
mathematics

Article

Using an Improved Differential Evolution for Scheduling
Optimization of Dual-Gantry Multi-Head Surface-Mount
Placement Machine

Cheng-Jian Lin 1,2,* and Chun-Hui Lin 3

����������
�������

Citation: Lin, C.-J.; Lin, C.-H. Using

an Improved Differential Evolution

for Scheduling Optimization of

Dual-Gantry Multi-Head

Surface-Mount Placement Machine.

Mathematics 2021, 9, 2016. https://

doi.org/10.3390/math9162016

Academic Editors: Frank Werner and

Mikhail Posypkin

Received: 27 May 2021

Accepted: 20 August 2021

Published: 23 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer Science & Information Engineering, National Chin-Yi University of Technology,
Taichung 41170, Taiwan

2 College of Intelligence, National Taichung University of Science and Technology, Taichung 404, Taiwan
3 Department of Computer Science and Information Engineering, National Cheng Kung University,

Tainan 701, Taiwan; P78071044@gs.ncku.edu.tw
* Correspondence: cjlin@ncut.edu.tw; Tel.: +886-4-23924505

Abstract: The difference between dual-gantry and single-gantry surface-mount placement (SMP)
machines is that dual-gantry machines exhibit higher complexity and more problems due to their
additional gantry robot, such as component allocation and collision. This paper presents algorithms
to prescribe the assembly operations of a dual-gantry multi-head surface-mount placement machine.
It considers five inter-related problems: (i) component allocation; (ii) automatic nozzle changer
assignment; (iii) feeder arrangement; and (iv) pick-and-place sequence; it incorporates a practical
restriction related to (v) component height. The paper proposes a solution to each problem: (i) equal-
izing “workloads” assigned to the gantries, (ii) using quantity ratio method, (iii) using two similarity
measurement mechanisms in a modified differential evolution algorithm with a random-key en-
coding mapping method that addresses component height restriction, (iv) and a combination of
nearest-neighbor search and 2-opt method to plan each placing operation. This study reports an
experiment that involved the processing of 10 printed circuit boards and compared the performance
of a modified differential evolution algorithm with well-known algorithms including differential
evolution, particle swarm optimization, and genetic algorithm. The results reveal that the number of
picks, moving distance of picking components, and total assembly time with the modified differential
evolution algorithm are less than other algorithms.

Keywords: differential evolution; dual gantry; surface-mount placement machine; feeder arrangement

1. Introduction

Recently, the number of components placed on high-density printed circuit boards
(PCBs) has been increasing, which has resulted in the increased use of surface-mount
technology (SMT) during the production process of PCBs. Machines with SMT are called
surface-mount placement (SMP) machines, which are advantageous for their precision,
speed, and efficiency in PCB production compared with manual assembly methods. There-
fore, manual assembly methods have been gradually replaced by SMP machines.

To simplify the complexity of such assembly problems, most studies on scheduling
optimization for dual-gantry SMP machines have overlooked various limitations, such
as problems related to automatic nozzle changer (ANC) assignment, nozzle setup, and
height restrictions for components. Optimization of dual-gantry multi-head SMP machines
creates various problems, and the main problem affecting operating efficiency is divided
into three sub-problems, namely the component allocation problem, the feeder arrange-
ment problem, and the component pick-and-place sequence problem. These problems
are nondeterministic-polynomial (NP)-hard problems, which are high-dimensional and
discrete; thus, an optimal global solution is difficult to obtain using conventional methods.

Mathematics 2021, 9, 2016. https://doi.org/10.3390/math9162016 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-8709-2715
https://doi.org/10.3390/math9162016
https://doi.org/10.3390/math9162016
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9162016
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9162016?type=check_update&version=2

Mathematics 2021, 9, 2016 2 of 22

Production scheduling is a decision-making process that plays a critical role in manu-
facturing and production systems and has a markedly positive impact on the performances
of manufacturing. Effective scheduling can result in improvements in throughput, in-
ventory costs, utilization of manufacturing resources, and energy saving. In the past
decades, various scheduling problems have been extensively solved by multi-population
meta-heuristics such as artificial bee colony (ABC), imperialist competitive algorithm (ICA),
and shuffled frog-leaping algorithm (SFLA). SMP scheduling is no exception; to optimize
the dual-gantry multi-head SMP machine, scholars have proposed numerous approaches
to solve the component allocation problem, the feeder arrangement problem, and the
component pick-and-place sequence problem. Sun et al. [1] employed a genetic algorithm
to optimize component allocation and feeder arrangement problems by maximizing the
number of simultaneously picked-up components or equivalently minimizing the number
of pickups, and equalizing workloads assigned to heads. Du and Li [2] combined heuristic
method with genetic algorithm to optimize the placement process by minimizing the
displacement of gantry and equalizing the workload between two gantries. Additionally,
Ashayeri, Ma and Sotirov [3] developed a hierarchical approach of two stages for the
multi-head surface-mounting device placement optimization problem. The first stage
employed a mixed integer program model to decide the optimal sequence of batches of
components to the placement heads. Then, the second stage was to determine the sequence
of components using a heuristic method. The experimental results revealed that a near
optimal solution was reached in reasonable computation time based on this hierarchical
approach. Torabi et al. [4] formulated an integrated mathematical model to balance work-
loads over multiple heads. Firstly, the original bi-objective model was solved for small
problem instances by the augmented ε-constraint method. Next, a multi-objective particle
swarm optimization, tuned by Taguchi method, was introduced to generate a set of efficient
solutions for medium- and large-sized problem instances. Zhu and Zhang [5] improved the
basic shuffled frog-leaping algorithm (SFLA) for component pick-and-place sequence of
the gantry multi-head surface-mounting machine. The three-way ANOVA was evaluated
in parameters analyzing the improved SFLA; however, the experimental results noted that
the advantages of improving SFLA were realized at the cost of CPU time. He et al. [6]
innovated a hierarchical restricted balance (HRB) heuristic method to determine the op-
timal nozzle and feeder decisions in order to minimize the moving distance of gantries
of a dual-delivery SMT placement machine. In optimization processing, the nozzle and
feeder setups were searched using simulated annealing, and the pick-and-place sequence
was solved by nearest neighbor and cheapest insertion heuristics. The results indicated
that the HRB strategy improves the solution quality without increasing the computational
time. Li and Yoon [7] proposed an adaptive nearest-neighbor tabu search to minimize
the gantry moving distance in a high-speed single-gantry surface-mount device machine.
The relationship among nozzle assignment, nozzle exchange scheduling, and the number
of pick-and-place cycles was also analyzed in this study. The experimental results also
declared that the proposed algorithm produced a 23.32% distance saving on average for the
single-nozzle-type problem in comparison with the large clusters of operations heuristic
method. He et al. [8] introduced workload balance between gantries and gantry cycle
scheduling two decisions, and then the proposed heuristic multi-phase approach was used
to minimize the moving distance of gantries by balancing the workload of a dual-delivery
SMT placement machine. Huang et al. [9] developed a hierarchical multi-objective opti-
mization model which set the nozzle optimization as an integer programming optimization
model for the first master hierarchy. Additionally, component mounting sequence, feeder
optimization and picking order are parallel-optimized based on the first hierarchy opti-
mization as second hierarchical. Lastly, the authors proposed related algorithm strategies
for the respective problems. Table 1 displays the discussed problems of related studies.

Mathematics 2021, 9, 2016 3 of 22

Table 1. Summary of the discussed problem in the related studies.

Component
Allocation

ANC
Assignment

Feeder
Arrangement

Component
Height

Pick-and-
Place

Sequence
Method

Sun et al. [1] X X X GA

Du and Li [2] X X X Hybrid GA

Ashayeri et al. [3] X X X MIP

Torabi et al. [4] X X X MOPSO

Zhu and Zhang [5] X ISFLA

He et al. [6] X X X X HRB

Li and Yoon [7] X X X ANNTS

He et al. [8] X X X HS

Huang et al. [9] X X X HMO

This study X X X X X MDE

GA: genetic algorithm, MIP: mixed-integer program, MOPSO: multi-objective particle swarm optimization, ISFLA: improved basic shuffled
frog-leaping algorithm, HRB: hierarchical restricted balance, ANNTS: adaptive nearest-neighbor tabu search, HS: hierarchical strategy, and
HMO: hierarchical multi-objective.

As shown in Table 1, most of the previous studies [1,2,4,8,9] have already considered
problems such as component allocation, feeder arrangement, and pick-and-place sequence
during surface-mount placement processing. Among those, many different evolutionary al-
gorithms were applied to optimize SMP processing. Afterward, ANC assignment problem
was also included as a part of optimization factors [3,6,7]. In those studies, algorithms were
established in a hybrid way to improve the shortcomings of single algorithms. Neverthe-
less, the height of the component can also have a direct effect on the manufacturing process.
When placing the components on a PCB, the relatively lower components have to be placed
first; therefore, unlike those methods, the current study included the consideration of
the height restrictions in SMP processing and proposed an effective modified differential
evolution (MDE) algorithm to optimize the scheduling of SMP machines in order to cover
processing problems more comprehensively.

Research objectives of this present study incorporate problems of (i) component
allocation, (ii) ANC assignment, (iii) feeder arrangements, (iv) pick-and-place sequences,
and (v) height restrictions for components into the proposed solutions on minimizing the
total assembly time for PCB assembly. The major contributions of this study are listed
as follows:

� The component height restriction is considered in SMP processing.
� The proposed modified differential evolution (MDE) algorithm with two similar-

ity measurement mechanisms using a random-key encoding mapping method is
designed for minimizing the number of picks in feeder arrangement.

� A combination of nearest-neighbor search (NNS) and 2-opt method is applied to
shorten the path in component placing operations.

� The experimental results indicate that while using the MDE algorithm for feeder
arrangement, at most 30% of the number of picks can be reduced; moreover, when
adding a combination of NNS and 2-opt method for component placing sequence,
the whole assembly time is decreased at most by 13% using the proposed method.

The remainder of this article is structured as follows: Section 2 describes key features
of the SMP machine. Section 3 presents the problem definitions. Section 4 introduces
the methodology of whole processing including component allocation, ANC assignment,
feeder arrangement using the proposed MDE algorithm, component picking sequence,
and component placing sequence using NNS and 2-opt method. Section 5 details the
experimental results and discussions. Finally, Section 6 gives the conclusions.

Mathematics 2021, 9, 2016 4 of 22

2. Description of the SMP Machine

A dual-gantry multi-head SMP machine (Figure 1) employs two robot gantries, each
of which contains six pick-and-place heads. Each head is equipped with one nozzle and
moves to the ANC for nozzle changes when required. During operation, robot gantries
move to the feeder stations to pick components. As illustrated in Figure 1, Gantry_1 picks
components from the feeder station_1, and Gantry_2 picks components from the feeder
station_2. The two gantries then carry the picked components and place them on a PCB
alternately. This operating process is known as a pick-and-place work cycle.

The SMP machine’s key features are as follows:

(a) Gantry: This moves above the surface-mount machine, allowing the pick-and-place
heads to pick components from the correct feeder and then to place the components
on the correct position of the PCB.

(b) Pick-and-place head: Every pick-and-place head is equipped with a single nozzle,
which is used to pick and place components.

(c) ANC: This is where nozzles are placed and changed.
(d) Nozzle: These are installed on pick-and-place heads for component picking and

placing. Different nozzle types are required for different components. Accordingly,
the pick-and-place heads move to the ANC for nozzle changes when required.

(e) Feeder: The feeder is used to store and provide components. Every feeder stores only
one component.

(f) Feeder station: Feeders for placement operation here.
(g) PCB table: PCBs are fixed and placed here.
(h) Fly vision system: This is used to determine whether a component is damaged or

faulty and confirm a component’s loading position by recalibrating the X–Y coordinate.

Mathematics 2021, 9, 2016 4 of 22

and component placing sequence using NNS and 2-opt method. Section 5 details the ex-
perimental results and discussions. Finally, Section 6 gives the conclusions.

2. Description of the SMP Machine
A dual-gantry multi-head SMP machine (Figure 1) employs two robot gantries, each

of which contains six pick-and-place heads. Each head is equipped with one nozzle and
moves to the ANC for nozzle changes when required. During operation, robot gantries
move to the feeder stations to pick components. As illustrated in Figure 1, Gantry_1 picks
components from the feeder station_1, and Gantry_2 picks components from the feeder
station_2. The two gantries then carry the picked components and place them on a PCB
alternately. This operating process is known as a pick-and-place work cycle.

The SMP machine’s key features are as follows:
(a) Gantry: This moves above the surface-mount machine, allowing the pick-and-place

heads to pick components from the correct feeder and then to place the components
on the correct position of the PCB.

(b) Pick-and-place head: Every pick-and-place head is equipped with a single nozzle,
which is used to pick and place components.

(c) ANC: This is where nozzles are placed and changed.
(d) Nozzle: These are installed on pick-and-place heads for component picking and plac-

ing. Different nozzle types are required for different components. Accordingly, the
pick-and-place heads move to the ANC for nozzle changes when required.

(e) Feeder: The feeder is used to store and provide components. Every feeder stores only
one component.

(f) Feeder station: Feeders for placement operation here.
(g) PCB table: PCBs are fixed and placed here.
(h) Fly vision system: This is used to determine whether a component is damaged or

faulty and confirm a component’s loading position by recalibrating the X–Y coordi-
nate.

Figure 1. Dual-gantry, multi-head SMP machine.

Figure 2 presents the picking sequence {7, 9, 11, 13, 15, 17} that finished picks when
the least number of picks is one. If the component picking operations cannot be finished
in one pick, the picking operation is repeated until all heads pick their components or
until it is determined that the operation cannot proceed any further. As presented in Fig-
ure 3, a head is idle after the first pick. Thus, the second pick is conducted, with its picking
sequence being {3, 3, 7, 9, 9, 13}.

Figure 1. Dual-gantry, multi-head SMP machine.

Figure 2 presents the picking sequence {7, 9, 11, 13, 15, 17} that finished picks when the
least number of picks is one. If the component picking operations cannot be finished in one
pick, the picking operation is repeated until all heads pick their components or until it is
determined that the operation cannot proceed any further. As presented in Figure 3, a head
is idle after the first pick. Thus, the second pick is conducted, with its picking sequence
being {3, 3, 7, 9, 9, 13}.

Mathematics 2021, 9, 2016 5 of 22
Mathematics 2021, 9, 2016 5 of 22

Figure 2. One pick sequence.

Figure 3. Multiple picks.

3. Problem Definition
3.1. Problem Description

The purpose of this study was to optimize the operation of dual-gantry, multi-head
SMP machines. The following section introduces problems, inter-relationships of prob-
lems, and their influences on SMP operations.
(i) Component allocation problem:

Each gantry has its own feeder station. Gantry_1 cannot pick components from Gan-
try_2’s feeder station and vice versa. An inappropriate component allocation may lead to
an excessive workload on one of the gantries, thus causing workload imbalance.
(ii) ANC assignment problem:

The dual-gantry, multi-head SMP machine that we studied with an ANC comprising
20 seats was designed for 16 small nozzles and 4 large nozzles. Because the number of
nozzles placed in an ANC is limited, how to allocate the number of seats for each nozzle
type is crucial. It affects component picking process. A greater number of picks indicates
a longer time required for the picking process.
(iii) Feeder arrangement problem:

The assignment of components to the two feeder-slot stations for component storage
mainly affects the picking process. Fewer picks indicate a shorter time required for this
process. Therefore, an appropriate feeder arrangement enables picking up more compo-
nents simultaneously, thus shortening the time required for this process.
(iv) Component height restrictions:

Because the height of each component varies, placing an excessively high component
before placing a shorter component leads to a collision. Therefore, the picking-and-placing
order of components should be sequenced according to height (from low to high), in
which the height differences between each two consecutive components should be less
than 2 mm to avoid collision.
(v) Component pick-and-place sequence:

Figure 2. One pick sequence.

Mathematics 2021, 9, 2016 5 of 22

Figure 2. One pick sequence.

Figure 3. Multiple picks.

3. Problem Definition
3.1. Problem Description

The purpose of this study was to optimize the operation of dual-gantry, multi-head
SMP machines. The following section introduces problems, inter-relationships of prob-
lems, and their influences on SMP operations.
(i) Component allocation problem:

Each gantry has its own feeder station. Gantry_1 cannot pick components from Gan-
try_2’s feeder station and vice versa. An inappropriate component allocation may lead to
an excessive workload on one of the gantries, thus causing workload imbalance.
(ii) ANC assignment problem:

The dual-gantry, multi-head SMP machine that we studied with an ANC comprising
20 seats was designed for 16 small nozzles and 4 large nozzles. Because the number of
nozzles placed in an ANC is limited, how to allocate the number of seats for each nozzle
type is crucial. It affects component picking process. A greater number of picks indicates
a longer time required for the picking process.
(iii) Feeder arrangement problem:

The assignment of components to the two feeder-slot stations for component storage
mainly affects the picking process. Fewer picks indicate a shorter time required for this
process. Therefore, an appropriate feeder arrangement enables picking up more compo-
nents simultaneously, thus shortening the time required for this process.
(iv) Component height restrictions:

Because the height of each component varies, placing an excessively high component
before placing a shorter component leads to a collision. Therefore, the picking-and-placing
order of components should be sequenced according to height (from low to high), in
which the height differences between each two consecutive components should be less
than 2 mm to avoid collision.
(v) Component pick-and-place sequence:

Figure 3. Multiple picks.

3. Problem Definition
3.1. Problem Description

The purpose of this study was to optimize the operation of dual-gantry, multi-head
SMP machines. The following section introduces problems, inter-relationships of problems,
and their influences on SMP operations.

(i) Component allocation problem:

Each gantry has its own feeder station. Gantry_1 cannot pick components from
Gantry_2’s feeder station and vice versa. An inappropriate component allocation may lead
to an excessive workload on one of the gantries, thus causing workload imbalance.

(ii) ANC assignment problem:

The dual-gantry, multi-head SMP machine that we studied with an ANC comprising
20 seats was designed for 16 small nozzles and 4 large nozzles. Because the number of
nozzles placed in an ANC is limited, how to allocate the number of seats for each nozzle
type is crucial. It affects component picking process. A greater number of picks indicates a
longer time required for the picking process.

(iii) Feeder arrangement problem:

The assignment of components to the two feeder-slot stations for component storage
mainly affects the picking process. Fewer picks indicate a shorter time required for this pro-
cess. Therefore, an appropriate feeder arrangement enables picking up more components
simultaneously, thus shortening the time required for this process.

(iv) Component height restrictions:

Because the height of each component varies, placing an excessively high component
before placing a shorter component leads to a collision. Therefore, the picking-and-placing
order of components should be sequenced according to height (from low to high), in which
the height differences between each two consecutive components should be less than 2 mm
to avoid collision.

Mathematics 2021, 9, 2016 6 of 22

(v) Component pick-and-place sequence:

Planning the shortest route for gantries to move from feeder-slot stations, where they
pick components, to the position on PCBs to place components.

3.2. Establishment of a Mathematical Model

This study designed a mathematical model to calculate scheduling results according
to the operation pattern of a dual-gantry multi-head SMP machine. We divided the entire
operating process into four parts for discussion: number of cycles, pick time, placement
time, and ANC change time.

Definition of symbols:
a: time required for a nozzle change
A: location of the ANC carrying replacement nozzle
c: cycle number, c = 1, 2, . . . , N
cn: number of nozzles needs to be changed, depends on sequence of picks
d
(

Sc
p, Sc

p+1

)
: moving distance of a head from location Sc

p to Sc
p+1

E: time required for picking component
F: time required for placing component
g: the gantry being used. g = 1 for Gantry_1; g = 2 for Gantry_2
i: the numerical order in which components are arranged in a particular cycle, i = 1, 2, . . .
j: the last component placed in a cycle
o: waiting time for placing component
p: index for picks
P: loading location on a semi-finished PCB
S: location of the slot to which the components to be picked have been assigned in the

feeder station
Tchangeg : time required for nozzle changes
tp: the number of picks in a cycle
Ttotal : total assembly time
T
(

d
(

Sc
p, Sc

p+1

))
: moving time required for a head from location Sc

p to Sc
p+1

T
(

d
(

Pc−1
j , Sc

1

))
: moving time required for a head from the location where the final

component is placed on cycle c−1 to the location where the first component is picked on
cycle c

Tc
z : total time required for a z-axis (up–down) movement on cycle c

u: waiting time for picking up component
z: nozzle waiting to be changed
The numbers of cycles completed by the two gantries may differ. Because the operation

of a dual-gantry, multi-head SMP machine alternates between its two gantries, to calculate
the scheduling time, the gantry that complete the larger number of cycles is adopted as the
NC for the entire scheduling time. The equation is represented as follows:

N =
{

Cg : g = argmaxg′=1,2

{
Cg′
}}

(1)

where C1 is the number of cycles for Gantry_1, C2 is the number of cycles for Gantry_2,
and N is the larger number of the two.

Because a dual-gantry, multi-head SMP machine alternates between its two gantries
to place components, one gantry can only pick components when the other is placing
components in a given area. The alternating of picking and placing for each head continues
until all components are placed. Accordingly, the longest time required by the two gantries
to finish their tasks was selected to design the time calculation equation. The difference
between the shorter and longer times is denoted as waiting time, as depicted in Figure 4.

Mathematics 2021, 9, 2016 7 of 22
Mathematics 2021, 9, 2016 7 of 22

Figure 4. Alternating operations of the two gantries.

The equation for total assembly time (𝑇௧௢௧௔௟) required is presented as follows:

𝑇௧௢௧௔௟ = 𝐸௚ଵଵ ൅ ෍ ቀ𝑚𝑎𝑥൫𝐸௚ଵ௖ାଵ, 𝐹௚ଶ௖ ൯ ൅ 𝑚𝑎𝑥൫𝐹௚ଵ௖ , 𝐸௚ଶ௖ ൯ቁே
௖ୀଵ (2)

𝐸௚ଵଵ is the time required by the first component pick performed by Gantry_1, and 𝑚𝑎𝑥൫𝐸௚ଵ௖ାଵ, 𝐹௚ଶ௖ ൯ and 𝑚𝑎𝑥൫𝐹௚ଵ௖ , 𝐸௚ଶ௖ ൯ compare the two gantries’ operation times to identify
the longer time required between the two gantries.

By calculating the time spent on component picking, this study devised an equation
for picking time, which is presented as follows:

𝐸௚௖ =
⎩⎪⎪
⎪⎨
⎪⎪⎪
⎧ 𝑇௭௖ሺ1ሻ ൅ 𝑢ଵ௖ ൅ ෍ ቀ𝑇 ቀ𝑑൫𝑆௣௖, 𝑆௣ାଵ௖ ൯ቁ ൅ 𝑇௭௖ሺ𝑝 ൅ 1ሻ ൅ 𝑢௣ାଵ௖ ቁ௧௣ିଵ

௣ୀଵ , 𝑖𝑓𝑐 = 1
𝑇 ቀ𝑑൫𝑃௝௖ିଵ, 𝑆ଵ௖൯ቁ ൅ 𝑇௭௖ሺ1ሻ ൅ 𝑢ଵ௖ ൅ ෍ ቀ𝑇 ቀ𝑑൫𝑆௣௖, 𝑆௣ାଵ௖ ൯ቁ ൅ 𝑇௭௖ሺ𝑝 ൅ 1ሻ ൅ 𝑢௣ାଵ௖ ቁ௧௣ିଵ

௣ୀଵ , 𝑖𝑓𝑐 ൐ 1＆𝑐𝑛 = 0
𝑇௖௛௔௡௚௘೒ ൅ 𝑇௭௖ሺ1ሻ ൅ 𝑢ଵ௖ ൅ ෍ ቀ𝑇 ቀ𝑑൫𝑆௣௖, 𝑆௣ାଵ௖ ൯ቁ ൅ 𝑇௭௖ሺ𝑝 ൅ 1ሻ ൅ 𝑢௣ାଵ௖ ቁ௧௣ିଵ

௣ୀଵ , 𝑖𝑓𝑐 ൐ 1＆𝑐𝑛 ൐ 0
. ሺ3ሻ (3)

The operation of the first pick is denoted by c = 1. The time calculation starts from,
after nozzle changes, the first pick from a feeder slot; thus, only the time spent on picking
components from feeder slots is calculated. The condition of c > 1 and cn = 0 denotes pick-
ing operations without nozzle changes. 𝑇 ቀ𝑑൫𝑃௝௖ିଵ, 𝑆ଵ௖൯ቁ denotes the time required for
moving from the location where the final component is placed on cycle c-1 to the location
where the first component is picked on cycle c. The final part of this equation is used to
calculate the time required for picking components from feeder slots. The condition of c >
1 and cn > 0 represents picking operations involving nozzle changes. The calculation of 𝑇௖௛௔௡௚௘೒, the time required for nozzle changes, is detailed in Equation (5).

The time required for placing components on a PCB is presented as follows:

𝐹௚௖ = 𝑇 ቀ𝑑൫𝑆௝௖, 𝑃ଵ௖൯ቁ ൅ 𝑇௭௖ሺ1ሻ ൅ 𝑜ଵ௖ ൅ ෍൫𝑇൫𝑑ሺ𝑃௜ିଵ௖ , 𝑃௜௖ሻ൯ ൅ 𝑇௭௖ሺ𝑖ሻ ൅ 𝑜௜௖൯௝
௜ୀଶ (4)

𝑇 ቀ𝑑൫𝑆௝௖, 𝑃ଵ௖൯ቁ denotes the time required for movement from the location of the feeder
slot where a gantry finishes picking components on cycle c to the location where the gan-
try places the first component. 𝑇௭௖ሺ1ሻ ൅ 𝑜ଵ௖ represents the time required for the z-axis
movement of the first component and the waiting time for placing component on cycle c. 𝑇൫𝑑ሺ𝑃௜ିଵ௖ , 𝑃௜௖ሻ൯ denotes the time required for moving from the location where the preced-
ing component is placed to the location of the subsequent placement.

The following equation, nozzle change time, is applied when a nozzle change occurs
on cycle c.

𝑇௖௛௔௡௚௘೒ = 𝑇 ቀ𝑑൫𝑃௝௖ିଵ, 𝐴ଵ௖൯ቁ ൅ ෍ 𝑇൫𝑑ሺ𝐴௭௖, 𝐴௭ାଵ௖ ሻ൯ ൅ 𝑎௭௖ ൅ 𝑇൫𝑑ሺ𝐴௖௡௖ , 𝑆ଵ௖ሻ൯௖௡
௭ୀଵ (5)

Figure 4. Alternating operations of the two gantries.

The equation for total assembly time (Ttotal) required is presented as follows:

Ttotal = E1
g1 +

N

∑
c=1

(
max

(
Ec+1

g1 , Fc
g2

)
+ max

(
Fc

g1, Ec
g2

))
(2)

E1
g1 is the time required by the first component pick performed by Gantry_1, and

max
(

Ec+1
g1 , Fc

g2

)
and max

(
Fc

g1, Ec
g2

)
compare the two gantries’ operation times to identify

the longer time required between the two gantries.
By calculating the time spent on component picking, this study devised an equation

for picking time, which is presented as follows:

Ec
g =



Tc
z (1) + uc

1 +
tp−1
∑

p=1

(
T
(

d
(

Sc
p, Sc

p+1

))
+ Tc

z (p + 1) + uc
p+1

)
, i f c = 1

T
(

d
(

Pc−1
j , Sc

1

))
+ Tc

z (1) + uc
1 +

tp−1
∑

p=1

(
T
(

d
(

Sc
p, Sc

p+1

))
+ Tc

z (p + 1) + uc
p+1

)
, i f c > 1&cn = 0.

Tchangeg + Tc
z (1) + uc

1 +
tp−1
∑

p=1

(
T
(

d
(

Sc
p, Sc

p+1

))
+ Tc

z (p + 1) + uc
p+1

)
, i f c > 1&cn > 0

(3)

The operation of the first pick is denoted by c = 1. The time calculation starts from,
after nozzle changes, the first pick from a feeder slot; thus, only the time spent on picking
components from feeder slots is calculated. The condition of c > 1 and cn = 0 denotes
picking operations without nozzle changes. T

(
d
(

Pc−1
j , Sc

1

))
denotes the time required for

moving from the location where the final component is placed on cycle c-1 to the location
where the first component is picked on cycle c. The final part of this equation is used to
calculate the time required for picking components from feeder slots. The condition of
c > 1 and cn > 0 represents picking operations involving nozzle changes. The calculation of
Tchangeg , the time required for nozzle changes, is detailed in Equation (5).

The time required for placing components on a PCB is presented as follows:

Fc
g = T

(
d
(

Sc
j , Pc

1

))
+ Tc

z (1) + oc
1 +

j

∑
i=2

(
T
(
d
(

Pc
i−1, Pc

i
))

+ Tc
z (i) + oc

i
)

(4)

T
(

d
(

Sc
j , Pc

1

))
denotes the time required for movement from the location of the feeder

slot where a gantry finishes picking components on cycle c to the location where the
gantry places the first component. Tc

z (1) + oc
1 represents the time required for the z-axis

movement of the first component and the waiting time for placing component on cycle c.
T
(
d
(

Pc
i−1, Pc

i
))

denotes the time required for moving from the location where the preceding
component is placed to the location of the subsequent placement.

The following equation, nozzle change time, is applied when a nozzle change occurs
on cycle c.

Tchangeg = T
(

d
(

Pc−1
j , Ac

1

))
+

cn

∑
z=1

T
(
d
(

Ac
z, Ac

z+1
))

+ ac
z + T(d(Ac

cn, Sc
1)) (5)

Mathematics 2021, 9, 2016 8 of 22

T
(

d
(

Pc−1
j , Ac

1

))
denotes the time required for movement from the location where the

final component is placed on cycle c−1 to the location where the first nozzle change of the
subsequent cycle c is conducted. T

(
d
(

Ac
cn, Sc

1
))

denotes the time required for movement
from the location where the last nozzle change is conducted on cycle c to the location where
the first component is picked on cycle c.

4. Method

This section discusses the method for optimizing the scheduling of a dual-gantry
SMP machine. To reduce complexity, the optimization problem was divided into four
steps; the flow chart is presented in Figure 5. The first step involves identifying a method
for solving the component allocation problem. Step two is to determine the number of
nozzles available in the ANC according to the number and ratio of components required.
In the third step, the MDE algorithm and a random-key encoding mapping approach were
used for feeder arrangement by selecting operations with the fewest picks and picking
cycles. The fourth step involves using the nearest-neighbor search approach to determine a
tentative placing sequence, which is subsequently planned by the 2-opt method.

Mathematics 2021, 9, 2016 8 of 22

𝑇 ቀ𝑑൫𝑃௝௖ିଵ, 𝐴ଵ௖൯ቁ denotes the time required for movement from the location where the
final component is placed on cycle c-1 to the location where the first nozzle change of the
subsequent cycle c is conducted. 𝑇൫𝑑ሺ𝐴௖௡௖ , 𝑆ଵ௖ሻ൯ denotes the time required for movement
from the location where the last nozzle change is conducted on cycle c to the location
where the first component is picked on cycle c.

4. Method
This section discusses the method for optimizing the scheduling of a dual-gantry

SMP machine. To reduce complexity, the optimization problem was divided into four
steps; the flow chart is presented in Figure 5. The first step involves identifying a method
for solving the component allocation problem. Step two is to determine the number of
nozzles available in the ANC according to the number and ratio of components required.
In the third step, the MDE algorithm and a random-key encoding mapping approach were
used for feeder arrangement by selecting operations with the fewest picks and picking
cycles. The fourth step involves using the nearest-neighbor search approach to determine
a tentative placing sequence, which is subsequently planned by the 2-opt method.

Figure 5. Research flow chart.

4.1. Component Allocation
The first problem encountered by dual-gantry, multi-head SMP machines is compo-

nent allocation. Because a gantry cannot pick components from the other gantry’s feeder
slots, achieving a component allocation solution that equalizes workloads for the two gan-
tries is the main focus of this step. This study considers component height restriction,
which complicates the component allocation problem.

First, the center point of a PCB on the y-axis was identified, and a horizontal line was
drawn, dividing the components into those located in upper and lower areas of the PCB
board. We calculated the difference between the numbers of components located in the
two areas and accordingly adjusted the location of the center point along the y-axis to
equalize the number of components for the two gantries.

Figure 5. Research flow chart.

4.1. Component Allocation

The first problem encountered by dual-gantry, multi-head SMP machines is compo-
nent allocation. Because a gantry cannot pick components from the other gantry’s feeder
slots, achieving a component allocation solution that equalizes workloads for the two
gantries is the main focus of this step. This study considers component height restriction,
which complicates the component allocation problem.

First, the center point of a PCB on the y-axis was identified, and a horizontal line was
drawn, dividing the components into those located in upper and lower areas of the PCB
board. We calculated the difference between the numbers of components located in the two
areas and accordingly adjusted the location of the center point along the y-axis to equalize
the number of components for the two gantries.

Mathematics 2021, 9, 2016 9 of 22

For example, as presented in Figure 6, when equally dividing the PCB into two halves
(Y = 50), both the upper and lower areas each contained 400 components. Gantry_1 was
responsible for components in the lower area, and Gantry_2 was responsible for those in
the upper area.

Mathematics 2021, 9, 2016 9 of 22

For example, as presented in Figure 6, when equally dividing the PCB into two halves
(Y = 50), both the upper and lower areas each contained 400 components. Gantry_1 was
responsible for components in the lower area, and Gantry_2 was responsible for those in
the upper area.

Figure 6. Component allocation.

4.2. ANC Assignment Using a Quantity Ratio Method
The number and type of nozzles in the ANC were determined before scheduling. The

ANC only have 20 seats: 4 of them are for large nozzles, and 16 are for small nozzles.
According to the number of each type of component to be placed on a PCB, this study

used a quantity ratio method to determine the required number for each type of nozzle to
be installed at each ANC.

Step 1:
The number of each type of nozzle is presented in Table 2. Four small nozzles (AN2,

An3, AN4, and AN5) and one large nozzle (ANV1) are used in this example. Nozzle AN2
picks and places component types D and B; Nozzle AN3 picks and places component type
A; Nozzle AN4 picks and places component type E; Nozzle AN5 picks and places com-
ponent type C; Nozzle ANV1 picks and places component type F. A proportional pie chart
(Figure 7) depicts the quantity ratios of the various types of small nozzles. The quantity
ratio for each nozzle is calculated as (total number of components for the nozzle) divided
by (total number of components for the same size of nozzle). For example, the total num-
ber of components for small nozzle is 50 + 20 + 80 + 100 = 250. The quantity ratio for AN2
is equal to 50/250 = 20%.

Figure 7. Proportions of the types of nozzles used.

Figure 6. Component allocation.

4.2. ANC Assignment Using a Quantity Ratio Method

The number and type of nozzles in the ANC were determined before scheduling. The
ANC only have 20 seats: 4 of them are for large nozzles, and 16 are for small nozzles.

According to the number of each type of component to be placed on a PCB, this study
used a quantity ratio method to determine the required number for each type of nozzle to
be installed at each ANC.

Step 1:

The number of each type of nozzle is presented in Table 2. Four small nozzles (AN2,
An3, AN4, and AN5) and one large nozzle (ANV1) are used in this example. Nozzle AN2
picks and places component types D and B; Nozzle AN3 picks and places component
type A; Nozzle AN4 picks and places component type E; Nozzle AN5 picks and places
component type C; Nozzle ANV1 picks and places component type F. A proportional
pie chart (Figure 7) depicts the quantity ratios of the various types of small nozzles. The
quantity ratio for each nozzle is calculated as (total number of components for the nozzle)
divided by (total number of components for the same size of nozzle). For example, the
total number of components for small nozzle is 50 + 20 + 80 + 100 = 250. The quantity ratio
for AN2 is equal to 50/250 = 20%.

Table 2. The number of each type of nozzle.

Component Nozzle Total Number of
Components for the Nozzle

Quantity
RatioType Quantity Type Size

D 15
AN2 Small 50 20%

B 35
A 20 AN3 Small 20 8%
E 80 AN4 Small 80 32%
C 100 AN5 Small 100 40%
F 10 ANV1 Large 10 100%

Mathematics 2021, 9, 2016 10 of 22

Mathematics 2021, 9, 2016 9 of 22

For example, as presented in Figure 6, when equally dividing the PCB into two halves
(Y = 50), both the upper and lower areas each contained 400 components. Gantry_1 was
responsible for components in the lower area, and Gantry_2 was responsible for those in
the upper area.

Figure 6. Component allocation.

4.2. ANC Assignment Using a Quantity Ratio Method
The number and type of nozzles in the ANC were determined before scheduling. The

ANC only have 20 seats: 4 of them are for large nozzles, and 16 are for small nozzles.
According to the number of each type of component to be placed on a PCB, this study

used a quantity ratio method to determine the required number for each type of nozzle to
be installed at each ANC.

Step 1:
The number of each type of nozzle is presented in Table 2. Four small nozzles (AN2,

An3, AN4, and AN5) and one large nozzle (ANV1) are used in this example. Nozzle AN2
picks and places component types D and B; Nozzle AN3 picks and places component type
A; Nozzle AN4 picks and places component type E; Nozzle AN5 picks and places com-
ponent type C; Nozzle ANV1 picks and places component type F. A proportional pie chart
(Figure 7) depicts the quantity ratios of the various types of small nozzles. The quantity
ratio for each nozzle is calculated as (total number of components for the nozzle) divided
by (total number of components for the same size of nozzle). For example, the total num-
ber of components for small nozzle is 50 + 20 + 80 + 100 = 250. The quantity ratio for AN2
is equal to 50/250 = 20%.

Figure 7. Proportions of the types of nozzles used. Figure 7. Proportions of the types of nozzles used.

Step 2:

To ensure that the gantries can pick up all types of components, the ANC was assigned
with at least one seat for each nozzle type (Figure 8).

Mathematics 2021, 9, 2016 10 of 22

Table 2. The number of each type of nozzle.

Component Nozzle Total Number of Components
for the Nozzle

Quantity
Ratio Type Quantity Type Size

D 15
AN2 Small 50 20%

B 35
A 20 AN3 Small 20 8%
E 80 AN4 Small 80 32%
C 100 AN5 Small 100 40%
F 10 ANV1 Large 10 100%

Step 2:
To ensure that the gantries can pick up all types of components, the ANC was as-

signed with at least one seat for each nozzle type (Figure 8).

Figure 8. Assigning one seat for each nozzle type in ANC.

Step 3:
Assign nozzles to the remaining seats in ANC according to the predetermined pro-

portions. The calculated values are rounded to the nearest integers. For example, the cal-
culated value for nozzle AN2 is 2.4, and we round it to 2. It means 2 more seats are as-
signed for nozzle AN2 in ANC. The other seats calculated for nozzles An3, AN4, and AN5
are as follows. 𝐴𝑁2: 12 × 0.2 = 2.4 ሺround to 2ሻ, 𝐴𝑁3: 12 × 0.08 = 0.96 ሺround to 1ሻ 𝐴𝑁4: 12 × 0.32 = 3.84 ሺround to 4ሻ, 𝐴𝑁5: 12 × 0.4 = 4.8 ሺround to 5ሻ

There is one more seat for nozzle AN3; 4 more seats for nozzle AN4; and 5 more seats
for nozzle AN5. Since there is only one large nozzle used in this example, the four seats
for large nozzle are all assigned for ANV1. The final nozzle assignment in ANC was pre-
sented in Figure 9.

Figure 9. Proportional assignment of nozzles to the ANC.

4.3. Feeder Arrangement Using the MDE Algorithm
Evolutionary algorithms are inspired by natural phenomena, biological processes,

and human and social behaviors and are widely used to solve scientific and engineering
problems because of their simplicity and sensitivity. These algorithms have evolved to be
applied in various existing algorithms, such as the genetic algorithm (GA) [10–12], particle
swarm optimization (PSO) [13,14], and ant colony optimization [15]. The differential evo-
lution (DE) algorithm was first developed by Storn and Price [16,17] in 1995. It is a popu-
lation-based stochastic optimization algorithm which provides characteristics of simplic-
ity, efficiency, and real coding. The optimization process is conducted through continuous
mutation, crossover, and selection until converging to the optimized solution. The flow
chart of DE is presented in Figure 10. To optimize the operation of dual-gantry multi-head

ANV1 AN2 AN3 AN4 AN5

ANV1 ANV1 AN2 AN2 AN2 AN3 AN3 AN4 AN4 AN4
ANV1 ANV1 AN4 AN4 AN5 AN5 AN5 AN5 AN5 AN5

Figure 8. Assigning one seat for each nozzle type in ANC.

Step 3:

Assign nozzles to the remaining seats in ANC according to the predetermined pro-
portions. The calculated values are rounded to the nearest integers. For example, the
calculated value for nozzle AN2 is 2.4, and we round it to 2. It means 2 more seats are
assigned for nozzle AN2 in ANC. The other seats calculated for nozzles An3, AN4, and
AN5 are as follows.

AN2 : 12× 0.2 = 2.4 (round to 2), AN3 : 12× 0.08 = 0.96 (round to 1)

AN4 : 12× 0.32 = 3.84 (round to 4), AN5 : 12× 0.4 = 4.8 (round to 5)

There is one more seat for nozzle AN3; 4 more seats for nozzle AN4; and 5 more seats
for nozzle AN5. Since there is only one large nozzle used in this example, the four seats for
large nozzle are all assigned for ANV1. The final nozzle assignment in ANC was presented
in Figure 9.

Mathematics 2021, 9, 2016 10 of 22

Table 2. The number of each type of nozzle.

Component Nozzle Total Number of Components
for the Nozzle

Quantity
Ratio Type Quantity Type Size

D 15
AN2 Small 50 20%

B 35
A 20 AN3 Small 20 8%
E 80 AN4 Small 80 32%
C 100 AN5 Small 100 40%
F 10 ANV1 Large 10 100%

Step 2:
To ensure that the gantries can pick up all types of components, the ANC was as-

signed with at least one seat for each nozzle type (Figure 8).

Figure 8. Assigning one seat for each nozzle type in ANC.

Step 3:
Assign nozzles to the remaining seats in ANC according to the predetermined pro-

portions. The calculated values are rounded to the nearest integers. For example, the cal-
culated value for nozzle AN2 is 2.4, and we round it to 2. It means 2 more seats are as-
signed for nozzle AN2 in ANC. The other seats calculated for nozzles An3, AN4, and AN5
are as follows. 𝐴𝑁2: 12 × 0.2 = 2.4 ሺround to 2ሻ, 𝐴𝑁3: 12 × 0.08 = 0.96 ሺround to 1ሻ 𝐴𝑁4: 12 × 0.32 = 3.84 ሺround to 4ሻ, 𝐴𝑁5: 12 × 0.4 = 4.8 ሺround to 5ሻ

There is one more seat for nozzle AN3; 4 more seats for nozzle AN4; and 5 more seats
for nozzle AN5. Since there is only one large nozzle used in this example, the four seats
for large nozzle are all assigned for ANV1. The final nozzle assignment in ANC was pre-
sented in Figure 9.

Figure 9. Proportional assignment of nozzles to the ANC.

4.3. Feeder Arrangement Using the MDE Algorithm
Evolutionary algorithms are inspired by natural phenomena, biological processes,

and human and social behaviors and are widely used to solve scientific and engineering
problems because of their simplicity and sensitivity. These algorithms have evolved to be
applied in various existing algorithms, such as the genetic algorithm (GA) [10–12], particle
swarm optimization (PSO) [13,14], and ant colony optimization [15]. The differential evo-
lution (DE) algorithm was first developed by Storn and Price [16,17] in 1995. It is a popu-
lation-based stochastic optimization algorithm which provides characteristics of simplic-
ity, efficiency, and real coding. The optimization process is conducted through continuous
mutation, crossover, and selection until converging to the optimized solution. The flow
chart of DE is presented in Figure 10. To optimize the operation of dual-gantry multi-head

ANV1 AN2 AN3 AN4 AN5

ANV1 ANV1 AN2 AN2 AN2 AN3 AN3 AN4 AN4 AN4
ANV1 ANV1 AN4 AN4 AN5 AN5 AN5 AN5 AN5 AN5

Figure 9. Proportional assignment of nozzles to the ANC.

4.3. Feeder Arrangement Using the MDE Algorithm

Evolutionary algorithms are inspired by natural phenomena, biological processes,
and human and social behaviors and are widely used to solve scientific and engineering
problems because of their simplicity and sensitivity. These algorithms have evolved to be
applied in various existing algorithms, such as the genetic algorithm (GA) [10–12], particle
swarm optimization (PSO) [13,14], and ant colony optimization [15]. The differential
evolution (DE) algorithm was first developed by Storn and Price [16,17] in 1995. It is
a population-based stochastic optimization algorithm which provides characteristics of
simplicity, efficiency, and real coding. The optimization process is conducted through
continuous mutation, crossover, and selection until converging to the optimized solution.
The flow chart of DE is presented in Figure 10. To optimize the operation of dual-gantry

Mathematics 2021, 9, 2016 11 of 22

multi-head SMP machines, the following section introduces problems, inter-relationships
of problems, and their influences on SMP operations.

Mathematics 2021, 9, 2016 11 of 22

SMP machines, the following section introduces problems, inter-relationships of prob-
lems, and their influences on SMP operations.

Figure 10. Flow chart of the DE algorithm.

(a) Initialization
The DE algorithm is similar to common heuristic algorithms. Such algorithms begin

by initializing individuals and then generating NP individuals randomly in the solution
search space. Subsequently, because individuals in a DE algorithm are real numbers, this
study obtained random real numbers in the solution search space for each individual. The
equation is presented as follows: 𝑋௜,ீ௝ = 𝑋௠௜௡ ൅ 𝑟𝑎𝑛𝑑ሾ0,1ሿ ∗ ሺ𝑋௠௜௡ ൅ 𝑋௠௔௫ሻ (6)

In this equation, Xmin denotes the minimum value, and Xmax denotes the maximum
value in a solution search space, and 𝑟𝑎𝑛𝑑 ሾ0,1ሿ is a randomly selected real number be-
tween 0 and 1. Variable 𝑖 (individual) represented the place of an individual in an order
(𝑖 = 0 ⋯ 𝑁𝑃); G (generation) is the number of generations (𝐺 = 0 ⋯ 𝐺௠௔௫); and j (dimen-
sion) is the size of the dimension (𝑗 = 0 ⋯ 𝐷).
(b) Mutation

A mutation vector is obtained by calculating the vector difference between individu-
als, followed by referencing the vector of another individual and a scale factor. For exam-
ple, randomly pick three individuals, 𝑋௥ଵ,ீ, 𝑋௥ଵ,ீ, and 𝑋௥ଷ,ீ, and then calculate the vector
difference between 𝑋௥ଶ,ீ and 𝑋௥ଷ,ீ. Multiply this result by the scale factor, and subse-
quently add 𝑋௥ଵ,ீ to obtain the mutation vector, 𝑉௜,ீାଵ. The equation is presented as fol-
lows: 𝑉௜,ீାଵ௝ = 𝑋௥ଵ,ீ௝ ൅ 𝐹൫𝑋௥ଶ,ீ௝ െ 𝑋௥ଷ,ீ௝ ൯ (7)

where 𝑟1, 𝑟2, and 𝑟3 are different individuals required for determining the mutation
equation, and 𝑟1 ് 𝑟2 ് 𝑟3. F is the scale factor. The 2D descript of mutation is shown in
Figure 11. The purpose of this study was to optimize the operation of dual-gantry, multi-
head SMP machines. The following section introduces problems, inter-relationships of
problems, and their influences on SMP operations.

Figure 11. 2D depiction of mutation.

Figure 10. Flow chart of the DE algorithm.

(a) Initialization

The DE algorithm is similar to common heuristic algorithms. Such algorithms begin
by initializing individuals and then generating NP individuals randomly in the solution
search space. Subsequently, because individuals in a DE algorithm are real numbers, this
study obtained random real numbers in the solution search space for each individual. The
equation is presented as follows:

X j
i,G = Xmin + rand[0, 1] ∗ (Xmin + Xmax) (6)

In this equation, Xmin denotes the minimum value, and Xmax denotes the maximum
value in a solution search space, and rand [0, 1] is a randomly selected real number between
0 and 1. Variable i (individual) represented the place of an individual in an order (i =
0 · · ·NP); G (generation) is the number of generations (G = 0 · · ·Gmax); and j (dimension)
is the size of the dimension (j = 0 · · ·D).

(b) Mutation

A mutation vector is obtained by calculating the vector difference between individuals,
followed by referencing the vector of another individual and a scale factor. For example,
randomly pick three individuals, Xr1,G, Xr1,G, and Xr3,G, and then calculate the vector dif-
ference between Xr2,G and Xr3,G. Multiply this result by the scale factor, and subsequently
add Xr1,G to obtain the mutation vector, Vi,G+1. The equation is presented as follows:

V j
i,G+1 = X j

r1,G + F
(

X j
r2,G − X j

r3,G

)
(7)

where r1, r2, and r3 are different individuals required for determining the mutation
equation, and r1 6= r2 6= r3. F is the scale factor. The 2D descript of mutation is shown
in Figure 11. The purpose of this study was to optimize the operation of dual-gantry,
multi-head SMP machines. The following section introduces problems, inter-relationships
of problems, and their influences on SMP operations.

U j
i,G+1 =

{
V j

i,G+1, i f randj(0, 1) ≤ CR

X j
i,G, otherwise

(8)

where U j
i,G+1 is an individual after crossover, V j

i,G+1 is a mutated individual, and X j
i,G is

the individual before mutation. Regarding the CR ranges of [0,1], a lower CR indicates a
smaller effect in enhancing mutation; by contrast, a higher CR implies a stronger effect in
enhancing mutation. Most researchers have suggested that a CR range of [0.8,1] is most
effective for a seeking solution.

Mathematics 2021, 9, 2016 12 of 22

Mathematics 2021, 9, 2016 11 of 22

SMP machines, the following section introduces problems, inter-relationships of prob-
lems, and their influences on SMP operations.

Figure 10. Flow chart of the DE algorithm.

(a) Initialization
The DE algorithm is similar to common heuristic algorithms. Such algorithms begin

by initializing individuals and then generating NP individuals randomly in the solution
search space. Subsequently, because individuals in a DE algorithm are real numbers, this
study obtained random real numbers in the solution search space for each individual. The
equation is presented as follows: 𝑋௜,ீ௝ = 𝑋௠௜௡ ൅ 𝑟𝑎𝑛𝑑ሾ0,1ሿ ∗ ሺ𝑋௠௜௡ ൅ 𝑋௠௔௫ሻ (6)

In this equation, Xmin denotes the minimum value, and Xmax denotes the maximum
value in a solution search space, and 𝑟𝑎𝑛𝑑 ሾ0,1ሿ is a randomly selected real number be-
tween 0 and 1. Variable 𝑖 (individual) represented the place of an individual in an order
(𝑖 = 0 ⋯ 𝑁𝑃); G (generation) is the number of generations (𝐺 = 0 ⋯ 𝐺௠௔௫); and j (dimen-
sion) is the size of the dimension (𝑗 = 0 ⋯ 𝐷).
(b) Mutation

A mutation vector is obtained by calculating the vector difference between individu-
als, followed by referencing the vector of another individual and a scale factor. For exam-
ple, randomly pick three individuals, 𝑋௥ଵ,ீ, 𝑋௥ଵ,ீ, and 𝑋௥ଷ,ீ, and then calculate the vector
difference between 𝑋௥ଶ,ீ and 𝑋௥ଷ,ீ. Multiply this result by the scale factor, and subse-
quently add 𝑋௥ଵ,ீ to obtain the mutation vector, 𝑉௜,ீାଵ. The equation is presented as fol-
lows: 𝑉௜,ீାଵ௝ = 𝑋௥ଵ,ீ௝ ൅ 𝐹൫𝑋௥ଶ,ீ௝ െ 𝑋௥ଷ,ீ௝ ൯ (7)

where 𝑟1, 𝑟2, and 𝑟3 are different individuals required for determining the mutation
equation, and 𝑟1 ് 𝑟2 ് 𝑟3. F is the scale factor. The 2D descript of mutation is shown in
Figure 11. The purpose of this study was to optimize the operation of dual-gantry, multi-
head SMP machines. The following section introduces problems, inter-relationships of
problems, and their influences on SMP operations.

Figure 11. 2D depiction of mutation. Figure 11. 2D depiction of mutation.

(c) Selection

Selection is the final step in a DE algorithm, which evaluates the fitness value of each
individual after crossover. After comparing the individuals before and after crossover,
which is exhibited, the higher fitness value is used for the next generation of evolution.
The equation is presented as follows:

Xi,G+1 =

{
Ui,G+1, i f Fit(Ui,G+1) > Fit(Xi,G)

Xi,G, otherwise
(9)

MDE Algorithm

This study chose a DE algorithm and a random-key encoding mapping method
for feeder arrangement; however, conventional DE algorithm is often trapped in local
solutions owing to its premature convergence. Many researchers have developed new
methods for DE to ameliorate the premature convergence. For instance, Choi and Ahn [18]
improved DE by monitoring the evolutionary progress of each individual and assigned
two control parameters according to the evolution result. Choi and Lee [19] proposed an
ex-tended self-adaptive differential evolution algorithm which increases the greediness of
jDE algorithm searchability. Choi et al. [20] developed a sigmoid-based parameter control
in order to alternate the failure threshold for performing the Cauchy mutation. In this
case, the proposed algorithm, which advances the Cauchy mutation, can establish a good
ratio between exploration and exploitation. Therefore, instead of monitoring the failure
evolution individuals, an MDE algorithm which focuses on expanding the diversity of
evolution individuals is proposed in this study. MDE aims to retain the diversity of DE
algorithms via removing individuals with high similarity so that the algorithm has more of
a chance to search for the optimal solutions. In other words, two similarity measurement
mechanisms are introduced to ensure the diversity populations in MDE; therefore, the
populations are able to expand the search space. The fitness values of picking sequences
were evaluated to derive the least number of picks and picking cycles. The flow chart for
MDE algorithm is presented in Figure 12.

(a) Initialization

The initialization process adopted Equation (6) and the range [0,1] to generate individ-
uals, specifically, Xmin = 0 and Xmax = 1.

(b) Selection

In the calculation of fitness values, the random-key method was used to map the real
numbers to integers, each of which represents the index of a feeder slot. The numbers of
picks were employed as the fitness values.

Because integers are used for feeder slots, the conventional DE algorithm cannot
be adopted directly. The random-key method [21,22] is used to map real numbers to

Mathematics 2021, 9, 2016 13 of 22

integers. This technique was also applied in this study for mapping the real number of DE
individuals to integers, which were subsequently used to number feeder slots.

The random-key method involves mapping real numbers to integers in ascending
order. As presented in Figure 13, if an individual’s values are {0.17, 0.51, 0.32, 0.12, 0.35,
0.42}, sorting the real numbers from low to high and assigning an index to each, starting
with 1 and indexing by 1 for each successive number, then the mapped integers range from
1 to 6, yielding a mapped result of {2, 6, 3, 1, 4, 5}.

Mathematics 2021, 9, 2016 12 of 22

𝑈௜,ீାଵ௝ = ൝𝑉௜,ீାଵ௝ , 𝑖𝑓𝑟𝑎𝑛𝑑௝ሺ0,1ሻ ൑ 𝐶𝑅𝑋௜,ீ௝ , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (8)

where 𝑈௜,ீାଵ௝ is an individual after crossover, 𝑉௜,ீାଵ௝ is a mutated individual, and 𝑋௜,ீ௝ is
the individual before mutation. Regarding the CR ranges of [0,1], a lower CR indicates a
smaller effect in enhancing mutation; by contrast, a higher CR implies a stronger effect in
enhancing mutation. Most researchers have suggested that a CR range of [0.8,1] is most
effective for a seeking solution.
(c) Selection

Selection is the final step in a DE algorithm, which evaluates the fitness value of each
individual after crossover. After comparing the individuals before and after crossover,
which is exhibited, the higher fitness value is used for the next generation of evolution.
The equation is presented as follows: 𝑋௜,ீାଵ = ቊ𝑈௜,ீାଵ, 𝑖𝑓𝐹𝑖𝑡൫𝑈௜,ீାଵ൯ ൐ 𝐹𝑖𝑡൫𝑋௜,ீ൯𝑋௜,ீ, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (9)

MDE Algorithm
This study chose a DE algorithm and a random-key encoding mapping method for

feeder arrangement; however, conventional DE algorithm is often trapped in local solu-
tions owing to its premature convergence. Many researchers have developed new meth-
ods for DE to ameliorate the premature convergence. For instance, Choi and Ahn [18] im-
proved DE by monitoring the evolutionary progress of each individual and assigned two
control parameters according to the evolution result. Choi and Lee [19] proposed an ex-
tended self-adaptive differential evolution algorithm which increases the greediness of
jDE algorithm searchability. Choi et al. [20] developed a sigmoid-based parameter control
in order to alternate the failure threshold for performing the Cauchy mutation. In this
case, the proposed algorithm, which advances the Cauchy mutation, can establish a good
ratio between exploration and exploitation. Therefore, instead of monitoring the failure
evolution individuals, an MDE algorithm which focuses on expanding the diversity of
evolution individuals is proposed in this study. MDE aims to retain the diversity of DE
algorithms via removing individuals with high similarity so that the algorithm has more
of a chance to search for the optimal solutions. In other words, two similarity measure-
ment mechanisms are introduced to ensure the diversity populations in MDE; therefore,
the populations are able to expand the search space. The fitness values of picking se-
quences were evaluated to derive the least number of picks and picking cycles. The flow
chart for MDE algorithm is presented in Figure 12.

Figure 12. Flow chart of the MDE algorithm.

Figure 12. Flow chart of the MDE algorithm.

Mathematics 2021, 9, 2016 13 of 22

(a) Initialization
The initialization process adopted Equation (6) and the range [0,1] to generate indi-

viduals, specifically, 𝑋௠௜௡ = 0 and 𝑋௠௔௫ = 1.
(b) Selection

In the calculation of fitness values, the random-key method was used to map the real
numbers to integers, each of which represents the index of a feeder slot. The numbers of
picks were employed as the fitness values.

Because integers are used for feeder slots, the conventional DE algorithm cannot be
adopted directly. The random-key method [21,22] is used to map real numbers to integers.
This technique was also applied in this study for mapping the real number of DE individ-
uals to integers, which were subsequently used to number feeder slots.

The random-key method involves mapping real numbers to integers in ascending
order. As presented in Figure 13, if an individual’s values are {0.17, 0.51, 0.32, 0.12, 0.35,
0.42}, sorting the real numbers from low to high and assigning an index to each, starting
with 1 and indexing by 1 for each successive number, then the mapped integers range
from 1 to 6, yielding a mapped result of {2, 6, 3, 1, 4, 5}.

Figure 13. Mapping of a random key.

On the basis of the integers determined from the random-key method, components
were distributed to their corresponding feeder slots, as presented in Figure 14. Assuming
that the feeder slot station has 20 slots and there are 10 components, the first 10 random-
keys were selected as slot seats for 10 components.

Figure 14. Allocating components to the feeder station.

After components were allocated to feeder slots, the least number of picks was
adopted as the reference for picking sequence for each picking cycle. Before the picking
process, component heights were examined to ensure they did not exceed the current
height restriction. Shorter components must be picked up and placed first to avoid colli-
sions among heads during operation.
(c) Similarity

Conventional DE algorithms cannot be used to avoid local solutions, which impede
the identification of the optimal solution. Therefore, this study applied two similarity
methods, measuring the level of similarity between the global best solution (𝐺𝑏𝑒𝑠𝑡) and
others. When multiple individuals are similar to the 𝐺𝑏𝑒𝑠𝑡 position, half of the individu-
als with inferior fitness values are eliminated and then generate possible offspring to in-
crease the diversity. The remaining individuals are used in the local search to seek more
favorable solutions.

Figure 13. Mapping of a random key.

On the basis of the integers determined from the random-key method, components
were distributed to their corresponding feeder slots, as presented in Figure 14. Assuming
that the feeder slot station has 20 slots and there are 10 components, the first 10 random-keys
were selected as slot seats for 10 components.

Mathematics 2021, 9, 2016 13 of 22

(a) Initialization
The initialization process adopted Equation (6) and the range [0,1] to generate indi-

viduals, specifically, 𝑋௠௜௡ = 0 and 𝑋௠௔௫ = 1.
(b) Selection

In the calculation of fitness values, the random-key method was used to map the real
numbers to integers, each of which represents the index of a feeder slot. The numbers of
picks were employed as the fitness values.

Because integers are used for feeder slots, the conventional DE algorithm cannot be
adopted directly. The random-key method [21,22] is used to map real numbers to integers.
This technique was also applied in this study for mapping the real number of DE individ-
uals to integers, which were subsequently used to number feeder slots.

The random-key method involves mapping real numbers to integers in ascending
order. As presented in Figure 13, if an individual’s values are {0.17, 0.51, 0.32, 0.12, 0.35,
0.42}, sorting the real numbers from low to high and assigning an index to each, starting
with 1 and indexing by 1 for each successive number, then the mapped integers range
from 1 to 6, yielding a mapped result of {2, 6, 3, 1, 4, 5}.

Figure 13. Mapping of a random key.

On the basis of the integers determined from the random-key method, components
were distributed to their corresponding feeder slots, as presented in Figure 14. Assuming
that the feeder slot station has 20 slots and there are 10 components, the first 10 random-
keys were selected as slot seats for 10 components.

Figure 14. Allocating components to the feeder station.

After components were allocated to feeder slots, the least number of picks was
adopted as the reference for picking sequence for each picking cycle. Before the picking
process, component heights were examined to ensure they did not exceed the current
height restriction. Shorter components must be picked up and placed first to avoid colli-
sions among heads during operation.
(c) Similarity

Conventional DE algorithms cannot be used to avoid local solutions, which impede
the identification of the optimal solution. Therefore, this study applied two similarity
methods, measuring the level of similarity between the global best solution (𝐺𝑏𝑒𝑠𝑡) and
others. When multiple individuals are similar to the 𝐺𝑏𝑒𝑠𝑡 position, half of the individu-
als with inferior fitness values are eliminated and then generate possible offspring to in-
crease the diversity. The remaining individuals are used in the local search to seek more
favorable solutions.

Figure 14. Allocating components to the feeder station.

After components were allocated to feeder slots, the least number of picks was adopted
as the reference for picking sequence for each picking cycle. Before the picking process,
component heights were examined to ensure they did not exceed the current height
restriction. Shorter components must be picked up and placed first to avoid collisions
among heads during operation.

(c) Similarity

Conventional DE algorithms cannot be used to avoid local solutions, which impede the
identification of the optimal solution. Therefore, this study applied two similarity methods,

Mathematics 2021, 9, 2016 14 of 22

measuring the level of similarity between the global best solution (Gbest) and others. When
multiple individuals are similar to the Gbest position, half of the individuals with inferior
fitness values are eliminated and then generate possible offspring to increase the diversity.
The remaining individuals are used in the local search to seek more favorable solutions.

This study proposed two similarity measurement mechanisms, both of which use the
Gbest position as the measurement criterion and measure its similarity with other individuals.

• Similarity 1: This method measured the Euclidean distance between an individual and
Gbest to determine their level of similarity. The mean level of similarity (AvgSimilarity)
is the threshold value; individuals with levels of similarity lower than this value are
defined as being similar to the Gbest position. The equation is presented as follows:

Similarity1 =
NP

∑
i=1

D

∑
j=1

√(
Gbestj − Xi,j

)2 (10)

AvgSimilarity1 =
Similarity1

NP
(11)

where variable NP is the total number of individuals, D represents dimensions, Gbestj
is the Gbest position, and Xi,j represents individual j.

• Similarity 2: Based on the Dice coefficient [23], feeder slots loaded with components are
presented in sets to obtain a set-similarity metric function. The equation is presented
as follows:

Similarity2 =
2{X ∩Y}
{X}+ {Y} (12)

where {X} represents set X, {Y} represents set Y, and {X ∩Y} is the intersection of sets
X and Y.

As presented in Figure 15, it is assumed that 20 feeder slots are allocated for 10 com-
ponents and that only feeder slots to which components have been allocated are counted.
This example used the first 10 dimensions as the reference for sets. The set of Gbest position
was {11, 3, 5, 6, 20, 12, 14, 1, 10, 2}, the set of Individual 1 was {1, 2, 8, 12, 10, 11, 6, 5, 14,
3}, and the set of Individual 2 was {5, 18, 19, 1, 7, 6, 9, 13, 12, 3}. Those with red grids
denote the intersections between them; specifically, |Gbest ∩ individual1| = {1, 2, 3, 5, 6, 11,
12, 14}, and |Gbest ∩ individual2| = {1, 3, 5, 6}. The results of the set metric function on
levels of similarity revealed that the similarity of Individual 1 with Gbest was 80%, and the
similarity of Individual 2 with Gbest was 40%.

Mathematics 2021, 9, 2016 14 of 22

This study proposed two similarity measurement mechanisms, both of which use the 𝐺𝑏𝑒𝑠𝑡 position as the measurement criterion and measure its similarity with other indi-
viduals.
• Similarity 1: This method measured the Euclidean distance between an individual

and 𝐺𝑏𝑒𝑠𝑡 to determine their level of similarity. The mean level of similarity
(𝐴𝑣𝑔ௌ௜௠௜௟௔௥௜௧௬) is the threshold value; individuals with levels of similarity lower than
this value are defined as being similar to the 𝐺𝑏𝑒𝑠𝑡 position. The equation is pre-
sented as follows:

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦1 = ෍ ෍ ට൫𝐺𝑏𝑒𝑠𝑡௝ െ 𝑋௜,௝൯ଶ஽
௝ୀଵ

ே௉
௜ୀଵ (10)

𝐴𝑣𝑔ௌ௜௠௜௟௔௥௜௧௬ଵ = 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦1𝑁𝑃 (11)

where variable NP is the total number of individuals, D represents dimensions, 𝐺𝑏𝑒𝑠𝑡௝ is
the 𝐺𝑏𝑒𝑠𝑡 position, and 𝑋௜,௝ represents individual j.
• Similarity 2: Based on the Dice coefficient [23], feeder slots loaded with components

are presented in sets to obtain a set-similarity metric function. The equation is pre-
sented as follows: 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦2 = 2ሼ𝑋 ∩ 𝑌ሽሼ𝑋ሽ ൅ ሼ𝑌ሽ (12)

where {X} represents set X, {Y} represents set Y, and ሼ𝑋 ∩ 𝑌ሽ is the intersection of sets X
and Y.

As presented in Figure 15, it is assumed that 20 feeder slots are allocated for 10 com-
ponents and that only feeder slots to which components have been allocated are counted.
This example used the first 10 dimensions as the reference for sets. The set of 𝐺𝑏𝑒𝑠𝑡 posi-
tion was {11, 3, 5, 6, 20, 12, 14, 1, 10, 2}, the set of Individual 1 was {1, 2, 8, 12, 10, 11, 6, 5,
14, 3}, and the set of Individual 2 was {5, 18, 19, 1, 7, 6, 9, 13, 12, 3}. Those with red grids
denote the intersections between them; specifically, |𝐺𝑏𝑒𝑠𝑡 ∩ 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙1| = {1, 2, 3, 5, 6,
11, 12, 14}, and |𝐺𝑏𝑒𝑠𝑡 ∩ 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙2| = {1, 3, 5, 6}. The results of the set metric function
on levels of similarity revealed that the similarity of Individual 1 with 𝐺𝑏𝑒𝑠𝑡 was 80%,
and the similarity of Individual 2 with 𝐺𝑏𝑒𝑠𝑡 was 40%.

Figure 15. Set similarity metric function.

4.4. Determining Placing Sequence Using the Nearest-Neighbor Search and 2-Opt Method
Some heuristics have been studied for solving component-to-feeder assignment and

component placing sequence problem. Heuristics such as nearest-neighbor search, nearest
insertion, furthest insertion, and random generation were used to initialize a placing se-

Figure 15. Set similarity metric function.

4.4. Determining Placing Sequence Using the Nearest-Neighbor Search and 2-Opt Method

Some heuristics have been studied for solving component-to-feeder assignment and
component placing sequence problem. Heuristics such as nearest-neighbor search, nearest
insertion, furthest insertion, and random generation were used to initialize a placing
sequence. On the other hand, methods such as 2-opt, 3-opt, and Or-opt were used to

Mathematics 2021, 9, 2016 15 of 22

improve the initial placing sequence [24]. There are many other mathematical optimization
approaches for solving the placing sequence problem; however, providing a fast and
simple algorithm is better for industrial implementation. Therefore, in this study, a nearest-
neighbor search was applied to determine the shortest route for placement; subsequently,
the placing routes were shortened by using the 2-opt method. Firstly, component 1 is
placed by calculating the distance between the feeder slot and the first placing position.
Then, the distance between the first placing position and the second placing position is
calculated for component 2. Continue the above steps for all components that need to be
placed on a cycle.

The shortest route between a feeder slot and the first component placing position of
each cycle is determined independently because each component can be placed in more
than one position. We used an example to illustrate how to determine the first placing
position. As presented in Figure 16, it is assumed that the first component can be placed
in one of the six possible positions, A, B, C, D, E, or F. Using the Euclidean distance to
calculate the nearest position from the feeder slot revealed that A is the nearest position,
that is, the first component placing position.

Mathematics 2021, 9, 2016 15 of 22

quence. On the other hand, methods such as 2-opt, 3-opt, and Or-opt were used to im-
prove the initial placing sequence [24]. There are many other mathematical optimization
approaches for solving the placing sequence problem; however, providing a fast and sim-
ple algorithm is better for industrial implementation. Therefore, in this study, a nearest-
neighbor search was applied to determine the shortest route for placement; subsequently,
the placing routes were shortened by using the 2-opt method. Firstly, component 1 is
placed by calculating the distance between the feeder slot and the first placing position.
Then, the distance between the first placing position and the second placing position is
calculated for component 2. Continue the above steps for all components that need to be
placed on a cycle.

The shortest route between a feeder slot and the first component placing position of
each cycle is determined independently because each component can be placed in more
than one position. We used an example to illustrate how to determine the first placing
position. As presented in Figure 16, it is assumed that the first component can be placed
in one of the six possible positions, A, B, C, D, E, or F. Using the Euclidean distance to
calculate the nearest position from the feeder slot revealed that A is the nearest position,
that is, the first component placing position.

Figure 16. Feeder slot and the first component.

Based on the first component placing position, the nearest-neighbor search approach
was used to identify the second component placing position, until the placing sequences
of all components were determined in Figure 17. Figure 17a shows that the possible sec-
ond component placing positions are S1–S6, and the nearest distance from the first com-
ponent placing position A is S2. Therefore, S2 in Figure 17a is selected as the second plac-
ing position B. Figure 17b shows that the possible third component placing positions are
S1–S6, and the nearest distance from the first component placing position B is S1. There-
fore, S1 in Figure 17b is selected as the second placing position C. Continue the selecting
process until all the placing positions are determined (Figure 17c–f).

After all placing sequences were obtained, the 2-opt method was used to optimize
the route for these placing sequences of all cycles. As presented in Figure 18, the sequence
on the top is ABCDEF, which was changed to the sequence on the bottom, ACBDEF, by
changing the order of placing sequences C and B.

Figure 16. Feeder slot and the first component.

Based on the first component placing position, the nearest-neighbor search approach
was used to identify the second component placing position, until the placing sequences of
all components were determined in Figure 17. Figure 17a shows that the possible second
component placing positions are S1–S6, and the nearest distance from the first component
placing position A is S2. Therefore, S2 in Figure 17a is selected as the second placing
position B. Figure 17b shows that the possible third component placing positions are S1–S6,
and the nearest distance from the first component placing position B is S1. Therefore, S1 in
Figure 17b is selected as the second placing position C. Continue the selecting process until
all the placing positions are determined (Figure 17c–f).

After all placing sequences were obtained, the 2-opt method was used to optimize
the route for these placing sequences of all cycles. As presented in Figure 18, the sequence
on the top is ABCDEF, which was changed to the sequence on the bottom, ACBDEF, by
changing the order of placing sequences C and B.

Mathematics 2021, 9, 2016 16 of 22
Mathematics 2021, 9, 2016 16 of 22

Figure 17. The steps of NNS method: (a) the first component placing position A with other possible
second component placing positions S1-S6; (b) B is selected for the nearest distance from A as a
second component placing position; (c)-(f) Continue the selecting process until all the placing posi-
tions are determined.

Figure 18. The 2-opt method.

5. Experimental Results
To verify that the proposed methods are able to reduce the number of picks and

shorten the assembly time, this study experimented on 10 PCBs with different numbers
and types of components and examined the results. The description of the practical PCBs
is presented in Table 3, and according to the literature reviews [1–9], three well-known
algorithms including DE, PSO, and GA are compared with the proposed MDE algorithm
under the same conditions, and the experimental results are presented in Tables 4–8. The
parameter NP was 30, iteration time was 1000, CR was 0.8, and scaling factor was 0.9.
Equation (6) was used for mutation calculation.

Tables 4 and 6 compare the number of picks and moving distance of gantries during
their component picking processes, respectively. Those two tables are mainly used to eval-
uate the feeder arrangement and picking sequence using the proposed MDE algorithm

Figure 17. The steps of NNS method: (a) the first component placing position A with other possible
second component placing positions S1-S6; (b) B is selected for the nearest distance from A as a
second component placing position; (c–f) Continue the selecting process until all the placing positions
are determined.

Mathematics 2021, 9, 2016 16 of 22

Figure 17. The steps of NNS method: (a) the first component placing position A with other possible
second component placing positions S1-S6; (b) B is selected for the nearest distance from A as a
second component placing position; (c)-(f) Continue the selecting process until all the placing posi-
tions are determined.

Figure 18. The 2-opt method.

5. Experimental Results
To verify that the proposed methods are able to reduce the number of picks and

shorten the assembly time, this study experimented on 10 PCBs with different numbers
and types of components and examined the results. The description of the practical PCBs
is presented in Table 3, and according to the literature reviews [1–9], three well-known
algorithms including DE, PSO, and GA are compared with the proposed MDE algorithm
under the same conditions, and the experimental results are presented in Tables 4–8. The
parameter NP was 30, iteration time was 1000, CR was 0.8, and scaling factor was 0.9.
Equation (6) was used for mutation calculation.

Tables 4 and 6 compare the number of picks and moving distance of gantries during
their component picking processes, respectively. Those two tables are mainly used to eval-
uate the feeder arrangement and picking sequence using the proposed MDE algorithm

Figure 18. The 2-opt method.

5. Experimental Results

To verify that the proposed methods are able to reduce the number of picks and
shorten the assembly time, this study experimented on 10 PCBs with different numbers
and types of components and examined the results. The description of the practical PCBs
is presented in Table 3, and according to the literature reviews [1–9], three well-known
algorithms including DE, PSO, and GA are compared with the proposed MDE algorithm
under the same conditions, and the experimental results are presented in Tables 4–8. The
parameter NP was 30, iteration time was 1000, CR was 0.8, and scaling factor was 0.9.
Equation (6) was used for mutation calculation.

Mathematics 2021, 9, 2016 17 of 22

Table 3. PCB information.

PCB Number of
Components Component Types Nozzle Types

PCB-1 322 17 5

PCB-2 396 14 4

PCB-3 532 14 4

PCB-4 586 16 3

PCB-5 614 17 2

PCB-6 638 18 4

PCB-7 682 19 5

PCB-8 696 17 5

PCB-9 720 15 3

PCB-10 796 17 2

Table 4. Number of picks.

Methods
MDE

DE PSO GA
Similarity1 Similarity2

Gantry 1 2 1 2 1 2 1 2 1 2

PCB-1 44 61 51 68 62 70 67 75 64 77

PCB-2 47 70 52 64 67 89 89 96 82 87

PCB-3 93 91 92 92 98 94 100 108 96 119

PCB-4 85 73 83 74 103 96 113 90 116 117

PCB-5 106 100 99 100 118 114 119 116 128 124

PCB-6 92 93 95 93 100 107 128 113 127 129

PCB-7 121 128 132 129 142 154 126 159 172 157

PCB-8 108 112 109 117 134 120 130 151 142 151

PCB-9 93 109 94 107 127 117 134 122 129 132

PCB-10 119 124 119 122 141 151 154 137 155 155

Average 90.8 96.1 92.6 96.6 109.2 111.2 116 116.7 121.1 124.8

Tables 4 and 6 compare the number of picks and moving distance of gantries during
their component picking processes, respectively. Those two tables are mainly used to
evaluate the feeder arrangement and picking sequence using the proposed MDE algorithm
and other algorithms. Table 7 describes the assembly time for each PCB, which is focusing
on assessing the performance of placing sequence using the NNS and 2-opt method.

According to Table 4 and Figure 19, MDE is better than DE, DE is better than PSO, and
PSO is better than GA. The experimental results can be discussed in light of [25], where
the solutions of GA are ranked based on the fitness values and the offspring solutions
produced by crossover are more likely to be similar to the parents. In the other words, it
is often found that GA operators cannot produce all potential solutions. For PSO, a new
swarm of particles is generated via the velocity and position update equations, ensuring
that all new particles can be very different than the old ones. Based on this observation,
PSO could generate any potential values within the solution space. Since the best particle
in the swarm is able to influence all the remaining solutions, this might lead to premature
convergence of the population toward a particular solution. Similar to PSO, DE is also
based on floating-point arithmetic; however, the diversification of DE is better because
the best solution does not influence the other solutions. Moreover, the mutant vector is a
solution that is not from the original population.

Mathematics 2021, 9, 2016 18 of 22

Nevertheless, to remedy the drawback of the tendency of those three algorithms to
rapidly converge, a very frequently used alternative is to keep the global best particle
and regenerate all or part of the remaining particles. In this study, the MDE algorithm,
which removes populations with high similarity to retain the diversity of the solutions, is
presented and the experimental results demonstrate considerably fewer average number
of picks than conventional DE, PSO, and GA conducted by Gantry_1 and Gantry_2.

In Figure 19, compared with those three algorithms, the MDE algorithm is able to
jump off the local optimal solution with less generations, which may be the reason the
two similarity measurement mechanisms are used. In addition, the MDE with Euclidean
distance similarity method can converge faster than the similarity method using the Dice co-
efficient; however, their final results of average number of picks are almost the same. From
those experimental results, the MDE algorithm is shown to be the highest performance in
feeder arrangement compared with DE, PSO, and GA. Moreover, Table 5 demonstrates the
difference of number of picks using MDE in comparison with those of three well-known
algorithms. A gantry can reduce at most 30% of the number of picks while using the MDE
algorithm which meets the company’s needs, which provided the practical PCB data in
this experiment; however, according to no free lunch theorem [26] once the number of
components increased in each PCBs (>1000) or the types of components vary (>30), the
training time of MDE might increase, which results in time-consuming manufacturing.

Mathematics 2021, 9, 2016 18 of 22

In Figure 19, compared with those three algorithms, the MDE algorithm is able to
jump off the local optimal solution with less generations, which may be the reason the two
similarity measurement mechanisms are used. In addition, the MDE with Euclidean dis-
tance similarity method can converge faster than the similarity method using the Dice
coefficient; however, their final results of average number of picks are almost the same.
From those experimental results, the MDE algorithm is shown to be the highest perfor-
mance in feeder arrangement compared with DE, PSO, and GA. Moreover, Table 5
demonstrates the difference of number of picks using MDE in comparison with those of
three well-known algorithms. A gantry can reduce at most 30% of the number of picks
while using the MDE algorithm which meets the company’s needs, which provided the
practical PCB data in this experiment; however, according to no free lunch theorem [26]
once the number of components increased in each PCBs (>1000) or the types of compo-
nents vary (>30), the training time of MDE might increase, which results in time-consum-
ing manufacturing.

Figure 19. Learning curve regarding the number of picks.

Table 5. The difference of the number of picks.

 DE PSO GA
Gantry 1 2 1 2 1 2

MDE Similarity1 −20.3% −15.7% −27.7% −21.4% −33.4% −30.0%
MDE Similarity2 −18.0% −15.1% −25.2% −20.8% −25.3% −29.2%

Table 6 displayed that the moving distances of two gantries for the picking process
were decreased with the proposed MDE algorithm. From Tables 4 and 6, the results reveal
that in comparison to other evolutionary algorithms, the MDE algorithm provides a
proper feeder arrangement which is able to reduce the number of picks and also reduce
the gantries’ moving distances.

Table 7 presents the total picking-and-placing assembly time required for each of the
10 PCBs. A combination of NNS and 2-opt method is primarily involved in components
placing operation. The total assembly time was calculated using Equation (6), which in-
volved comparing the time required by the two gantries to finish their tasks. Figure 20
depicts the assembly of PCB-1 using Similarity 1 in the MDE algorithm as the example.
When Gantry_1 was placing components and Gantry_2 was picking components, the
longer time required between the two simultaneous operations was used in the calcula-
tion. Similarly, when Gantry_1 was picking components and Gantry_2 was placing com-
ponents, as shown in Figure 21, only the longer time required between the two simulta-
neous operations was used in the calculation. Finally, the sum of the time represented the

Figure 19. Learning curve regarding the number of picks.

Table 5. The difference of the number of picks.

DE PSO GA

Gantry 1 2 1 2 1 2

MDE Similarity1 −20.3% −15.7% −27.7% −21.4% −33.4% −30.0%

MDE Similarity2 −18.0% −15.1% −25.2% −20.8% −25.3% −29.2%

Table 6 displayed that the moving distances of two gantries for the picking process
were decreased with the proposed MDE algorithm. From Tables 4 and 6, the results reveal
that in comparison to other evolutionary algorithms, the MDE algorithm provides a proper
feeder arrangement which is able to reduce the number of picks and also reduce the
gantries’ moving distances.

Mathematics 2021, 9, 2016 19 of 22

Table 7 presents the total picking-and-placing assembly time required for each of the
10 PCBs. A combination of NNS and 2-opt method is primarily involved in components
placing operation. The total assembly time was calculated using Equation (6), which
involved comparing the time required by the two gantries to finish their tasks. Figure 20
depicts the assembly of PCB-1 using Similarity 1 in the MDE algorithm as the example.
When Gantry_1 was placing components and Gantry_2 was picking components, the
longer time required between the two simultaneous operations was used in the calculation.
Similarly, when Gantry_1 was picking components and Gantry_2 was placing components,
as shown in Figure 21, only the longer time required between the two simultaneous
operations was used in the calculation. Finally, the sum of the time represented the total
assembly time, as presented in Figure 22. The proposed methods required less assembly
time for PCBs tested as shown numerically in Table 7 and graphically in Figure 23. Table 8
demonstrates the difference of assembly time for each PCB using the MDE in comparison
with those of the three well-known algorithms. The assembly time is decreased at most by
13% using the proposed method.

Table 6. Moving distance for picking.

PCB
Methods PCB-1 PCB-2 PCB-3 PCB-4 PCB-5 PCB-6 PCB-7 PCB-8 PCB-9 PCB-10 Average

Gantry_1 5535.9 6386.0 14,393.6 13,189.3 7890.4 5687.5 14,087.7 5921.0 14,087.7 8882.6 9606.2MDE
Similarity 1 Gantry_2 22,098.5 24,283.0 35,681.5 38,810.7 45,165.2 53,235.6 52,695.1 49,152.5 52,695.1 51,267.8 42,508.5

Gantry_1 8996.7 6243.4 8045.6 4909.0 27,345.5 14,804.7 14,339.6 15,061.7 14,339.6 12,437.5 12,652.3MDE
Similarity 2 Gantry_2 28,887.4 24,629.2 36,614.3 38,195.4 45,436.8 43,432.9 52,207.5 58,298.6 52,207.5 52,018.6 43,192.8

Gantry_1 17,300.6 8164.9 17,093.5 18,870.2 16,074.5 20,976.4 29,878.2 16,623.0 29,878.2 22,145.1 19,700.5
DE Gantry_2 30,402.3 29,038.3 47,589.3 49,700.0 73,724.1 61,888.1 48,086.1 60,670.6 48,086.1 65,426.5 51,461.1

Gantry_1 20,085.0 46,903.4 14,901.8 19,732.4 50,936.9 56,762.9 30,744.5 76,028.7 30,744.5 62,205.5 40,904.6
PSO Gantry_2 26,791.4 65,493.1 68,364.6 44,386.8 56,528.2 51,164.0 52,767.6 75,556.7 52,767.6 61,737.6 55,555.8

Gantry_1 15,732.5 31,684.0 21,321.1 55,354.4 55,776.3 76,430.6 25,093.5 26,523.6 25,093.5 26,929.9 35,993.9
GA Gantry_2 34,702.8 27,899.8 66,586.1 22,457.9 52,666.3 37,960.3 48,536.2 72,913.3 48,536.2 63,998.6 47,625.8

Table 7. Assembly time for each PCB.

Methods
PCB

MDE
DE PSO GA

Similarity1 Similarity2

PCB-1 194.1 193.5 211.4 197.5 212.8

PCB-2 277.3 282.8 301.9 324.8 297.2

PCB-3 184.6 179.3 194.7 227.9 233.2

PCB-4 233.8 222.3 242.0 245.7 250.0

PCB-5 287.8 294.3 312.1 321.4 313.6

PCB-6 274.0 284.0 288.3 314.4 313.7

PCB-7 318.5 304.2 373.2 343.3 352.6

PCB-8 245.5 267.4 284.6 284.0 282.1

PCB-9 350.5 349.4 387.1 409.6 361.8

PCB-10 296.5 305.0 329.0 340.6 308.6

Average 266.26 268.22 292.43 300.92 292.56

Table 8. The difference of assembly time for each PCB.

DE PSO GA

MDE Similarity1 −9.8% −13.0% −9.8%

MDE Similarity2 −9.0% −12.2% −9.1%

Mathematics 2021, 9, 2016 20 of 22

Mathematics 2021, 9, 2016 19 of 22

total assembly time, as presented in Figure 22. The proposed methods required less as-
sembly time for PCBs tested as shown numerically in Table 7 and graphically in Figure
23. Table 8 demonstrates the difference of assembly time for each PCB using the MDE in
comparison with those of the three well-known algorithms. The assembly time is de-
creased at most by 13% using the proposed method.

Table 6. Moving distance for picking.

PCB
Methods PCB-1 PCB-2 PCB-3 PCB-4 PCB-5 PCB-6 PCB-7 PCB-8 PCB-9 PCB-10 Average

MDE
Similarity 1

Gantry_1 5535.9 6386.0 14,393.6 13,189.3 7890.4 5687.5 14,087.7 5921.0 14,087.7 8882.6 9606.2
Gantry_2 22,098.5 24,283.0 35,681.5 38,810.7 45,165.2 53,235.6 52,695.1 49,152.5 52,695.1 51,267.8 42,508.5

MDE
Similarity 2

Gantry_1 8996.7 6243.4 8045.6 4909.0 27,345.5 14,804.7 14,339.6 15,061.7 14,339.6 12,437.5 12,652.3
Gantry_2 28,887.4 24,629.2 36,614.3 38,195.4 45,436.8 43,432.9 52,207.5 58,298.6 52,207.5 52,018.6 43,192.8

DE
Gantry_1 17,300.6 8164.9 17,093.5 18,870.2 16,074.5 20,976.4 29,878.2 16,623.0 29,878.2 22,145.1 19,700.5
Gantry_2 30,402.3 29,038.3 47,589.3 49,700.0 73,724.1 61,888.1 48,086.1 60,670.6 48,086.1 65,426.5 51,461.1

PSO
Gantry_1 20,085.0 46,903.4 14,901.8 19,732.4 50,936.9 56,762.9 30,744.5 76,028.7 30,744.5 62,205.5 40,904.6
Gantry_2 26,791.4 65,493.1 68,364.6 44,386.8 56,528.2 51,164.0 52,767.6 75,556.7 52,767.6 61,737.6 55,555.8

GA
Gantry_1 15,732.5 31,684.0 21,321.1 55,354.4 55,776.3 76,430.6 25,093.5 26,523.6 25,093.5 26,929.9 35,993.9
Gantry_2 34,702.8 27,899.8 66,586.1 22,457.9 52,666.3 37,960.3 48,536.2 72,913.3 48,536.2 63,998.6 47,625.8

Figure 20. Gantry_1 is placing, and Gantry_2 is picking components.

Figure 20. Gantry_1 is placing, and Gantry_2 is picking components.

Mathematics 2021, 9, 2016 20 of 22

Figure 21. Gantry_1 is picking, and Gantry_2 is placing components.

Figure 22. Total assembly time.

Table 7. Assembly time for each PCB.

Methods
PCB

MDE
DE PSO GA

Similarity1 Similarity2
PCB-1 194.1 193.5 211.4 197.5 212.8
PCB-2 277.3 282.8 301.9 324.8 297.2
PCB-3 184.6 179.3 194.7 227.9 233.2
PCB-4 233.8 222.3 242.0 245.7 250.0
PCB-5 287.8 294.3 312.1 321.4 313.6
PCB-6 274.0 284.0 288.3 314.4 313.7
PCB-7 318.5 304.2 373.2 343.3 352.6
PCB-8 245.5 267.4 284.6 284.0 282.1
PCB-9 350.5 349.4 387.1 409.6 361.8

PCB-10 296.5 305.0 329.0 340.6 308.6
Average 266.26 268.22 292.43 300.92 292.56

Figure 21. Gantry_1 is picking, and Gantry_2 is placing components.

Mathematics 2021, 9, 2016 20 of 22

Figure 21. Gantry_1 is picking, and Gantry_2 is placing components.

Figure 22. Total assembly time.

Table 7. Assembly time for each PCB.

Methods
PCB

MDE
DE PSO GA

Similarity1 Similarity2
PCB-1 194.1 193.5 211.4 197.5 212.8
PCB-2 277.3 282.8 301.9 324.8 297.2
PCB-3 184.6 179.3 194.7 227.9 233.2
PCB-4 233.8 222.3 242.0 245.7 250.0
PCB-5 287.8 294.3 312.1 321.4 313.6
PCB-6 274.0 284.0 288.3 314.4 313.7
PCB-7 318.5 304.2 373.2 343.3 352.6
PCB-8 245.5 267.4 284.6 284.0 282.1
PCB-9 350.5 349.4 387.1 409.6 361.8

PCB-10 296.5 305.0 329.0 340.6 308.6
Average 266.26 268.22 292.43 300.92 292.56

Figure 22. Total assembly time.

Mathematics 2021, 9, 2016 21 of 22

Mathematics 2021, 9, 2016 21 of 22

Table 8. The difference of assembly time for each PCB.

 DE PSO GA
MDE Similarity1 −9.8% −13.0% −9.8%
MDE Similarity2 −9.0% −12.2% −9.1%

Figure 23. Bar chart of assembly times for each PCB.

6. Conclusions
This study focuses on the component allocation and feeder arrangement for dual-

gantry multi-head SMP machines and solves related scheduling problems using four ap-
proaches. The component allocation problem was solved using a workload equalizing ap-
proach, which equalized component allocation to the two gantries. The ANC assignment
problem was solved using quantity ratio method to determine the required number for
each type of nozzle to be installed at each ANC. Moreover, the proposed MDE algorithm
identifying the picking sequence that gave the least number of picks was applied for the
feeder arrangement. The nearest-neighbor search method was used for deriving initial
solutions, and then the 2-opt method was applied to improve the tentative placement
routes. Experimental results show that the number of picks, moving distance of picking
components, and total assembly time with the proposed MDE algorithm are less than
those from DE, PSO, and GA algorithms. This study provides a reference for SMP sched-
uling in PCB industry.

Practically, there are many types of components placed in a PCB, and sometimes the
components are not equal in equal size. Larger component size occupies two head spaces,
and the adjacent head cannot be used for other components. The restriction of component
shape is not considered in the current study, and this can be conducted in the future work.
Additional experiments are suggested to consider (i) the effect of components on shape
and component orientation, and their impact on picking and placing; and (ii) whether
other optimal algorithms such as modified PSO/GA can be implemented in the future to
obtain comprehensive results and demonstrate whether the proposed MDE algorithm is
superior.

Author Contributions: Conceptualization, C.-J.L.; methodology, C.-J.L. and C.-H.L.; software, C.-
H.L.; data curation, C.-J.L.; writing—original draft preparation, C.-H.L.; writing—review and edit-
ing, C.-J.L.; supervision, C.-J.L.; funding acquisition, C.-J.L. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the Ministry of Science and Technology of the Republic of
China, grant number MOST 109-2218-E-005-002.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Figure 23. Bar chart of assembly times for each PCB.

6. Conclusions

This study focuses on the component allocation and feeder arrangement for dual-
gantry multi-head SMP machines and solves related scheduling problems using four
approaches. The component allocation problem was solved using a workload equalizing
approach, which equalized component allocation to the two gantries. The ANC assignment
problem was solved using quantity ratio method to determine the required number for
each type of nozzle to be installed at each ANC. Moreover, the proposed MDE algorithm
identifying the picking sequence that gave the least number of picks was applied for the
feeder arrangement. The nearest-neighbor search method was used for deriving initial
solutions, and then the 2-opt method was applied to improve the tentative placement
routes. Experimental results show that the number of picks, moving distance of picking
components, and total assembly time with the proposed MDE algorithm are less than those
from DE, PSO, and GA algorithms. This study provides a reference for SMP scheduling in
PCB industry.

Practically, there are many types of components placed in a PCB, and sometimes the
components are not equal in equal size. Larger component size occupies two head spaces,
and the adjacent head cannot be used for other components. The restriction of component
shape is not considered in the current study, and this can be conducted in the future work.
Additional experiments are suggested to consider (i) the effect of components on shape and
component orientation, and their impact on picking and placing; and (ii) whether other
optimal algorithms such as modified PSO/GA can be implemented in the future to obtain
comprehensive results and demonstrate whether the proposed MDE algorithm is superior.

Author Contributions: Conceptualization, C.-J.L.; methodology, C.-J.L. and C.-H.L.; software,
C.-H.L.; data curation, C.-J.L.; writing—original draft preparation, C.-H.L.; writing—review and
editing, C.-J.L.; supervision, C.-J.L.; funding acquisition, C.-J.L. Both authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by the Ministry of Science and Technology of the Republic of
China, grant number MOST 109-2218-E-005-002.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interests regarding the publication of this paper.

References
1. Sun, D.S.; Lee, T.E.; Kim, K.H. Component allocation and feeder arrangement for a dual-gantry multi-head surface mount

placement tool. Int. J. Prod. Econ. 2005, 95, 245–264. [CrossRef]
2. Du, X.; Li, Z. Placement process optimization of dual-gantry turret placement machine. In Proceedings of the 2008 IEEE/ASME

International Conference on Advanced Intelligent Mechatronics, Xi’an, China, 2–5 July 2008; pp. 1266–1271.

http://doi.org/10.1016/j.ijpe.2004.01.003

Mathematics 2021, 9, 2016 22 of 22

3. Ashayeri, J.; Ma, N.; Sotirov, R. An aggregated optimization model for multi-head SMD placements. Comput. Ind. Eng. 2011,
60, 99–105. [CrossRef]

4. Torabi, S.A.; Hamedi, M.; Ashayeri, J. A new optimization approach for nozzle selection and component allocation in multi-head
beam-type SMD placement machines. J. Manuf. Syst. 2013, 32, 700–714. [CrossRef]

5. Zhu, G.-Y.; Zhang, W.-B. An improved Shuffled Frog-leaping Algorithm to optimize component pick-and-place sequencing
optimization problem. Expert Syst. Appl. 2014, 41, 6818–6829. [CrossRef]

6. He, T.; Li, D.; Yoon, S.W. A Hierarchical Restricted Balance Approach for Workload Balance of a Dual-Delivery SMT Placement
Machine. In Proceedings of the IIE Annual Conference, Nashville, TN, USA, 30 May–2 June 2015; pp. 808–817.

7. Li, D.; Yoon, S.W. PCB assembly optimization in a single gantry high-speed rotary-head collect-and-place machine. Int. J. Adv.
Manuf. Technol. 2017, 88, 2819–2834. [CrossRef]

8. He, T.; Li, D.; Yoon, S.W. A multi-phase planning heuristic for a dual-delivery SMT placement machine optimization.
Robot. Comput.-Integr. Manuf. 2017, 47, 85–94. [CrossRef]

9. Huang, Y.; Zhao, L.; Liu, P. Applied Research of Hierarchical Multi-objective Optimization Method in High Speed and High
Precision Placement Machine. J. Phys. Conf. Ser. 2020, 1605, 012029. [CrossRef]

10. Lin, H.Y.; Lin, C.J.; Huang, M.L. Optimization of printed circuit board component placement using an efficient hybrid genetic
Algorithm. Appl. Intell. 2016, 45, 622–637. [CrossRef]

11. He, T.; Li, D.; Yoon, S.W. An adaptive clustering-based genetic algorithm for the dual-gantry pick-and place machine optimization.
Adv. Eng. Inform. 2018, 37, 66–78. [CrossRef]

12. Li, Z.; Yu, X.; Qiu, J.; Gao, H. Cell Division Genetic Algorithm for Component Allocation Optimization in Multi-Functional
Placers. IEEE Trans. Ind. Inform. (Early Access) 2021. [CrossRef]

13. Huang, X.; Li, C.; Chen, H.; An, D. Task scheduling in cloud computing using particle swarm optimization with time varying
inertia weight strategies. Clust. Comput. 2019, 23, 1137–1147. [CrossRef]

14. Hsu, H.P. Solving feeder assignment and component sequencing problems for printed circuit board assembly using particle
swarm optimization. IEEE Trans. Autom. Sci. Eng. 2017, 14, 881–893. [CrossRef]

15. Zhao, H.; Gao, W.; Deng, W.; Sun, M. Study on an Adaptive Co-Evolutionary ACO Algorithm for Complex Optimization
Problems. Symmetry 2018, 10, 104. [CrossRef]

16. Storn, R. On the usage of differential evolution for function optimization. In Proceedings of the Biennial Conference of the North
American Fuzzy Information Processing Society (NAFIPS), Berkeley, CA, USA, 19–22 June 1996; pp. 519–523.

17. Storn, R.; Price, K. Differential evolution—A simple and efficient adaptive scheme for global optimization over continuous spaces.
J. Glob. Optim. 1997, 11, 341–359. [CrossRef]

18. Choi, T.J.; Ahn, C.W. An Improved Differential Evolution Algorithm and Its Application to Large-Scale Artificial Neural Networks.
J. Phys. Conf. Ser. 2017, 806, 012010. [CrossRef]

19. Choi, T.J.; Lee, Y. Asynchronous differential evolution with self- adaptive parameter control for global numerical optimization.
Matec Web Conf. 2018, 189, 03020. [CrossRef]

20. Choi, T.J.; Togelius, J.; Cheong, Y.-G. Advanced Cauchy Mutation for Differential Evolution in Numerical Optimization.
IEEE Access 2020, 8, 8720–8734. [CrossRef]

21. Bean, J.C. Genetic Algorithms and Random Keys for Sequencing and Optimization. INFORMS J. Comput. 1994, 6, 154–160.
[CrossRef]

22. Faria, H.; Resende, M.G.; Ernst, D. A biased random key genetic algorithm applied to the electric distribution network reconfigu-
ration problem. J. Heuristics 2017, 23, 533–550. [CrossRef]

23. Dice, L.R. Measures of the Amount of Ecologic Association Between Species. Ecology 1945, 26, 297–302. [CrossRef]
24. Hsu, H.-P. Printed Circuit Board Assembly Planning for Multi-Head Gantry SMT Machine Using Multi-Swarm and Discrete

Firefly Algorithm. IEEE Access 2020, 9, 1642–1654. [CrossRef]
25. Kachitvichyanukul, V. Comparison of Three Evolutionary Algorithms: GA, PSO, and DE. Ind. Eng. Manag. Syst. 2012, 11, 215–223.

[CrossRef]
26. Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [CrossRef]

http://doi.org/10.1016/j.cie.2010.10.004
http://doi.org/10.1016/j.jmsy.2013.09.005
http://doi.org/10.1016/j.eswa.2014.04.038
http://doi.org/10.1007/s00170-016-8942-4
http://doi.org/10.1016/j.rcim.2016.11.006
http://doi.org/10.1088/1742-6596/1605/1/012029
http://doi.org/10.1007/s10489-016-0775-1
http://doi.org/10.1016/j.aei.2018.04.007
http://doi.org/10.1109/TII.2021.3069459
http://doi.org/10.1007/s10586-019-02983-5
http://doi.org/10.1109/TASE.2016.2622253
http://doi.org/10.3390/sym10040104
http://doi.org/10.1023/A:1008202821328
http://doi.org/10.1088/1742-6596/806/1/012010
http://doi.org/10.1051/matecconf/201818903020
http://doi.org/10.1109/ACCESS.2020.2964222
http://doi.org/10.1287/ijoc.6.2.154
http://doi.org/10.1007/s10732-017-9355-8
http://doi.org/10.2307/1932409
http://doi.org/10.1109/ACCESS.2020.3046495
http://doi.org/10.7232/iems.2012.11.3.215
http://doi.org/10.1109/4235.585893

	Introduction
	Description of the SMP Machine
	Problem Definition
	Problem Description
	Establishment of a Mathematical Model

	Method
	Component Allocation
	ANC Assignment Using a Quantity Ratio Method
	Feeder Arrangement Using the MDE Algorithm
	Determining Placing Sequence Using the Nearest-Neighbor Search and 2-Opt Method

	Experimental Results
	Conclusions
	References

