ has the greatest value if $y=z$, , i.e., $y=\sqrt[5]{\frac{1-x^{5}}{2}}$. For $x \in[a, b]$, we find $W_{1} \leq x^{4}(x+2 y) \leq b^{4}\left(b+2 \sqrt[5]{\frac{1-a^{5}}{2}}\right)$.

Denote $W_{1}(a, b)=b^{4}\left(b+2 \sqrt[5]{\frac{1-a^{5}}{2}}\right)$.
The inequality $W_{1}(a, b)<1.8021$ is valid for the intervals: $x \in[0.8027,0.9190]$, $x \in[0.9190,0.9360], x \in[0.9360,0.9410], x \in[0.9410,0.9420], x \in[0.9420,0.9430]$, $x \in[0.9430,0.9440], x \in[0.9440,0.9445]$, hence for the asked maximum holds $x \geq 0.9445$.

Therefore, we have shown that the asked $\max \min \left\{W_{1}, W_{2}\right\}$ will be attained for $x \in[0.9445,0.9939]$.

From the assumption $0<z \leq y \leq x<1$ follows that $x^{5}+y^{5} \leq x^{5}+y^{5}+z^{5}=1$ and also $1=x^{5}+y^{5}+z^{5} \leq x^{5}+2 y^{5}$.

Consider the closed region M determined by inequalities $0.9445 \leq x \leq 0.9939$, $x^{5}+y^{5} \leq 1, x^{5}+2 y^{5} \geq 1$. The curve C divides the region M into two open regions C_{1}, C_{2}, (Figure 3).

Figure 3. Regions C_{1}, C_{2}.
We are looking for $\max \min \left\{W_{1}, W_{2}\right\}$, when $W_{1}=x^{4}(x+y+z), W_{2}=x^{3}(x+y)(y+z)$. From the condition $x^{5}+y^{5}+z^{5}=1$ we find

$$
\begin{gather*}
W_{1}=W_{1}(x, y)=x^{4}\left(x+y+\sqrt[5]{1-x^{5}-y^{5}}\right) \tag{1}\\
W_{2}=W_{2}(x, y)=x^{3}(x+y)\left(y+\sqrt[5]{1-x^{5}-y^{5}}\right) \tag{2}
\end{gather*}
$$

Let \bar{C}_{i} denote the closure of the set C_{i}. The functions W_{1}, W_{2} are continuous on M and the equality $W_{1}=W_{2}$ holds just in the points of the curve C.

Take the point $A_{1}=(0.945,0.70) \in C_{1}$. The inequality $W_{1}(X)<W_{2}(X)$ holds in every point $X \in C_{1}$, because of $W_{1}\left(A_{1}\right)<W_{2}\left(A_{1}\right)$. Therefore, for the asked maximum holds $\max _{X \in \bar{C}_{1}} \min \left\{W_{1}(X), W_{2}(X)\right\}=\max _{X \in \bar{C}_{1}}\left\{W_{1}(X)\right\}$.

Take the point $A_{2}=(0.965,0.65) \in C_{2}$. The inequality $W_{1}(X)>W_{2}(X)$ holds in every point $X \in C_{2}$, because of $W_{1}\left(A_{2}\right)>W_{2}\left(A_{2}\right)$. Therefore, for the asked maximum holds $\max _{X \in \bar{C}_{2}} \min \left\{W_{1}(X), W_{2}(X)\right\}=\max _{X \in \bar{C}_{2}}\left\{W_{2}(X)\right\}$.

On the compact set $\overline{C_{1}}$ the function (1) has its maximum in some point B.
It holds $\frac{\partial W_{1}}{\partial y}=x^{4}\left(1-\frac{y^{4}}{\sqrt[5]{\left(1-x^{5}-y^{5}\right)^{4}}}\right)$. The equality $\frac{\partial W_{1}}{\partial y}=0$ holds if $x^{5}+2 y^{5}-$ $1=0$ but the points of the curve $x^{5}+2 y^{5}-1=0$ do not belong to the region $\overline{C_{1}}$. For every point $X \in C_{1}$ holds $\frac{\partial W_{1}}{\partial y}<0$. Therefore, the point B must lie on the curve C.

For every point $X=(x, y), x \in[a, b], y \in[c, d]$ the inequality $z \leq \sqrt[5]{1-a^{5}-c^{5}}$ holds, and so $W_{1}=x^{4}(x+y+z) \leq b^{4}\left(b+d+\sqrt[5]{1-a^{5}-c^{5}}\right), W_{2}=x^{3}(x+y)(y+z) \leq$ $b^{3}(b+d)\left(d+\sqrt[5]{1-a^{5}-c^{5}}\right)$.

Denote

$$
\begin{aligned}
& W_{11}(a, b, c, d)=b^{4}\left(b+d+\sqrt[5]{1-a^{5}-c^{5}}\right) \\
& W_{22}(a, b, c, d)=b^{3}(b+d)\left(d+\sqrt[5]{1-a^{5}-c^{5}}\right)
\end{aligned}
$$

Examine the region C_{2}.
For $x \in[0.9900,0.9939], y \in[0.43,0.60]$ is $W_{22}<1.8$. For $x \in[0.9850,0.9900]$, $y \in[0.47,0.60]$ is $W_{22}<1.8$. For $x \in[0.9800,0.9850]$ and, step by step, for $y \in[0.51,0.56]$, $[0.56,0.60],[0.60,0.65]$ is always $W_{22}<1.8$.

For $x \in[0.975,0.980]$ and, step by step, for $y \in[0.54,0.60],[0.60,0.64],[0.64,0.7]$ is always $W_{22}<1.8$.

For $x \in[0.970,0.975]$, and, step by step, for $y \in[0.56,0.61],[0.61,0.63],[0.63,0.65]$, $[0.65,0.68]$ is always $W_{22}<1.8$.

For $x \in[0.965,0.970]$ and, step by step, for $y \in[0.58,0.61],[0.61,0.63],[0.63,0.64]$, $[0.64,0.65],[0.65,0.66],[0.66,0.67],[0.67,0.69],[0.69,0.75]$ is always $W_{22}<1.8$.

For $x \in[0.960,0.965]$ and, step by step, for $y \in[0.60,0.62],[0.62,0.63],[0.63,0.635]$, [$0.635,0.64],[0.64,0.644],[0.644,0.647],[0.647,0.65],[0.65,0.652],[0.652,0.654],[0.654,0.656]$, $[0.656,0.658], \quad[0.658,0.66], \quad[0.66,0.662], \quad[0.662,0.664], \quad[0.664,0.666], \quad[0.666,0.668]$, $[0.668,0.670], \quad[0.670,0.673], \quad[0.673,0.677], \quad[0.677,0.680], \quad[0.680,0.685],[0.685,0.695]$, [$0.695,0.72]$ is always $W_{22}<1.8$.

For $x \in[0.955,0.960]$ and, step by step, for $y \in[0.620,0.630],[0.630,0.635],[0.635,0.638]$, $[0.638,0.640], \quad[0.640,0.641], \quad[0.641,0.642], \quad[0.697,0.698],[0.698,0.700],[0.700,0.703]$, $[0.703,0.709],[0.709,0.724],[0.724,0.730]$ is always $W_{22}<1.8$.

We do not exclude the region $x \in[0.9550,0.9600], y \in[0.642,0.697]$ in this way, it is not effective.

We have
From (2): $\frac{\partial W_{2}}{\partial x}=\frac{x^{2}}{\sqrt[5]{\left(1-x^{5}-y^{5}\right)^{4}}}\left[(4 x+3 y)\left(y \sqrt[5]{\left(1-x^{5}-y^{5}\right)^{4}}+1-y^{5}\right)-5 x^{6}-4 x^{5} y\right]$ and $\frac{\partial W_{2}}{\partial y}=\frac{x^{3}}{\sqrt[5]{\left(1-x^{5}-y^{5}\right)^{4}}}\left[(x+2 y) \sqrt[5]{\left(1-x^{5}-y^{5}\right)^{4}}+1-x^{5}-2 y^{5}-x y^{4}\right]$.
$\frac{x^{2}}{\sqrt[5]{\left(1-x^{5}-y^{5}\right)^{4}}}>0$ and $\frac{x^{3}}{\sqrt[5]{\left(1-x^{5}-y^{5}\right)^{4}}}>0$, therefore, for every point $X=(x, y), x \in[a, b]$, $y \in[c, d]$ we have two inequalities:

$$
\begin{aligned}
& (4 x+3 y)\left(y \sqrt[5]{\left(1-x^{5}-y^{5}\right)^{4}}+1-y^{5}\right)-x^{5}(5 x+4 y) \leq \\
& \leq(4 b+3 d)\left(d \sqrt[5]{\left(1-a^{5}-c^{5}\right)^{4}}+1-c^{5}\right)-a^{5}(5 a+4 c)
\end{aligned}
$$

and

$$
\begin{aligned}
& (x+2 y) \sqrt[5]{\left(1-x^{5}-y^{5}\right)^{4}}+1-x^{5}-2 y^{5}-x y^{4} \geq \\
& \geq(a+2 c) \sqrt[5]{\left(1-b^{5}-d^{5}\right)^{4}}+1-b^{5}-2 d^{5}-b d^{4}
\end{aligned}
$$

Denote

$$
\begin{aligned}
& D W 2 x(a, b, c, d)=(4 b+3 d)\left(d \sqrt[5]{\left(1-a^{5}-c^{5}\right)^{4}}+1-c^{5}\right)-a^{5}(5 a+4 c) \\
& D W 2 y(a, b, c, d)=(a+2 c) \sqrt[5]{\left(1-b^{5}-d^{5}\right)^{4}}+1-b^{5}-2 d^{5}-b d^{4}
\end{aligned}
$$

For $x \in[0.955,0.960]$ and $y \in[0.642,0.670]$ is $\operatorname{DW} 2 x(a, b, c, d)<0$ and, therefore, $\frac{\partial W_{2}}{\partial x}<0$.

For $x \in[0.955,0.960]$ and $y \in[0.670,0.697]$ is also $\operatorname{DW2} x(a, b, c, d)<0$ and, therefore, $\frac{\partial W_{2}}{\partial x}<0$.

Therefore, the asked maximum cannot be achieved for $x \in[0.955,0.960]$.
For $x \in[0.950,0.955]$ and, step by step, for $y \in[0.630,0.636],[0.636,0.639],[0.639,0.640]$, $[0.640,0.641],[0.717,0.718],[0.718,0.720],[0.720,0.725],[0.725,0.738],[0.738,0.750]$ is always $W_{22}<1.8$.

We do not exclude the region $x \in[0.950,0.955], y \in[0.641,0.717]$ in this way, it is not effective.

For $x \in[0.950,0.955]$ and $y \in[0.641,0.671]$ is $\operatorname{DW} 2 y(a, b, c, d)>0$ and, therefore, $\frac{\partial W_{2}}{\partial y}>0$.

For $x \in[0.950,0.955]$ and $y \in[0.671,0.700]$ is $\operatorname{DW} 2 x(a, b, c, d)<0$ and, therefore, $\frac{\partial W_{2}}{\partial x}<0$.

For $x \in[0.950,0.955]$ and $y \in[0.700,0.717]$ is $\operatorname{DW} 2 x(a, b, c, d)<0$ and, therefore, $\frac{\partial W_{2}}{\partial x}<0$.

This implies that the asked maximum cannot be achieved for $x \in[0.950,0.955]$.
For $x \in[0.9475,0.9500]$ and, step by step, for $y \in[0.640,0.649],[0.649,0.653]$, $[0.653,0.655], \quad[0.655,0.656],[0.656,0.657], \quad[0.719,0.720], \quad[0.720,0.722],[0.722,0.726]$, [$0.726,0.735],[0.735,0.750]$ is always $W_{22}<1.8$.

We do not exclude the region $x \in[0.9475,0.9500], y \in[0.657,0.719]$ in this way, it is not effective.

For $x \in[0.9475,0.9500]$ and $y \in[0.657,0.684]$ is $\operatorname{DW2} y(a, b, c, d)>0$ and, therefore, $\frac{\partial W_{2}}{\partial y}>0$.

For $x \in[0.9475,0.9500]$ and $y \in[0.684,0.719]$ is $\operatorname{DW2x}(a, b, c, d)<0$ and, therefore, $\frac{\partial W_{2}}{\partial x}<0$.

This implies that the asked maximum cannot be achieved for $x \in[0.9475,0.9500]$, see Figure 4.

Figure 4. The Region M after the final reduction.
For $x \in[0.9445,0.9475]$ and, step by step, for $y \in[0.650,0.653],[0.653,0.655]$, [$0.655,0.656],[0.656,0.657]$ is always $W_{22}<1.8$.

For $x \in[0.9445,0.9475]$ and $y \in[0.657,0.690]$ is $\operatorname{DW2} y(a, b, c, d)>0$ and, therefore, $\frac{\partial W_{2}}{\partial y}>0$.

For $x \in[0.9445,0.9475]$ and $y \in[0.690,0.700]$ is $\operatorname{DW2x}(a, b, c, d)<0$ and, therefore, $\frac{\partial W_{2}}{\partial x}<0$.

For $x \in[0.9445,0.9475]$ and, step by step, for $y \in[0.720,0.726],[0.726,0.743],[0.743,0.760]$ is always $W_{11}<1.8$.

So function (2) on the compact set ${\overline{C_{2}}}_{2}$ must achieve its maximum in some point of the curve C. It is the same point B as above.

We ask constrained maximum of the function

$$
\begin{equation*}
W(x, y)=x^{5}+\frac{x^{6}}{y} \tag{3}
\end{equation*}
$$

on the curve C

$$
\begin{equation*}
C(x, y)=x^{5} y^{5}+y^{10}-y^{5}+\left(x^{2}-y^{2}\right)^{5}=0 \tag{4}
\end{equation*}
$$

for $x \in[0.9445,0.9475]$.

System of equations $\frac{\partial W}{\partial x} \frac{\partial C}{\partial y}-\frac{\partial W}{\partial y} \frac{\partial C}{\partial x}=0$ and $C(x, y)=0$ has the form

$$
\begin{gathered}
7 x^{6} y^{5}+12 x y^{10}-6 x y^{5}+5 x^{5} y^{6}+10 y^{11}-5 y^{6}+\left(x^{2}-y^{2}\right)^{4}\left(2 x^{3}-10 y^{3}-12 x y^{2}\right)=0 \\
x^{5} y^{5}+y^{10}-y^{5}+\left(x^{2}-y^{2}\right)^{5}=0
\end{gathered}
$$

The solution is $x \doteq 0.946629932, y \doteq 0.690148624$, and then $z \doteq 0.608279275$.
If we generalize considerations from the proof, we will achieve the curve $C: x^{d} y^{d}+$ $y^{2 d}-y^{d}+\left(x^{2}-y^{2}\right)^{d}=0$, where d is dimension. The graph of the curve C depends on the parity of d, see Figures 5 and 6. Considering only the values $1>x \geq y>0$, the shape of the curve C is similar, regardless of parity, see Figure 2.

For $d \leq 10$ the asked maximum is achieved on the curve C. For dimensions 7, 9 and 10 the resultsare:

$$
\begin{aligned}
V_{3}(7) & \doteq 2.05909680 \text { and } x \doteq 0.978852925, y \doteq 0.703495386, z \doteq 0.658493716 \\
V_{3}(9) & \doteq 2.21897778 \text { and } x \doteq 0.991008397, y \doteq 0.704394561, z \doteq 0.689849087 \\
V_{3}(10) & \doteq 2.27220126 \text { and } x \doteq 0.993961280, y \doteq 0.702901846, z \doteq 0.702641521
\end{aligned}
$$

Figure 5. The curve C in even dimensions.

Figure 6. The curve C in odd dimensions.
Let P is intersection the constraint curve $x^{d}+2 y^{d}-1=0$ and the curve C. If $d=11$, then the constrained extreme on the curve C does not meet the required assumption $y \geq z$. Therefore, the asked maximum must be on the constraint curve to the left of point P or on the curve C above P, see Figure 7. The same situation occurs for $d=12$ and $d=13$.

$$
\begin{aligned}
& V_{3}(11) \doteq 2.31533581 \text { and } x \doteq 0.994989464, y=z \doteq 0.719809616 . \\
& V_{3}(12) \doteq 2.35315527 \text { and } x \doteq 0.995762712, y=z \doteq 0.734956999 \\
& V_{3}(13) \doteq 2.38661963 \text { and } x \doteq 0.996369617, y=z \doteq 0.748358875 .
\end{aligned}
$$

Figure 7. The regions C_{1}, C_{2} and the curve C in 11-dimensional space.

3. Conclusions

The issue of packing squares is an old problem and even though there are multiple partial results, it remains unresolved. We investigated a modified problem: packing three cubes in 5-dimensional space. We also calculated results for dimensions 7, 9, 10, 11, 12, 13 .

Considering the previous results by [17-19], we can say that solution is located on the curve C for dimensions $4 \ldots 10$. It means, that there are two (different) packings that give (the same) the largest volume.

There seems to be only a single maximal packing for dimensions greater than 10. In this packing, two smallest cubes are the same. However, the paper confirms it only for dimensions $11,12,13$.

There is a space for several improvements in our work: Is it possible to find a $V_{3}(d)$ without long numerical calculations? Is it true that two different maximum packings exist only for dimensions less than 11?

Author Contributions: Conceptualization, Z.S. and P.A.; methodology, Z.S. and P.A; software, P.A.; validation, P.A. and Z.S.; formal analysis, Z.S. and P.A; writing-original draft preparation, Z.S.; writing-review and editing, P.A.; visualization, Z.S.; supervision, Z.S.; project administration, Z.S.; funding acquisition, Z.S. All authors have read and agreed to the published version of the manuscript.
Funding: This research was partially funded by the Slovak Grant Agency KEGA through the project No. 027ŽU-4/2020.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.
Conflicts of Interest: The authors declare no conflict of interest.

References

1. Moser, L. Poorly Formulated Unsolved Problems of Combinatorial Geometry, Mimeographed List. 1966. Available online: https:/ /www.google.com/url?sa=t\&rct=j\&q=\&esrc=s\&source=web\&cd=\&ved=2ahUKEwjNi_6E2MvyAhVQ82EKHXwkDswQF noECAgQAQ\&url=https\%3A\%2F\%2Farxiv.org\%2Fpdf\%2F2104.09324\&usg=AOvVaw04NiNvduVgpLb0NhXT63Zw (accessed on 8 July 2021).
2. Brass, P.; Moser, W.O.J.; Pach, J. Research Problems in Discrete Geometry; Springer: New York, NY, USA, 2005.
3. Croft, H.T.; Falconer, K.J.; Guy, R.K. Unsolved Problems in Geometry; Springer: New York, NY, USA, 1991.
4. Moon, J.W.; Moser, L. Some packing and covering theorems. Colloq. Math. 1967, 17, 103-110. [CrossRef]
5. Moser, W. Problems, problems, problems. Discret. Appl. Math. 1991, 31, 201-225. [CrossRef]
6. Moser, W.; Pach, J. Research Problems in Discrete Geometry; McGill University: Montreal, QC, Canada, 1994.
7. Kleitman, D.J.; Krieger, M.M. An optimal bound for two dimensional bin packing. In Proceedings of the 16th Annual Symposium on Foundations of Computer Science, Berkeley, CA, USA, 13-15 October 1975; pp. 163-168.
8. Novotný, P. A note on a packing of squares. Stud. Univ. Transp. Commun. Žilina Math.-Phys. Ser. 1995, 10, 35-39.
9. Novotný, P. On packing of four and five squares into a rectangle. Note Mat. 1999, 19, 199-206.
10. Novotný, P. Využitie počítača pri riešení ukladacieho problému. In Proceedings of the Symposium on Computational Geometry, Kočovce, Slovak Republic, 9-11 October 2002; pp. 60-62. (In Slovak)
11. Novotný, P. On packing of squares into a rectangle. Arch. Math. 1996, 32, 75-83.
12. Hougardy, S. On packing squares into a rectangle. Comput. Geom. 2011, 44, 456-463. [CrossRef]
13. Meir, A.; Moser, L. On packing of squares and cubes. J. Comb. Theory 1968, 5, 126-134. [CrossRef]
14. Novotný, P. Ukladanie kociek do kvádra. In Proceedings of the Symposium on Computational Geometry, Kočovce, Slovak Republic, 19-21 October 2011; pp. 100-103. (In Slovak)
15. Novotný, P. Pakovanie troch kociek. In Proceedings of the Symposium on Computational Geometry, Kočovce, Slovak Republic, 27-29 September 2006; pp. 117-119. (In Slovak)
16. Novotný, P. Najhoršie pakovatel'né štyri kocky. In Proceedings of the Symposium on Computational Geometry, Kočovce, Slovak Republic, 24-26 October 2007; pp. 78-81. (In Slovak)
17. Bálint, V.; Adamko, P. Minimalizácia objemu kvádra pre uloženie troch kociek v dimenzii 4. Slov. Pre Geom. Graf. 2015, 12, 5-16. (In Slovak)
18. Bálint, V.; Adamko, P. Minimization of the parallelepiped for packing of three cubes in dimension 6. In Proceedings of the Aplimat: 15th Conference on Applied Mathematics, Bratislava, Slovak Republic, 2-4 February 2016; pp. 44-55.
19. Sedliačková, Z. Packing Three Cubes in 8-Dimensional Space. J. Geom. Graph. 2018, 22, 217-223.
20. Adamko, P.; Bálint, V. Universal asymptotical results on packing of cubes. Stud. Univ. Žilina Math. Ser. 2016, 28, 1-4.
