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Abstract: Denote V,(d) the least number that every system of n cubes with total volume 1 in
d-dimensional (Euclidean) space can be packed parallelly into some rectangular parallelepiped
of volume V;;(d). New results V3(5) = 1.802803792, V3(7) = 2.05909680, V3(9) = 2.21897778,
V3(10) = 2.27220126, V3(11) = 2.31533581, V3(12) = 2.35315527, V3(13) = 2.38661963 can be found
in the paper.
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1. Introduction

In 1966, L. Moser [1] raised the following problem: Determine the smallest number A
so that any system of squares of total area 1 can be packed parallelly into some rectangle of
area A. This problem can also be found in [2-6]. The problem has been extended to higher
dimensions and has been studied for a specific number of squares (cubes). To distinguish
the number of dimensions and cubes we denoted V;,(d) the least number that every system
of n cubes with total volume 1 in d-dimensional (Euclidean) space can be packed parallelly
into some rectangular parallelepiped of volume V,,(d). V(d) denotes the maximum of all
Vu(d),n=1,2,3,...

Some results are known in 2-dimensional space. Kleitman and Krieger [7] proved that
every finite system of squares with total area 1, can be packed into the rectangle with sides of
lengths % and V2,50 V(2) < 4 = 1.632993162. After twenty years Novotny [8] showed

V3
that V3(2) = 1.2277589 and V(2) > 253

n=4,5,6,7, 8 Novotny [9] proved V4( )
Ve(2) = V7(2) = V3(2) = M The estimate of V(2) was improved by Novotny [11]
V(2) < 1.53. Later, this result was improved by Hurgady [12] V(2) < 35¢7 < 1.4.

In 3-dimensional space, the estimate of V(3) was gradually improved. Meir and
Moser [13] proved V(3) < 4 and later Novotny [14] proved V(3) < 2.26. The exact results
are known for n =2, 3, 4, 5: Novotny [15] V5(3) = 3, V3(3) = 1.44009951, Novotny [16]
Vi (3) = 1.5196303266, and in Novotny [14] proved V5(3) = Vi(3).

The results for n = 3 and d = 4, 6, 8 are known too: V3(4) = 1.63369662, Balint
and Adamko in [17]; V3(6) = 1.94449161, Balint and Adamko in [18]; V3(8) = 2.14930609,
Sedlia¢kové in [19].

Adamko and Bélint proved dh_r}r.}o Vu(d) =nforn=25,6,7,...

also forn = 2,3,4.

> 1.244. The exact results are known also for

=V5(2) = 2+\f and in Novotny [10] proved

in [20]. Theorem holds
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2. Main Results

The main part of this section is the proof of V3(5) = 1.802803792. We use the same
method as [17,18]. At the end of the section, we offer (without proof) the values of V3(d)
ford € {7,9,10,11,12,13}.

Theorem 1. V3(5) = 1.802803792.
Outline of the proof

1.  We show, that there are only two important packing configurations. Their volumes
are W; = x*(x +y +z) and W, = x3(x + y)(y + z), see Figure 1. Firstly, we need to
find min{W;, W} for each {x,y,z}. The maximum from min{W;, W, } is the final
result, we denote it max min{ Wy, W };

2. Cubes with sides x = 0.946629932, y = 0.690148624, and z = 0.608279275 have
Wi = W, = 1.802803792. We prove that this volume is sufficient for packing any
three cubes with a total volume of 1 in dimension 5;

3.  We obtain an estimation of the side size of the largest cube: 0.9445 < x < 0.9939;

4. Usingl=x"+y’+z°and1 > x >y > z > 0, we obtain constraints x> +1° < 1 and
X420 > 1

5. z = (1—x5—y°)/5 Therefore, it is sufficient to work only with x and y. M is a
region of {x,y} bounded by constraints from steps 3 and 4. We obtain a curve C from
Wi = W, see Figure 2. Curve C divides the region M into continuous regions C; and
Cy, see Figure 3;

6.  We clarify:

(@) Wi (X) < Wp(X) holds for X € C;. Therefore, max min{ Wy, Wp} = max W1 (X),
X ey

(b)  Wi(X) > Wy(X) holds for X € C,. Therefore, max min{W1, W2} = max W, (X),
X e Cy;

7.  We show that the asked maximum is on curve C;

(a) We use critical points for region Cy;

(b)  We were unable to use critical points on the whole C;, so we gradually numeri-
cally exclude subregions. We start with comparison of maximum of subregions
and 1.8 (packing with V3(5) > 1.8 exists).

Proof. Consider three cubes with edge lengths x, y, z in the 5-dimensional Euclidean space,
where 1 > x >y > z > 0 and the total volume x° +1° +z° = 1.

We are looking for the smallest volume of a parallelepiped containing all three cubes.
Therefore, from several ways of packing, we can ignore the packing that leads in any
circumstances to a larger volume.

Let X, Y, Z denote the cubes (sorted from the largest). We attach cubes X and Y to
each other, for example, in the direction of the fifth dimension. Parallelepiped containing
cubes X and Y has volume x*(x + y).

If we place the cube Z to the cube X in the direction of the fifth dimension, we receive
volume x*(x + y + z). We obtain volume x3(x + ) (x + z) for other four directions.

If we place the cube Z to the cube Y in the direction of the fifth dimension, we
receive again x*(x +y + z). We obtain (after appropriate shifting of the cube Y) volume
x3(x +y)(y + z) for other four directions.

Because x3(x + y)(y +z) < x*(x +y)(x + z), we can ignore packings that lead to the
volume x3(x + y)(x + z).

If we start with cubes X and Z, or Z and Y, the same results are obtained.

Therefore, it is sufficient to consider only two cases of packing three cubes, see
Figure 1ab. In the first case, the volume W; = x*(x + y + z) is sufficient for packing,
in the second case, the volume W, = x3(x + y)(y + z) is sufficient.
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(a) Packing with volume W1 (b) Packing with
volume W2
Figure 1. Two cases of packing three cubes.

We need to find max min{W;, W} under the conditions x° + 3> +z°> = 1, and
1>x>y>z>0.

For three cubes with edge lengths x = 0.946629932, y = 0.690148624, z = 0.608279275,
a volume Wy = W, = 1.802803792 is necessary. Thus, V3(5) > 1.802803792.

If y + z < x than we can pack the cubes, as shown in Figure 1b, and volume V;(5)
is sufficient, V»(5) = 1.484663669 for cubes with edge lengths x = 0.984432006 and
y = 0.596398035.

Let us consider only the case that y +z > x. From y° < z° +1° = 1 — 2% we find
y < V1 — 15, and, therefore, y +z < 2y < 2v/1 —x5. Then, x < y +z < 2v/1— x5 and,
therefore, x° < 25(1 — x5). We attain the upper bound for x, x < 5%/% x>y >zand

x° 4+ y5 + 25 = 1, therefore, x° > % and x > 5%5 This implies that we can consider only
12 |
x € [ = m},l.e., 0.8027 < x < 0.9939. .
Equality W; = W, holds if, and only if, x> = y? + yz. In this case, z = % and
2 2
Wy =Wy =x°+ % When we substitute z = % into x° + 1 + z° = 1 we find the curve

C: Oy +y'0 — y° + (2% — y?)5 = 0 (Figure 2).

1.0F T T T T |

0.8

0.6

041

021

0.0

00 02 04 06 08 1.0

Figure 2. The curve C.

The interval for x can be reduced. If we choose x € [4,b],0 < a < b < 1, then

1— x5
1-0°<1-x°<1-4a51Ify =z, then1—x° = y° + 2% = 2y° and, therefore, y = ¥ Zx
5 1-— x5

2

The function Wy = x*(x + y + z) has the greatest value if y = z, , i.e., y = . For

— g5
x € [a,b], we find Wy < x*(x +29) < b4(b+2W)-

— b
Denote Wy (a,b) :b4(b+25 1-a

The inequality Wj(a,b) < 1.8021 is valid for the intervals: x € [0.8027,0.9190],
x € [0.9190,0.9360], x € [0.9360,0.9410], x € [0.9410,0.9420], x € [0.9420,0.9430),
x € [0.9430,0.9440], x € [0.9440, 0.9445], hence for the asked maximum holds x > 0.9445.

Therefore, we have shown that the asked max min{W;, W,} will be attained for
x € [0.9445,0.9939].

From the assumption 0 < z < y < x < 1 follows that x° +y°> < x° + 1> +z° = 1 and
alsol=x"+1°+2° < x°+2p°.
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Consider the closed region M determined by inequalities 0.9445 < x < 0.9939,
x° +1y° <1,x° 42y > 1. The curve C divides the region M into two open regions Cy, Cy,
(Figure 3).

0.75

0.70

0.65

0.60

0.55

0.50

0-457“\‘“‘\““\““\““F
0.95 0.96 0.97 0.98 0.99

Figure 3. Regions Cy, Cy.

We are looking for max min{Wy, W, }, when Wy = x*(x +y +z), Wo = x3(x + y)(y + 2).
From the condition x° + y° + z° = 1 we find

Wy =Wi(x,y) = x*(x +y+ /1 — 25 — 1), (1)
Wy = Wa(x,y) = ¥ (x +y)(y + /1= 2% — ). 2)

Let C; denote the closure of the set C;. The functions W;, W, are continuous on M and
the equality W; = W, holds just in the points of the curve C.

Take the point A1 = (0.945,0.70) € C;. The inequality W (X) < W»(X) holds in every
point X € Cy, because of Wy (A1) < Wp(A1). Therefore, for the asked maximum holds
max min{Wj (X), Wp(X)} = max{W;(X)}.

XeCy XeCy

Take the point Ay = (0.965,0.65) € Cy. The inequality W; (X) > W(X) holds in every
point X € C,, because of Wy (Az) > Wh(Ajy). Therefore, for the asked maximum holds
max min{ Wy (X), W(X)} = max{Wa(X)}.

XeCy XeCy

On the compact set C; the function (1) has its maximum in some point B.
It holds Wy _ x4 (1 - v ) The equality W 0 holds if x° +2y° —
% V(12— ) %

1 = 0 but the points of the curve x° 4+ 2y° — 1 = 0 do not belong to the region C;. For every
point X € C; holds aaV]\/ﬁ < 0. Therefore, the point B must lie on the curve C.

For every point X = (x,y), x € [a,b], y € [c,d] the inequality z < V1 —a° — >
holds, and so Wy = x*(x +y +2) < b*b+d+ V1 —a5—c3), Wo = B(x +y)(y +2) <
b (b+d)(d+ V1 —a®—c5).

Denote

Wii(a,b,c,d) = b*(b+d + /1 —ad — ¢5),
Waa(a,b,¢c,d) = b>(b+d)(d+ V1 —ad — 5).
Examine the region C,.
For x € [0.9900,0.9939], y € [0.43,0.60] is Wy, < 1.8. For x € [0.9850,0.9900],

y € [0.47,0.60] is Wy, < 1.8. For x € [0.9800,0.9850] and, step by step, for y € [0.51,0.56],
[0.56,0.60], [0.60, 0.65] is always Wy, < 1.8.
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For x € [0.975,0.980] and, step by step, for y € [0.54,0.60], [0.60,0.64], [0.64,0.7] is
always Wy < 1.8.

For x € [0.970,0.975], and, step by step, for y € [0.56,0.61], [0.61,0.63], [0.63,0.65],
[0.65,0.68] is always Wy, < 1.8.

For x € [0.965,0.970] and, step by step, for y € [0.58,0.61], [0.61,0.63], [0.63,0.64],
[0.64,0.65], [0.65,0.66], [0.66,0.67], [0.67,0.69], [0.69, 0.75] is always Wy, < 1.8.

For x € [0.960,0.965] and, step by step, for y € [0.60,0.62], [0.62,0.63], [0.63,0.635],
0.635,0.64], [0.64,0.644], [0.644,0.647], [0.647, 0.65], [0.65, 0.652], [0.652, 0.654], [0.654, 0.656],
0.656,0.658], [0.658,0.66], [0.66,0.662], [0.662,0.664], [0.664,0.666], [0.666,0.668],
0.668,0.670], [0.670,0.673], [0.673,0.677], [0.677,0.680], [0.680,0.685], [0.685,0.695],
0.695,0.72] is always Wy, < 1.8.

For x € [0.955,0.960] and, step by step, for y € [0.620,0.630], [0.630, 0.635], [0.635, 0.638],
[0.638,0.640], [0.640,0.641], [0.641,0.642], [0.697,0.698], [0.698,0.700], [0.700,0.703],
0.703,0.709], [0.709,0.724], [0.724, 0.730] is always Wa, < 1.8.

We do not exclude the region x € [0.9550,0.9600], y € [0.642,0.697] in this way, it is
not effective.

We have

From (2): %2 — 5(#257%)4 [(4x +3y)(y/(1— x5 —yP)4 +1 —1°) — 526 — 4x5y}
3
andaa% = Sim&x—i—Zy)?/(l—x5—y5)4+1—x5—2y5—xy4}.

—_—— ——

2 3 .
W > 0 and W > 0, therefore, for every point X = (x,y),x € [a,b],

y € [c,d] we have two inequalities:
(4x+3y) (yy/ (1 =5 —P) +1 %) —x°(5x +4y) <

< (4b+3d)(d{/(1 —a® — B)4 +1 — ) — a°(5a + 4c¢)

and
(x+2y) /(1 —x5 — )4 +1—x° —2¢° — xy* >
> (a+420)y/(1 -5 —d5)*+1—b° —2d° — bd*
Denote

DW2x(a,b,c,d) = (4b+3d)(d{/ (1 —a® — 3)4 +1—°) — a°(5a + 4¢),
DW2y(a,b,c,d) = (a+2c)/(1—b5 —d5)* +1—b> —24° — bad*.

For x € [0.955,0.960] and y € [0.642,0.670] is DW2x(a,b,c,d) < 0 and, therefore,

oW
22 <o,

dx

For x € [0.955,0.960] and y € [0.670,0.697] is also DW2x(a, b,c,d) < 0 and, therefore,
oW,
— < 0.

Therefore, the asked maximum cannot be achieved for x € [0.955,0.960].

For x € [0.950,0.955] and, step by step, for y € [0.630,0.636], [0.636,0.639], [0.639, 0.640],
[0.640,0.641], [0.717,0.718], [0.718,0.720], [0.720, 0.725], [0.725,0.738], [0.738, 0.750] is always
Wpy < 1.8.

We do not exclude the region x € [0.950,0.955], y € [0.641,0.717] in this way, it is
not effective.

For x € [0.950,0.955] and y € [0.641,0.671] is DW2y(a,b,c,d) > 0 and, therefore,

M2~

Iy
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For x € [0.950,0.955] and y € [0.671,0.700] is DW2x(a,b,c,d) < 0 and, therefore,

< 0.

For x € [0.950,0.955] and y € [0.700,0.717] is DW2x(a,b,c,d) < 0 and, therefore,

oW,
W < O.

This implies that the asked maximum cannot be achieved for x € [0.950, 0.955].

For x € [0.9475,0.9500] and, step by step, for y € [0.640,0.649], [0.649,0.653],
0.653,0.655], [0.655,0.656], [0.656,0.657], [0.719,0.720], [0.720,0.722], [0.722,0.726),
[0.726,0.735], [0.735,0.750] is always Wy, < 1.8.

We do not exclude the region x € [0.9475,0.9500], y € [0.657,0.719] in this way;, it is
not effective.

For x € [0.9475,0.9500] and y € [0.657,0.684] is DW2y(a,b,c,d) > 0 and, therefore,
oW,

— > 0.
%y
For x € [0.9475,0.9500] and y € [0.684,0.719] is DW2x(a,b,c,d) < 0 and, therefore,

< 0.

This implies that the asked maximum cannot be achieved for x € [0.9475,0.9500], see
Figure 4.

oW,
ox

oW,

074} g
072} b
Cy C
070} 1
c
0.68f 1
0.66 | X°+2y5-1 2 o 1

\

0641, | | | | | ful
0.945 0.946 0.947 0.948 0.949 0.950

Figure 4. The Region M after the final reduction.

For x € [0.9445,0.9475] and, step by step, for y € [0.650,0.653], [0.653,0.655],
[0.655,0.656], [0.656,0.657] is always Way < 1.8.

For x € [0.9445,0.9475] and y € [0.657,0.690] is DW2y(a,b,c,d) > 0 and, therefore,
oW,

> 0.
oy

For x € [0.9445,0.9475] and y € [0.690,0.700] is DW2x(a,b,c,d) < 0 and, therefore,
oW,

o < 0.

For x € [0.9445,0.9475] and, step by step, for y € [0.720,0.726], [0.726,0.743], [0.743,0.760)]
is always Wy; < 1.8.

So function (2) on the compact set C; must achieve its maximum in some point of the
curve C. It is the same point B as above.

We ask constrained maximum of the function

X6
W(x,y) =x" + — (©)
Y
on the curve C
Clay) =Y +y"° =y’ + (x> —y*)° =0 )

for x € [0.9445,0.9475].
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. dWaC oWoaC
System of equations Gxay  dyox 0 and C(x,y) = 0 has the form

7x0y° 4+ 12xy10 — 6xy° 4 5x°y° + 10y — 50 4 (x2 — y?)* (23 — 10y° — 12x1%) =0,

BBy~ (22— 25 =0
The solution is x = 0.946629932, y = 0.690148624, and then z = 0.608279275. O

If we generalize considerations from the proof, we will achieve the curve C: x%y +
y?4 — y? 4 (x® — y2)¥ = 0, where d is dimension. The graph of the curve C depends on the
parity of d, see Figures 5 and 6. Considering only the values 1 > x > y > 0, the shape of
the curve C is similar, regardless of parity, see Figure 2.

For d < 10 the asked maximum is achieved on the curve C. For dimensions 7, 9 and
10 the resultsare:

V3(7) = 2.05909680 and x = 0.978852925, y = 0.703495386, z = 0.658493716,
V3(9) = 2.21897778 and x = 0.991008397, y = 0.704394561, z = 0.689849087,
V3(10) = 2.27220126 and x = 0.993961280, y = 0.702901846, z = 0.702641521.

2 u) q 2 [m) u]
1+ 1 1
0 0
-1t -1 :
-2h . . 4 -2h ‘ ‘ d
-2 -1 0 1 2 -2 -1 0 1 2
(a) Dimension 4 (b) Dimension 10

Figure 5. The curve C in even dimensions.

2\] ] |
1} 11t 1
-1r x -1F
-2k . . -2k

-2 -1 0 1 2 -2 -1 0 1 2

(a) Dimension 5 (b) Dimension 11
Figure 6. The curve C in odd dimensions.

Let P is intersection the constraint curve x? 4+ 2y? — 1 = 0 and the curve C. If d = 11,
then the constrained extreme on the curve C does not meet the required assumption y > z.
Therefore, the asked maximum must be on the constraint curve to the left of point P or on
the curve C above P, see Figure 7. The same situation occurs for d = 12 and d = 13.

V3(11) = 2.31533581 and x = 0.994989464, y = z = 0.719809616.

V3(12) = 2.35315527 and x = 0.995762712, y = z = 0.734956999,

V3(13) = 2.38661963 and x = 0.996369617, y = z = 0.748358875.
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0.80 [ 1
0.78
0.76
0.74
0.72
0.70

068}

0.66 - d
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Figure 7. The regions C;, C; and the curve C in 11-dimensional space.

3. Conclusions

The issue of packing squares is an old problem and even though there are multiple
partial results, it remains unresolved. We investigated a modified problem: packing three
cubes in 5-dimensional space. We also calculated results for dimensions 7,9,10,11,12,13.

Considering the previous results by [17-19], we can say that solution is located on the
curve C for dimensions 4. .. 10. It means, that there are two (different) packings that give
(the same) the largest volume.

There seems to be only a single maximal packing for dimensions greater than 10.
In this packing, two smallest cubes are the same. However, the paper confirms it only for
dimensions 11, 12, 13.

There is a space for several improvements in our work: Is it possible to find a V3(d)
without long numerical calculations? Is it true that two different maximum packings exist
only for dimensions less than 11?
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