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1. Introduction

The Riesz fractional partial differential equations (RPDEs) arise in various applications
of practical importance and their numerical solutions have received considerable attentions
in the literature in recent years; see [1–7] and references cited therein. In this article, we aim
to develop a novel numerical scheme to solve linear space RPDEs of second order in time.

There are several numerical methods developed for solving RPDEs. For the space
RPDE problems of first order in time, we would like to mention the works [3,5,7–10],
where the authors developed various numerical schemes that combine finite-difference
and finite-element methods. For the linear space RPDE problems of second order in time,
we propose a space-time bilinear finite element scheme for the numerical approximation.
In the temporal direction, unlike these finite difference schemes in [7,10,11], we develop
a C0-continuous Galerkin linear finite element method to descritize the time derivatives
(cf. [4,12–15]). Since the approximate solution function is a continuous piecewise linear
polynomial in the whole temporal interval, the regularity assumptions on the exact solution
in the error analysis can be relaxed [4,16,17] (see Remark 1 in what follows). In the spatial
direction, we apply the linear finite element method to discretize the space fractional order
derivative. We establish sharp stability estimates for the proposed numerical method (see
Lemma 1). By introducing an unusual interpolation operator Ĩ satisfied by (14) and (15)
(cf. [13,18]), we further derive optimal a-priori error estimates respectively in the L2 norm
and the energy norm (see Theorem 1).

The rest of the paper is organized as follows. In Section 2, we introduce the problem
setup and construct the numerical scheme for our subsequent study. In Section 3, we
establish the stability estimate of the proposed numerical method and derive some related
theoretical results. Applying the technique of dual argument [14,17], we derive the optimal
error estimates in Section 4. The numerical examples demonstrating the promising features
of the approximate method are presented in Section 5. The paper is concluded in Section 6
with some relevant discussions.

Mathematics 2021, 9, 2014. https://doi.org/10.3390/math9162014 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-6789-5927
https://orcid.org/0000-0002-2930-3510
https://doi.org/10.3390/math9162014
https://doi.org/10.3390/math9162014
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9162014
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9162014?type=check_update&version=1


Mathematics 2021, 9, 2014 2 of 14

2. Problem Setup and the Numerical Scheme

Consider the linear space RPDE problem as follows:
ü(x, t) + Kγu(x, t) = f (x, t), t ∈ I = (0, T), x ∈ I = (0, 1),
u(0, t) = 0, u(1, t) = 0, t ∈ I,
u(x, 0) = u0(x), u̇(x, 0) = u1(x), x ∈ I,

(1)

where Kγu(x, t) = −qγ
∂2γu(x, t)

∂|x|2γ , 1/2 < γ ≤ 1, qγ > 0, the Riesz fractional derivative [19,20]
is given as

∂2γw(x)
∂|x|2γ

= − 1
2 cos(γπ)

(
D2γ

L w(x) + D2γ
R w(x)

)
with

Dβ
Lw(x) =

1
Γ(l − β)

dl

dxl

∫ x

0

w(s)
(x− s)β+1−l ds,

Dβ
Rw(x) =

(−1)l

Γ(l − β)

dl

dxl

∫ 1

x

w(s)
(s− x)β+1−l ds,

for l − 1 ≤ β < l with l a positive integer.
Assume that the force f ∈ L2(I× I), and the initial displacement and velocity u0, u1 ∈

Hγ
0 (I). We also set ˙( ) = ( )t = ∂( )/∂t and (̈ ) = ( )tt = ∂2( )/∂t2.

In what follows we shall establish a novel scheme to compute the numerical solution
of problem (1), for this scheme the linear finite elements are used both in spatial and
temporal directions. For positive integers N, L, let 0 = t0 < t1 < · · · < tN = T and
0 = x0 < x1 < · · · < xL = 1 be partitions of I and I, respectively. Denote the temporal
subintervals In = (tn, tn+1) with step-size kn = tn+1 − tn, 0 ≤ n ≤ N − 1, set k =
max{kn; 0 ≤ n ≤ N − 1}. Similarly, we introduce the spatial subintervals Ii = (xi, xi+1)
with step-size hi = xi+1 − xi, 0 ≤ i ≤ L− 1, and h = max{hi; 0 ≤ i ≤ L− 1}. In addition,
define

Sh
0 =

{
w ∈ C(Ī); w|Ii ∈ P1(Ii), 0 ≤ i ≤ L− 1, w(0) = w(1) = 0

}
,

where P1(e) = {w; w is a polynomial of degree ≤ 1 on set e}, and then we obtain the
following bilinear finite element space,

Shk =
{

w(t) : Ī −→ Sh
0 ; w ∈ C( Ī; Sh

0), w|In = an + bnt, an, bn ∈ Sh
0 , 0 ≤ n ≤ N − 1

}
.

In the sequel, we let Sn
hk be the restriction of Shk to In.

To solve problem (1) numerically, the bilinear finite element method can now be
formulated: determine U ∈ Shk satisfying

a(U, w) = F(w) ∀w ∈ Shk (2)
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with

a(U, w) =
∫ T

0

(
(Ü, ẇ) + Bγ(U, ẇ)

)
dt + (U̇0

+, ẇ0
+) +

N−1

∑
n=1

([U̇]n, ẇn
+),

F(w) =
∫ T

0
( f , ẇ)dt + (U̇0

−, ẇ0
+),

(w, χ) =
∫
I

wχ dx,

Bγ(w, χ) =
qγ

2 cos(γπ)

(
(Dγ

L w, Dγ
Rχ) + (Dγ

Rw, Dγ
L χ)

)
,

wn = w(tn) = w(·, tn), ẇn
± = lim

s→0+
ẇ(·, tn ± s), [ẇ]n = ẇn

+ − ẇn
−,

U0 = φ0 = Rhu0, U̇0
− = φ1 = Rhu1,

where the elliptic projection operator [5,17] Rh : Hγ
0 (I) −→ Sh

0 is given by

Bγ(Rhw, χ) = Bγ(w, χ) ∀ χ ∈ Sh
0 , for w ∈ Hγ

0 (I). (3)

The test function ẇ in (2) may be discontinuous at point tn. Therefore if we set ẇ to vanish
outside In, (2) becomes:

{ ∫
In

(
(Ü, ẇ) + Bγ(U, ẇ)

)
dt + ([U̇]n, ẇn

+) =
∫

In
( f , ẇ)dt ∀w ∈ Sn

hk,
U0 = φ0, U̇0

− = φ1
(4)

with 0 ≤ n ≤ N − 1, we deduce easily

U(t) = Un + (t− tn)U̇n+1
− , t ∈ In. (5)

Substituting Equation (5) into the first equation of (4) and taking ẇ to be ψ on In with
ψ ∈ Sh

0 , leads the explicit representation of discrete scheme (2): find {Un}N
n=0 ∈ Sh

0 and
{U̇n
−}N

n=0 ∈ Sh
0 such that

(U̇n+1
− , ψ) + k2

n
2 Bγ(U̇n+1

− , ψ)
= (U̇n

−, ψ)− knBγ(Un, ψ) +
∫

In
( f , ψ)dt ∀ψ ∈ Sh

0 ,
U(t) = Un + (t− tn)U̇n+1

− , t ∈ In,
U0 = φ0, U̇0

− = φ1

(6)

with 0 ≤ n ≤ N − 1. Therefore, we solve the Equation (6) to implement the scheme (2)
in practical calculation. Once Un and U̇n

− are available, we deduce U̇n+1
− by solving the

first equation of (6), then derive the function U on I× In by applying the second equation
of (6), and hence Un+1. In this way, we finally obtain the finite element solution U in
given domain.

3. Stability for the Numerical Method and Some Theoretical Results

From now on, we use the usual symbols for Sobolev spaces [21]. For real r > 0, we
also write ‖ · ‖Hr(I) and ‖ · ‖L2(I) as ‖ · ‖r and ‖ · ‖0, respectively. Let χ : [0, T] −→ S be a
Lebesgue measurable function with Banach space S endowed norm ‖ · ‖S. Denote [22]

Lp(I; S) =
{

χ : Ī −→ S; ‖χ‖Lp(I; S) < ∞
}

, 1 ≤ p ≤ ∞

with ‖χ‖Lp(I; S) =
( ∫

I ‖χ‖
p
S dt

)1/p
, 1 ≤ p < ∞, also the norms can be naturally extended

to p = ∞. For simplicity, let ‖χ‖∞, 0 represent ‖χ‖L∞(I; L2(I)) = ess supt∈ Ī ‖χ‖0. We
also write “≤ C · · · ” as “. · · · ”, where C represents a positive constant independent of
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the functions and parameters involved, which are not necessarily the same at different
occurrences.

Lemma 1. Let U ∈ Shk be the solution of (2) with f = 0, we have the stability results

‖U̇N
−‖2

0 +
N−1

∑
n=0

∥∥[U̇]n
∥∥2

0 + Bγ(UN , UN) = Bγ(φ0, φ0) + ‖φ1‖2
0, (7)

‖U̇‖∞, 0 . ‖φ0‖γ + ‖φ1‖0.

Proof. Setting w = U in (4) and noting the equality 2Bγ(U, U̇) = dBγ(U, U)/dt, we can
conclude (7) by summing in n.

Applying the following coercivity and boundedness of Bγ(·, ·) [2,23],

‖w‖2
γ . Bγ(w, w) ∀w ∈ Hγ

0 (I), (8)

|Bγ(w, χ)| . ‖w‖γ · ‖χ‖γ ∀w, χ ∈ Hγ
0 (I),

and using (7) we deduce that

‖U̇N
−‖2

0 + ‖UN‖2
γ +

N−1

∑
n=0

∥∥[U̇]n
∥∥2

0 . ‖φ0‖2
γ + ‖φ1‖2

0.

Using the above inequality and noting that U̇ is a piecewise constant in the whole temporal
interval I, we obtain

‖U̇‖∞, 0 . ‖φ0‖γ + ‖φ1‖0.

The proof is complete.

Applying Lemma 1, we can easily know that the numerical method (2) for problem
(1) is uniquely solvable.

In the following, we introduce the dual problem of (1) with f = 0, which satisfies
Ÿ(x, t)− qγ

∂2γY(x, t)
∂|x|2γ = 0, t ∈ I, x ∈ I,

Y(0, t) = 0, Y(1, t) = 0, t ∈ I,
Y(x, tN) = y0(x), Ẏ(x, tN) = y1(x), x ∈ I.

(9)

Then we rewrite (9) in the same expression as for (1) by applying the change of
temporal variables t̂ = T − t, and solve this problem numerically by using the method
(2). Hence, using change of temporal variables t = T − t̂ second time, we establish the
approximate method for the problem (9): find Θ ∈ Shk such that{ ∫

In

(
(ẇ, Θ̈) + Bγ(ẇ, Θ)

)
dt + (ẇn+1

− , [Θ̇]n+1) = 0 ∀w ∈ Sn
hk, 0 ≤ n ≤ N − 1,

ΘN = ϕ0, Θ̇N
+ = ϕ1,

(10)

where ϕ0, ϕ1 ∈ Sh
0 are any two functions. By summing (10) with respect to n, we obtain

that
N−1

∑
n=0

∫
In

(
(ẇ, Θ̈) + Bγ(ẇ, Θ)

)
dt +

N−1

∑
n=0

(ẇn+1
− , [Θ̇]n+1) = 0 ∀w ∈ Shk. (11)

Moreover, using Lemma 1 we can estimate

‖Θ̇‖∞, 0 . ‖ϕ0‖γ + ‖ϕ1‖0 (12)

with the function Θ ∈ Shk given by (10).
For the elliptic projection operator Rh given by (3), we need some fundamental results

described as follows.



Mathematics 2021, 9, 2014 5 of 14

Lemma 2 ([2]). For χ ∈ Hγ
0 (I) ∩ Hq(I)(γ ≤ q ≤ 2), there holds the estimate

‖χ− Rhχ‖γ . hq−γ‖χ‖q.

Assumption 1 ([2]). For w solving the following static problem of (1) with f ∈ L2(I),{
Kγw = f , in I,
w = 0, on ∂I,

we have
‖w‖2γ . ‖ f ‖0.

Lemma 3 ([2]). For χ ∈ Hγ
0 (I) ∩ Hq(I)(γ ≤ q ≤ 2), under Assumption 1, the following

estimates hold,

‖χ− Rhχ‖0 . hq‖χ‖q, γ 6= 3/4,

‖χ− Rhχ‖0 . hq−ε‖χ‖q, γ = 3/4, 0 < ε < 1/2.

4. Convergence Analysis for the Numerical Method

In this section, in order to obtain error bounds for the numerical scheme (2), we
suppose the exact solution u of problem (1) satisfies

u ∈ L∞(I; H2γ(I) ∩ Hγ
0 (I)), ü ∈ L1(I; H2γ(I)), (13)

which implies functions u and Kγu are C1-continuous in the temporal direction [22]. which
implies that u and Lαu are C1-continuous in the time direction [22].

Introduce the interpolation Ĩu = ũ ∈P1( Ī) of u, where P1( Ī) is the set of continuous
functions that are first order polynomials on each interval In, i.e.,

P1( Ī) = {v ∈ C( Ī); v is linear on In, 0 ≤ n ≤ N − 1},

interpolation ũ satisfies
ũ(0) = u0, (14)

and
˙̃um
− = u̇(tm) (15)

with 0 ≤ m ≤ N. Using the interpolation definition (14) and (15), for 0 ≤ n ≤ N − 1, we
easily conclude that

ũ(t) = ũ(tn) + (t− tn)u̇(tn+1), t ∈ In, (16)

and then

ũ(t) = u(0) +
n−1

∑
m=0

kmu̇(tm+1) + (t− tn)u̇(tn+1), t ∈ In.

Recalling Taylor’s formula with the integral form of remainder [24], we have

u(tn)− u(tn+1) + knu̇(tn+1) =
∫

In
(s− tn)ü(s)ds =: Rn, 0 ≤ n ≤ N − 1. (17)

Define
εm = ũ(tm)− u(tm), 0 ≤ m ≤ N, (18)

from Equations (16)–(18) we find

εn+1 − εn = Rn, 0 ≤ n ≤ N − 1,
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and therefore

εn+1 =
n

∑
i=0

Ri.

Hence,

|εn+1| ≤
n

∑
i=0

∣∣∣∣∫ ti+1

ti

(s− ti)ü(s)ds
∣∣∣∣ ≤ k

∫ tn+1

0
|ü(s)|ds,

i.e.,

|ũ(tn+1)− u(tn+1)| ≤ k
∫ tn+1

0
|ü(s)|ds, 0 ≤ n ≤ N − 1. (19)

For t ∈ In, 0 ≤ n ≤ N − 1, observing that [24]

u(t) = u(tn) + (t− tn)u̇(tn) +
∫ t

tn
(t− s)ü(s)ds,

we conclude from (16) that∫ tn+1

tn

∣∣ũ(t)− u(t)
∣∣dt =

∫ tn+1

tn

∣∣ũ(tn)− u(tn)− (t− tn)(u̇(tn)− u̇(tn+1))

−
∫ t

tn
(t− s)ü(s)ds

∣∣dt. (20)

With the help of (19), we can estimate∫ tn+1

tn

∣∣ũ(tn)− u(tn)
∣∣dt ≤ kkn

∫ tn

0
|ü(s)|ds.

It is clear that∫ tn+1

tn

∣∣(t− tn)(u̇(tn)− u̇(tn+1))
∣∣dt =

∣∣u̇(tn)− u̇(tn+1)
∣∣ ∫ tn+1

tn
(t− tn)dt

=
1
2

k2
n
∣∣u̇(tn)− u̇(tn+1)

∣∣
≤1

2
k2

n

∫ tn+1

tn
|ü(s)|ds,

and ∫ tn+1

tn

∣∣∣ ∫ t

tn
(t− s)ü(s)ds

∣∣∣dt ≤
∫ tn+1

tn
dt
∫ t

tn
(t− s)|ü(s)|ds

=
∫ tn+1

tn
ds
∫ tn+1

s
(t− s)|ü(s)|dt

=
∫ tn+1

tn

1
2
(tn+1 − s)2|ü(s)|ds

≤1
2

k2
n

∫ tn+1

tn
|ü(s)|ds,

combining the last three estimates with (20) we finally obtain∫ tn+1

tn

∣∣ũ(t)− u(t)
∣∣dt ≤ kkn

∫ tn

0
|ü(s)|ds + k2

n

∫ tn+1

tn
|ü(s)|ds

≤ kkn

∫ tn+1

0
|ü(t)|dt, 0 ≤ n ≤ N − 1. (21)
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For w ∈ Sn
hk, by multiplying (1) by ẇ and by integrating on In, we obtain the

equality [7,20]∫
In

(
(ü, ẇ) + Bγ(u, ẇ)

)
dt =

∫
In
( f , ẇ)dt ∀w ∈ Sn

hk, 0 ≤ n ≤ N − 1.

Denote e = U − u, since u is C1-continuous in the time direction, from (2) we con-
clude that { ∫

In

(
(ë, ẇ) + Bγ(e, ẇ)

)
dt + ([ė]n, ẇn

+) = 0 ∀w ∈ Sn
hk,

e0 = φ0 − u0, ė0
− = φ1 − u1

(22)

with 0 ≤ n ≤ N − 1. We write
e = U − u =: ζ − η

with ζ := U − ĨRhu and η := u− ĨRhu.
We introduce the following essential identity, which is vital to error analysis for

approximate method (2).

Lemma 4. Let u solve (1) and Θ solve (10). Let I denote the identity operator. Under the regularity
assumptions (13) we have

(ζ̇N
− , Θ̇N

+) + Bγ(ζ
N , ΘN) =

N−1

∑
n=0

∫
In

(
(u− Rhu)tt, Θ̇

)
dt +

N−1

∑
n=0

∫
In

(
(I − Ĩ)Kγu, Θ̇

)
dt. (23)

Proof. We replace w with Θ in equation(22) and derive

N−1

∑
n=0

∫
In

Bγ(ζ, Θ̇)dt +
N−1

∑
n=0

( ∫
In
(ζ̈, Θ̇)dt + ([ζ̇]n, Θ̇n

+)
)

=
N−1

∑
n=0

∫
In

Bγ(η, Θ̇)dt +
N−1

∑
n=0

( ∫
In
(η̈, Θ̇)dt + ([η̇]n, Θ̇n

+)
)

. (24)

Now we shall simplify equality (24). From the decomposition η = u− Rhu + (I − Ĩ)Rhu
and (3) we find that [4,7]∫

In
Bγ(η, Θ̇)dt =

∫
In

Bγ

(
(I − Ĩ)Rhu, Θ̇

)
dt

=
∫

In
Bγ

(
(I − Ĩ)u, Θ̇

)
dt

=
∫

In

(
(I − Ĩ)Kγu, Θ̇

)
dt. (25)

Since Θ̇ = Θ̇n+1
− = Θ̇n

+ is constant on In, from (14) and (15) we see that∫
In
(η̈, Θ̇)dt + ([η̇]n, Θ̇n

+) = (η̇n+1
− , Θ̇n+1

− )− (η̇n
−, Θ̇n

+)

=
(
(u−Rhu)t

n+1
− , Θ̇n+1

−
)
−
(
(u−Rhu)t

n
−, Θ̇n

+

)
=
∫

In

(
(u− Rhu)tt, Θ̇

)
dt. (26)
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Therefore, with the aid of (25) and (26) we can rewrite the right side term of equal-
ity (24) as

N−1

∑
n=0

∫
In

Bγ(η, Θ̇)dt +
N−1

∑
n=0

( ∫
In
(η̈, Θ̇)dt + ([η̇]n, Θ̇n

+)
)

=
N−1

∑
n=0

( ∫
In

(
(u− Rhu)tt, Θ̇

)
dt +

∫
In

(
(I − Ĩ)Kγu, Θ̇

)
dt
)

. (27)

Applying integration by parts and observing the equality

dBγ(ζ, Θ)

dt
= Bγ(ζ̇, Θ) + Bγ(ζ, Θ̇),

we have that∫
In

(
(ζ̈, Θ̇) + Bγ(ζ, Θ̇)

)
dt + ([ζ̇]n, Θ̇n

+) =(ζ̇n+1
− , Θ̇n+1

− )− (ζ̇n
−, Θ̇n

+) + Bγ(ζ
n+1, Θn+1)

− Bγ(ζ
n, Θn)−

∫
In

Bγ(ζ̇, Θ)dt.

Summing in n and noting that

ζ0 = U0 − Rhu(0) = 0, ζ̇0
− = U̇0

− − Rhu1 = 0,

we conclude that

N−1

∑
n=0

∫
In

Bγ(ζ, Θ̇)dt +
N−1

∑
n=0

( ∫
In
(ζ̈, Θ̇)dt + ([ζ̇]n, Θ̇n

+)
)

=
N−1

∑
n=0

(
(ζ̇n+1
− , Θ̇n+1

− )− (ζ̇n
−, Θ̇n

+)
)
−

N−1

∑
n=0

∫
In

Bγ(ζ̇, Θ)dt

+ Bγ(ζ
N , ΘN)− Bγ(ζ

0, Θ0)

=
N−1

∑
n=0

(
(ζ̇n+1
− , Θ̇n+1

− )− (ζ̇n+1
− , Θ̇n+1

+ ) + (ζ̇n+1
− , Θ̇n+1

+ )− (ζ̇n
−, Θ̇n

+)
)

−
N−1

∑
n=0

∫
In

Bγ(ζ̇, Θ)dt + Bγ(ζ
N , ΘN)

=−
N−1

∑
n=0

( ∫
In

Bγ(ζ̇, Θ)dt + (ζ̇n+1
− , [Θ̇]n+1)

)
+ (ζ̇N

− , Θ̇N
+) + Bγ(ζ

N , ΘN).

From (11) we have that

N−1

∑
n=0

( ∫
In

Bγ(ζ̇, Θ)dt + (ζ̇n+1
− , [Θ̇]n+1)

)
= 0.

Applying the last two equalities, we express the left side term of equality (24) in
the form

N−1

∑
n=0

∫
In

Bγ(ζ, Θ̇)dt +
N−1

∑
n=0

( ∫
In
(ζ̈, Θ̇)dt + ([ζ̇]n, Θ̇n

+)
)
= (ζ̇N

− , Θ̇N
+) + Bγ(ζ

N , ΘN). (28)

Hence, we obtain the identity (23) by using (24), (27), and (28).
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Theorem 1. Let u and U be the solutions of (1) and (2), respectively. Under Assumption 1, and
assume that u satisfies the regularity conditions that

u ∈ L∞(I; Hq(I) ∩ H2γ(I) ∩ Hγ
0 (I)

)
, ü ∈ L1(I; Hq(I) ∩ H2γ(I)

)
,

γ ≤ q ≤ 2. Then, for n = 1, 2, . . . , N, we have the error estimates

‖u(tn)−Un‖γ . hq−γ‖u‖L∞(I; Hq(I)) + hµ‖ü‖L1(I; Hq(I))

+ h2q−2γ‖ü‖L1(I; Hq(I)) + k‖ü‖L1(I; H2γ(I))

+ k‖ü‖L1(I; Hq(I)), (29)

‖u̇(tn)− U̇n
−‖0 . hµ‖u̇‖L∞(I; Hq(I)) + hµ‖ü‖L1(I; Hq(I))

+ k‖ü‖L1(I; H2γ(I)), (30)

where

µ =

{
q, γ 6= 3/4,
q− ε, γ = 3/4, 0 < ε < 1/2.

Consequently,

max
1≤n≤N

‖u(tn)−Un‖γ . k‖ü‖L1(I; Hq(I)
⋂

H2γ(I)) + hq−γ‖u‖W2,1(I; Hq(I)),

max
1≤n≤N

‖u̇(tn)− U̇n
−‖0 . k‖ü‖L1(I; H2γ(I)) + hµ‖u‖W2,1(I; Hq(I)).

Proof. We only give the proof where n = N; the other cases can be treated analogously. In
(10) we set

ΘN = ϕ0 = ζN , Θ̇N
+ = ϕ1 = 0,

applying (8), Lemma 4, (12), Lemma 3 and the interpolation error estimate (21), we de-
duce that

‖ζN‖2
γ .Bγ(ζ

N , ζN)

.
N−1

∑
n=0

( ∫
In

(
(u− Rhu)tt, Θ̇)dt +

∫
In

(
(I − Ĩ)Kγu, Θ̇

)
dt
)

.
N−1

∑
n=0

( ∫
In
‖(I − Rh)ü‖0 dt · ‖Θ̇‖∞,0 +

∫
In
‖(I − Ĩ)Kγu‖0 dt · ‖Θ̇‖∞,0

)
.

N−1

∑
n=0

( ∫
In
‖(I − Rh)ü‖0 dt · ‖ζN‖γ +

∫
In
‖(I − Ĩ)Kγu‖0 dt · ‖ζN‖γ

)
.
(
hµ
∫ T

0
‖ü‖q dt + k

∫ T

0
‖ü‖2γ dt

)
· ‖ζN‖γ;

consequently,

‖ζN‖γ . hµ
∫

I
‖ü‖q dt + k

∫
I
‖ü‖2γ dt. (31)

Using Lemma 2, the triangle inequality and (19), we can estimate

‖ηN‖γ = ‖u(tN)− ĨRhu(tN)‖γ ≤ ‖u(tN)− Ĩu(tN)‖γ + ‖(I − Rh)Ĩu(tN)‖γ,

‖u(tN)− Ĩu(tN)‖γ . k‖ü‖L1(I; Hγ(I)),
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‖(I − Rh)Ĩu(tN)‖γ .hq−γ‖Ĩu(tN)‖q

.hq−γ
(
‖Ĩu(tN)− u(tN)‖q + ‖u(tN)‖q

)
.hq−γ

(
k‖ü‖L1(I; Hq(I)) + ‖u‖L∞(I; Hq(I))

)
.h2q−2γ‖ü‖L1(I; Hq(I)) + k2‖ü‖L1(I; Hq(I))

+ hq−γ‖u‖L∞(I; Hq(I)).

Summing up the last three estimates we find that

‖ηN‖γ .h2q−2γ‖ü‖L1(I; Hq(I))

+ k‖ü‖L1(I; Hq(I)) + hq−γ‖u‖L∞(I; Hq(I)). (32)

Thus, the desired result (29) follows from (31) and (32) with the aid of the triangle inequality.
Again, we choose

ΘN = ϕ0 = 0, Θ̇N
+ = ϕ1 = ζ̇N

−

in (10), and then conclude the following estimate analogously

‖ζ̇N
−‖0 . hµ

∫
I
‖ü‖q dt + k

∫
I
‖ü‖2γ dt.

Now the statement of (30) follows from the above inequality and

‖η̇N
−‖0 = ‖(u− Rhu)t(tN)‖0 . hµ‖u̇(tN)‖q . hµ‖u̇‖L∞(I; Hq(I)).

Remark 1. For the computational scheme in [8], the convergence analysis requires uttt ∈ L∞(I; H2(I))
if the linear finite element is applied in the spatial direction. Moreover, for the numerical method
in [4], the error estimate requires uttt ∈ L1(I; H2γ(I)). Hence, in the temporal direction the
regularity assumes for the exact solution that u is relaxed in convergence analysis for the present
numerical scheme (2).

5. Numerical Tests

In order to assess the numerical scheme (2), we display some numerical experiments.
Solve the Equation (1), equipped with u0(x) = x2(1− x)2, u1(x) = −u0(x), qγ = 1, and

f (x, t) =e−tx2(1− x)2 + e−t(cos(γπ)Γ(5− 2γ))−1
(

12
(
x4−2γ + (1− x)4−2γ

)
+ (3− 2γ)(4− 2γ)

(
x2−2γ + (1− x)2−2γ

)
− 6(4− 2γ)

(
x3−2γ + (1− x)3−2γ

))
,

it is easily verified that u(x, t) = e−tx2(1− x)2 is the exact solution of this problem[4].
Here, we only take T = 1 in our computation. It should be emphasized that since the

constants in our estimates do not depend on time, the method (2) is still valid for a larger
increase in T.

For χ ∈ Hγ
0 (I), since the norms ‖χ‖γ and ‖χ‖∗γ :=

(
‖χ‖2

0 + |(Dγ
L χ, Dγ

Rχ)|
)1/2

are equivalent [2,5], by Theorem 1 we see that the predicted convergence orders for
E0 := ‖u̇(tN)− U̇N

−‖0, E M
0 := max

1≤n≤N
‖u̇(tn)− U̇n

−‖0 are O(h2 + k), and the predicted con-

vergence orders for Eγ := ‖u(tN)−UN‖∗γ, E M
γ := max

1≤n≤N
‖u(tn)−Un‖∗γ are O(h2−γ + k).

For simplicity, we use the numerical scheme (6) to compute this problem with a
uniform partition (hi = h, 0 ≤ i ≤ L − 1, kn = k, 0 ≤ n ≤ N − 1). Nevertheless, it is
emphasised that the method is also effective for the variable step-size implementation.
Tables 1–4 show the error and numerical convergence order in the spatial direction with
k = 1.25× 10−6 for different γ values.
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Table 1. E0 and numerical convergence order in the spatial direction (k = 1.25× 10−6).

h
γ = 0.65 γ = 0.75 γ = 0.95

E0 Order E0 Order E0 Order

1/4 1.3881 × 10−3 — 1.3796 × 10−3 — 1.4203 × 10−3 —
1/8 3.8143 × 10−4 1.86 3.7117 × 10−4 1.89 4.1827 × 10−4 1.76

1/16 9.3676 × 10−5 2.03 9.3304 × 10−5 1.99 1.0920 × 10−4 1.94
1/32 2.2272 × 10−5 2.07 2.2916 × 10−5 2.03 2.6180 × 10−5 2.06
1/64 5.3710 × 10−6 2.05 5.6699 × 10−6 2.02 6.3325 × 10−6 2.05
1/128 1.3740 × 10−6 1.97 1.4689 × 10−6 1.95 1.5211 × 10−6 2.06

Table 2. E M
0 and numerical convergence order in the spatial direction (k = 1.25× 10−6).

h
γ = 0.65 γ = 0.75 γ = 0.95

E M
0 Order E M

0 Order E M
0 Order

1/4 3.7363 × 10−3 — 3.7611 × 10−3 — 4.0312 × 10−3 —
1/8 9.4659 × 10−4 1.98 9.7741 × 10−4 1.94 1.0887 × 10−3 1.89

1/16 2.1899 × 10−4 2.11 2.3402 × 10−4 2.06 2.6899 × 10−4 2.02
1/32 4.9662 × 10−5 2.14 5.4949 × 10−5 2.09 6.5558 × 10−5 2.04
1/64 1.1308 × 10−5 2.14 1.2864 × 10−5 2.09 1.5993 × 10−5 2.04
1/128 2.6163 × 10−6 2.11 3.0285 × 10−6 2.09 3.9158 × 10−6 2.03

Table 3. Eγ and numerical convergence order in the spatial direction (k = 1.25× 10−6).

h
γ = 0.65 γ = 0.75 γ = 0.95

Eγ Order Eγ Order Eγ Order

1/4 5.0989 × 10−3 — 8.3037 × 10−3 — 1.7716 × 10−2 —
1/8 2.0236 × 10−3 1.33 3.6424 × 10−3 1.19 9.3555 × 10−3 0.92

1/16 7.6546 × 10−4 1.40 1.5061 × 10−3 1.27 4.5876 × 10−3 1.03
1/32 2.9152 × 10−4 1.39 6.2189 × 10−4 1.28 2.2180 × 10−3 1.05
1/64 1.1232 × 10−4 1.38 2.5844 × 10−4 1.27 1.0700 × 10−3 1.05
1/128 4.3629 × 10−5 1.36 1.0795 × 10−4 1.26 5.1631 × 10−4 1.05

Table 4. E M
γ and numerical convergence order in the spatial direction (k = 1.25× 10−6).

h
γ = 0.65 γ = 0.75 γ = 0.95

E M
γ Order E M

γ Order E M
γ Order

1/4 1.3868 × 10−2 — 2.2565 × 10−2 — 4.8146 × 10−2 —
1/8 5.5026 × 10−3 1.33 9.8990 × 10−3 1.19 2.5430 × 10−2 0.92

1/16 2.0811 × 10−3 1.40 4.0934 × 10−3 1.27 1.2470 × 10−2 1.03
1/32 7.9248 × 10−4 1.39 1.6904 × 10−3 1.28 6.0291 × 10−3 1.05
1/64 3.0532 × 10−4 1.38 7.0248 × 10−4 1.27 2.9087 × 10−3 1.05
1/128 1.1860 × 10−4 1.36 2.9343 × 10−4 1.26 1.4035 × 10−3 1.05

Tables 5 and 6 show the error E0, E M
0 and numerical convergence order in the tem-

poral direction with h = 1/300 for different γ values. Then we compute the error Eγ, E M
γ

and numerical convergence order in the temporal direction. To decrease the computa-

tional cost (avoid computing with a very small step-size h), we choose h ≈ k
1

2−γ (h fixed,
k = 1/Fix(hγ−2), where Fix is the Floor function, i.e., Fix(x) := max{z ∈ Z : z ≤ x} ).
Tables 7–9 show these numerical results with different γ values. It is clearly seen that these
computational results verify the expected results in Theorem 1.
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Table 5. E0 and numerical convergence order in the temporal direction (h = 1/300).

k
γ = 0.65 γ = 0.75 γ = 0.95

E0 Order E0 Order E0 Order

1/8 2.0429 × 10−3 — 2.3312 × 10−3 — 2.6366 × 10−3 —
1/16 1.0627 × 10−3 0.94 1.2281 × 10−3 0.92 1.4312 × 10−3 0.88
1/32 5.4190 × 10−4 0.97 6.3047 × 10−4 0.96 7.4870 × 10−4 0.93
1/64 2.7368 × 10−4 0.99 3.1952 × 10−4 0.98 3.8336 × 10−4 0.97
1/128 1.3759 × 10−4 0.99 1.6093 × 10−4 0.99 1.9404 × 10−4 0.98
1/256 6.9042 × 10−5 0.99 8.0839 × 10−5 0.99 9.7631 × 10−5 0.99

Table 6. E M
0 and numerical convergence order in the temporal direction (h = 1/300).

k
γ = 0.65 γ = 0.75 γ = 0.95

E M
0 Order E M

0 Order E M
0 Order

1/8 2.0429 × 10−3 — 2.3312 × 10−3 — 2.6995 × 10−3 —
1/16 1.0627 × 10−3 0.94 1.2281 × 10−3 0.92 1.4592 × 10−3 0.88
1/32 5.4190 × 10−4 0.97 6.3047 × 10−4 0.96 7.6097 × 10−4 0.94
1/64 2.7368 × 10−4 0.99 3.1952 × 10−4 0.98 3.8879 × 10−4 0.97
1/128 1.3759 × 10−4 0.99 1.6093 × 10−4 0.99 1.9652 × 10−4 0.98
1/256 6.9042 × 10−5 0.99 8.0839 × 10−5 0.99 9.8809 × 10−5 0.99

Table 7. Eγ, E M
γ and numerical convergence order in the temporal direction (γ = 0.65, h ≈ k

1
2−γ ).

h k Eγ Order E M
γ Order

1/40 1/145 2.2114 × 10−4 — 5.7832 × 10−4 —
1/50 1/196 1.6286 × 10−4 1.02 4.2617 × 10−4 1.01
1/80 1/370 8.5708 × 10−5 1.01 2.2443 × 10−4 1.01

1/100 1/501 6.3246 × 10−5 1.00 1.6564 × 10−4 1.00
1/160 1/945 3.3402 × 10−5 1.01 8.7479 × 10−5 1.01
1/200 1/1277 2.4682 × 10−5 1.00 6.4636 × 10−5 1.01

Table 8. Eγ, E M
γ and numerical convergence order in the temporal direction (γ = 0.75, h ≈ k

1
2−γ ).

h k Eγ Order E M
γ Order

1/40 1/100 4.7272 × 10−4 — 1.2606 × 10−3 —
1/50 1/132 3.5648 × 10−4 1.02 9.5251 × 10−4 1.01
1/80 1/239 1.9703 × 10−4 1.00 5.2793 × 10−4 0.99

1/100 1/316 1.4879 × 10−4 1.01 3.9899 × 10−4 1.00
1/160 1/569 8.2450 × 10−5 1.00 2.2132 × 10−4 1.00
1/200 1/752 6.2320 × 10−5 1.00 1.6733 × 10−4 1.00

Table 9. Eγ, E M
γ and numerical convergence order in the temporal direction (γ = 0.95, h ≈ k

1
2−γ ).

h k Eγ Order E M
γ Order

1/40 1/48 1.7567 × 10−3 — 4.6701 × 10−3 —
1/50 1/60 1.3893 × 10−3 1.05 3.7087 × 10−3 1.03
1/80 1/99 8.4753 × 10−4 0.99 2.2772 × 10−3 0.97

1/100 1/125 6.7030 × 10−4 1.01 1.8048 × 10−3 1.00
1/160 1/206 4.0900 × 10−4 0.99 1.1047 × 10−3 0.98
1/200 1/260 3.2351 × 10−4 1.01 8.7467 × 10−4 1.00
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6. Conclusions

In this paper we proposed a novel numerical scheme to solve the linear space RPDE
problems of second order in time. We applied the linear finite element method to numeri-
cally discretize in both the spatial and temporal directions. The stability and the optimal
a priori error estimates of the newly proposed scheme are proven. Extensive numeri-
cal experiments verified the theoretical results and demonstrated the promising features
of the proposed methods. In future study, we shall apply the numerical method devel-
oped for solving several practically important inverse problems associated with fractional
PDEs [25,26]; see also [27–32] for the related backgrounds of those inverse problems.
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