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Abstract: The graph bandwidth problem, where one looks for a labeling of graph vertices that
gives the minimum difference between the labels over all edges, is a classical NP-hard problem that
has drawn a lot of attention in recent decades. In this paper, we focus on the so-called Embed and
Project Algorithm (EPA) introduced by Blum et al. in 2000, which in the main part has to solve a
semidefinite programming relaxation with exponentially many linear constraints. We present several
theoretical properties of this special semidefinite programming problem (SDP) and a cutting-plane-
like algorithm to solve it, which works very efficiently in combination with interior-point methods or
with the bundle method. Extensive numerical results demonstrate that this algorithm, which has
only been studied theoretically so far, in practice gives very good labeling for graphs with n ≤ 1000.

Keywords: graph bandwidth problem; semidefinite programming; combinatorial optimization;
embed and project algorithm; approximation algorithm

1. Introduction
1.1. The Graph Bandwidth Problem

Motivation for the graph bandwidth problem dates back to the 1950s, when industrial
mathematicians were challenged to perform the Gaussian elimination faster in order to
solve large sparse systems of linear equations Ax = b, which are inevitable parts of almost
all numerical methods for solving, e.g., partial differential equations or instances of linear
or nonlinear programming. A natural idea was to permute rows and columns of A such
that all non-zero entries of the permuted matrix lie within a very narrow band along the
main diagonal. This application also gave the name to the problem: the matrix bandwidth
problem (see, e.g., [3] and the references therein).

The graph bandwidth problem was introduced a decade later in [4]. It is actually a
matrix bandwidth problem, applied to the adjacency matrix of a graph. More precisely,
suppose we consider a simple (undirected, without loops and multi-edges) and connected
graph G = (V, E), where the vertex set is simply V = {1, 2, . . . , n}. The graph bandwidth
problem (shortly, GBP) is the problem of finding the permutation of graph vertices such that
the maximum difference of end point numbers, taken over all edges, is minimum:

OPTGBP := min {max
ij∈E
|ϕ(i)− ϕ(j) | ϕ a permutation of V} . (1)

The GBP is one of the hardest optimization problems on graphs. Papadimitriou
proved in 1976 [5] that the (1) equation is NP-hard, and it remains NP-hard if graph G is
very simple, such as a tree with a maximum degree of at most 3 [6] or a caterpillar with a
hair length of at most 3 [7]. The problem of finding good approximate solutions for GBP is
also very hard. Blache et al. [8] proved that if P 6= NP, then there is no polynomial time
algorithm, which can approximate OPTGBP with an approximation ratio smaller than 1.5.
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1.2. Our Contribution

In this paper, we consider the so-called Embed and Project Algorithm (EPA), which
follows the idea of distance and volume respecting embeddings. Feige [9] has introduced
the notion of volume respecting embeddings and presented a polynomial randomized al-
gorithm, which, for general graphs, gives with high probability labeling ϕ with bandwidth
O(D log3.5 n

√
log log n), where D is the local density of a graph, defined in Equation (2).

This is actually a very good result for general graphs according to the known Ω(log n) gap
on Cantor combs [10] .

Blum et al. [1] presented the algorithm that we will study in this paper. We call it the
Embed and Project Algorithm (EPA). It uses semidefinite programming to find an embedding
of a graph’s vertices into a unit sphere in Rn, which keeps distances between vertices, and af-
ter projecting to a random line, gives a bandwidth within the ratioO(

√
n log n/ 4

√
OPTSDP),

where
√

OPTSDP is the maximal distance between the embeddings of the adjacent ver-
tices. Dunagan and Vempala [2] refined the algorithm from [1]. By using the embedding
algorithm of Rao [11], they showed that the resulting algorithm gives labeling ϕ with
bandwidth O(OPTGBP log3 n

√
log log n) with high probability.

The main step in both algorithms from the previous paragraph is solving a semidefi-
nite programming problem (SDP), which exponentially has many linear constraints. Its
polynomial time complexity has been proven by presenting a polynomial time separation
oracle for the feasibility set, which enables the ellipsoidal method to solve the problem
in polynomial time. This is of big theoretical importance, but due to the known practical
inefficiency of the ellipsoidal method, it has very weak implementation relevance. This
is probably the reason why (to the best of our knowledge) no implementation of this
algorithm is known, besides our first approach in [12] .

The main contribution of this paper is showing that EPA, introduced mostly for
theoretical reasons, has a strong practical impact. The computational bottleneck of this
algorithm, i.e., solving the SDP with exponentially many constraints, can be resolved
computationally and efficiently using a cutting-plane-like algorithm in combination with
interior point methods [13,14] or with the bundle method [15,16], where in each step, we
include only a small (linear in size) subset of the exponential set of constraints. Beside
this, we

• provide several interesting theoretical properties about the optimum solution of the
SDP problem, especially in relation to the optimum OPTGBP;

• demonstrate the performance of EPA with extensive numerical results for various test
instances, which show that EPA in practice yields very good bandwidth approxima-
tions and could be a method of choice for this problem.

1.3. Assumptions and Notation

Throughout this paper, we consider only the graphs that are simple (undirected,
without loops and multi-edges) and connected with a vertex set V = {1, . . . , n} and an
edge set E. By In, we denote the n× n identity matrix. When the dimension of In is obvious,
we omit n. If G is a sub-graph of graph H, we denote this by G ⊆ H.

2. Related Work
2.1. Approximation Results about the Bandwidth

A survey of algorithms up to 2015, applied to solve GBP, is available in [17]. For
some families of graphs, we are able to compute the bandwidth exactly in a polynomial
time. For caterpillars with a hair length of at most 2 [18], for interval graphs [19], for chain
graphs [20] and for bipartite permutation graphs [21], there is a polynomial algorithm that
computes the bandwidth exactly.

For other families of graphs, there are only a few approximation algorithms with good
approximation guarantees. A polynomial time approximation algorithm for caterpillars
that computes the bandwidth, which is at mostO(log n/(log log n)) times the local density,
was given by Feige and Talwar [22]. Kloks et al. presented a two-approximation algorithm



Mathematics 2021, 9, 2030 3 of 15

for asteroidal triple-free graphs [23]; a log d approximating algorithm on general height-
balanced trees with depth d was presented by Haralambides [24]; a three-approximation
algorithm on dense graphs was presented in [25]; and Gupta [26] gave an O(log2,5 n)-
approximation algorithm on trees. Führer et al. [27] presented a two-approximation
algorithm that runs in O(1.9797n) and needs a polynomial size memory.

Several authors approached the graph bandwidth problem (or matrix bandwidth
problem) using hybrid methods [28,29]. The ant colony approach in combination with
local search improvements is described in [28,30]. In [31], the authors studied the cyclic
bandwidth sum problem and proposed a heuristic algorithm, which first finds a set of paths
that follow the structure of the graph and then merge the obtained paths based on a greedy
approach. The edge-bandwidth of graph G was studied in [32], where asymptotically tight
bounds on the edge bandwidth of two-dimensional grids and tori were presented.

GBP can be considered as a permutation problem. In the last decade, meta-heuristics
based on the permutation representations were used to approximately solve such problems.
However, to the best of our knowledge, GBP has not been considered so far. The linear
ordering problem with cumulative costs and the flow shop scheduling problem were
approached by this type of meta-heuristics in [33,34], respectively. Random Key Estimation
of Distribution Algorithms (RK-EDA) has been proposed in [35] and applied to flow
shop scheduling, linear ordering, quadratic assignment and traveling salesman problems.
Algebraic Particle Swarm Optimization (APSO) for permutation problems was introduced
in [36] and successfully applied to a well-known list of benchmark instances for four
permutation problems. In [37], the bandwidth coloring problem was considered and
solved approximately by a tabu search and GRASP.

Quantum algorithms for GBP and some other NP-hard problems were studied in [38].
Theoretical results of speedups were presented, albeit without any numerical results.

Tight lower bounds for OPTGBP are very important, especially for evaluating heuristic
approaches for computing bandwidth. In [3], the reader can find many different inequalities
upon which the latter work was based. Among the most famous lower bounds is the local
density D of a graph, defined as

D = max
{ |V(H)| − 1

diam(H)
: H connected sub-graph of G

}
. (2)

This lower bound is tight if the graph is a caterpillar with a hair length of at most 2 [18].
The exact strength of this lower bound is still an open question, but we know that there
exist graphs (the so-called Cantor combs) where the gap is Ω(log n), see [10] for definition
and details. In [39], it is shown that the problem of determining D is APX-complete.

A very productive line of research on the graph bandwidth problem followed the
idea of estimating the graph bandwidth using the recent semidefinite programming-based
results for graph partitioning problems and the quadratic assignment problem, sometimes
also further enhanced with symmetry reduction methods [12,40–45]. However, their results
are applicable to graphs of small or medium range (up to few hundreds), and only the
lower bounds are given, not the labeling. The reason for that is hidden in the fact that
they embed the problem in the cone of positive semidefinite matrices of the order nk,
where k > 1 and can be in some cases even equal to n. Additionally, it is not clear how to
reconstruct a good labeling from the optimum solution of the semidefinite embedding.

Jiang et al. [46] analyzed the bandwidth of Kneser graphs and provided new lower
and upper bounds for this family of graphs in terms of the main graph parameters n and r.
No numerical demonstration of this bound is available.

Several authors tried to compute the graph bandwidth using a traditional combi-
natorial optimization approach, such as integer programming modeling and branch and
bound [47,48]. Their approach is capable of approximating, and in some cases, even solving
to optimality, the graph bandwidth problem on instances with several hundreds of vertices.
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2.2. Closed form Expressions for OPTGBP for Some Families of Graphs

In this subsection, we report results of graph bandwidth for families of graphs for
which there are known closed form expressions for OPTGBP. The results of their bandwidth
are reported as Theorem 1.

We define the path Pn as a graph with vertex set V = {1, 2, . . . , n} and edge set
E = {ij : |i− j| = 1} (this is path Pn−1 from [49] (p. 6)). Similarly, the cycle Cn is a graph
with vertex set V = {1, 2, . . . , n} and edge set E = {ij : |i− j| ≡ 1 (mod n)} (Diestel [49]
(p. 7) used notation Cn). The grid graph Pm,n is a Cartesian product of paths Pm and Pn.
Similarly, the torus graph Tn [44] is the Cartesian product of cycle Cn with itself.

The complete k-level t-ary tree Tt,k is a tree with root vertex v at level 1, where each vertex
on levels 1, . . . , k− 1 has exactly t successors on the next level, and each vertex on levels 2, . . . k
has one predecessor on the previous level (hence we have |V(Tt,k)| = (tk − 1)/(t− 1)).

The complete graph on n vertices Kn is a graph, where all pairs of vertices are adjacent.
The complete bipartite graph Km,n is a graph on m + n vertices, where V = V1 ∪ V2 with
|V1| = m, |V2| = n, and (p, q) is an edge if and only if p and q are not from the same set Vi,
i = 1, 2. The complete k-partite graph Km1,m2,...,mk is defined similarly.

The n-cube Qn is a graph where V = {0, 1}n, and two 0-1 sequences are adjacent if and
only if they differ in exactly one position. Thus, Q1 is the path P2, and Q2 is the cycle C4.

In the following theorem, we cite some well-known solutions of the bandwidth
problem on some particular graphs. They are either obvious or adopted from [50,51].

Theorem 1.

(i) OPTGBP(Pn) = 1.
(ii) OPTGBP(Kn) = n− 1.
(iii) OPTGBP(Cn) = 2.
(iv) OPTGBP(Pm,n) = min{m, n}.
(v) OPTGBP(Tn) = 2n− 1.

(vi) OPTGBP(Tt,k) = d
t(tk−1−1)

2(k−1)(t−1) e.
(vii) OPTGBP(Km1,m2,...,mk ) = ∑i mi − d 1

2 (m1 + 1)e, if m1 = maxi mi.
(viii) OPTGBP(Qn) = ∑n−1

k=0 (
k
b k

2 c
).

3. Embed and Project Algorithm (EPA)

The bandwidth problem may be interpreted as looking for such an embedding of
vertex set V into the integer line that minimizes the maximum distance between two
adjacent vertices. Blum et al. [1] noticed that it is equivalent to the problem where we
consider embeddings of V into a set of distinct equispaced points along the quarter-circle
of radius n in the positive quadrant of a two-dimensional space, i.e., into set

U :=
{(

n cos( jπ
2n ), n sin( jπ

2n )
)

; j = 1, 2, . . . , n
}

. The equivalence follows from the fact that
the distance between two points from U is uniquely determined by the number of points
from U that lie between them, and the same is true when we consider embeddings into an
integer line. Relaxing the demand to be on a quarter circle to allow the embeddings into an
n− 1 dimensional sphere of radius n leads to the following SDP:

(GBPSDP)

OPTSDP = min b

s. t. Y ∈ S+n ,

yij ≥ 0, ∀i, j, (3)

yii = n2, ∀i, (4)

2yij + b ≥ 2n2, ∀ij ∈ E, (5)
2
|S| ∑j∈S

yij ≤ 2n2 − α|S|, ∀i, ∀S ⊆ {1, . . . , n} \ {i} (6)
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where
αk =

1
6

( k
2
+ 1
)
(k + 1). (7)

Here, the matrix variable Y represents the scalar products of the vectors, which the
graph vertices are mapped to. Solving this SDP is actually the “embed” part of EPA from [1],
which is summarized in Algorithm 1.

Algorithm 1: Embed and Project Algorithm (EPA) for solving (1).
INPUT: graph G = (V, E), maximum number of projections M ∈ N.
1. Solve the SDP program GPBSDP for the graph G to obtain Y.
2. Find the matrix W such that WTW = Y (e.g., W = Y1/2).
3. Let vectors wi be the columns of W, 1 ≤ i ≤ n. Define ϕ = identity and

OPTEPA = n− 1.
4. For s = 1, 2, . . . , M

4.1 Choose random unit vector ` ∈ Rn, according to a uniform distribution
on the unit sphere.

4.2 Define labeling ϕs : V → {1, . . . , n} such that

ϕs(i) ≤ ϕs(j) ⇐⇒ wT
i ` ≤ wT

j `.

4.3 Compute bandwidth of ϕs as BWϕs := max{|ϕs(i)− ϕs(j)|; ij ∈ E}.
4.4 If BWϕs ≤ BWϕ then ϕ = ϕs and OPTEPA = BWϕs .

OUTPUT: ϕ, OPTEPA.

We can see that computationally, the hardest part of EPA is solving SDP in Step 1,
especially since this SDP has exponentially many linear constraints. A theoretically im-
portant but practically irrelevant answer to this question has already been provided by
the authors in [1]. Constraint (6) includes n(2n−1 − (n + 1)/2), but we can check their
feasibility in a polynomial time: for each row i = 1, . . . , n, we sort the off-diagonal ele-
ments yi1, yi2, . . . , yi i−1, yi i+1, . . . , yin in decreasing order: yij1 ≥ yij2 ≥ · · · ≥ yijn−1 and
then check the feasibility only the first k elements in this order, for every k = 1, . . . , n− 1,
for Equation (6). If these inequalities are satisfied, then for every S ⊂ {1, . . . , n} \ i with
|S| = k, we have

2
|S| ∑j∈S

yij ≤
2
|S|

k

∑
`=1

yij` ≤ 2n2 − αk.

4. Some Theoretical Guaranties for OPTGBP and OPTSDP

In this section, we present some new results of the solution for GBPSDP and relations
between OPTSDP and OPTGBP.

4.1. Theoretical Guaranties for OPTSDP

First, we consider the feasibility of GBPSDP. We need the following lemma, which
underlies the main results of [1] and is taken from [12]. We provide the proof since it reveals
the main idea of constraint (6).

Lemma 1. Let A = {1, 2, . . . , n} and i ∈ A. For arbitrary S ⊆ A \ {i}, the following is true:

1
|S| ∑j∈S

(i− j)2 ≥ α|S|.
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Proof. Suppose first that |S| = 2k. Then

∑
j∈S

(i− j)2 ≥ 2
k

∑
l=1

l2 =
2k(k + 1)(2k + 1)

6
=

1
6
|S|( |S|

2
+ 1)(|S|+ 1)

with equality holding when S consists of first k left and right neighbors of i. If |S| = 2k + 1, then

∑
j∈S

(i− j)2 ≥ 2
k

∑
l=1

l2 + (k + 1)2 =
(k + 1)(4k2 + 8k + 6)

6

≥ (k + 1)(4k2 + 8k + 3)
6

=
1
6
|S|( |S|

2
+ 1)(|S|+ 1).

�

The feasibility of GBPSDP is an important question. It is resolved in the following
trivial lemma.

Lemma 2. The pair b = 2n2, Y = n2 I is feasible for GBPSDP.

We will also use the following result from [12] (Lemma 4.9).

Lemma 3. For arbitrary graph G = (V, E) with maximum vertex degree ∆ and local density D,
we have

OPTSDP ≥ max
{ (∆ + 1)(∆ + 2)

12
,

D2

12

}
. (8)

For complete graph Kn, we can show that the bound from Lemma 3 is tight.

Lemma 4. If G is a complete graph Kn on n vertices, then the optimum value of OPTSDP is n(n+1)
12 .

Proof. Lemma 3 implies for Kn that OPTSDP ≥ n(n+1)
12 . For the other direction, we need

to construct a feasible solution (b̂, Ŷ), such that b̂ ≤ n(n+1)
12 . We claim that b̂ = n(n+1)

12 and
Ŷ = n2 I + (n2 − αn−1

2 )(J − I) is such a pair. Indeed, by construction, it follows that Ŷ ≥ 0
and Ŷ � 0 since the smallest eigenvalue of Ŷ is αn−1/2. The pair b̂, Ŷ satisfies constraints
shown in Equations (4) and (5). While the former is trivial, the latter follows from the fact
that for i 6= j, we have ŷij = n2 − αn−1/2, which implies that b̂ = n(n+1)

12 = 2n2 − 2yij =
αn−1. It remains to show the feasibility for the last constraint (Equation (6)). This follows,
since for every i and every S ⊂ {1, . . . , n} \ {i}, we have

2
|S| ∑j∈S

ŷij = 2n2 − αn−1 ≤ 2n2 − α|S|,

since αk increases with k. �

For sub-graphs, we can prove the following relations.

Lemma 5. Suppose G and H are graphs on n vertices and G ⊆ H. If YG and YH are the
corresponding optimum solutions for GBPSDP, then OPTSDP(G) ≤ OPTSDP(H).

Proof. Note that semidefinite programs GBPSDP, which correspond to G and H, differ only
in Constraint (5). From G ⊆ H, it follows that all inequalities (Equation(5)) in the SDP,
which corresponds to G, are also included in the SDP that corresponds to H. Hence, if YH is
feasible for GBPSDP corresponding to H, then it is feasible also for GBPSDP corresponding
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to G and consequently OPTSDP(G) ≤ OPTSDP(H). �

The above results imply the following corollary.

Corollary 1. For any simple and connected graph G on n vertices, the following holds:

OPTSDP(Pn) ≤ OPTSDP ≤
n(n + 1)

12
,

where OPTSDP(Pn) is the optimum value of GBPSDP for path Pn.

Proof. This follows from the fact that for every simple and connected G, we have Pn ⊆ G ⊆ Kn
and from Lemma 4. �

For the path on n vertices, we could not derive a closed formula solution for GBPSDP,
as we did for Kn. However, the following lemma provides a very tight upper bound.

Lemma 6. If G is simple path Pn on n vertices, then for the optimum value of GBPSDP, it holds that

OPTSDP ≤ 2n2(1− cos(
π

3n
)).

Proof. Let us define Y by yij = 〈wi, wj〉, where wi =
(

n cos( iπ
3n ), n sin( iπ

3n )
)

, for i = 1, 2, . . . , n.

We show that pair (b, Y) with b = 2n2(1− cos( π
3n )) is feasible for GBPSDP.

Constraint (4) is trivial. Constraint (3) is satisfied since yij = n2 cos((i − j)π/(3n)) ≥
0. This follows from |i − j|π/(3n) ≤ π/3. The feasibility for Constraint (5) follows since
for every edge ij ∈ E, we have |i − j| = 1, hence 2yij + b = 2n2 cos(π/(3n)) + 2n2(1−
cos(π/(3n))) = 2n2.

It remains to prove that Y is feasible for Constraint (6). We first show that ‖wi −wj‖ ≥
|i− j|. Indeed, ‖wi − wj‖2 = 4n2 sin2 (i−j)π

6n , hence we only need to show that

2n sin(iπ/(6n)) ≥ i, for all i = 1, . . . , n− 1.

This is equivalent to sin(iπ/(6n)) ≥ i/(2n) ∀i, and follows from the fact that
sin(xπ/(6n))− x/(2n) is concave for x ∈ (0, n) and has zeros in 0 and n.

Therefore, 2yij = 2n2 − ‖wi − wj‖2 ≤ 2n2 − (i − j)2. Hence, Constraint (6) follows
since Lemma 1 implies that

2
|S| ∑j∈S

yij ≤
2
|S| ∑j∈S

(n2 − (i− j)2

2
) ≤ 2n2 − α|S|.

�

We have also derived a closed formula solution for OPTSDP. It strengthens the
result from Lemma 6 by showing that the angle π/(3n) in the definition of wi can be
further decreased to some βopt, and the resulting matrix Y remains feasible for GBPSDP.
Unfortunately, we have not been able to prove the optimality of the Y related to βopt
for general n. However, we computed these values of βopt numerically, using MATLAB,
for n ≤ 1024 (the size of the largest graph we numerically studied for this paper), and then
constructed Y in a similar way as above. In all these cases, Y was feasible for GBPSDP,
i.e., Constraint (6) was satisfied with a relative error below 10−4, and for the case of simple
paths, we obtained value OPTSDP (up to numerical error), see Table 1. This is the reason
why we formulate our result as a conjecture. We keep working on the proof, but our current
results consist of a long and tedious trigonometric analysis, which is in any case out of the
scope of the current paper.
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Conjecture 1. If G is a simple path Pn on n vertices, then the optimum value of GBPSDP is

OPTSDP = 2n2(1− cos(βopt)),

where βopt is the smallest positive solution of equation

sin((k +
1
2
)β) = sin(

β

2
)

23n2 + 1
24n

, if n is an odd number and k = (n− 1)/2 (9)

sin((k +
1
2
)β) = sin(

β

2
)

23n3 − 21n2 − 2n
24n2 , if n is an even number and k = n/2− 1. (10)

4.2. Theoretical Guaranties for OPTGBP

Blum et al. [1] have analyzed the expected quality of the labeling generated by EPA.
Their results are summarized in the following theorem.

Theorem 2 ([1]). Let OPTEPA be the bandwidth of labeling computed by EPA from Algorithm 1,
and let OPTSDP be the optimal value of GBPSDP. With high probability, we have

OPTEPA ≤ O(
√

n log n/ 4
√

OPTSDP) ·OPTGBP.

The proof of this theorem is quite complex and long. In the original paper [1], it is
done in very dense form and might be demanding to understand. It was redone in a more
understandable way in [12].

Note that the term “high probability” has a classical meaning: if the number of
projections M in Step 4 of EPA is of polynomial size of n and large enough, then this
probability is arbitrary close to 1.

We can use Lemma 3 to simplify the guaranty from Theorem 2.

Corollary 2. If G is a graph with maximum degree ∆ and diameter d, then EPA from Algorithm 1
with high probability returns labeling ϕ with

OPTEPA ≤ O(C log n) ·OPTGBP,

where

C = min
{ √

n√
∆ + 1

,
√

d
}

.

Note that if ∆ is close to n (that happens if, e.g., there exists a vertex which is adjacent
to almost all vertices), then the constant C from Corollary 2 is close to 1. In graphs where
d = O(logt n), for some t ≥ 0 (this happens, e.g., in almost complete k-ary trees), we get
C = O(logt/2 n).

The results above imply the following new lower bound for OPTGBP, which is an
improvement of the lower bounds developed in Blum et al. [1,12]. The result follows from

the observation that the vectors wi =
(

n cos( iπ
2n ), n sin( iπ

2n )
)

imply a feasible matrix Y for
GBPSDP. By using the result of Lemma 6 and Conjecture 1, we improve this bound.

Lemma 7. For arbitrary graph G = (V, E), we have

OPTGBP ≥
⌈√OPTSDP

nβ

⌉
≥
⌈3
√

OPTSDP
π

⌉
, (11)

where β ≤ π/(3n) is the smallest angle, such that vectors

wi :=
(

n cos(ϕ(i)β), n sin(ϕ(i)β), 0, . . . , 0
)
∈ Rn, i = 1, 2, . . . , n, (12)

are feasible for Constraint (6).
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Proof. Let ϕ be the optimal labeling of V(G) (i.e., OPTGBP = maxij∈E |ϕ(i) − ϕ(j)|).
Lemma 6 implies that the vectors wi yield feasible solution Y for GBPSDP. Obviously,
OPTSDP ≤ b := maxij∈E ‖wi − wj‖2 . On the other hand, for every ij ∈ E, we have

‖wi − wj‖2 = 4n2 sin2((ϕ(i)− ϕ(j))β/2) ≤ 4n2 sin2(OPTGBP · β/2) ≤
≤ 4n2(OPTGBP · β/2)2 ≤ 4n2(OPTGBP · π/(6n))2 = (π ·OPTGBP/3)2,

hence

OPTSDP ≤ max
ij∈E
‖wi − wj‖2 ≤ 4n2(OPTGBP · β/2)2 ≤ (π ·OPTGBP/3)2,

which is equivalent to

OPTGBP ≥
√

OPTSDP
nβ

≥ 3
√

OPTSDP
π

.

Since OPTGBP is always a positive integer number, we can apply rounding up on the
chain of inequalities from above. �

Remark 1. As mentioned in the paragraph before Conjecture 1, we numerically checked for
n ≤ 1024 that values βopt obtained by solving Equations (9) and (10) yield vectors wi, which imply
the feasible solution Y. Hence, these β values can be used to compute an enhanced lower bound from
Lemma 7. Indeed, we report these bounds in all tables that we provide.

5. Computational Results
5.1. Computational Issues with Solving GBPSDP

Note that the GBPSDP is an SDP in matrices of order n. Recently developed bounds
for OPTGBP, which are based on semidefinite programming relaxations of the quadratic as-
signment problem or graph partitioning problem [40,44,45], involve semidefinite programs
in matrices of order kn, which is much worse compared to our SDP. However, Constraints
(3), (5) and (6) are very expensive. To begin with, they include inequalities, and if we want
to solve GBPSDP by interior-point methods, we have to introduce one new non-negative
slack variable for each inequality. Secondly, the number of inequalities in Constraint (6) is
exponential in n. For any matrix X ∈ S+n , we can decide in polynomial time whether it is
feasible for Constraint (6) or not, as was mentioned in Section 3. This is a theoretically very
strong result since we may apply the ellipsoid method, which needs only a polynomial
separation oracle to solve the problem in polynomial time (see, e.g., [52]). It is well known
that the ellipsoid method has very poor practical efficiency; therefore, we are interested in
applying other, more efficient methods, such as interior-point methods [13,14,53] or the
bundle method [15,16].

In Algorithm 2, we present a cutting-plane-like algorithm, which enables us to solve
GBPSDP to optimality in a reasonable time by interior-point methods if |V(G)| ≤ 200 or if
|V| ≤ 500 and the graph is sparse or by the bundle method for graphs with |V(G)| ≤ 1000.

Below, we explain in detail the steps from the cutting-plane algorithm from Algorithm 2.

Step 1. Here, we may take an arbitrary subset. Numerical experiments show that it makes
sense to take only a few (default setting is 2) inequalities for each 1 ≤ i ≤ n. We
take those with |S| = n− 1.

Step 2. We solve the SDP from Step 1 to optimality by using interior-point methods
(SDPT3 [13], SEDUMI [54], and MOSEK [55]), if n ≤ 200 or if n ≤ 500 and the
graphs are sparse. Otherwise, we use the bundle method [15,16].

Step 3.1. The new subset is carefully selected. All the inequalities from the previous two
iterations that are still important (have nonzero dual variable) are kept. Addi-
tionally, for each 1 ≤ i ≤ n, we add some of the most violated inequalities. We
detect them by sorting the ith row of Ŷ from the previous iteration in decreasing
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order and then take inequalities with the largest numbers of variables (only the
first few of them). If at some iteration, Ŷ violates an inequality that was already
involved but deleted, we take this inequality back and keep it forever.

Step 3.2. The same as Step 2.

Algorithm 2: Cutting-plane algorithm for solving the GBPSDP

INPUT: graph G = (V, E).
1. Select some subset of inequalities A0(Y) ≤ a0 from Constraint (6) with size linear in n.
2. Solve GBPSDP, where Constraint (6) is replaced by A0(X) ≤ a0. Let Ŷ be the optimum

solution.
3. While Ŷ is not feasible for Constraint (6) OR the maximum number of iterations

is not reached do

3.1 Select new small subset of inequalities A(Y) ≤ a from Constraint (6), which
contains all important inequalities from previous iterations.

3.2 Solve GBPSDP with Constraint (6) replaced by A(Y) ≤ a using interior-point
methods or the bundle method to obtain new optimum solution Ŷ.

OUTPUT: Ŷ, SDPOPT .

If we keep all the important inequalities from the previous iteration and keep adding
new inequalities, then, in the worst case scenario, we eventually (after many iterations)
add all the inequalities from Constraint (6); hence, the optimum Ŷ returned by the cutting-
plane algorithm is the optimum solution for GBPSDP. However, in practice, we limit
the number of iterations (in numerical experiments we use only 12 iterations for the
interior-point method and 7 iterations for the bundle method) and still get very close to an
optimum point.

5.2. Results

In this subsection, we report numerical results, obtained by EPA on the test instances
for which the problem GBPSDP is solvable by our implementation of the cutting-plane
algorithm. For graphs with fewer than 200 vertices or sparse graphs with fewer than 500
vertices, we used interior-point methods. In particular, we used solvers SDPT3, available
at [13], SEDUMI [54], and MOSEK [55]. We also solved larger instances, where GBPSDP is
too big for interior-point methods. In these cases, we used the bundle method (for details
about this method, see [15,16]).

We first demonstrate the behavior of EPA on complete graphs and simple paths since
for the former, we have a closed formula solution (Lemma 4), while for the latter, we
have upper bounds from Lemma 6 and the conjectured formula for the optimum values
(Conjecture 1). The results are reported in Tables 1 and 2. Table 1 contains size n in the first
column, the optimum value of (1) in the second column, the optimum value computed by
EPA in the third, the optimum value of GBPSDP in the fourth column, the upper bounds
from Lemma 6, the values from Conjecture 1 in the fifth column, and angles π/(3n) used
in Lemma 6 and the βopt angles from Conjecture 1 are in the last two columns.

We can see that for simple paths Pn, EPA always detects the optimum solution of
(1). Additionally, the bound from Lemma 6 is good but does not approach OPTSDP
with increasing n. On the other hand, the sixth column contains the values conjectured
by Conjecture 1, which are obviously equal to the optimum values of OPTSDP. This
demonstrates that this conjecture is valid (with a precision of 10−4) at least for values
n from Table 1. Actually, as explained in the text before Conjecture 1, we numerically
validated this conjecture for n ≤ 1024 and used the computed values of βopt to compute
the enhanced lower bounds for OPTGBP based on Lemma 7.

The second group of numerical results pertains to complete graphs Kn, for which
we know the optimum values of (1) and GBPSDP (Theorem 1 and Lemma 4). In the first
column, we put the size of the graph, i.e., the number of vertices n in graph Kn, the second
column contains the (well-known) bandwidth of the graph, the third column contains
the bandwidth of labeling obtained by EPA (we take M = 10.000 projections), the fourth



Mathematics 2021, 9, 2030 11 of 15

column contains the optimal values of GBPSDP, and the last two columns contain the lower
bounds for OPTGBP based on Lemma 7. We can observe that numerical results in Table 2
are well aligned with the results from Lemma 4. Additionally, the computed values of
bandwidth are always equal to the optimum value n− 1, which is not surprising since
this is the only value that any projection from Step 4.2 of EPA can attain. Unsurprisingly,
the lower bounds from the last two columns are rather weak since they are based on finding
the longest path in a graph. The more the graph is similar to a path, the better this lower
bound is.

Table 1. Numerical results obtained by the EPA algorithm on simple paths Pn.

n OPTGBP OPTEPA OPTSDP Bound Lemma 6 Bound Conj 1 π/(3n) βopt

10 1 1 1.0091 1.0956 1.0091 0.1047 0.1005

15 1 1 1.0122 1.0962 1.0122 0.0698 0.0671

20 1 1 1.0112 1.0964 1.0112 0.0524 0.0503

25 1 1 1.0126 1.0965 1.0126 0.0419 0.0403

30 1 1 1.0118 1.0965 1.0118 0.0349 0.0335

35 1 1 1.0126 1.0965 1.0126 0.0299 0.0288

40 1 1 1.0120 1.0966 1.0120 0.0262 0.0252

45 1 1 1.0127 1.0966 1.0127 0.0233 0.0224

50 1 1 1.0122 1.0966 1.0122 0.0209 0.0201

Table 2. Results of the EPA algorithm on complete graphs Kn.

n OPTGBP OPTEPA OPTSDP
⌈
3/π ·

√
OPTSDP

⌉ ⌈√
OPTSDP/(nβ)

⌉
25 24 24 54.1667 8.0000 8.0000

40 39 39 136.6667 12.0000 12.0000

55 54 54 256.6667 16.0000 16.0000

70 69 69 414.1667 20.0000 21.0000

85 84 84 609.1667 24.0000 25.0000

100 99 99 841.6667 28.0000 29.0000

The third part of the numerical results consists of Table 3. These are the results
obtained by EPA on the rest of the graphs, for which we know the optimum bandwidth
(see Theorem 1, items (iii)–(viii). We can observe that the labelings obtained by EPA are,
in our opinion, very close to the optimum. On the other hand, the lower bounds are tight
only for cycles, while for the other graphs, there is a non-negligible gap between them and
the optimum value of OPTGBP.

Lastly, we illustrate the behavior of EPA on caterpillars with a hair length of 1. A
caterpillar is a simple graph that consists of a backbone, which is, in fact, a simple path P,
and with an arbitrary number of simple paths (called hairs), starting from vertices of P. A
subcaterpillar is a sub-graph that is also a caterpillar. For caterpillars with a hair length of
at most 2, there exists a polynomial time algorithm to compute OPTGBP—it is equal to the
local density D, defined in Equation (2). For more details, see [12,18].
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Table 3. Results on graphs with a known bandwidth.

Instance n OPT_GBP OPT_EPA OPT_SDP
⌈
3/π ·

√
OPTSDP

⌉ ⌈√
OPTSDP/(nβ)

⌉
C100 100 2 2 1.6444 2 2

C150 150 2 2 1.6446 2 2

C200 200 2 2 1.6660 2 2

C250 250 2 2 1.6607 2 2

C300 300 2 3 1.7214 2 2

P5,20 100 5 5 22.9788 5 5

P5,25 125 5 5 23.7658 5 5

P10,15 150 10 11 62.3827 8 8

P10,20 200 10 11 73.8030 9 9

T7 49 13 14 37.6510 6 7

T8 64 15 16 49.9751 7 8

T9 81 17 18 63.9479 8 8

T10 100 19 20 79.5694 9 9

T15 225 29 30 182.3621 13 14

T20 400 39 41 326.2956 18 18

T2,5 31 4 5 7.6207 3 3

T4,5 341 43 55 970.5753 30 31

T3,6 364 37 55 692.6553 26 27

T2,6 63 7 8 19.4953 5 5

T2,7 127 11 14 51.7816 7 8

T2,8 255 19 30 178.4072 13 14

K5,10,15,20 50 39 43 208.2501 14 15

K10,20,30,40 100 79 79 833.2500 28 29

K10,20,30,40,50 150 124 143 1874.9168 42 44

K20,30,40,50,60 200 169 193 3333.2591 56 58

Q5 32 13 13 34.1000 6 6

Q6 64 23 23 113.7500 11 11

Q7 128 43 43 390.0714 19 20

Q8 256 78 83 1365.3128 36 37

Q9 512 148 163 4854.5317 67 70

Q10 1024 274 309 17,476.6041 127 132

In Table 4, we report the numerical results obtained on seven caterpillars with a hair
length of 1. The first column contains the names of the instances. Caterpillar Cm1,m2,...,mk has
k nodes on the main path (the backbone), each of them having attached mi hairs of length
1. The last caterpillar C15

1,2,3,2,1 has backbone of length 75, where the first 15 vertices on the
backbone have 1 hair of length 1, the next 15 vertices have 2 hairs of length 1, the next 15
have 3 hairs of length 1, and in this manner symmetrically till the end. Note that in the last
two lines, the lower bounds are tight. This conforms to intuition: the more the graph is
similar to the path, the better the lower bounds from Lemma 11 are.
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Table 4. Results on caterpillars with a hair length of 1.

Instance n OPT_GBP OPT_EPA OPT_SDP
⌈
3/π ·

√
OPTSDP

⌉ ⌈√
OPTSDP/(nβ)

⌉
C5,10,15,20 54 13 14 74.5537 9 9

C10,20,30,40,50 155 31 33 635.3134 25 26

C5,10,15,20,25,30,35,40 188 27 33 423.7338 20 21

C15,15,15,15,15,15,15,15,15,15 160 15 17 160.9720 13 13

C4,12,20,6,10,25,15,7,35 143 18 23 164.1064 13 13

C5,5,5,...,5 140 4 5 12.7798 4 4

C15
1,2,3,2,1 150 6 9 34.0927 6 6

6. Conclusions and Future Work

In this paper, we studied the Embed and Project Algorithm (EPA) to approximately solve
the bandwidth problem proposed in [1]. It consists of several important steps. The central
step consists of solving a semidefinite program with exponentially many linear constraints.
In the original paper, the ellipsoid method was proposed to solve this SDP since we can
check the feasibility of each candidate solution in a polynomial time.

While the original result was mostly of theoretical importance, the results in this
paper showed that we can devise a cutting-plane-like algorithm in combination with
interior-point methods or the bundle method to solve the underlying SDP. This algorithm
includes only a few (linearly many) of the most important constraints from this exponential
set of constraints, which implies all the other constraints. We have also established new
theoretical insights into EPA and into the underlying SDP, which help to understand EPA
and were used to develop new lower bounds for OPTGBP.

The extensive numerical results are very promising and confirm that EPA in practice
yields very good bandwidth approximations and has strong potential for further research.

The main open question for future research is the development of new methods to
solve GBPSDP. We have already observed that the existing SDP solvers, which rely on
interior-point methods, do not scale well to a large number of constraints. The bundle
method, which we used when the number of constraints was too large, has a slow con-
vergence, so there is a need for new methods to solve GBPSDP. Based on our experiences
related to other combinatorial optimization problems [56], we believe that the ADMM
method, in combination with the augmented Lagrangian method, has strong potential,
and we will test this in the future.

Another interesting question is how to extend EPA to other, similar layout problems,
such as the topological bandwidth problem, the cutwidth problem, the edge-bandwidth
problem, etc.
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