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Abstract: Denote Vn(d) the least number that every system of n cubes with total volume 1 in
d-dimensional (Euclidean) space can be packed parallelly into some rectangular parallelepiped
of volume Vn(d). New results V3(5)

.
= 1.802803792, V3(7)

.
= 2.05909680, V3(9)

.
= 2.21897778,

V3(10) .
= 2.27220126, V3(11) .

= 2.31533581, V3(12) .
= 2.35315527, V3(13) .

= 2.38661963 can be found
in the paper.

Keywords: packing of cubes; extreme

PACS: 52C17

1. Introduction

In 1966, L. Moser [1] raised the following problem: Determine the smallest number A
so that any system of squares of total area 1 can be packed parallelly into some rectangle of
area A. This problem can also be found in [2–6]. The problem has been extended to higher
dimensions and has been studied for a specific number of squares (cubes). To distinguish
the number of dimensions and cubes we denoted Vn(d) the least number that every system
of n cubes with total volume 1 in d-dimensional (Euclidean) space can be packed parallelly
into some rectangular parallelepiped of volume Vn(d). V(d) denotes the maximum of all
Vn(d), n = 1, 2, 3, . . ..

Some results are known in 2-dimensional space. Kleitman and Krieger [7] proved that
every finite system of squares with total area 1, can be packed into the rectangle with sides of
lengths 2√

3
and
√

2, so V(2) ≤ 4√
6

.
= 1.632993162. After twenty years Novotný [8] showed

that V3(2) = 1.2277589 and V(2) ≥ 2+
√

3
3 > 1.244. The exact results are known also for

n = 4, 5, 6, 7, 8, Novotný [9] proved V4(2) = V5(2) = 2+
√

3
3 and in Novotný [10] proved

V6(2) = V7(2) = V8(2) = 2+
√

3
3 . The estimate of V(2) was improved by Novotný [11]

V(2) < 1.53. Later, this result was improved by Hurgady [12] V(2) ≤ 2867
2048 < 1.4.

In 3-dimensional space, the estimate of V(3) was gradually improved. Meir and
Moser [13] proved V(3) ≤ 4 and later Novotný [14] proved V(3) ≤ 2.26. The exact results
are known for n = 2, 3, 4, 5: Novotný [15] V2(3) = 4

3 , V3(3) = 1.44009951, Novotný [16]
V4(3) = 1.5196303266, and in Novotný [14] proved V5(3) = V4(3).

The results for n = 3 and d = 4, 6, 8 are known too: V3(4) = 1.63369662, Bálint
and Adamko in [17]; V3(6) = 1.94449161, Bálint and Adamko in [18]; V3(8) = 2.14930609,
Sedliačková in [19].

Adamko and Bálint proved lim
d→∞

Vn(d) = n for n = 5, 6, 7, . . . in [20]. Theorem holds

also for n = 2, 3, 4.
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2. Main Results

The main part of this section is the proof of V3(5)
.
= 1.802803792. We use the same

method as [17,18]. At the end of the section, we offer (without proof) the values of V3(d)
for d ∈ {7, 9, 10, 11, 12, 13}.

Theorem 1. V3(5)
.
= 1.802803792.

Outline of the proof

1. We show, that there are only two important packing configurations. Their volumes
are W1 = x4(x + y + z) and W2 = x3(x + y)(y + z), see Figure 1. Firstly, we need to
find min{W1, W2} for each {x, y, z}. The maximum from min{W1, W2} is the final
result, we denote it max min{W1, W2};

2. Cubes with sides x .
= 0.946629932, y .

= 0.690148624, and z .
= 0.608279275 have

W1 = W2 = 1.802803792. We prove that this volume is sufficient for packing any
three cubes with a total volume of 1 in dimension 5;

3. We obtain an estimation of the side size of the largest cube: 0.9445 ≤ x ≤ 0.9939;
4. Using 1 = x5 + y5 + z5 and 1 > x ≥ y ≥ z > 0, we obtain constraints x5 + y5 ≤ 1 and

x5 + 2y5 ≥ 1;
5. z = (1− x5 − y5)1/5. Therefore, it is sufficient to work only with x and y. M is a

region of {x, y} bounded by constraints from steps 3 and 4. We obtain a curve C from
W1 = W2, see Figure 2. Curve C divides the region M into continuous regions C1 and
C2, see Figure 3;

6. We clarify:

(a) W1(X) < W2(X) holds for X ∈ C1. Therefore, max min{W1, W2} = max W1(X),
X ∈ C1;

(b) W1(X) > W2(X) holds for X ∈ C2. Therefore, max min{W1, W2} = max W2(X),
X ∈ C2;

7. We show that the asked maximum is on curve C;

(a) We use critical points for region C1;
(b) We were unable to use critical points on the whole C2, so we gradually numeri-

cally exclude subregions. We start with comparison of maximum of subregions
and 1.8 (packing with V3(5) > 1.8 exists).

Proof. Consider three cubes with edge lengths x, y, z in the 5-dimensional Euclidean space,
where 1 > x ≥ y ≥ z > 0 and the total volume x5 + y5 + z5 = 1.

We are looking for the smallest volume of a parallelepiped containing all three cubes.
Therefore, from several ways of packing, we can ignore the packing that leads in any
circumstances to a larger volume.

Let X, Y, Z denote the cubes (sorted from the largest). We attach cubes X and Y to
each other, for example, in the direction of the fifth dimension. Parallelepiped containing
cubes X and Y has volume x4(x + y).

If we place the cube Z to the cube X in the direction of the fifth dimension, we receive
volume x4(x + y + z). We obtain volume x3(x + y)(x + z) for other four directions.

If we place the cube Z to the cube Y in the direction of the fifth dimension, we
receive again x4(x + y + z). We obtain (after appropriate shifting of the cube Y) volume
x3(x + y)(y + z) for other four directions.

Because x3(x + y)(y + z) ≤ x3(x + y)(x + z), we can ignore packings that lead to the
volume x3(x + y)(x + z).

If we start with cubes X and Z, or Z and Y, the same results are obtained.
Therefore, it is sufficient to consider only two cases of packing three cubes, see

Figure 1a,b. In the first case, the volume W1 = x4(x + y + z) is sufficient for packing,
in the second case, the volume W2 = x3(x + y)(y + z) is sufficient.



Mathematics 2021, 9, 2046 3 of 9

(a) Packing with volume W1 (b) Packing with
volume W2

Figure 1. Two cases of packing three cubes.

We need to find max min{W1, W2} under the conditions x5 + y5 + z5 = 1, and
1 > x ≥ y ≥ z > 0.

For three cubes with edge lengths x .
= 0.946629932, y .

= 0.690148624, z .
= 0.608279275,

a volume W1 = W2
.
= 1.802803792 is necessary. Thus, V3(5) ≥ 1.802803792.

If y + z ≤ x than we can pack the cubes, as shown in Figure 1b, and volume V2(5)
is sufficient, V2(5)

.
= 1.484663669 for cubes with edge lengths x .

= 0.984432006 and
y .
= 0.596398035.

Let us consider only the case that y + z > x. From y5 ≤ z5 + y5 = 1− x5 we find
y ≤ 5

√
1− x5, and, therefore, y + z ≤ 2y ≤ 2 5

√
1− x5. Then, x < y + z ≤ 2 5

√
1− x5 and,

therefore, x5 < 25(1− x5). We attain the upper bound for x, x ≤ 2
5√33

. x ≥ y ≥ z and

x5 + y5 + z5 = 1, therefore, x5 ≥ 1
3 and x ≥ 1

5√3
. This implies that we can consider only

x ∈
[

1
5√3

, 2
5√33

]
, i.e., 0.8027 ≤ x ≤ 0.9939.

Equality W1 = W2 holds if, and only if, x2 = y2 + yz. In this case, z = x2−y2

y and

W1 = W2 = x5 + x6

y . When we substitute z = x2−y2

y into x5 + y5 + z5 = 1 we find the curve

C: x5y5 + y10 − y5 + (x2 − y2)5 = 0 (Figure 2).

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

C

Figure 2. The curve C.

The interval for x can be reduced. If we choose x ∈ [a, b], 0 < a < b < 1, then

1− b5 ≤ 1− x5 ≤ 1− a5. If y = z, then 1− x5 = y5 + z5 = 2y5 and, therefore, y =
5

√
1− x5

2
.

The function W1 = x4(x + y + z) has the greatest value if y = z, , i.e., y =
5

√
1− x5

2
. For

x ∈ [a, b], we find W1 ≤ x4(x + 2y) ≤ b4
(

b + 2 5

√
1− a5

2

)
.

Denote W1(a, b) = b4
(

b + 2 5

√
1− a5

2

)
.

The inequality W1(a, b) < 1.8021 is valid for the intervals: x ∈ [0.8027, 0.9190],
x ∈ [0.9190, 0.9360], x ∈ [0.9360, 0.9410], x ∈ [0.9410, 0.9420], x ∈ [0.9420, 0.9430],
x ∈ [0.9430, 0.9440], x ∈ [0.9440, 0.9445], hence for the asked maximum holds x ≥ 0.9445.

Therefore, we have shown that the asked max min{W1, W2} will be attained for
x ∈ [0.9445, 0.9939].

From the assumption 0 < z ≤ y ≤ x < 1 follows that x5 + y5 ≤ x5 + y5 + z5 = 1 and
also 1 = x5 + y5 + z5 ≤ x5 + 2y5.
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Consider the closed region M determined by inequalities 0.9445 ≤ x ≤ 0.9939,
x5 + y5 ≤ 1, x5 + 2y5 ≥ 1. The curve C divides the region M into two open regions C1, C2,
(Figure 3).

0.95 0.96 0.97 0.98 0.99
0.45

0.50

0.55

0.60

0.65

0.70

0.75

C1

C2

C

x 5+2y 5-1 = 0

x 5+y 5-1 = 0

Figure 3. Regions C1, C2.

We are looking for max min{W1, W2}, when W1 = x4(x + y+ z), W2 = x3(x + y)(y+ z).
From the condition x5 + y5 + z5 = 1 we find

W1 = W1(x, y) = x4(x + y + 5
√

1− x5 − y5), (1)

W2 = W2(x, y) = x3(x + y)(y + 5
√

1− x5 − y5). (2)

Let C̄i denote the closure of the set Ci. The functions W1, W2 are continuous on M and
the equality W1 = W2 holds just in the points of the curve C.

Take the point A1 = (0.945, 0.70) ∈ C1. The inequality W1(X) < W2(X) holds in every
point X ∈ C1, because of W1(A1) < W2(A1). Therefore, for the asked maximum holds
max
X∈C̄1

min{W1(X), W2(X)} = max
X∈C̄1

{W1(X)}.

Take the point A2 = (0.965, 0.65) ∈ C2. The inequality W1(X) > W2(X) holds in every
point X ∈ C2, because of W1(A2) > W2(A2). Therefore, for the asked maximum holds
max
X∈C̄2

min{W1(X), W2(X)} = max
X∈C̄2

{W2(X)}.

On the compact set C̄1 the function (1) has its maximum in some point B.

It holds
∂W1

∂y
= x4

(
1− y4

5
√
(1− x5 − y5)4

)
. The equality

∂W1

∂y
= 0 holds if x5 + 2y5 −

1 = 0 but the points of the curve x5 + 2y5 − 1 = 0 do not belong to the region C̄1. For every

point X ∈ C1 holds
∂W1

∂y
< 0. Therefore, the point B must lie on the curve C.

For every point X = (x, y), x ∈ [a, b], y ∈ [c, d] the inequality z ≤ 5
√

1− a5 − c5

holds, and so W1 = x4(x + y + z) ≤ b4(b + d + 5
√

1− a5 − c5), W2 = x3(x + y)(y + z) ≤
b3(b + d)(d + 5

√
1− a5 − c5).

Denote

W11(a, b, c, d) = b4(b + d +
5
√

1− a5 − c5),

W22(a, b, c, d) = b3(b + d)(d +
5
√

1− a5 − c5).

Examine the region C2.
For x ∈ [0.9900, 0.9939], y ∈ [0.43, 0.60] is W22 < 1.8. For x ∈ [0.9850, 0.9900],

y ∈ [0.47, 0.60] is W22 < 1.8. For x ∈ [0.9800, 0.9850] and, step by step, for y ∈ [0.51, 0.56],
[0.56, 0.60], [0.60, 0.65] is always W22 < 1.8.
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For x ∈ [0.975, 0.980] and, step by step, for y ∈ [0.54, 0.60], [0.60, 0.64], [0.64, 0.7] is
always W22 < 1.8.

For x ∈ [0.970, 0.975], and, step by step, for y ∈ [0.56, 0.61], [0.61, 0.63], [0.63, 0.65],
[0.65, 0.68] is always W22 < 1.8.

For x ∈ [0.965, 0.970] and, step by step, for y ∈ [0.58, 0.61], [0.61, 0.63], [0.63, 0.64],
[0.64, 0.65], [0.65, 0.66], [0.66, 0.67], [0.67, 0.69], [0.69, 0.75] is always W22 < 1.8.

For x ∈ [0.960, 0.965] and, step by step, for y ∈ [0.60, 0.62], [0.62, 0.63], [0.63, 0.635],
[0.635, 0.64], [0.64, 0.644], [0.644, 0.647], [0.647, 0.65], [0.65, 0.652], [0.652, 0.654], [0.654, 0.656],
[0.656, 0.658], [0.658, 0.66], [0.66, 0.662], [0.662, 0.664], [0.664, 0.666], [0.666, 0.668],
[0.668, 0.670], [0.670, 0.673], [0.673, 0.677], [0.677, 0.680], [0.680, 0.685], [0.685, 0.695],
[0.695, 0.72] is always W22 < 1.8.

For x ∈ [0.955, 0.960] and, step by step, for y ∈ [0.620, 0.630], [0.630, 0.635], [0.635, 0.638],
[0.638, 0.640], [0.640, 0.641], [0.641, 0.642], [0.697, 0.698], [0.698, 0.700], [0.700, 0.703],
[0.703, 0.709], [0.709, 0.724], [0.724, 0.730] is always W22 < 1.8.

We do not exclude the region x ∈ [0.9550, 0.9600], y ∈ [0.642, 0.697] in this way, it is
not effective.

We have
From (2): ∂W2

∂x = x2

5
√

(1−x5−y5)4

[
(4x + 3y)(y 5

√
(1− x5 − y5)4 + 1− y5) − 5x6 − 4x5y

]
and ∂W2

∂y = x3

5
√

(1−x5−y5)4

[
(x + 2y) 5

√
(1− x5 − y5)4 + 1− x5 − 2y5 − xy4

]
.

x2

5
√

(1−x5−y5)4
> 0 and x3

5
√

(1−x5−y5)4
> 0, therefore, for every point X = (x, y), x ∈ [a, b],

y ∈ [c, d] we have two inequalities:

(4x + 3y)(y 5
√
(1− x5 − y5)4 + 1− y5)− x5(5x + 4y) ≤

≤ (4b + 3d)(d 5
√
(1− a5 − c5)4 + 1− c5)− a5(5a + 4c)

and

(x + 2y) 5
√
(1− x5 − y5)4 + 1− x5 − 2y5 − xy4 ≥

≥ (a + 2c) 5
√
(1− b5 − d5)4 + 1− b5 − 2d5 − bd4

Denote

DW2x(a, b, c, d) = (4b + 3d)(d 5
√
(1− a5 − c5)4 + 1− c5)− a5(5a + 4c),

DW2y(a, b, c, d) = (a + 2c) 5
√
(1− b5 − d5)4 + 1− b5 − 2d5 − bd4.

For x ∈ [0.955, 0.960] and y ∈ [0.642, 0.670] is DW2x(a, b, c, d) < 0 and, therefore,
∂W2

∂x
< 0.

For x ∈ [0.955, 0.960] and y ∈ [0.670, 0.697] is also DW2x(a, b, c, d) < 0 and, therefore,
∂W2

∂x
< 0.

Therefore, the asked maximum cannot be achieved for x ∈ [0.955, 0.960].
For x ∈ [0.950, 0.955] and, step by step, for y ∈ [0.630, 0.636], [0.636, 0.639], [0.639, 0.640],

[0.640, 0.641], [0.717, 0.718], [0.718, 0.720], [0.720, 0.725], [0.725, 0.738], [0.738, 0.750] is always
W22 < 1.8.

We do not exclude the region x ∈ [0.950, 0.955], y ∈ [0.641, 0.717] in this way, it is
not effective.

For x ∈ [0.950, 0.955] and y ∈ [0.641, 0.671] is DW2y(a, b, c, d) > 0 and, therefore,
∂W2

∂y
> 0.
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For x ∈ [0.950, 0.955] and y ∈ [0.671, 0.700] is DW2x(a, b, c, d) < 0 and, therefore,
∂W2

∂x
< 0.

For x ∈ [0.950, 0.955] and y ∈ [0.700, 0.717] is DW2x(a, b, c, d) < 0 and, therefore,
∂W2

∂x
< 0.

This implies that the asked maximum cannot be achieved for x ∈ [0.950, 0.955].
For x ∈ [0.9475, 0.9500] and, step by step, for y ∈ [0.640, 0.649], [0.649, 0.653],

[0.653, 0.655], [0.655, 0.656], [0.656, 0.657], [0.719, 0.720], [0.720, 0.722], [0.722, 0.726],
[0.726, 0.735], [0.735, 0.750] is always W22 < 1.8.

We do not exclude the region x ∈ [0.9475, 0.9500], y ∈ [0.657, 0.719] in this way, it is
not effective.

For x ∈ [0.9475, 0.9500] and y ∈ [0.657, 0.684] is DW2y(a, b, c, d) > 0 and, therefore,
∂W2

∂y
> 0.

For x ∈ [0.9475, 0.9500] and y ∈ [0.684, 0.719] is DW2x(a, b, c, d) < 0 and, therefore,
∂W2

∂x
< 0.

This implies that the asked maximum cannot be achieved for x ∈ [0.9475, 0.9500], see
Figure 4.

0.945 0.946 0.947 0.948 0.949 0.950
0.64

0.66

0.68

0.70

0.72

0.74

0.76

C1 C2

C

x5+2y5-1 = 0

x5+y5-1 = 0

Figure 4. The Region M after the final reduction.

For x ∈ [0.9445, 0.9475] and, step by step, for y ∈ [0.650, 0.653], [0.653, 0.655],
[0.655, 0.656], [0.656, 0.657] is always W22 < 1.8.

For x ∈ [0.9445, 0.9475] and y ∈ [0.657, 0.690] is DW2y(a, b, c, d) > 0 and, therefore,
∂W2

∂y
> 0.

For x ∈ [0.9445, 0.9475] and y ∈ [0.690, 0.700] is DW2x(a, b, c, d) < 0 and, therefore,
∂W2

∂x
< 0.

For x ∈ [0.9445, 0.9475] and, step by step, for y ∈ [0.720, 0.726], [0.726, 0.743], [0.743, 0.760]
is always W11 < 1.8.

So function (2) on the compact set C̄2 must achieve its maximum in some point of the
curve C. It is the same point B as above.

We ask constrained maximum of the function

W(x, y) = x5 +
x6

y
(3)

on the curve C
C(x, y) = x5y5 + y10 − y5 + (x2 − y2)5 = 0 (4)

for x ∈ [0.9445, 0.9475].
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System of equations
∂W
∂x

∂C
∂y
− ∂W

∂y
∂C
∂x

= 0 and C(x, y) = 0 has the form

7x6y5 + 12xy10 − 6xy5 + 5x5y6 + 10y11 − 5y6 + (x2 − y2)4(2x3 − 10y3 − 12xy2) = 0,

x5y5 + y10 − y5 + (x2 − y2)5 = 0.

The solution is x .
= 0.946629932, y .

= 0.690148624, and then z .
= 0.608279275.

If we generalize considerations from the proof, we will achieve the curve C: xdyd +
y2d − yd + (x2 − y2)d = 0, where d is dimension. The graph of the curve C depends on the
parity of d, see Figures 5 and 6. Considering only the values 1 > x ≥ y > 0, the shape of
the curve C is similar, regardless of parity, see Figure 2.

For d ≤ 10 the asked maximum is achieved on the curve C. For dimensions 7, 9 and
10 the resultsare:

V3(7)
.
= 2.05909680 and x .

= 0.978852925, y .
= 0.703495386, z .

= 0.658493716,

V3(9)
.
= 2.21897778 and x .

= 0.991008397, y .
= 0.704394561, z .

= 0.689849087,

V3(10) .
= 2.27220126 and x .

= 0.993961280, y .
= 0.702901846, z .

= 0.702641521.

-2 -1 0 1 2
-2

-1

0

1

2

(a) Dimension 4

-2 -1 0 1 2
-2

-1

0

1

2

(b) Dimension 10
Figure 5. The curve C in even dimensions.

-2 -1 0 1 2
-2

-1

0

1

2

(a) Dimension 5

-2 -1 0 1 2
-2

-1

0

1

2

(b) Dimension 11
Figure 6. The curve C in odd dimensions.

Let P is intersection the constraint curve xd + 2yd − 1 = 0 and the curve C. If d = 11,
then the constrained extreme on the curve C does not meet the required assumption y ≥ z.
Therefore, the asked maximum must be on the constraint curve to the left of point P or on
the curve C above P, see Figure 7. The same situation occurs for d = 12 and d = 13.

V3(11) .
= 2.31533581 and x .

= 0.994989464, y = z .
= 0.719809616.

V3(12) .
= 2.35315527 and x .

= 0.995762712, y = z .
= 0.734956999,

V3(13) .
= 2.38661963 and x .

= 0.996369617, y = z .
= 0.748358875.
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Figure 7. The regions C1, C2 and the curve C in 11-dimensional space.

3. Conclusions

The issue of packing squares is an old problem and even though there are multiple
partial results, it remains unresolved. We investigated a modified problem: packing three
cubes in 5-dimensional space. We also calculated results for dimensions 7, 9, 10, 11, 12, 13.

Considering the previous results by [17–19], we can say that solution is located on the
curve C for dimensions 4 . . . 10. It means, that there are two (different) packings that give
(the same) the largest volume.

There seems to be only a single maximal packing for dimensions greater than 10.
In this packing, two smallest cubes are the same. However, the paper confirms it only for
dimensions 11, 12, 13.

There is a space for several improvements in our work: Is it possible to find a V3(d)
without long numerical calculations? Is it true that two different maximum packings exist
only for dimensions less than 11?
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27–29 September 2006; pp. 117–119. (In Slovak)
16. Novotný, P. Najhoršie pakovatel’né štyri kocky. In Proceedings of the Symposium on Computational Geometry, Kočovce, Slovak
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