. mathematics

Article

Group Analysis of the Plane Steady Vortex Submodel of Ideal
Gas with Varying Entropy

Salavat Khabirov

check for

updates
Citation: Khabirov, S. Group
Analysis of the Plane Steady Vortex
Submodel of Ideal Gas with Varying
Entropy. Mathematics 2021, 9, 2006.
hitps:/ /doi.org/10.3390/math9162006

Academic Editors: Andrei
Dmitrievich Polyanin and
Alexander V. Aksenov

Received: 31 May 2021
Accepted: 15 August 2021
Published: 21 August 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the author.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Mavlyutov Institute of Mechanics UFRC RAS, 71 Pr. Oktyabrya, 450054 Ufa, Russia; habirov@anrb.ru

Abstract: The submodel of ideal gas motion being invariant with respect to the time translation and
the space translation by one direct has 4 integrals in the case of vortex flows with the varying entropy.
The system of nonlinear differential equations of the third order with one arbitrary element was
obtained for a stream function and a specific volume. This element contains from the state equation
and arbitrary functions of the integrals. The equivalent transformations were found for arbitrary
element. The problem of the group classification was solved when admitted algebra was expanded
for 8 cases of arbitrary element. The optimal systems of dissimilar subalgebras were obtained for
the Lie algebras from the group classification. The example of the invariant vortex motion from
the point source or sink was done. The regular partial invariant submodel was considered for the
2-dimensional subalgebra. It describes the turn of a vortex flow in the strip and on the plane with
asymptotes for the stream line.

Keywords: vortex gas flow; varying entropy; group analysis; optimal system of subalgebras; invari-
ant solution; regular partial invariant solution

1. Introduction

The model of ideal gas dynamics is studed very good [1-3]. The numerical and
analytical methods for solving of the boundary value problems were developed [4,5]. The
methods of symmetry (group) analysis were developed for the testing of calculations and
detecting new singularities of gas motions [6,7]. The classical results for the plane steady
potential flows [2,3,8] were generalized on the vortex isentropic motions [9,10].

As arule it is not proved the existence and uniqueness of the classical smooth solution
as the whole for nonlinear space boundary value problems of the mechanic medium. For
the numerical and asymptotic solutions the same it is not proved convergence to the
classical solutions of the boundary value problems. Therefore it is value to know possibly
more the exact solutions in the enough big domain of space-time continuum. For the
classes of exact solutions it is possible more simple submodels. The group analysis makes
the classification of these submodels.

In the present paper we consider the mathematical submodel of plane steady vortex
flows of the ideal gas with verying entropy for an arbitrary state equation, arbitrary values
of the Bernoulli, entropy, vorticity integrals that combined into one arbitrary element.
The equivalent transformations of the submodel was obtained by the group analysis
methods [1,11-13]. They change only arbitrary element. It was proved the existence
of 8 types of the group classification models with differing symmetries. The optimal
systems of dissimilar subalgebras admitted by models were constructed. In the fact its
give the classification of submodels. The subalgebras produce invariant, partial invariant
and differential invariant solutions. The invariant solutions show singularities in the
submodel solutions. So it is proved the existence of the plane point source or the sink for
vortex entropy steady invariant gas motions in contrast to the plane isentropic potential
invariant solution. The example of a regular partial invariant solution was considered on
the 2-dimension subalgebra.
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2. Steady 2-Dimension Submodel and Equivalent Transformations
We consider the gas dynamics equations [8]

i+ (- V)ii+0'Vp=0, p+(ii-V)p+pV-ii=0,
Si+ii-VS=0, p=g(V,S)=—ey(V,S), T=es, V=p1

where i is a velocity, ¢ = €(V, S) is a state equation, p is a pressure, p is a density, ¢ is a
inner energy, S is an entropy, T is a temperature, V is a specific volume are invariant with
respect to the translations by time ¢, by space X, Galilean translations (motion of the origin
of coordinates with a constant velocity), the rotations and the proportional dilatation by
t and ¥. These transformations form 11-parameter group [1]. We consider the invariant
motions with respect to the translations by t and z in the Cartesian coordinate system
X = (x,y,z),i = (u,v,w). The invariant steady plane submodel is [2,3,8].

Du+Vpy=0, Dv+Vp,=0, Dw=0, DS=0,

)
Dp + p(ux +vy) = (pu)x + (p0)y = 0.
The stream function ¥ (x, y) is introduced by the last equation of the system (1)
u=Vy, v=-Vipy, op=0, D=V0, 9d=1,0x— 0y

With the enthalpy i = e + pV, iy = —Veyy = Vgy the system (1) has 3 integrals
(Bernoulli, entropy and the third component of the velocity)

V(i +9y) +2i = BX(y), S=S(p), w=mw(y). @
One equation remains from the system (1)
(0u)y = (9v)y,
which with the help of (2) may be written in the form
A[-BBV ! +8esV I+ VAY+ Vy-VV] =0.

From this it follows the 4th integral which together with the Bernoulli integral form
the submodel equations

VA¢+V¢~VV:%K¢, Y+, +Ky =0, Ky <0, A3)

where K = B?(y)V~! —2eV~1 — 2P, () is an arbitrary element expressing through the
state equation and arbitrary functions of the integrals B(), S(¢), Py (¢).
The velocity curl of the invariant submodel with the help of (2) is equal to

@ =V xil = (wy — 0z, Uz — Wy, 0x — ty) = (WP, —W'hy, w), w=0vx—1uy.
The value w by virtue of (3) is equal to
1
w=—5Ky=—P BBV ! 45V,
and from (1) and (2) satisfy the equation

dw = —(w+S'gs)V1aV.
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From here we obtain the vorticity integral
wV=0/(p)+Ses = K=-2P(p)-2VviQ-2v-le 4)

Two expressions for K differ on the linear summand by V= : P = P, 20 = —B2.

For isentropic flow the vortex motions was considered in [9,10]. Then the vortex
motions with varying entropy will be considered.

For an abitrary element the equations are realized

Ky =Ky =0. 5)

The transformations of variables x,y, V, 1 no changing the form of the Equations
(3), (5) but changing only the function K(V, 1) are named the equivalent transformations.
These transformations form a group with Lie algebra given by the operators prolonged on
the derivatives in Equations (3), (5) [1,12]:

Y = &%y + &3y + 1V 0y + ¥y + 70k + (Dxyp¥ — VaDiZ* — VyDy&¥)0y,
_ +(Dyn" = VeDyZ* = VyDyZ¥)dy, + 5 0y, + Y3y,
+(ngx - bexngx - ‘nyngy)at/Jxx + (Dygy - beyDygx - Ebnyyffy)atlJW
+(Dj" — K«D;j¢* — KyD;¢¥ — KyDjn¥ — KyDjn¥)dx,

wherej =x,y,V, ¢,
D; = 9; + Vidv + 0y + (K; + Ky V; + Ky )9k
+(Kji + Kjv Vi + Kjphi)Ok; + Pxi0y, + Pyi0y,.

The operator coordinates é‘i, 171 ,1 =V,9, K are functions of variables x,y, V, ¢, K. The
compatibility conditions of the Equations (3), (5) have the form [1]

Y(®) =0, Y((5)=0

for the solutions of the Equations (3) and (5). This gives an overdetermined linear system
of the homogeneous equations for the coordinates of the operator Y.

Theorem 1. The Lie algebra of the equivalent transformations is infinite. The basic operator are
X1 =0y, Xp2=09y, X3z=ydy—xdy, X4= xdx+ydy+ Pdy,
X5 = ¢y +2Kdx, <n >==Vy'(p)oy +1()dy, < >o={(P)ok,
where y (), L () are arbitrary functions.
Proof. The conditions of invariance for the Equation (5) are
0= YK = 7 — Kyl — Kyn!,

0= YK, =1\ — Kyny — Kyn,/ .

We assume that the values Ky, Ky are arbitrary. Hence it follows

,7{<:;71.V:,71fl’:0, i=xy.
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The condition of invariance for the first equation of the system (3) may be written in
the form

2 [Vt 4 el — e (&5 + VAL + 9a85) — Py (&4 + Vil + i)

+(Ky Vi + Kytpo) (11 — 985 — 950

29, [V + wyn$ — (&) + Vyly + 9y C5) — ¥y (&) + V&Y + 9y Gy) (6)
+(KyVy + K#"Py)(’?}lé — xCE — PyCY))

+7K — Ky — Kyyy + Ky (78 — Kyl — Kging) = 0.

The value Ky is proportional a value Ay which may be arbitrary. The equating to
zero of the coefficient under Ky, in (6) gives

2 (Puy — 2% — PatpyCl) + 20y Pyl — PapyCX — 9280 = 1 — (W2 + 2L

The equating to zero of the coefficients under the powers of values ¢y, iy (the splitting
at ¢x and py) leads to the equations

=8 =nl=nh=0

The residuals of (6) are the polynomial of 4th power by ¢ and ¢,,.. The splitting gives

K=y =8 =Gy =& =& =0,
H+eE=0, Z==cxy),
XK, p) =y, V) + 2(17:/1,](1/]) —¢) = ¢ = Cis a constant.

From here it follows the presentation for the coordinates of operator Y

*=Cx+Ey+E, ¢Yy=Cy—Ex+E,
" =y @)V +n(p), 1* =Ko +¢y), )
7Y =56 —n)+Cyp+D,

where E, E1, E», D are constant.
The condition of invariance for the second equation of the system (3) has the form

VA7) —2C) + i, (02 + 2] + 1V Ay + Ve (e — $2C)
+Vy(4’y’7$ = PyC) + (V" + ¢ (n"'V +175) — VxC)
+ iy (Vyn' + ¢y (1" V +179) — V,C)
= LKZ + T+ W2+ (" +0§) + (8 — ) (VAP + Ve + 9, V)]

®)

The splitting by Ay and 2 + zp§ gives
0=0, {f=0= (] = Misa constant
and (8) is fulfilled identically. The coordinates of operator Y in (7) are corrected
7 =0’ @V, 0t =MK+L(y), g¥ = (C+27 M)y —27Tn(y) + D.

Here and in (7) {(¢),n(y) are arbitrary functions, E, E1, E,C, D, M are arbitrary
constants. The basis from Theorem 1 is obtained to the equating zero all arbitrary elements
except one. [

Remark 1. The transformations no changing the function K(y, V') form the kernel of admitting
groups { X1, X2, X3}.
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Renrlark 2. The transformations changing the function K have the form:
(a) K=K+{(¥),

(b) ¥ = by, K = Kb?,

(c) X=cx,j=cy, p =cy,

@ V(@) =Vyy), a= [ 45 = @ =p@), 'y) =0, V=V )",
v

<

where T(P), u(y) and () are arbitrary functions; a, b and c are constant group parameters. If
n = A is a constant then the transformation (d) is the translation by

V=V, ¢=¢—aA.
If 57(t) = t then the transformation (d) is the dilatation

P =ge ", V=¢V.
Remark 3. The reflection  — —1 is admitted also.

3. The Group Classification of Submodel

The problem of the group classification consist to find arbitrary elements of the system
(3) to within the equivalent transformations for which the admitted group is more than
the kernel. The operators of Lie algebra of the point transformations is written in the form
prolonged on the derivatives from the Equation (3) [1]

X = éxax + éyay + UVaV + ﬂlpalp + éxal/)x + gyatpy + (Dx77v - Vxngx - Vnygy)aVX
+(Dy’7v - Vnyéx - VyDygy)aVy(ngx — PxxDx 8" — lljx]/ngy)a‘/Jxx
+(Dy€y - lpxyDyéx - lpnyygy)atpW/

where {' = Di¥ — . Di¢* — ¢, Did¥, i = x,y, D; = 9; + Vidy + 9;dy + V;;0V; + ij0y, are
the operator of the full differentiation (j = x,y). Here the operator coordinates ¢*, &%, 1", ¥
are functions of the variables x, y, V, ¢. The invariance condition for the first equation of
the system (3) has the form

29 ¥ + Vel + wamf — (& + E Ve + Epr) — 9y (E + Vi + Ep)]
201 + Vil + oy — e (& EVy + Ewy) — by (& + SV + Sy
+KV\/17V + KVw,?l/J =0.

The splitting by the value Vi, + V¢, gives

=iy, = = =gb=0

The change 475 = — 2 — Ky and the splitting by ¢2 and 1, leads to the equations

CZJrC;‘:O, =& =nny=0.

The equating to zero of the coefficients at the linear summands under ¥x and ¢, leads
to the determining relations

Ky&y+nf =0, Ky&y+n) =0,
2nKy + vaﬂv + KVt/ﬂ?w =0.

The determining relations are an overdetermined system of equations for an arbitrary
element. It was arbitrary if the relations are fulfilled identically for the kernel of the
admitted operators. The kernel may be extended for the special functions K(V, ¢). The
equivalent transformations may be changed for special classes of arbitrary elements. Here
we do not consider of the full classification.
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The invariance condition for the second equation of the system (3) with regard for the
received relations has the form

Y AP+ V(=214 ) — Extpe — Epthy) A — Extpar — Ejthyy — 28 + E3tby) Py
""7:;;]4;(%2: + )]+ (Yx Ve + 9y V) (7 + 77$ —2n) + gy + Pyryy)
~ ety Vil + Vy&3) + Vil + Vg — 92Vils,
—yVyly + (3 + 95) (1 — Valy — VyZy) =271 (Kyvy¥ + Kyynr¥).

Reduction of the underline summands and the equating to zero of the coefficients at

Yry, DAY, P2+ 1p§ gives
G==0=nl=yf, nV=@u-n)V, 0=n) =1y, Kpn"+Kpny’=0.
From here it follows ny = n, = 0 = ny = n = N is a constant,

¢*=Nx+Ey+E, ¢=Ny—Ex+E,
Y =n¥(p), 1V =VEN-g)),

where E, E1, E; are constants, and 2 determining relations

KgvV(2N =1} + 1Kyy = 0,

©)
VKyy (2N = 1}) + Kyyn¥ +2(N = )Ky = 0.
The last equation is integrable by V and the system (9) has the form
V(N = g)Ky + 1Ky — 1K = x (), -

(VKy + K)ny + X' () = 0.

Here x (i) is arbitrary function. The determining relations for the function K(y, V)
give the overdetermined system

V(C—b")Ky +b()Ky — 'K = u(yp),

(VKV + K)b// + I’l, — 0, (11)

with some functions b(y), u(¢) and a constant C.
We must find the general solution of the system (11) to within the equivalent transfor-
mations for different b(¢p). If b’ # 0 then from the second equation of (11) follows

K:—y—/—i-)\(lp) AY) A=1or ¢.

b Vv v’

Here the equivalent transformations (a) and (d) from subsection 1 act. From the system
(11) it is follow to within the equivalent transformation

u=0, CA=b\.
Substitution K into (10) determines functions x(¢), n¥(y) and 1":

x=0, n¥=n(p), 7V =2NVAN'(A)"2 (C#0);
x=0, ¥ =nyp), n"=-Vy'(p) (C=0),

where N is an arbitrary constant, #(¢) is an arbitrary function.
Next we consider the case b = By + By. From (11) it is follow yu = M is a constant,

(C— B)VKy + (By + Bg)Ky = BK + M. (12)
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If B # 0 then the equivalent transformations make By = M = 0. General solution of
the Equation (12) with the notation C Bl =mis

K=yk(I), I=Vly"!

for any m and k' # 0. From corrected Equation (10)

X' =i, (IK — k),
(7 = 2N)PIK + ¥ ((m — 1)IK + k) — pyhk = x.

it follows
m;ylp = 2N.

If m = 0 then N = 0 and
(K = k) (yry = n*) = x.
At 1/)173; =n¥ = x =0, k(I) is an arbitrary function,
¥ =By, ' =-BV.

At 1p17$ #n¥ = k= —n+Kol and K ~ ¢I, n¥ = () is an arbitrary function,
;7V — —VT]/

Let m # 0 then ¥ = 2Nm ™'y + By, x = M, Bo((m — 1)IK' + k) = M.

If By = M = 0 then k(I) is an arbitrary function,

¥ =2Nmty, 4V =2N1-m NV, K=upk(I).
At By # 0 the equivalent transformations make
K=vVYm= " ¥ —oNm 9 +By, 5V =2N1-m V.
Case B = 0. The Equation (12) has the form
CVKy + BoKy = M.

To within the equivalent transformations we may consider K = k(I), I = Ve™¥, k' < 0
at By #0and K= —InV at By = 0.
Substitution into (10) gives

(k+ 1K ), +x' =0,
(2N — ni)lk’ +my¥Ik — nik =x = m17$ =0.

Here we may consider that the variables I, i are independent. At m # 0 it follows
n¥ = —2N,x = 0,1V = 2NV. At m = 0, k(V) is an arbitrary function, ¥ = B, N = 0,
X =0,17" =0.Inthe case K = —InV from (10) it follows #¥ = B, ¥ = 2NV.

Hence it was possible to formulate the following statement.

Theorem 2. The system (3) with arbitrary function K(p, V') admits the kernel { Xy, Xo, X3} from
the Theorem 1. For the special functions there are the following extensions

K=V7IA(y), N #04, Xg=x0x+ydy +2A(A") 71 9y +2A1" (1) "2Vay;
K=v=l <y >=n()dy —y'($)Vy,

K = 1l)k(VlP), X4 = 1,[784, — Vav,'

K=yk(I), I=V=lp" 1 Xy =x0; +ydy + 2mydy +2(1 —m~ ) Vay;
K=k(I), I=Ve¥, k' <0, X4 =x9x+yd, — 20y +2Vay;

SRS S
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o

K=VV0=1 m £0, X4 = xdx +ydy +2m pdy +2(1 — m~1)Vy, X5 = dy;
K=k(V), kK <0, Xs5= dy;
8. K=—-InV, X4 = xax + yay +2V8V, X5 = 84,

N

4. Optimal Systems

The Lie algebras of extensions from the Theorem 2 have different dimensions and
structures. For the cases 1°,5°,4° the algebra decompose into the semi-direct sum of the
Abelian subalgebra { X3, X4} and the Abelian ideal { X7, X»}

Ly = {Xq, Xo }&{X3, X4} (13)
according to the commutators of the basic operators
(X1, Xo] =0, [Xy,X3]=—-Xp, [X1,X4] =Xy,

[XZI X3] = Xl/ [XZI X‘d = XZ/ [X3/ X‘d =0.

The inner automorphisms in L4 are calculated by the rule: for each basic operator Xj
the linear transformation is the solution of the following task

X:zk = [Xk/ X/], X/ = x;Xi‘ﬂkZO =X= x,'Xi.

For the operator X the automorphism Ay is given by transformation of the operator
coordinates (it is not written invariable coordinates)

Aq: x’l = x4a1 + X1, x’z = —Xx3d1 + X7,

Ay i Xy =x3ap +x1,  Xh = x40y + Xp;

Az : x| = xycosaz+ xpsinaz,  x) = xqsinaz — x; cos a3;
Ay :x) =xe7™,  xh = xpe” .

The Abelian subalgebra of the decomposition (13) has the following subalgebras
0, Xz+aXsy Xy {Xs X4}

For each of these subalgebras we add the linear combination from the elements of the
Abelian ideal. Some arbitrary coefficients we equate to zero by automorphisms and verify
the condition of subalgebra.

We list one-dimension subalgebras to within the automorphisms. To trivial subalgebra
we add the linear combination x1X; + x2 Xy, the automorphism A3 leads to the similar sub-
algebra X;. Arbitrary subalgebra with the projection X3 4+ a X4 is reduced to the projection
by the superposition AjA,. Similarly the subalgebra Xy + x1 X1 + x2 X5 is reduced to Xy by
A1 and Aj. For 2-dimensional subalgebra one from the basic operators may be reduced to
one of the listed 1-dimensional subalgebras. For a different basic operator must be realized
the condition of the subalgebra: the commutator of them is the linear combination of the
basic operators. For example, [X3, X4 + x1 X7 + 22Xp] = —x1Xs — x,X; = 0. From here
it follows x; = x, = 0 and we obtain the Abelian subalgebra {X3, X4 }. The subalgebra
{X4,x1X1 + 22X} is reduced to { X4, X1 } by the automorphism A3. The condition of the
subalgebra for operators X3 + a X4, x1 X7 + x2 X has the form

01 Xp — 00X —a(x1 Xy +2X0) = A1 Xy +xXp) = x1 =xp =0.

There is no such 2-dimensional subalgebras. There is subalgebra { X;, X, } with null
projection into subspace {X3, X4}. There are no 3-dimensional subalgebras of the type
{X3, X4, %1 X1 + x2X5} as the condition of the subalgebra is not realized. There are subalge-
bras {X4, X1, Xo}, { X5 + aX4, X1, X2 }. Hence the optimal system consists of the following
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dissimilar subalgebras (k.i is number of subalgebra, k is subalgebra dimension, i is the
ordinal number in given dimension)

11Xy, 12X3+aX,, 13Xy
2.1 {X],Xz}, 2.2 {Xl,X4}, 2.3 {Xg,, X4};
3.1 {Xl, Xp, X3+ lXX4}, 3.2 {X1,X2, X4}.

For the case 2° of the Theorem 2 admitted algebra is infinite. There are the inner
automorphisms A1, A, A3. The algebra decompose into the direct sum of 2 ideals

{X1, X, X3}® <n(9p) > .
The inner automorphisms of 3-dimensional ideal A, Ay, A3 calculate subalgebras
0, X3 X1, {Xy,X2 X3}
The commutator of operators from infinite ideal is equal to
(<) > <n(y) >] =<y’ =y’ >
The inner automorphism for the operator < (i) > satisfies the problem
fla = ity =&, Ala=o = 1(9)-

The solution of this problem has the form

g(qj)c(aﬁt/;j})), () :g(zp)G</ ;z))

The automorphism is given by formula

U]

oty TR+ ()
V) D,

where () = [(¢(y))~dy, A(u) is inverse function to (). Within this transformation
we calculate finite subalgebras in the infinite ideal. The condition for 2-dimensional
subalgebras is

77:

(<) > <m(p) > =a<n(p) >+p <myp) >.

From this it is follow the equation

ny = an + (B + 1)

If B # 0 then 1y = —af ™1+ Conpexp(B [ 1~ 1dy) and change of the basis leads to the
subalgebra

{<y><nel1 5y (14)
If B = 0 then; = Coy + an [ 7~ 'dip and change of the basis leads to the subalgebra

{<n>< ﬂ/ﬂ‘ldlﬁ >}, (15)

We will obtain the 3-dimensional subalgebras using Bianchi classification of the
structure over the real field [14]. The structures must not have null commutator. From 2
unsolvable subalgebras is suitable only one with the commutator table of basic elements

[X1/X2] = X]/ [XZI X3] = X3/ [X]/X3] = 2X2
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If X; =< 7;(¢) > then this structure gives the equation system

My — M2y =M1, 23 — 3ty = 13, i3 — 3 = 21

The general solution of 2 equations have the form
= CI’]zei / ”;1d¢, N3 = Dﬂzef Wildllf_

The substitution in third equation leads to the relation CD = 1.
Thus we obtain the 3-dimensional subalgebra

{<pe 70 > <>, < yel 749 >3, (16)
The sum of the projections on the ideals gives the subalgebras
<n> X+ <n> X+ <n>{X1+<n>< ,76]77‘%%#’ >},

(Xa+ <57 >, < el T >} {Xy, Xp, X3+ < 71 >}, (14), (15), (16).

For the case 6° of the Theorem 2 admitted subalgebra decompose into semi-direct sum
of ideal and subalgebra
{X1, X2, X3} H{ X4, X5}

The automorphisms A, Ay, Az are the same as before, the automorphism A4 has
complement Xf = x5exp(—2as). There is the new automorphism As : x§ = 2x4a5 + x5.
The projections on 2-dimensional subalgebra contain the subalgebras to within the inner
automorphisms

0/ X4r X5/ {X4/ X5 }

Adding projections from the ideal we obtain the optimal system
X1, Xz+aXy, Xz+aXs, Xy X5+ BXy;

{Xs5, Xa}, {X2, X4}, {X3 X5}, {X1,Xs},
{Xy, X5+ X1, B(m —2) =0}, {Xz+aXy Xs5};
{Xg, X1, Xo}, {X1,Xo, Xz +aXy}, {X1,Xo, X3+aXs}, {Xi, X2, X5},
(X3, X4, X5}, {Xa, X5 +aXa, Xy, B(m—2) =0};
{X1, X0, X3, X4}, {X1,X0,X3,Xs5}, {Xg+aXs Xs5,X1,X0}.

For the case 7° of the Theorem 2 the 4-dimensional subalgebra has the center X5. The
automorphisms A1, A, Az produce the optimal system

X1+ X5, Xs+aXs, a =0o0r1; {Xy, Xo +aXs}, {X1, X5}, {X3, X5} {Xz+aXs5,Xq, Xo}.

For the case 8° of the Theorem 2 the 5-dimensional subalgebra has the center X5 and
the automorphisms A1, Ay, A3, A4. The optimal system is similar to the case 4° with adding
center

X1 +aXs, X3+ BXa+aXs, Xy +aXs; { X1 +aXs, Xo}, {Xg +aXs, Xy},

{X3 + D‘X5/ X4 +ﬁX5}/ {X11X5}/ {X3/ X5}/ {X4/ X5}/
{X1, X2, X3+ BXy +aXs5},{X1, Xo, Xa +a X5}, {X1, X2, X5}, { X1, X4, X5}, { X3, Xy, X5 };
{Xlr XZ/ X3 + OCXS, X4 + ,BXS}/ {Xll XZ/ X3 + OCX4, X5}/ {Xl/ XZ/ X4/ XS}
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The center X, is added to the kernel for the case 3° of the Theorem 2. The optimal
system is obtained from the optimal system of the kernel

X4/ Xl + DCX4/ X3 + “X4/ {Xl/XZ + “X4}/ {X1/X4}/ {X?)/ X4}/ {X1/X21 X3 + (XX4}'

The optimal system may be presented as the graph of the embedded subalgebras,
for example, for the algebra L4 of the case 1°,4°,5° (Figure 1). The system of embedded
subalgebras may be constructed with the help of the graph [15].

7N,
NS
> L

Figure 1. The graph of embedded subalgebras.

The constructed optimal systems classify the group submodels of the system (3) in
fact. The 1-dimensional subalgebras give the invariant submodels. The 2-dimensional
subalgebras give the partial invariant submodels as the simple waves. The subalgebras
of big dimensions give the differential invariant submodels with the invariant differential
connections.

5. The Examples of the Group Solutions

The subalgebra 1.3 of the case 4° of the Theorem 2 (K = yk(I), I = Vip!~"™) determines
the invariant solution. It is convenient to use the polar system of coordinates x = r cos ¢,
y = rsin ¢. The operator of the subalgebra is

Xg =19y +2m ' (Ydy + (m —1)Vay),
the Equation (3) have the form

Y7+ 17293 = —Ky = =92 "K(I), K <0,

17
V(@ + 72000 + 17 19,) + Vi + 1729V = 3Ky = 5 (k+ (1 —m)IK). 17
The invariants of the subalgebra give the solution representation
p=r""¥(p), V=y""U9)
The substitution into (17) give the system of the odinary differential equations
2 292 | w2-mp _
Y 4+4m— Y-+ ¥k =0, (18)

Y 4 4m ™Y + Y = 27 (T k4 (m— 1K),
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We differentiate the first equation and exclude ¥”
¥ <8m_2‘-}’m + (Ik)”) L ¥(Ik) = 0.
From here we obtain the integral
Yo = <C +8m~? /kllmdl> , k= (Ik)".
The submodel (18) is integrated in quadratures. On the simple example we consider

a behavior of stream lines. Let C = 0, k = DI", Dn < 0. Then ky = D(n + 1)I" and the
integral has the form

YY" =87 IDI" tm(n+1)(1 —n —nm).

The first Equation (18) is

Y =9Y, 9*= >0

where the inequality is reached by the choice of m and n. Hence the stream function is
determined by the equation
P = Cr2/me9,

where C is constant and the stream line ¢ = ¢y is the logarithmic spiral
r=(pC )" 2 exp(—2"myp).

Atmy >0, ¢ — oo = r — 0. The solution describe the gas motion from the point
source or the point sink.
The subalgebra {X;, X4} for the case 3° of the Theorem 2 K = yk(V):

X1 =0y, Xy= l[Jaw —Voy.

The invariants y, I = V¢ determine the representation of the regular partial invariant
solution of rank 1 and defect 1:

V=9 Uy, ¥=Inp ¥=yy)
The substitution in (3) gives the overdetermined system
YI+¥2=—K(I), (I¥x)x+ (I¥y), =27 (k+ 1K) =c(y), (19)
where a function c(y) is determined within a constant summand. The change
Ye=11x, ¥Yy=I"'c—xx) (20)
satisfies the second equation of (19). The first equation
Xp+ (e = xx)? = —IPK = b(y)?
is satisfied by the substitution
Xy =bcosd, xx=c—bsind. (21)
The compatibility of Equations (20), (21) gives

Oy sind — 0y cos® = b (b'sind — ),
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Oy cos® + Oy sin® = (b0 — I"'I') cos 0.
From here the derivatives are determined
Oy =b"1(b' —'sin®) — I 'I'cos’®, ¢, = (b ' —I 'I'sind)cos?.

The compatibility leads to the relation
AN

1" 'y . o Y I'c! ) b
(1 _21b> sin® ¢ 4 <_b +2b—2 + Ib) sin ¢ + (b)

7\’ N2 r/y U
(1) -(5) ~7(G-7) -
From here it follows: either ¢, = 0 or all coefficients at the powers sin ¢ are equal to
zero. At the last case we have the integrals

I' =Cbh, (' =DIK?

where C, D are constants and the equation

AN 1
<II> — IT —2D%C12I' =0,

which is integrated with the constants Gy and Fy

, 2D 5y o 20

From here we find 5
D Go. K
k=——oI*— 21+ 2 4+ K.
3020 a2c ter o

The definition ¢(y) from (19) gives the compatibility condition
IK(14+2DI?) +k=0.

The substitution the expression k and equating to zero of the coefficients at the power
of I gives D = Gy = Ko = 0. Consequently

k=CRI!, I=Fy, c=0.
We obtain the compatible system

Oy =—y 'cos’®, Oy =—y 'sindcosd = tand = —xy .

R,
;Y= C lpi

The stream lines 1 = 1 are the rays x = koy. Along a stream line the density
p = V=1 = ¢(Fyy)~! is infinite at the origin and it is vacuum at infinity.
For the different case of alternative ¢ = ¢(y) it follows from (20)

Later we solve the system (20)

2

X X X x2
S S
y y y

Y =7vIn
y

x=xo(y), c=bsind, x{=>bcosd=Cyl,

Y =Cox+Y¥o(y), Z+I(C3+K)=0, I¥)=c.
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From the definition function ¢(y), (19) it follows

2C2 + (Ik)"

dl
(IK)'(—C% —K')1/2

dy = —

and ¥y (y) is determined by the expression
(1K) o +2C3 + (1K) =
Hence the solution is determined by the given function k(I).

Example 1. Let k = 1 ¥(y) = c =0, b =1 From (21), (20) it follows ¢ = ¥y, I = Iy are
constants,
¥ =Iny = I; ! (xcos ¥ +ysindyp).

The stream lines § = g are straight lines.

Example 2. Letk = —C31+ 17", n > 0. Then ¢ = nI'=", J2 = [-1-"

n+1 dJ n(l—n)~"2
- d]/ = > ‘FOI = > .
2y/n J2+2C5(n—1)"1 —2C5+ (1 —n)In1
The integrating gives the formulas
n 2C2
v, — _ 2 0
0 n+l I+ n—1/(
2 1
J= V2G tan| — ot (n>1);
vn—1 2n n - 1
J= V26 tanh o+t (n<1).
V1—mn V2n(1—n)

The stream function is determined by the equation within the constant summand
Ingp = Cox+2n(n+1)"tin|cosyy|, (n>1);
Iny = Cox +2n(n+1)"tIn|coshyy|, (n<1), /2nn—1ly; = —(n+1)Coy.
The stream line = g is determined by the equations
cosy=e *(n>1), coshy=e *(n<1)

within the translation on x and dilatation on x and on y. It is even with respect to y and by
translation on x cover the flow domain. At n > 1 the stream lines give the turn back of the flow
in the strip |y| < 7t/2 (Figure 2a). At n < 1 we obtain the turn of the flow on the plane with the
asymptotes y = £x + B, cosh B = 5/4 for the stream lines (Figure 2b).
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(a) (b)

Figure 2. (a) The turn of a flow in the strip. (b) The turn of a flow on the plane with asymptotes.

[N

6. Conclusions and Discussion

In the present paper we made the symmetry analysis of the steady plane vortex
submodel for the ideal gas flow with varying entropy. With the help of 4 integrals the
submodel is given by nonlinear system of the third order differential equations for the
stream function and the specific volume. In this system there is one arbitrary function on
2 variables which is expressed through the state equation and arbitrary functions of the
integrals. We found all equivalent transformations, listed arbitrary elements for which the
admitted group is extended. We constructed the optimal systems of subgroups for the each
of these extensions. The optimal systems classify group submodels. The examples of the
invariant and regular partial invariant solutions were done.

Classification of the group solutions is not completed. There are only several solutions
for which the gas particles motion was investigated. The gas motion has its specific for
each subalgebra. The determination of these specific characters is not solved problem.
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