
mathematics

Article

Group Analysis of the Plane Steady Vortex Submodel of Ideal
Gas with Varying Entropy

Salavat Khabirov

����������
�������

Citation: Khabirov, S. Group

Analysis of the Plane Steady Vortex

Submodel of Ideal Gas with Varying

Entropy. Mathematics 2021, 9, 2006.

https://doi.org/10.3390/math9162006

Academic Editors: Andrei

Dmitrievich Polyanin and

Alexander V. Aksenov

Received: 31 May 2021

Accepted: 15 August 2021

Published: 21 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Mavlyutov Institute of Mechanics UFRC RAS, 71 Pr. Oktyabrya, 450054 Ufa, Russia; habirov@anrb.ru

Abstract: The submodel of ideal gas motion being invariant with respect to the time translation and
the space translation by one direct has 4 integrals in the case of vortex flows with the varying entropy.
The system of nonlinear differential equations of the third order with one arbitrary element was
obtained for a stream function and a specific volume. This element contains from the state equation
and arbitrary functions of the integrals. The equivalent transformations were found for arbitrary
element. The problem of the group classification was solved when admitted algebra was expanded
for 8 cases of arbitrary element. The optimal systems of dissimilar subalgebras were obtained for
the Lie algebras from the group classification. The example of the invariant vortex motion from
the point source or sink was done. The regular partial invariant submodel was considered for the
2-dimensional subalgebra. It describes the turn of a vortex flow in the strip and on the plane with
asymptotes for the stream line.

Keywords: vortex gas flow; varying entropy; group analysis; optimal system of subalgebras; invari-
ant solution; regular partial invariant solution

1. Introduction

The model of ideal gas dynamics is studed very good [1–3]. The numerical and
analytical methods for solving of the boundary value problems were developed [4,5]. The
methods of symmetry (group) analysis were developed for the testing of calculations and
detecting new singularities of gas motions [6,7]. The classical results for the plane steady
potential flows [2,3,8] were generalized on the vortex isentropic motions [9,10].

As a rule it is not proved the existence and uniqueness of the classical smooth solution
as the whole for nonlinear space boundary value problems of the mechanic medium. For
the numerical and asymptotic solutions the same it is not proved convergence to the
classical solutions of the boundary value problems. Therefore it is value to know possibly
more the exact solutions in the enough big domain of space-time continuum. For the
classes of exact solutions it is possible more simple submodels. The group analysis makes
the classification of these submodels.

In the present paper we consider the mathematical submodel of plane steady vortex
flows of the ideal gas with verying entropy for an arbitrary state equation, arbitrary values
of the Bernoulli, entropy, vorticity integrals that combined into one arbitrary element.
The equivalent transformations of the submodel was obtained by the group analysis
methods [1,11–13]. They change only arbitrary element. It was proved the existence
of 8 types of the group classification models with differing symmetries. The optimal
systems of dissimilar subalgebras admitted by models were constructed. In the fact its
give the classification of submodels. The subalgebras produce invariant, partial invariant
and differential invariant solutions. The invariant solutions show singularities in the
submodel solutions. So it is proved the existence of the plane point source or the sink for
vortex entropy steady invariant gas motions in contrast to the plane isentropic potential
invariant solution. The example of a regular partial invariant solution was considered on
the 2-dimension subalgebra.
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2. Steady 2-Dimension Submodel and Equivalent Transformations

We consider the gas dynamics equations [8]

~ut + (~u · ∇)~u + ρ−1∇p = 0, ρt + (~u · ∇)ρ + ρ∇ · ~u = 0,

St + ~u · ∇S = 0, p = g(V, S) = −εV(V, S), T = εS, V = ρ−1,

where ~u is a velocity, ε = ε(V, S) is a state equation, p is a pressure, ρ is a density, ε is a
inner energy, S is an entropy, T is a temperature, V is a specific volume are invariant with
respect to the translations by time t, by space ~x, Galilean translations (motion of the origin
of coordinates with a constant velocity), the rotations and the proportional dilatation by
t and ~x. These transformations form 11-parameter group [1]. We consider the invariant
motions with respect to the translations by t and z in the Cartesian coordinate system
~x = (x, y, z),~u = (u, v, w). The invariant steady plane submodel is [2,3,8].

Du + Vpx = 0, Dv + Vpy = 0, Dw = 0, DS = 0,

Dρ + ρ(ux + vy) = (ρu)x + (ρv)y = 0.
(1)

The stream function ψ(x, y) is introduced by the last equation of the system (1)

u = Vψy, v = −Vψx, ∂ψ ≡ 0, D = V∂, ∂ = ψy∂x − ψx∂y.

With the enthalpy i = ε + pV, iV = −VεVV = VgV the system (1) has 3 integrals
(Bernoulli, entropy and the third component of the velocity)

V2(ψ2
x + ψ2

y) + 2i = B2(ψ), S = S(ψ), w = w(ψ). (2)

One equation remains from the system (1)

(∂u)y = (∂v)x,

which with the help of (2) may be written in the form

∂[−BB′V−1 + S′εSV−1 + V4ψ +∇ψ · ∇V] = 0.

From this it follows the 4th integral which together with the Bernoulli integral form
the submodel equations

V4ψ +∇ψ · ∇V =
1
2

Kψ, ψ2
x + ψ2

y + KV = 0, KV < 0, (3)

where K = B2(ψ)V−1 − 2εV−1 − 2P1(ψ) is an arbitrary element expressing through the
state equation and arbitrary functions of the integrals B(ψ), S(ψ), P1(ψ).

The velocity curl of the invariant submodel with the help of (2) is equal to

~ω = ∇× ~u = (wy − vz, uz − wx, vx − uy) = (w′ψy,−w′ψx, ω), ω = vx − uy.

The value ω by virtue of (3) is equal to

ω = −1
2

Kψ = −P′1 − BB′V−1 + S′εSV−1,

and from (1) and (2) satisfy the equation

∂ω = −(ω + S′gS)V−1∂V.
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From here we obtain the vorticity integral

ωV = Ω′(ψ) + S′εS ⇒ K = −2P(ψ)− 2V−1Ω− 2V−1ε. (4)

Two expressions for K differ on the linear summand by V−1 : P = P1, 2Ω = −B2.
For isentropic flow the vortex motions was considered in [9,10]. Then the vortex

motions with varying entropy will be considered.
For an abitrary element the equations are realized

Kx = Ky = 0. (5)

The transformations of variables x, y, V, ψ no changing the form of the Equations
(3), (5) but changing only the function K(V, ψ) are named the equivalent transformations.
These transformations form a group with Lie algebra given by the operators prolonged on
the derivatives in Equations (3), (5) [1,12]:

Y = ξx∂x + ξy∂y + ηV∂V + ηψ∂ψ + ηK∂K + (D̃xηV −VxD̃xξx −VyD̃xξy)∂Vx

+(D̃yηV −VxD̃yξx −VyD̃yξy)∂Vy + ζx∂ψx + ζy∂ψy

+(D̃xζx − ψxxD̃xξx − ψxyD̃xξy)∂ψxx + (D̃yζy − ψxyD̃yξx − ψyyD̃yξy)∂ψyy

+(Djη
K − KxDjξ

x − KyDjξ
y − KV Djη

V − KψDjη
ψ)∂Kj ,

where j = x, y, V, ψ,

ζ i = D̃iξ
ψ − ψxD̃iξ

x − ψyD̃iξ
y, i = x, y, Dj = ∂j + Kj∂K,

D̃i = ∂i + Vi∂V + ψi∂ψ + (Ki + KVVi + Kψψi)∂K

+(Kji + KjVVi + Kjψψi)∂Kj + ψxi∂ψx + ψyi∂ψy .

The operator coordinates ξ i, ηl , l = V, ψ, K are functions of variables x, y, V, ψ, K. The
compatibility conditions of the Equations (3), (5) have the form [1]

Y((3)) = 0, Y((5)) = 0

for the solutions of the Equations (3) and (5). This gives an overdetermined linear system
of the homogeneous equations for the coordinates of the operator Y.

Theorem 1. The Lie algebra of the equivalent transformations is infinite. The basic operator are

X1 = ∂x, X2 = ∂y, X3 = y∂x − x∂y, X4 = x∂x + y∂y + ψ∂ψ,

X5 = ψ∂ψ + 2K∂K, < η >= −Vη′(ψ)∂V + η(ψ)∂ψ, < ζ >0= ζ(ψ)∂K,

where η(ψ), ζ(ψ) are arbitrary functions.

Proof. The conditions of invariance for the Equation (5) are

0 = YKx = ηK
x − KVηV

x − Kψη
ψ
x ,

0 = YKy = ηK
y − KVηV

y − KψηV
y .

We assume that the values KV , Kψ are arbitrary. Hence it follows

ηK
i = ηV

i = η
ψ
i = 0, i = x, y.
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The condition of invariance for the first equation of the system (3) may be written in
the form

2ψx[Vxη
ψ
V + ψxη

ψ
ψ − ψx(ξx

x + Vxξx
V + ψxξx

ψ)− ψy(ξ
y
x + Vxξ

y
V + ψxξ

y
ψ)

+(KVVx + Kψψx)(η
ψ
K − ψxξx

K − ψyξ
y
K)]

+2ψy[Vyη
ψ
K + ψyη

ψ
ψ − ψx(ξx

y + Vyξx
V + ψyξx

ψ)− ψy(ξ
y
y + Vyξ

y
V + ψyξ

y
ψ)

+(KVVy + Kψψy)(η
ψ
K − ψxξx

K − ψyξ
y
K)]

+ηK − KVηV
V − Kψη

ψ
V + KV(η

K
K − KVηV

K − Kψη
ψ
K) = 0.

(6)

The value Kψ is proportional a value 4ψ which may be arbitrary. The equating to
zero of the coefficient under Kψ in (6) gives

2ψx(ψxη
ψ
K − ψ2

xξx
K − ψxψyξ

y
K) + 2ψy(ψyη

ψ
K − ψxψyξx

K − ψ2
yξ

y
K) = η

ψ
V − (ψ2

x + ψ2
y)η

ψ
K .

The equating to zero of the coefficients under the powers of values ψx, ψy (the splitting
at ψx and ψy) leads to the equations

ξx
K = ξ

y
K = η

ψ
K = η

ψ
V = 0.

The residuals of (6) are the polynomial of 4th power by ψx and ψy. The splitting gives

ηV
K = ηK

V = ξx
ψ = ξ

y
ψ = ξx

V = ξ
y
V = 0,

ξ
y
x + ξx

y = 0, ξx
x = ξ

y
y = c(x, y),

ηK(K, ψ) = ηV
V (ψ, V) + 2(ηψ

ψ(ψ)− c)⇒ c = C is a constant.

From here it follows the presentation for the coordinates of operator Y

ξx = Cx + Ey + E1, ξy = Cy− Ex + E2,
ηV = η′(ψ)V + η0(ψ), ηK = Kζ ′1(ψ) + ζ(ψ),
ηψ = 1

2 (ζ1 − η) + Cψ + D,
(7)

where E, E1, E2, D are constant.
The condition of invariance for the second equation of the system (3) has the form

V[4ψ(η
ψ
ψ − 2C) + η

ψ
ψψ(ψ

2
x + ψ2

y)] + ηV4ψ + Vx(ψxη
ψ
ψ − ψxC)

+Vy(ψyη
ψ
ψ − ψyC) + ψx(Vxη′ + ψx(η′′V + η′0)−VxC)
+ψy(Vyη′ + ψy(η′′V + η′0)−VyC)

= 1
2 [Kζ ′′1 + ζ ′ + (ψ2

x + ψ2
y)(η

′′V + η′0) + (ζ ′1 − η
ψ
ψ)(V4ψ + ψxVx + ψyVy)].

(8)

The splitting by4ψ and ψ2
x + ψ2

y gives

η0 = 0, ζ ′′1 = 0⇒ ζ ′1 = M is a constant

and (8) is fulfilled identically. The coordinates of operator Y in (7) are corrected

ηV = η′(ψ)V, ηK = MK + ζ(ψ), ηψ = (C + 2−1M)ψ− 2−1η(ψ) + D.

Here and in (7) ζ(ψ), η(ψ) are arbitrary functions, E, E1, E2, C, D, M are arbitrary
constants. The basis from Theorem 1 is obtained to the equating zero all arbitrary elements
except one.

Remark 1. The transformations no changing the function K(ψ, V) form the kernel of admitting
groups {X1, X2, X3}.
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Remark 2. The transformations changing the function K have the form:
(a) K̃ = K + ζ(ψ),
(b) ψ̃ = bψ, K̃ = Kb2,
(c) x̃ = cx, ỹ = cy, ψ̃ = cψ,

(d) Ṽη(ψ̃) = Vη(ψ), a =
ψ∫̃

ψ

dt
η(t) ⇒ ψ̃ = µ(ψ), µ′η(ψ) = η(µ), Ṽ = V(µ′(ψ))−1,

where ζ(ψ), µ(ψ) and η(ψ) are arbitrary functions; a, b and c are constant group parameters. If
η = A is a constant then the transformation (d) is the translation by ψ

Ṽ = V, ψ̃ = ψ− aA.

If η(t) = t then the transformation (d) is the dilatation

ψ̃ = ψe−a, Ṽ = eaV.

Remark 3. The reflection ψ→ −ψ is admitted also.

3. The Group Classification of Submodel

The problem of the group classification consist to find arbitrary elements of the system
(3) to within the equivalent transformations for which the admitted group is more than
the kernel. The operators of Lie algebra of the point transformations is written in the form
prolonged on the derivatives from the Equation (3) [1]

X = ξx∂x + ξy∂y + ηV∂V + ηψ∂ψ + ζx∂ψx + ζy∂ψy + (DxηV −VxDxξx −VyDxξy)∂Vx

+(DyηV −VxDyξx −VyDyξy)∂Vy(Dxζx − ψxxDxξx − ψxyDxξy)∂ψxx

+(Dyζy − ψxyDyξx − ψyyDyξy)∂ψyy ,

where ζ i = Diη
ψ − ψxDiξ

x − ψyDiξ
y, i = x, y, Di = ∂i + Vi∂V + ψi∂ψ + Vij∂Vj + ψij∂ψj are

the operator of the full differentiation (j = x, y). Here the operator coordinates ξx, ξy, ηV , ηψ

are functions of the variables x, y, V, ψ. The invariance condition for the first equation of
the system (3) has the form

2ψx[η
ψ
x + Vxη

ψ
V + ψxη

ψ
ψ − ψx(ξx

x + ξx
VVx + ξx

ψψx)− ψy(ξ
y
x + ξ

y
VVx + ξ

y
ψψx)]

+2ψy[η
ψ
y + Vyη

ψ
V + ψyη

ψ
ψ − ψx(ξx

y + ξx
VVy + ξx

ψψy)− ψy(ξ
y
y + ξ

y
VVy + ξ

y
ψψy)]

+KVVηV + KVψηψ = 0.

The splitting by the value Vxψx + Vyψy gives

η
ψ
V = ξx

Vψx + ξ
y
Vψy ⇒ ξx

V = ξ
y
V = η

ψ
V = 0.

The change ψ2
y = −ψ2

x − KV and the splitting by ψ2
x and ψxψy leads to the equations

ξ
y
x + ξx

y = 0, ξx
x = ξ

y
y = n, nV = 0.

The equating to zero of the coefficients at the linear summands under ψx and ψy leads
to the determining relations

KVξx
ψ + η

ψ
x = 0, KVξ

y
ψ + η

ψ
y = 0,

2nKV + KVVηV + KVψηψ = 0.

The determining relations are an overdetermined system of equations for an arbitrary
element. It was arbitrary if the relations are fulfilled identically for the kernel of the
admitted operators. The kernel may be extended for the special functions K(V, ψ). The
equivalent transformations may be changed for special classes of arbitrary elements. Here
we do not consider of the full classification.
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The invariance condition for the second equation of the system (3) with regard for the
received relations has the form

ηV4ψ + V[(−2n + η
ψ
ψ − ξx

ψψx − ξ
y
ψψy)4ψ− ξx

ψψxx − ξ
y
ψψyy − 2(ξy

ψψx + ξx
ψψy)ψxy

+η
ψ
ψψ(ψ

2
x + ψ2

y)] + (ψxVx + ψyVy)(ηV
V + η

ψ
ψ − 2n) + ψxηV

x + ψyηV
y

−ψxψy(Vxξ
y
ψ + Vyξx

ψ) + Vxη
ψ
x + Vyη

ψ
y − ψ2

xVxξx
ψ

−ψ2
yVyξ

y
ψ + (ψ2

x + ψ2
y)(η

V
ψ −Vxξx

ψ −Vyξ
y
ψ) = 2−1(KψVηV + Kψψηψ).

Reduction of the underline summands and the equating to zero of the coefficients at
ψxy,4ψ, ψ2

x + ψ2
y gives

ξ
y
ψ = ξx

ψ = 0 = η
ψ
x = η

ψ
y , ηV = (2n− η

ψ
ψ)V, 0 = ηV

x = ηV
y , KψVηV + Kψψηψ = 0.

From here it follows nx = ny = 0 = nψ ⇒ n = N is a constant,

ξx = Nx + Ey + E1, ξy = Ny− Ex + E2,
ηψ = ηψ(ψ), ηV = V(2N − η

ψ
ψ),

where E, E1, E2 are constants, and 2 determining relations

KψVV(2N − η
ψ
ψ) + ηψKψψ = 0,

VKVV(2N − η
ψ
ψ) + KVψηψ + 2(N − η

ψ
ψ)KV = 0.

(9)

The last equation is integrable by V and the system (9) has the form

V(2N − η
ψ
ψ)KV + ηψKψ − η

ψ
ψ K = χ(ψ),

(VKV + K)ηψ
ψψ + χ′(ψ) = 0.

(10)

Here χ(ψ) is arbitrary function. The determining relations for the function K(ψ, V)
give the overdetermined system

V(C− b′)KV + b(ψ)Kψ − b′K = µ(ψ),
(VKV + K)b′′ + µ′ = 0,

(11)

with some functions b(ψ), µ(ψ) and a constant C.
We must find the general solution of the system (11) to within the equivalent transfor-

mations for different b(ψ). If b′′ 6= 0 then from the second equation of (11) follows

K = − µ′

b′′
+

λ(ψ)

V
∼ λ(ψ)

V
, λ = 1 or ψ.

Here the equivalent transformations (a) and (d) from subsection 1 act. From the system
(11) it is follow to within the equivalent transformation

µ = 0, Cλ = bλ′.

Substitution K into (10) determines functions χ(ψ), ηψ(ψ) and ηV :

χ = 0, ηψ = η(ψ), ηV = 2NVλλ′′(λ′)−2 (C 6= 0);
χ = 0, ηψ = η(ψ), ηV = −Vη′(ψ) (C = 0),

where N is an arbitrary constant, η(ψ) is an arbitrary function.
Next we consider the case b = Bψ + B0. From (11) it is follow µ = M is a constant,

(C− B)VKV + (Bψ + B0)Kψ = BK + M. (12)
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If B 6= 0 then the equivalent transformations make B0 = M = 0. General solution of
the Equation (12) with the notation CB−1 = m is

K = ψk(I), I = V−1ψm−1

for any m and k′ 6= 0. From corrected Equation (10)

χ′ = ψη
ψ
ψψ(Ik′ − k),

(η
ψ
ψ − 2N)ψIk′ + ηψ((m− 1)Ik′ + k)− ψη

ψ
ψ k = χ.

it follows
mη

ψ
ψ = 2N.

If m = 0 then N = 0 and

(Ik′ − k)(ψη
ψ
ψ − ηψ) = χ.

At ψη
ψ
ψ = ηψ ⇒ χ = 0, k(I) is an arbitrary function,

ηψ = Bψ, ηV = −BV.

At ψη
ψ
ψ 6= ηψ ⇒ k = −n + K0 I and K ∼ ψI, ηψ = η(ψ) is an arbitrary function,

ηV = −Vη′.
Let m 6= 0 then ηψ = 2Nm−1ψ + B0, χ = M, B0((m− 1)Ik′ + k) = M.
If B0 = M = 0 then k(I) is an arbitrary function,

ηψ = 2Nm−1ψ, ηV = 2N(1−m−1)V, K = ψk(I).

At B0 6= 0 the equivalent transformations make

K = V1/(m−1), ηψ = 2Nm−1ψ + B0, ηV = 2N(1−m−1)V.

Case B = 0. The Equation (12) has the form

CVKV + B0Kψ = M.

To within the equivalent transformations we may consider K = k(I), I = Vemψ, k′ < 0
at B0 6= 0 and K = − ln V at B0 = 0.

Substitution into (10) gives

(k + Ik′)ηψ
ψψ + χ′ = 0,

(2N − η
ψ
ψ)Ik′ + mηψ Ik′ − η

ψ
ψ k = χ ⇒ mη

ψ
ψ = 0.

Here we may consider that the variables I, ψ are independent. At m 6= 0 it follows
ηψ = −2N, χ = 0, ηV = 2NV. At m = 0, k(V) is an arbitrary function, ηψ = B, N = 0,
χ = 0, ηV = 0. In the case K = − ln V from (10) it follows ηψ = B, ηV = 2NV.

Hence it was possible to formulate the following statement.

Theorem 2. The system (3) with arbitrary function K(ψ, V) admits the kernel {X1, X2, X3} from
the Theorem 1. For the special functions there are the following extensions

1. K = V−1λ(ψ), λ′ 6= 04, X4 = x∂x + y∂y + 2λ(λ′)−1 ∂ψ + 2λλ′′(λ′)−2V∂V ;
2. K = V−1, < η >= η(ψ)∂ψ − η′(ψ)V∂V ;
3. K = ψk(Vψ), X4 = ψ∂ψ −V∂V ;
4. K = ψk(I), I = V−1ψm−1, X4 = x∂x + y∂y + 2m−1ψ∂ψ + 2(1−m−1)V∂V ;
5. K = k(I), I = Veψ, k′ < 0, X4 = x∂x + y∂y − 2∂ψ + 2V∂V ;
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6. K = V1/(m−1), m 6= 0, X4 = x∂x + y∂y + 2m−1ψ∂ψ + 2(1−m−1)V∂V , X5 = ∂ψ;
7. K = k(V), k′ < 0, X5 = ∂ψ;
8. K = − ln V, X4 = x∂x + y∂y + 2V∂V , X5 = ∂ψ.

4. Optimal Systems

The Lie algebras of extensions from the Theorem 2 have different dimensions and
structures. For the cases 1◦, 5◦, 4◦ the algebra decompose into the semi-direct sum of the
Abelian subalgebra {X3, X4} and the Abelian ideal {X1, X2}

L4 = {X1, X2}⊕̇{X3, X4} (13)

according to the commutators of the basic operators

[X1, X2] = 0, [X1, X3] = −X2, [X1, X4] = X1,

[X2, X3] = X1, [X2, X4] = X2, [X3, X4] = 0.

The inner automorphisms in L4 are calculated by the rule: for each basic operator Xk
the linear transformation is the solution of the following task

X′ak
= [Xk, X′], X′ = x′iXi ak=0 = X = xiXi.

For the operator Xk the automorphism Ak is given by transformation of the operator
coordinates (it is not written invariable coordinates)

A1 : x′1 = x4a1 + x1, x′2 = −x3a1 + x2;
A2 : x′1 = x3a2 + x1, x′2 = x4a2 + x2;
A3 : x′1 = x1 cos a3 + x2 sin a3, x′2 = x1 sin a3 − x2 cos a3;
A4 : x′1 = x1e−a4 , x′2 = x2e−a4 .

The Abelian subalgebra of the decomposition (13) has the following subalgebras

0, X3 + αX4, X4, {X3, X4}.

For each of these subalgebras we add the linear combination from the elements of the
Abelian ideal. Some arbitrary coefficients we equate to zero by automorphisms and verify
the condition of subalgebra.

We list one-dimension subalgebras to within the automorphisms. To trivial subalgebra
we add the linear combination x1X1 + x2X2, the automorphism A3 leads to the similar sub-
algebra X1. Arbitrary subalgebra with the projection X3 + αX4 is reduced to the projection
by the superposition A1 A2. Similarly the subalgebra X4 + x1X1 + x2X2 is reduced to X4 by
A1 and A2. For 2-dimensional subalgebra one from the basic operators may be reduced to
one of the listed 1-dimensional subalgebras. For a different basic operator must be realized
the condition of the subalgebra: the commutator of them is the linear combination of the
basic operators. For example, [X3, X4 + x1X1 + x2X2] = −x1X2 − x2X1 = 0. From here
it follows x1 = x2 = 0 and we obtain the Abelian subalgebra {X3, X4}. The subalgebra
{X4, x1X1 + x2X2} is reduced to {X4, X1} by the automorphism A3. The condition of the
subalgebra for operators X3 + αX4, x1X1 + x2X2 has the form

x1X2 − x2X1 − α(x1X1 + x2X2) = λ(x1X1 + x2X2)⇒ x1 = x2 = 0.

There is no such 2-dimensional subalgebras. There is subalgebra {X1, X2} with null
projection into subspace {X3, X4}. There are no 3-dimensional subalgebras of the type
{X3, X4, x1X1 + x2X2} as the condition of the subalgebra is not realized. There are subalge-
bras {X4, X1, X2}, {X3 + αX4, X1, X2}. Hence the optimal system consists of the following
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dissimilar subalgebras (k.i is number of subalgebra, k is subalgebra dimension, i is the
ordinal number in given dimension)

1.1 X1, 1.2 X3 + αX4, 1.3 X4;
2.1 {X1, X2}, 2.2 {X1, X4}, 2.3 {X3, X4};
3.1 {X1, X2, X3 + αX4}, 3.2 {X1, X2, X4}.

For the case 2◦ of the Theorem 2 admitted algebra is infinite. There are the inner
automorphisms A1, A2, A3. The algebra decompose into the direct sum of 2 ideals

{X1, X2, X3}⊕ < η(ψ) > .

The inner automorphisms of 3-dimensional ideal A1, A2, A3 calculate subalgebras

0, X3, X1, {X1, X2, X3}.

The commutator of operators from infinite ideal is equal to

[< ζ(ψ) >,< η(ψ) >] =< ζη′ − ηζ ′ >

The inner automorphism for the operator < ζ(ψ) > satisfies the problem

η̄a = ζη̄ψ − ζ ′η̄, η̄ a=0 = η(ψ).

The solution of this problem has the form

η̄ = ζ(ψ)G
(

a +
∫ dψ

ζ(ψ)

)
, η(ψ) = ζ(ψ)G

(∫ dψ

ζ(ψ)

)
The automorphism is given by formula

η̄ = λ′(µ(ψ))
η(λ(a + µ(ψ)))

λ′(a + µ(ψ))
,

where µ(ψ) =
∫
(ζ(ψ))−1dψ, λ(µ) is inverse function to µ(ψ). Within this transformation

we calculate finite subalgebras in the infinite ideal. The condition for 2-dimensional
subalgebras is

[< η(ψ) >,< η1(ψ) >] = α < η(ψ) > +β < η1(ψ) > .

From this it is follow the equation

ηη′1 = αη + (β + η′)η1.

If β 6= 0 then η1 = −αβ−1η + C0η exp(β
∫

η−1dψ) and change of the basis leads to the
subalgebra

{< η >,< ηe
∫

η−1dψ >}. (14)

If β = 0 then η1 = C0η + αη
∫

η−1dψ and change of the basis leads to the subalgebra

{< η >,< η
∫

η−1dψ >}. (15)

We will obtain the 3-dimensional subalgebras using Bianchi classification of the
structure over the real field [14]. The structures must not have null commutator. From 2
unsolvable subalgebras is suitable only one with the commutator table of basic elements

[X1, X2] = X1, [X2, X3] = X3, [X1, X3] = 2X2.



Mathematics 2021, 9, 2006 10 of 15

If Xi =< ηi(ψ) > then this structure gives the equation system

η1η′2 − η2η′1 = η1, η2η′3 − η3η′2 = η3, η1η′3 − η3η′1 = 2η2.

The general solution of 2 equations have the form

η1 = Cη2e−
∫

η−1
2 dψ, η3 = Dη2e

∫
η−1

2 dψ.

The substitution in third equation leads to the relation CD = 1.
Thus we obtain the 3-dimensional subalgebra

{< ηe−
∫

η−1dψ >,< η >,< ηe
∫

η−1dψ >}. (16)

The sum of the projections on the ideals gives the subalgebras

< η >, X1+ < η >, X3+ < η >, {X1+ < η >,< ηe
∫

η−1dψ >},

{X3+ < η >,< ηe
∫

η−1dψ >}, {X1, X2, X3+ < η >}, (14), (15), (16).

For the case 6◦ of the Theorem 2 admitted subalgebra decompose into semi-direct sum
of ideal and subalgebra

{X1, X2, X3}⊕̇{X4, X5}.

The automorphisms A1, A2, A3 are the same as before, the automorphism A4 has
complement x̄′5 = x5 exp(−2a5). There is the new automorphism A5 : x′5 = 2x4a5 + x5.
The projections on 2-dimensional subalgebra contain the subalgebras to within the inner
automorphisms

0, X4, X5, {X4, X5}.

Adding projections from the ideal we obtain the optimal system

X1, X3 + αX4, X3 + αX5, X4, X5 + βX1;

{X3, X4}, {X2, X4}, {X3, X5}, {X1, X5},

{X4, X5 + βX1, β(m− 2) = 0}, {X3 + αX4, X5};

{X4, X1, X2}, {X1, X2, X3 + αX4}, {X1, X2, X3 + αX5}, {X1, X2, X5},

{X3, X4, X5}, {X4, X5 + αX2, X1, β(m− 2) = 0};

{X1, X2, X3, X4}, {X1, X2, X3, X5}, {X4 + αX3, X5, X1, X2}.

For the case 7◦ of the Theorem 2 the 4-dimensional subalgebra has the center X5. The
automorphisms A1, A2, A3 produce the optimal system

X1 + X5, X3 + αX5, α = 0 or 1; {X1, X2 + αX5}, {X1, X5}, {X3, X5}; {X3 + αX5, X1, X2}.

For the case 8◦ of the Theorem 2 the 5-dimensional subalgebra has the center X5 and
the automorphisms A1, A2, A3, A4. The optimal system is similar to the case 4◦ with adding
center

X1 + αX5, X3 + βX4 + αX5, X4 + αX5; {X1 + αX5, X2}, {X1 + αX5, X4},

{X3 + αX5, X4 + βX5}, {X1, X5}, {X3, X5}, {X4, X5};

{X1, X2, X3 + βX4 + αX5}, {X1, X2, X4 + αX5}, {X1, X2, X5}, {X1, X4, X5}, {X3, X4, X5};

{X1, X2, X3 + αX5, X4 + βX5}, {X1, X2, X3 + αX4, X5}, {X1, X2, X4, X5}.
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The center X4 is added to the kernel for the case 3◦ of the Theorem 2. The optimal
system is obtained from the optimal system of the kernel

X4, X1 + αX4, X3 + αX4, {X1, X2 + αX4}, {X1, X4}, {X3, X4}, {X1, X2, X3 + αX4}.

The optimal system may be presented as the graph of the embedded subalgebras,
for example, for the algebra L4 of the case 1◦, 4◦, 5◦ (Figure 1). The system of embedded
subalgebras may be constructed with the help of the graph [15].

Figure 1. The graph of embedded subalgebras.

The constructed optimal systems classify the group submodels of the system (3) in
fact. The 1-dimensional subalgebras give the invariant submodels. The 2-dimensional
subalgebras give the partial invariant submodels as the simple waves. The subalgebras
of big dimensions give the differential invariant submodels with the invariant differential
connections.

5. The Examples of the Group Solutions

The subalgebra 1.3 of the case 4◦ of the Theorem 2 (K = ψk(I), I = Vψ1−m) determines
the invariant solution. It is convenient to use the polar system of coordinates x = r cos ϕ,
y = r sin ϕ. The operator of the subalgebra is

X4 = r∂r + 2m−1(ψ∂ψ + (m− 1)V∂V
)
,

the Equation (3) have the form

ψ2
r + r−2ψ2

ϕ = −KV = −ψ2−mk′(I), k′ < 0,
V(ψrr + r−2ψϕϕ + r−1ψr) + ψrVr + r−2ψϕVϕ = 1

2 Kψ = 1
2 (k + (1−m)Ik′).

(17)

The invariants of the subalgebra give the solution representation

ψ = r2/mΨ(ϕ), V = ψm−1 I(ϕ).

The substitution into (17) give the system of the odinary differential equations

Ψ′2 + 4m−2Ψ2 + Ψ2−mk′ = 0,
Ψ′′ + 4m−2Ψ + I−1 I′Ψ′ = 2−1Ψ1−m(I−1k + (m− 1)k′).

(18)
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We differentiate the first equation and exclude Ψ′′

ΨI′
(

8m−2Ψm + (Ik)′′
)
+ Ψ′(Ik)′ = 0.

From here we obtain the integral

Ψ−m = km
1

(
C + 8m−1

∫
k−1−m

1 dI
)

, k1 = (Ik)′.

The submodel (18) is integrated in quadratures. On the simple example we consider
a behavior of stream lines. Let C = 0, k = DIn, Dn < 0. Then k1 = D(n + 1)In and the
integral has the form

Ψm = 8−1DIn−1m(n + 1)(1− n− nm).

The first Equation (18) is

Ψ′ = γΨ, γ2 =
4(2n2 − 1− nm)

m2(n + 1)(1− n− nm)
> 0

where the inequality is reached by the choice of m and n. Hence the stream function is
determined by the equation

ψ = Cr2/meγϕ,

where C is constant and the stream line ϕ = ϕ0 is the logarithmic spiral

r = (ψ0C−1)m/2 exp(−2−1mγϕ).

At mγ > 0, ϕ → ∞⇒ r → 0. The solution describe the gas motion from the point
source or the point sink.

The subalgebra {X1, X4} for the case 3◦ of the Theorem 2 K = ψk(Vψ):

X1 = ∂x, X4 = ψ∂ψ −V∂V .

The invariants y, I = Vψ determine the representation of the regular partial invariant
solution of rank 1 and defect 1:

V = ψ−1 I(y), Ψ = ln ψ, Ψ = ψ(x, y).

The substitution in (3) gives the overdetermined system

Ψ2
x + Ψ2

y = −k′(I), (IΨx)x + (IΨy)y = 2−1(k + Ik′) = c′(y), (19)

where a function c(y) is determined within a constant summand. The change

Ψx = I−1χy, Ψy = I−1(c− χx) (20)

satisfies the second equation of (19). The first equation

χ2
y + (c− χx)

2 = −I2k′ = b(y)2

is satisfied by the substitution

χy = b cos ϑ, χx = c− b sin ϑ. (21)

The compatibility of Equations (20), (21) gives

ϑx sin ϑ− ϑy cos ϑ = b−1(b′ sin ϑ− c′),
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ϑx cos ϑ + ϑy sin ϑ = (b−1b′ − I−1 I′) cos ϑ.

From here the derivatives are determined

ϑx = b−1(b′ − c′ sin ϑ)− I−1 I′ cos2 ϑ, ϑy = (b−1c′ − I−1 I′ sin ϑ) cos ϑ.

The compatibility leads to the relation(
I′′

I
− 2

I′b′

Ib

)
sin2 ϑ +

(
− c′′

b
+ 2

c′b′

b2 +
I′c′

Ib

)
sin ϑ +

(
b′

b

)′
−
(

I′

I

)′
−
(

c′

b

)2

+
I′

I

(
b′

b
− I′

I

)
= 0.

From here it follows: either ϑx = 0 or all coefficients at the powers sin ϑ are equal to
zero. At the last case we have the integrals

I′ = Cb2, c′ = DIb2,

where C, D are constants and the equation(
I′′

I

)′
− I′′

I
− 2D2C−1 I2 I′ = 0,

which is integrated with the constants G0 and F0

I′ =
2D2

15C
I5 + 2−1G0 I2 + F0 = −CI2k′.

From here we find

k = − D2

30C2 I4 − G0

2C
I +

F0

CI
+ K0.

The definition c(y) from (19) gives the compatibility condition

Ik′(1 + 2DI2) + k = 0.

The substitution the expression k and equating to zero of the coefficients at the power
of I gives D = G0 = K0 = 0. Consequently

k = C−1F0 I−1, I = F0y, c = 0.

We obtain the compatible system

ϑx = −y−1 cos2 ϑ, ϑy = −y−1 sin ϑ cos ϑ ⇒ tan ϑ = −xy−1.

Later we solve the system (20)

Ψ = γ ln

∣∣∣∣∣ xy +

√
1 +

x2

y2

∣∣∣∣∣, γ = −
√

F0

C
⇒ ψ =

∣∣∣∣∣ xy +

√
1 +

x2

y2

∣∣∣∣∣
γ

.

The stream lines ψ = ψ0 are the rays x = k0y. Along a stream line the density
ρ = V−1 = ψ(F0y)−1 is infinite at the origin and it is vacuum at infinity.

For the different case of alternative ϑ = ϑ(y) it follows from (20)

χ = χ0(y), c = b sin ϑ, χ′0 = b cos ϑ = C0 I,

Ψ = C0x + Ψ0(y), c2 + I2(C2
0 + k′) = 0, IΨ′0 = c.
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From the definition function c(y), (19) it follows

dy = −
2C2

0 + (Ik)′′

(IK)′(−C2
0 − k′)1/2

dI

and Ψ0(y) is determined by the expression

(Ik)′Ψ0I + 2C2
0 + (Ik)′′ = 0.

Hence the solution is determined by the given function k(I).

Example 1. Let k = I−1, ϑ(y)⇒ c = 0, b = 1. From (21), (20) it follows ϑ = ϑ0, I = I0 are
constants,

Ψ = ln ψ = I−1
0 (x cos ϑ0 + y sin ϑ0).

The stream lines ψ = ψ0 are straight lines.

Example 2. Let k = −C2
0 I + I−n, n > 0. Then c2 = nI1−n, J2 = I−1−n

−n + 1
2
√

n
dy =

dJ
J2 + 2C2

0(n− 1)−1
, Ψ0I =

n(1− n)I−n−2

−2C2
0 + (1− n)I−n−1

.

The integrating gives the formulas

Ψ0 = − n
n + 1

ln

∣∣∣∣∣J2 +
2C2

0
n− 1

∣∣∣∣∣,
J =

√
2C0√

n− 1
tan

(
− n + 1√

2n(n− 1)
C0y

)
(n > 1);

J =
√

2C0√
1− n

tanh

(
− n + 1√

2n(1− n)
C0y

)
(n < 1).

The stream function is determined by the equation within the constant summand

ln ψ = C0x + 2n(n + 1)−1 ln | cos y1|, (n > 1);

ln ψ = C0x + 2n(n + 1)−1 ln | cosh y1|, (n < 1),
√

2n|n− 1|y1 = −(n + 1)C0y.

The stream line ψ = ψ0 is determined by the equations

cos y = e−x (n > 1), cosh y = e−x (n < 1)

within the translation on x and dilatation on x and on y. It is even with respect to y and by
translation on x cover the flow domain. At n > 1 the stream lines give the turn back of the flow
in the strip |y| < π/2 (Figure 2a). At n < 1 we obtain the turn of the flow on the plane with the
asymptotes y = ±x + β, cosh β = 5/4 for the stream lines (Figure 2b).
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Figure 2. (a) The turn of a flow in the strip. (b) The turn of a flow on the plane with asymptotes.

6. Conclusions and Discussion

In the present paper we made the symmetry analysis of the steady plane vortex
submodel for the ideal gas flow with varying entropy. With the help of 4 integrals the
submodel is given by nonlinear system of the third order differential equations for the
stream function and the specific volume. In this system there is one arbitrary function on
2 variables which is expressed through the state equation and arbitrary functions of the
integrals. We found all equivalent transformations, listed arbitrary elements for which the
admitted group is extended. We constructed the optimal systems of subgroups for the each
of these extensions. The optimal systems classify group submodels. The examples of the
invariant and regular partial invariant solutions were done.

Classification of the group solutions is not completed. There are only several solutions
for which the gas particles motion was investigated. The gas motion has its specific for
each subalgebra. The determination of these specific characters is not solved problem.
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