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Abstract: Rate or proportion data are modeled by using a regression model. The considered regres-
sion model can be used for studying phenomena with a response on the (0, 1), [0, 1), (0, 1], or [0, 1]
intervals. To connect the response variable with the linear predictor in the regression model, we
use a logit link function, which guarantees that the obtained prediction ranges between zero and
one in the cases inflated at zero or one (or both). The model is complemented with the assumption
that the errors follow a power-skew-normal distribution, resulting in a very flexible model, and
with a non-singular information matrix, constituting an advantage over other existing models in the
literature. To explain the probability of point mass at the values zero and/or one (inflated part), we
used a polytomic logistic model with covariates. The results of two illustrations showed that the
proposed model is a better alternative compared to widely known models in the literature.

Keywords: power-skew-normal distribution; unit power-skew-normal distribution; censorship;
linear regression mixture model; maximum likelihood estimation

1. Introduction

Statistical modeling to explain variables, such as the concentration of sulfur in the
tissue in 100 g of leaves of a certain genotype of bean (measured by turbidimetric methods),
the proportion of children killed by unknown causes in the main cities of a country,
the proportion of deaths caused by smoking, the prevalence rate of a certain disease in
a community, the proportion of votes in favor of a presidential candidate for reelection,
the proportion of income spent on education, and, in general, any response variable on the
unit interval (0, 1) as proportions, rates, or indices, has been studied by several researchers,
highlighting the works of Paolino [1], Cribari-Neto and Vasconcellos [2], Kieschnick and
Mccullough [3], Ferrari and Cribari-Neto [4], and Vasconcellos and Cribari-Neto [5].

Among the most recent works, we emphasize Ospina and Ferrari [6,7], Bayes et al. [8]
and Martínez-Flórez et al. [9,10] who have presented extensions of the works mentioned
above, some of them by incorporating a set of covariates to the model. Other works in
this same area are those of Mazucheli et al. [11–13] and Menezes et al. [14], which extend
the Birbaum–Saunders, gamma, Weibull, and logistic models, respectively, to situations
of models able to fit datasets whose variables are on a unity interval. These families have
proven to be a good alternative to the beta model of Ferrari and Cribari-Neto [4] and the
Kumaraswamy distribution by [15].

The previously mentioned distributions used for modeling proportions, rates, and
indices as well as their respective extensions have special characteristics from which is
possible to decide if is a favorable option for fitting a particular dataset; usually, the
asymmetry and kurtosis coefficients are the most used. Unquestionably, these measures
are associated with certain parameters of each model; generally, the parameters to which
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we refer are linked to characteristics of shape and/or asymmetry or the kurtosis of the
distribution. Some works include the case of unit variables that contain an excessive
amount of zeros and/or ones, and they are known in the literature as inflated distributions
in the values of zero or one. Some works for dealing with these situations have been
proposed by Ospina and Ferrari [7] and Martínez-Flórez et al. [10], among others.

The main objective of this article is to propose a new class of regression models based
on the power-skew-normal distribution, which are useful for fitting data with response on
the unit interval. The new models allow taking into account possible excesses of the zero
and/or one values of the response variable and are also able to capture different forms
of the response distribution, as well as high (or low) degrees of asymmetry and kurtosis
present in the data.

The rest of this paper is organized as follows: Section 2 presents some asymmetric
distributions and its main characteristics. In Section 3, the power-skew-normal/logit model
is introduced, and its main properties are discussed. In addition, the statistical inference is
carried out by using the maximum likelihood method. Section 4 presents the unit-power-
skew-normal model for fitting data on the (0, 1) interval. For this model, the maximum
likelihood method is used to carry out the estimation of parameters. The score function and
the elements of the observed information matrix are presented in detail. Section 5 presents
the extension of the inflated unit-power-skew-normal model, which is an alternative to the
inflated beta regression model. In particular, the log-UPSN model is studied. In Section 6,
the doubly censored PSN model is presented, and the generalized two-part PSN model
with covariates is studied as a particular case. Finally, in Section 7, two illustrative examples
are reported and compared with several rival models.

2. Asymmetric Distributions

The study of families with flexible distributions capable of modeling different degrees
of asymmetry and kurtosis has been of great interest in the recent statistical literature.
Different works have been published, with initial works by Birnbaum [16], Lehmann [17],
Roberts [18], and O’Hagan and Leonard [19] and more recently by Fernandez and Steel [20],
Mudholkara and Hutson [21], Azzalini [22], Durrans [23], Gupta and Gupta [24], Arellano-
Valle et al. [25,26], Gómez et al. [27], and Pewsey et al. [28]. Azzalini [22] introduces
the skew-normal (SN) distribution by adding an extra parameter λ to the normal model.
The inclusion of this new parameter allows for fitting data with high degrees of asymmetry.
The probability density function (pdf) for the skew-normal model with location parameter
µ and scale parameter σ is given by

fSN(x; µ, σ, λ) =
2
σ

φ

(
x− µ

σ

)
Φ
(

λ
x− µ

σ

)
, x ∈ R, (1)

where µ, λ ∈ R and σ ∈ R+. The functions φ(·) and Φ(·) denote the pdf and cumulative
distribution function (cdf) of the standard normal distribution. The model in (1) is denoted
by X ∼ SN(µ, σ, λ), and the respective cdf is written as

FSN

(
x− µ

σ
, λ

)
= Φ

(
x− µ

σ

)
− 2T

(
x− µ

σ
, λ

)
, x ∈ R, (2)

where T(·, λ) is the Owen function (see [29]). Another asymmetric model widely studied
in the statistical literature is the named power-normal (PN), which was initially introduced
by Durrans [23]. The PN model is sometimes denominated the generalized Gaussian distri-
bution. Later, Gupta and Gupta [24,30] studied some statistical properties of the PN model,
and they called it the exponential distribution. On the other hand, Pewsey et al. [28] stud-
ied the statistical inference of the PN model by using the maximum likelihood method; here,
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the authors deduce the expected information matrix, and they show the non-singularity of
the matrix. The pdf of the location-scale version of the PN model is given by

fPN(x; µ, σ, α) =
α

σ
φ

(
x− µ

σ

){
Φ
(

x− µ

σ

)}α−1
, x ∈ R, (3)

where α ∈ R+ is a shape parameter, which contributes strongly to the kurtosis of the model.
The model in (3) is denoted by X ∼ PN(µ, σ, α), and the respective cdf is given by

FPN(x; µ, σ, α) =

{
Φ
(

x− µ

σ

)}α

, x ∈ R. (4)

An extension of the PN model which is capable of capturing greater ranges of asym-
metry and kurtosis was proposed by Martínez-Flórez et al. [31]. This proposal, which is
named the power-skew-normal (PSN) model, is originated by replacing the pdf and cdf of
the normal distribution in the PN model by those of the SN model, that is, the PSN model
contains both shape and asymmetry parameters. The pdf for the location-scale version of
the PSN model is given by

fPSN(x; µ, σ, λ, α) = α fSN(x, µ, σ, λ)

{
FSN

(
x− µ

σ
, λ

)}α−1
, x ∈ R, (5)

where µ, λ ∈ R and σ, α ∈ R+. This is denoted by X ∼ PSN(µ, σ, λ, α). One can observe
that, for α = 1, the SN model is obtained, while for λ = 0, the PN model is followed.
The normal model is obtained when λ = 0 and α = 1, that is, the PSN model is more
flexible than the normal, SN and PN models. If X ∼ PSN(µ, σ, λ, α), then the cdf of X is
given by

FPSN(x; µ, σ, λ, α) =

{
Φ
(

x− µ

σ

)
− 2T

(
x− µ

σ
, λ

)}α

, x ∈ R.

where T(·, λ) is Owen’s function. For λ and α values ranging in the (0.1; 100) interval,
the asymmetry and kurtosis coefficients for the PSN model are [−1.4676, 0.9953) and
[1.4672, 5.4386], respectively; these intervals contain the respective asymmetry and kurtosis
coefficients of the SN and PN models (see Pewsey et al. [28]). The extensions for the
positive data of the random variable X following the SN, PN or PSN models are obtained
by applying the transformation exp(X), and they are denominated as a log-skew-normal
(LSN) distribution, log-power-normal (LPN) distribution and log-power-skew-normal
(LPSN) distribution, respectively (see Martínez-Flórez et al. [9,32], Mateus-Figueras and
Pawlosky-Glanh [33]).

Asymmetric models have become very useful statistical tools for modeling censored
or truncated data using covariates: see, for example, the log-gamma model by Moulton and
Halsey [34], the log-skew-normal model of Chai and Bailey [35], the power-normal model
by Martínez-Flórez et al. [9], and log-power-normal models by Martínez-Flórez et al. [9,32].
In this work, we extend the PSN model to the case of proportions, rates or indices data.
The proposed extension is useful for modeling data with a response on the unit interval
with an excess of zeros and/or ones and covariates to explain the response and the excess
of zeros and/or ones.

3. The Power-Skew-Normal/Logit Mixture Model

The linear regression model with errors following a PSN(0, σ, λ, α) distribution was
introduced and studied in detail by Martínez-Flórez et al. [32]. This model is expressed as

yi = δ0 + δ1z1i + · · ·+ δpzpi + εi, (6)
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where δ = (δ0, δ1, . . . , δp)> is an unknown vector of regression coefficients, zi = (1, z1, . . . , zp)>

is a vector containing p known explanatory variables with p < n, and εi ∼ PSN(0, σ, λ, α)
for i = 1, 2, . . . , n. It follows that

yi ∼ PSN(z>i δ, σ, λ, α), i = 1, 2, . . . , n.

Since E(εi) = ασ
∫ 1

0 F
−1
SN (u)uα−1du 6= 0, it follows that E(yi) 6= z>i δ; therefore, it is

necessary to correct the parameter δ0 in the form δ∗0 = δ0 + µε, where µε = E(εi). Thus,
it is obtained that E(yi) = z>i δ∗, where δ∗ = (δ∗0 , δ1, . . . , δp)>. The ordinary least squares
method can be used to obtain an estimate of the parameter vector δ, which can be used as
an initial value in the maximum likelihood estimation process.

The main interest in this paper is centered on the case where the measured variable has
a response on the unit interval, and the expected response or predicted value falls outside
of this unit interval, which could lead to negative estimates without any interpretation or
meaning. To avoid these inconveniences, the assumption of response variable Y being a
linear function of the vector of explanatory variables z>i = (z1, z2, . . . , zp) is replaced by the
assumption of a non-linear transformation of this set of variables. This model is obtained
by assuming that the location parameter of the yi variable can be written as

g(ηi) =
n

∑
i=1

z>i δ (7)

where g(·) is a strictly monotonic link function whose second derivative exists. Two link
functions g(·) widely used in practical situations that can be considered in (7) are the probit
with g(ηi) = Φ(ηi), where Φ(·) is the cdf of the standard normal distribution, and the logit
function given by g(ηi) = log(ηi/(1− ηi)). These two options lead to very similar results
in the predicted values, with some exceptions for extreme values. For the ease of handling
deductions, in this work, we opt for the logit function. Thus, in this case, we have

ηi =
exp(z>i δ)

1 + exp(z>i δ)
, i = 1, 2, . . . , n. (8)

For the function in (8), the parameters are interpreted from the odds ratio between the
odds of the prediction or mean when one of the variables is increased m units (keeping the
rest of the explanatory variables fixed) and the odds without the increase. One can show
that this quotient of odds ratios is given by exp(mδk), where δk is the parameter associated
with the explanatory variable increased by m units. It follows that the distribution of the
study variable is

yi ∼ PSN(ηi, σ, λ, α), i = 1, 2, . . . , n. (9)

From the model in (9), some special cases can be obtained; for example, if α = 1,
the skew-normal-logit model is obtained, while, for λ = 0, the exponential or alpha-power-
logit case is followed. If λ = 0 and α = 1, it has the normal-logit model.

The parameter estimation of the PSN regression model on the unit interval (0, 1)
with logit link function can be obtained by using the maximum likelihood method. The log-
likelihood function obtained from a random sample of size n is given by

`(ϕ; y) = n log(α)− n log(σ) +
n

∑
i=1

log( fSN(wi, λ)) + (α− 1)
n

∑
i=1

log(FSN(wi, λ)), (10)

where wi = (yi − ηi)/σ. for i = 1, 2, . . . , n. To obtain the elements of the score function
and the observed information matrix of the parameters ϕ = (δ>, σ)>, we use the fact that

∂`(ϕ; y)
∂δj

=
∂`(ϕ; y)

∂wi

∂wi
∂ηi

∂ηi
∂δj

and
∂`(ϕ; y)

∂σ
=

∂`(ϕ; y)
∂wi

∂wi
∂σ

,
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where ηi is given in (8). Then, the elements of the score function can be written in the form

U(δj) =
1
σ

n

∑
i=1

zijηiwi −
λ

σ

n

∑
i=1

zijηiξ(λwi)−
α− 1

σ

n

∑
i=1

zijηiτ(λwi), j = 0, 1, 2, . . . , p, (11)

U(σ) = −n
σ
+

1
σ

n

∑
i=1

w2
i −

λ

σ

n

∑
i=1

wiξ(λwi)−
α− 1

σ

n

∑
i=1

wiγ(λwi), (12)

U(λ) =
n

∑
i=1

wiξ(λwi)−
α− 1

1 + λ2

n

∑
i=1

ν(wi), U(α) =
n
α
+

n

∑
i=1

log(FSN(wi, λ)). (13)

where ξ(w) = φ(w)
Φ(w)

, γ(w) = fSN(w,λ)
FSN(w,λ) and ν(w) =

√
2
π

φ(
√

1+λ2w)
FSN(w,λ) . The scores equations

are obtained by setting the elements of the score function equal to zero, that is, the first
derivative of `(ϕ; y) with respect to the parameters δ0, δ1, . . . , δp, σ, λ, and α. By solving
this system of equations, the maximum likelihood estimates are obtained. To maximize the
log-likelihood function, it is necessary to use iterative numeric methods. Likewise, as in
the standard case, the observed and expected Fisher information matrices are obtained as
minus the Hessian matrix (the second derivative of `(ϕ; y) with respect to the parameters)
and the expected value of the elements of the observed information matrix, respectively.
After some algebraic manipulations, it follows that the elements of the observed informa-
tion matrix can be written in the form H(ϕ) = ∑A hϕj ϕj′ , hϕj ϕj′ = −∂2`(ϕ; y)/∂ϕj∂ϕj′ and
A = {1, 2, 3, . . . , n} being the set of observations.

Letting ζ(w) = ξ(w)[ξ(w) + w] and τ(w) = γ(w)[γ(w) + w], the elements hϕj ϕj′ are
given by

hδjδl =
1
σ2 zijzilη

2
i

[
1 + λ2ζ(λwi)

]
+

α− 1
σ2 zijzilη

2
i [τ(wi)− λν(wi))]

+
1
σ

zijzilηi[−wi + λξ(λwi) + (α− 1)γ(wi)],

hδjη =
1
σ2 zijηi

[
2wi − λξ(λwi) + λ2wiζ(λwi)

]
+

α− 1
σ2 zijηi[−γ(wi) + wiτ(wi)− λwiν(wi)],

hδjλ =
1
σ

zijηi[ξ(λwi) + λwiζ(λwi)]

+
α− 1

σ
zijηiν(wi)

[
wi +

1
1 + λ2 γ(wi)

]
,

hσσ =
1
σ2

[
−1 + 3w2

i − 2λwiξ(λwi) + λ2w2
i ζ(λwi)

]
+

α− 1
σ2 wi[−2γ(wi) + wiτ(wi)− λwiν(wi)],

hσλ =
1
σ

wi[ξ(λwi) + λwiζ(λwi)] +
α− 1

σ
wiν(wi)

[
wi +

1
1 + λ2 γ(wi)

]
,

hλλ = w2
i ζ(λwi) +

α− 1
1 + λ2 ν(wi)

[
−λ

(
2

1 + λ2 + w2
i

)
+

1
1 + λ2 ν(wi)

]
,

hδjα =
1
σ

zijηiγ(wi), hσα =
1
σ

wiγ(wi), hλα =
1

1 + λ2 ν(wi), hαα =
1
α2 .

Now, by letting λ = 0 and α = 1, and using numerical integration, the Fisher
information matrix is given by

I(ϕ) =

 ISN(δ, σ, λ) I1

I>1 1

,
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where I1 =
(

0.9031
σ 1>n MZ,− 0.5956

σ , 0.7206
)>

, with M = Diag(η1, η2, . . . , ηn) and

ISN(δ, σ, λ) =


1

σ2 (MZ)>(MZ) 0p+1
1
σ bZ>M1n

0>p+1
2n
σ2 0

1
σ b1>n MZ 0 nb2

,

with b =
√

2
π . The determinant of the ISN matrix is given by

|ISN(δ, σ, λ)| = 2nb2

σ2(p+1)

∣∣∣(MZ)>(MZ)
∣∣∣∣∣∣∣n− 1>n MZ

(
Z>MMZ

)−1
Z>M1n

∣∣∣∣
Since Z is of full-column rank, and M is a diagonal matrix, the rank of MZ is the

same as the Z, that is, the matrix MZ is of full-column rank; therefore, (MZ)>(MZ) will
be full-rank and hence invertible, that is, its determinant is different from zero. Now,
to find the last determinant, we write Z = (1n, Z1), where Z1 = (Z1, Z2, . . . , Zp); this
partition leads to expressing the matrix Z>MMZ as a partitioned matrix, for which
we can use the existing expressions of the matrix algebra to find the inverse of a par-
titioned matrix, that is, we can determine

(
Z>MMZ

)−1
. With this result, it follows that,

1>n MZ
(
Z>MMZ

)−1
Z>M1n = ∑n

i=1 η2
i and, as for i = 1, 2, . . . , n, 0 < ηi < 1, ∑n

i=1 η2
i < n,

which leads to
∣∣∣n− 1>n MZ

(
Z>MMZ

)−1
Z>M1n

∣∣∣ > 0, concluding that |ISN(δ, σ, λ)| 6= 0,
that is, ISN(δ, σ, λ) is non-singular, and therefore its rows and/or columns are linearly
independent. Thus, the rows and/or columns of the information matrix I(ϕ) are linearly in-
dependent, that is, |I(ϕ)| 6= 0. This leads to a non-singular matrix, because its columns (or
rows) are linearly independent. Therefore, the regularity conditions are satisfied, and the
known

√
n-property for the maximum likelihood estimators is satisfied for all λ and α.

This important result further supports the hypothesis of singularity in the informa-
tion matrix for the SN model for cases where the variable is a linear transformation of
the location parameter. For other non-linear transformations, such as the asymmetric
Birbaum–Saunders distributions studied by Vilca and Leiva-Sánchez [36], the asymmetric
sinh-normal model of Leiva-Sánchez [37], and the asymmetric Birbaum–Saunders expo-
nential distribution in Mattínez-Flórez et al. [38], the information matrices turned out to
be non-singular.

4. Unit-Power-Skew-Normal Model

The unit-power-skew-normal (UPSN) model can be defined from the doubly truncated
power-skew-normal (TPSN) distribution on the interval (0, 1), which has a pdf given by

fTPSN(yi; µ, σ, λ, α) =
α
σ fSN(wi, λ){FSN(wi, λ)}α−1

{FSN(w1i, λ)}α − {FSN(w0i, λ)}α , 0 < yi < 1, (14)

where

w0i = −
µ

σ
, wi =

yi − µ

σ
and w1i =

1− µ

σ
. (15)

The properties of the doubly TPSN model can be studied from the properties of the
truncated models. One can observe from Equation (14) that, if α = 1, the standard unit
skew-normal-logit model is obtained, while, for λ = 0, the standard unit exponential-logit
or alpha-power-logit model is obtained. Finally, when λ = 0 and α = 1, the standard unit
normal-logit model is followed.
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The cdf of the TPSN model is given by

FTPSN(yi) =
{FSN(wi, λ)}α − {FSN(w0i, λ)}α

{FSN(w1i, λ)}α − {FSN(w0i, λ)}α , 0 < yi < 1, (16)

and the survival and Hazard functions are given by

STPSN(yi) =
{FSN(w1i, λ)}α − {FSN(wi, λ)}α

{FSN(w1i, λ)}α − {FSN(w0i, λ)}α , 0 < yi < 1, (17)

rTPSN(yi) =
α
σ fSN(wi, λ){FSN(wi, λ)}α−1

{FSN(w1i, λ)}α − {FSN(wi, λ)}α , R(ti) =
α
σ fSN(wi, λ){FSN(wi, λ)}α−1

{FSN(wi, λ)}α − {FSN(w0i, λ)}α , (18)

respectively. The moments of the TPSN model can be calculated by the expression

E(Yr) =
α ∑r

j=1 η
r−j
i σjεj

{FSN(w1i, λ)}α − {FSN(w0i, λ)}α , (19)

where

ε =
∫ FSN(w1i ,λ)

FSN(w0i ,λ)
F−1

SN (u, λ)uα−1du,

F−1
SN (·, λ) being the inverse function of FSN(·, λ). The estimates of the parameters of the

doubly TPSN-logit model (14) considering a set of covariates can be obtained by using the
maximum likelihood method. The log-likelihood function for estimating ϕ = (δ>, λ, α)>

is given by

`(ϕ, y) = n log(α)− n log(σ) + ∑
yi∈(0,1)

log( fSN(wi, λ)) + (α− 1) ∑
yi∈(0,1)

log(FSN(wi, λ))

− ∑
yi∈(0,1)

log
(
{FSN(w1i, λ)}α − {FSN(w0i, λ)}α), (20)

where w0i, w1i, wi are defined in (15). The scores equations are obtained by setting the first
derivative of `(ϕ, y) with respect to the parameters δ0, δ1, . . . , δp, σ, λ, and α, equal to zero.
The solution of the resulting system of equations leads to maximum likelihood estimates,
which is maximized by using iterative numeric methods.

The covariance matrix and standard errors for the TPSN model can be obtained from
the inverse of the observed information matrix, given by minus the second derivative of
the log-likelihood function in Equation (20) with respect to the parameters of the model, δ,
σ, λ, and α. Then, the observed information matrix of the truncated unit PSN-logit model
can be found from the elements of the matrix of the unit PSN-logit model; these elements
can be written as

κδjδl = ∑
yi∈(0,1)

hδjδl + ∑
yi∈(0,1)

ψ
′′
δjδl

(1− 0)

ψ(1− 0)
−

ψ
′
δj
(1− 0)ψ

′
δl
(1− 0)

ψ2(1− 0)


κδjσ = ∑

yi∈(0,1)
hδjσ + ∑

yi∈(0,1)

ψ
′′
δjσ

(1− 0)

ψ(1− 0)
−

ψ
′
δj
(1− 0)ψ

′
σ(1− 0)

ψ2(1− 0)


κδjλ = ∑

yi∈(0,1)
hδjσ + ∑

yi∈(0,1)

ψ
′′
δjλ

(1− 0)

ψ(1− 0)
−

ψ
′
δj
(1− 0)ψ

′
λ(1− 0)

ψ2(1− 0)


κδjα = ∑

yi∈(0,1)
hδjα + ∑

yi∈(0,1)

ψ
′′
δjα

(1− 0)

ψ(1− 0)
−

ψ
′
δj
(1− 0)ψ

′
α(1− 0)

ψ2(1− 0)
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κσσ = ∑
y∈(0,1)

hσσ + ∑
yi∈(0,1)

ψ
′′
σσ(1− 0)
ψ(1− 0)

−

(
ψ
′
σ(1− 0)

)2

ψ2(1− 0)


κσλ = ∑

yi∈(0,1)
hσλ + ∑

yi∈(0,1)

[
ψ
′′
σλ(1− 0)
ψ(1− 0)

−
ψ
′
σ(1− 0)ψ

′
λ(1− 0)

ψ2(1− 0)

]

κσα = ∑
yi∈(0,1)

hσα + ∑
yi∈(0,1)

[
ψ
′′
σα(1− 0)
ψ(1− 0)

− ψ
′
σ(1− 0)ψ

′
α(1− 0)

ψ2(1− 0)

]

κλλ = ∑
yi∈(0,1)

hλλ + ∑
yi∈(0,1)

ψ
′′
λλ(1− 0)
ψ(1− 0)

−

(
ψ
′
λ(1− 0)

)2

ψ2(1− 0)


κλα = ∑

yi∈(0,1)
hλα + ∑

y∈(0,1)

[
ψ
′′
λα(1− 0)
ψ(1− 0)

−
ψ
′
λ(1− 0)ψ

′
α(1− 0)

ψ2(1− 0)

]

καα =
n
α2 + ∑

yi∈(0,1)

ψ
′′
αα(1− 0)
ψ(1− 0)

−

(
ψ
′
α(1− 0)

)2

ψ2(1− 0)


where

ψ(1− 0) = ψ(1)− ψ(0), with ψ(y) = (FSN(w; λ))α,

ψ
′
ϕ(1− 0) = ψ

′
ϕ(1)− ψ

′
ϕ(0), with ψ

′
ϕ(y) =

∂ψ(y)
∂ϕ

,

ψ
′′
ϕj ϕl

(1− 0) = ψ
′′
ϕj ϕl

(1)− ψ
′′
ϕj ϕl

(0), with ψ
′′
ϕj ϕl

(y) =
∂2ψ(y)
∂ϕj∂ϕl

.

In addition, for

ι(w) =

√
2
π

φ(
√

1 + λ2w)

fSN(w; λ)
,

it follows that

ψ
′
δj
(yi) = −zijηi fPSN(yi; ηi, σ, λ, α),

ψ
′
λ(yi) = −

√
π

2
α

1 + λ2 {FPSN(yi; ηi, σ, λ, α)}α−1,

ψ
′
σ(yi) = −wi fPSN(yi; ηi, σ, λ, α),

ψ
′
α(yi) = log(FPSN(yi; ηi, σ, λ, α)){FPSN(yi; ηi, σ, λ, α)}α,

ψ
′′
δjδl

(yi) = −
zijzil

σ
fPSN(yi; ηi, σ, λ, α)

[
η2

i (wi − λι(wi)− (α− 1)γ(wi)) + ηi

]
,

ψ
′′
δjσ

(yi) = −
zij

σ
wi fPSN(yi; ηi, σ, λ, α)[wi − λι(wi)− (α− 1)γ(wi)],

ψ
′′
δjλ

(yi) = −zijηiγ(wi)

[
α

σ
wi{FSN(wi; λ)}α − α− 1

1 + λ2 fPSN(yi; ηi, σ, λ, α)

]
,

ψ
′′
δjα

(yi) = −zijηi fPSN(yi; ηi, σ, λ, α)

[
1
α
+ log(FSN(wi; λ))

]
,

ψ
′′
σσ(yi) =

zi
σ

fPSN(yi; ηi, σ, λ, α)
[
2− w2

i + (α− 1)wiγ(wi)
]

+
αλ

σ2 w2
i ν(wi){FSN(wi; λ)}α,



Mathematics 2021, 9, 1989 9 of 20

ψ
′′
σλ(yi) = −wiγ(wi)

[
α

σ
wi{FSN(wi; λ)}α − α− 1

1 + λ2 fPSN(yi; ηi, σ, λ, α)

]
,

ψ
′′
σα(yi) = −wi fPSN(yi; ηi, σ, λ, α)

[
1
α
+ log(FSN(wi; λ))

]
,

ψ
′′
λλ(yi) = −

α

1 + λ2 γ(wi){FSN(wi; λ)}α
[

λ(w2
i − 2)− α− 1

1 + λ2 γ(wi)

]
,

ψ
′′
λα(yi) = −

1
1 + λ2 γ(wi){FSN(wi; λ)}α[1 + α log(FSN(wi; λ))],

ψ
′′
αα(yi) = (log(FSN(wi; λ)))2{FSN(wi; λ)}α.

According to the results found for the the PSN-logit model, the information matrix of
the model is non-singular; therefore, for large sample sizes, we have

ϕ̂
D−→ Np+4

(
ϕ, I(ϕ)−1

)
.

That is, the vector of the estimators is consistent and has a normal asymptotic distribu-
tion, with covariance matrix being the inverse of the Fisher information matrix. In practice,
since the matrix H(ϕ) is consistent for I(ϕ), then we can take Σ = H−1(ϕ) as the covariance
matrix of the vector of estimators of the standard unit PSN-logit regression model.

5. Inflated Unit-Power-Skew-Normal Model

Ospina and Ferrari [6] introduced the zero-one inflated beta (BIZU) model, which
is a mixture between a random variable with Bernoulli distribution with parameter γ,
for 0 < γ < 1, and a reparameterized beta distribution of parameters µ and σ. Particular
cases of this model follow for the situations of a unique inflated extreme value (zero
or one) called BIZ and BIU, respectively. These ideas can be extended to the truncated
unit-PSN model.

By considering that the mass point at value zero can be modeled by a Bernoulli random
variable with parameter γ, namely Ber(y; γ), and the responses between zero and one can
be modeled by the truncated centered unit-power-skew-normal distribution, f (y) with
parameter ϕ = (µ, σ, λ, α)>, the random variable on the unit interval [0, 1] then follows a
truncated unit distribution inflated at zero and one, with parameters (ϑ, γ, µ, σ, λ, α) if its
pdf is represented by the mixture

g(y) =


ϑ(1− γ), if y = 0,
(1− ϑ) f (y), if 0 < y < 1,
ϑγ, if y = 1.

where 0 < ϑ, γ < 1. By the construction shown in the previous pdf, it holds that
Prob[y = 0] = p(1− γ) and Prob[y = 1] = ϑγ, ϑ being the mixture parameter. For w, w0,
and w1 defined as in Equation (15), the cdf of Y can be written as

FY(y; µ, σ, α) =


ϑ(1− γ), if y ≤ 0,

ϑ(1− γ) + (1− ϑ)
{FSN(w; λ)}α − {FSN(w0; λ)}α

{FSN(w1; λ)}α − {FSN(w0; λ)}α
, if 0 < y < 1,

1, if y ≥ 1.

Considering the parameterization π1 = ϑγ and π0 = ϑ − π1, where 0 < π0, π1,
π0 + π1 < 1, the above model can be written in the form

g(y) =


π0, if y = 0,
(1− π0 − π1) f (y), if 0 < y < 1,
π1, if y = 1.
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From this model, inflation at zero is obtained by taking π1 = 0, and inflation at one
follows by taking π0 = 0. Now, we introduce covariates in the model. For the discrete part,
we assume that the responses in zero and one can be explained by the covariate vectors
z(0)i = (1, z0i1, . . . , z0iq)

> and z(1)i = (1, z1i1, . . . , z1ir)
>, respectively. Then, following the

construction of a logistic model with polytomous response, it is obtained that

π0i = Prob(yi = 0) =
exp (z>(0)iδ(0))

1 + exp (z>
(0)iδ(0)) + exp (z>

(1)iδ(1))
, (21)

π1i = Prob(yi = 1) =
exp (z>(1)iδ(1))

1 + exp (z>
(0)iδ(0)) + exp (z>

(1)iδ(1))
, (22)

π01i = 1− π0i − π1i = Prob
(
yi ∈ (0, 1)

)
=

1
1 + exp (z>

(0)iδ(0)) + exp (z>
(1)iδ(1))

, (23)

where δ(0) = (δ00, δ01, . . . , δ0q)
> and δ(1) = (δ10, δ11, . . . , δ1r)

> are vectors of unknown
parameters associated with the covariate vectors z(0) and z(1), respectively. For the continu-
ous part, we continue assuming a truncated centered unit-PSN model, with parameters
(δ, σ, λ, α)>, defined in (14). One can show that the log-likelihood function for the pa-
rameters vector ϕ = (δ>(0), δ>(1), δ>, σ, λ, α)>, given z(0), z, z(1), and Y, can be written in
the form

`(ϕ) = `(δ(0), δ(1)) + `(δ, σ, λ, α),

where

`(δ(0), δ(1)) = ∑
0

z(0)iδ(0) + ∑
1

z(1)iδ(1) −
n

∑
i=1

log
[
1 + exp (z>(0)iδ(0)) + exp (z>(1)iδ(1))

]
.

and `(δ, σ, λ, α) is defined in Equation (20).
This guarantees that the parameter estimates can be obtained in separate forms.

The score functions and the observed information matrix are obtained by differentiating the
log-likelihood function once and twice, with respect to the parameters, respectively. The fact
that the log-likelihood function can be broken down into two independent components
implies that the Fisher information matrix is a diagonal block, that is, it can be written as

I(ϕ) = Diag
{

I(δ(0), δ(1)), I(δ, σ, λ, α)
}

where I(δ(0), δ(1)) is related to the discrete part and I(δ, σ, λ, α) to the set of parameters of
the continuous part. This matrix coincides with the respective matrix for the previous case
of the model for the standard on interval (0, 1).

The elements of the observed information matrix for the discrete part are presented in
Appendix A. Taking the expected value to these elements, the Fisher information matrix
is obtained. Likewise, given the properties of the inverse of a diagonal matrix, one can
conclude that the covariance matrix of the estimators vector can be written as

Σ = Diag
{

I−1
(

δ(0), δ(1)

)
, I−1(δ, σ, λ, α)

}
.

Confidence intervals for ϕr with confidence coefficient ω = 100(1− ψ)% can be ob-
tained as ϕ̂r ∓ z1−ω/2

√
σ̂(ϕ̂r). Taking ρ1i = 0, the inflated model at zero is followed,

UPSNIZ(δ>(0), δ>, σ, λ, α), and taking ρ0i = 0, the inflated model at one is followed,

UPSNIU(δ>(1), δ>, σ, λ, α).
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The Log-UPSN Model

In some cases, the random variable Yi does not follow a UPSN(µ, σ, λ, α) distribution;
however, the random variable log(Yi) can have a UPSN (µ, σ, λ, α) distribution. In those
cases, it is said that the random variable Yi follows a truncated log-unit-PSN model, and its
pdf is given by

f (yi) =
α fSN(wi; λ){FSN(wi; λ)}α−1

σ(yi + 1)
(
{FSN(w1; λ)}α − {FSN(w0; λ)}α) , 0 < yi < 1, (24)

where

w0 = −µ

σ
, wi =

log(yi + 1)− µ

σ
, w1 =

log(2)− µ

σ
, (25)

for i = 1, 2, . . . , n. yi + 1 is used instead of yi due to the non-existence of the logarithm at
the point yi = 0. In the cases with covariates, it holds that

log(yi) ∼ UPSN(δ, σ, λ, α), yi ∈ (0, 1),

where zi = (1, zi1, . . . , zip)
>. This new model is denoted by LUPSN(δ, σ, λ, α). For

i = 1, 2, . . . , n in (25), µ is replaced by ηi which is defined in (8).
The estimation of the parameters follows the same routine as in the case of the UPSN

model; likewise, the information matrix of this model can be obtained from the information
matrix of the UPSN model. It is enough to change yi to log(yi + 1) in the respective
expressions. For this model, in the case of inflation at zero and/or one, that is, in the
intervals, [0, 1], [0, 1), and (0, 1] are used for the discrete part—a random variable binomial
under a logit link function, similar to the case of the UPSN model.

6. Doubly Censored PSN Model

In this section, the model given by Moulton and Halsey [39] is generalized to the case
of a mixture model for two limit points, lower and upper. One of the first models for the
fit of the mixture between a discrete and a continuous random variable was proposed
by Cragg [40], often called the two-part model. Under the Cragg model, the pdf of yi can
be formally written as g(yi) = pi Ii + (1 − pi) f (yi)(1 − Ii), where pi is the probability
that determines the relative contribution made by the point mass to the general mixture
distribution, f is a density function with positive support, Ii = 0 if yi > 0 and Ii = 1 if
yi ≤ 0. In this model, the two components are determined by different stochastic processes,
so a positive response is necessarily reached from f . On the other hand, a zero comes from
the point mass distribution. This model, however, does not consider the situation of a
lower limit and that part of the observations may be below the lower limit.

We extend Cragg’s model [40] to the case of the doubly censored and centered power-
skew-normal model. A random variable is said to be doubly censored when measurements
above the upper limit of detection and below the lower limit of detection are taken as those
values. The lower and upper detection limits are specified by the researcher and generally
depend on the measuring device used to produce the measurements. For our particular
case, the lower and upper detection limits are given by yi = 0 and yi = 1, respectively.
For (y∗1 , y∗2 , . . . , y∗n), a random sample where, for i = 1, 2, . . . , n, y∗i ∼ PSN(µ, σ, λ, α),
the doubly censored random variable PSN between zero and one is defined as

yi =


0, if y∗i ≤ 0,
y∗i , if 0 < y∗i < 1,
1, if y∗i ≥ 1
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We use the notation Y ∼ DCPSN(µ, σ, λ, α). The contribution of the uncensored
observations to the likelihood function, 0 < yi < 1, is given by the density function

α

σ
fSN(wi; λ){FSN(wi; λ)}α−1. (26)

On the other hand, the contribution of the censored observations at y = 0 is given by

F (0) = {FSN(w0i; λ)}α, (27)

while the contribution of the censored observations at y = 1 is given by

1−F (1) = 1− {FSN(w1i; λ)}α. (28)

Then, from (26)–(28), the DCPSN(µ, σ, λ, α) model has a pdf given by

f (yi) =



{FSN(w0i; λ)}α, if y∗i ≤ 0,

α

σ
fSN(wi; λ){FSN(wi; λ)}α−1, if 0 < y∗i < 1,

1− {FSN(w1i; λ)}α, if y∗i ≥ 1

where w0i, w1i and wi are defined in Equation (15).
The parameters estimation of the DCPSN model can be achieved by maximizing the

log-likelihood function given by

`(ϕ; y) = α ∑
0

log[FSN(w0; λ)] + ∑
1

log
[
1− {FSN(w1; λ)}α]

+ ∑
yi∈(0,1)

{
log(α)− log(σ) + log( fSN(wi; λ)) + (α− 1) log(FSN(wi; λ))

}
.

Generalized Two-Part PSN Model with Covariates

Moulton and Halsey [39] generalize the two-part model by explicitly allowing the
possibility that some limited responses are the result of the censoring interval of f . This
means that an observed zero can be a realization from the point mass distribution or partial
observation of f with a critical value not precisely known, but close to (0, T) for a small
prespecified constant T, the lower detection limit.

Formally,

g(yi) = [πi + (1− πi)F(T)]Ii + (1− πi) f (yi)(1− Ii),

where F is the cdf associated with the f density function. In many studies, T = 0. Therefore,
a large family of mixed models can be generated by varying the basic density f and the
corresponding link function πi. One can see that if πi = 0, for i = 1, . . . , n, the Moulton
and Halsey [39] model is reduced to the Tobit model.

The two-part model by Moulton and Halsey [39] is extended to the situations of
doubly censored responses. If π0 denotes the proportion of observations below the lower
detection limit, yi = 0, and π1 denotes the proportion of observations above the upper
detection limit, yi = 1, then the doubly censored model can be defined from the pdf.

g(yi) = π0i + (1− π0i − π1i)F(0)I(−∞,0]) + (1− π0i − π1i) f (yi)I(0,1)

+ π1i + (1− π0i − π1i)(1− F(1))I[1,∞).

with F(0), F(1), as in the generalized doubly censored model of Cragg [40], and f (yi) is
the distribution of the truncated PSN model defined on the (0, 1) interval. Some mixture
models have been used in practical applications in different fields such as biology, econ-
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omy, agriculture, etc.—to mention a few, the probit/truncated-normal, logit/log-normal,
logit/log gamma and probit/log-skew-normal mixture models (see Chai and Bailey [35]
and Martínez-Flórez et al. [9]).

We consider an extension of the two-part generalized model for the situations of
logit/doubly censored power-skew-normal model, together with covariates in each part
of the model. Denoting z(0)i = (1, z0i1, . . . , z0iq)

> and z(1)i = (1, z1i1, . . . , z1ir)
> as auxiliary

covariates for the discrete part at zero and one, respectively; denoting a set of covariates
zi = (1, zi1, . . . , zip)

> for the continuous part at (0, 1); and letting π0 be the proportion of
observations below zero, with yi = 0 being the lower detection limit and π1 the proportion
of observations above one, with yi = 1 as the upper detection limit, then the extension
of the Moulton and Halsey [39] model for the case of the doubly censored PSN model is
represented by the density function

g(yi) =



π0i + (1− π0i − π1i){FSN(w0i; λ)}α, if yi ≤ 0,

(1− π0i − π1i)
α

σ
fSN(wi; λ){FSN(wi; λ)}α−1, if 0 < yi < 1,

π1i + (1− π0i − π1i)
(
1− {FSN(w1i; λ)}α

)
, if yi ≥ 1.

(29)

where π0i, and π1i are the point mass probabilities at the values zero and one, respectively,
and w0i, w1i and wi are defined as in the equations given in (15). For modeling the responses
at the mass points y = 0 and y = 1, we define a binomial random variable with logit link
function and polytomous response as defined in Equations (21) to (23).

A more general model, where only a proportion, π = 1 − π0 − π1, with
0 < π0, π1, π < 1, of censored observations come from the censored PSN model and the
rest of the censored observations, say π0 100%, are located below or at the point y = 0,
and π1 100% are located above or at the point y = 1, can be obtained from the model in
Expression (29).

The log-likelihood function for estimating the parameter vector of the model,
ϕ = (δ>(0), δ>(1), δ>, σ, λ, α)> given z(0), z, z(1), is

`(ϕ) = ∑
0

log

[
exp(z(0)iδ(0)) + {FSN(w0i, λ)}α

1 + exp (z>
(0)iδ(0)) + exp (z>

(1)iδ(1))

]

+ ∑
1

log

[
exp(z(1)iδ(1)) + 1− {FSN(w1i, λ)}α

1 + exp (z>
(0)iδ(0)) + exp (z>

(1)iδ(1))

]
+ n01

(
log(α)− log(σ)

)
+ ∑

i∈(0,1)

{
log( fSN(wi, λ)) + (α− 1) log(FSN(wi, λ))

}
− ∑

i∈(0,1)
log
[
1 + exp (z>(0)iδ(0)) + exp (z>(1)iδ(1))

]
. (30)

To obtain the information matrix, we proceed as in the case of the truncated UPSN
model in the interval [0, 1]. Again, the right-censored or left-censored cases will be special
cases of this model for π0 = 0 and π1 = 0, respectively. The log-doubly censored case is
constructed in the same way as was done for the truncated UPSN model, that is, by taking

h(yi) =



{FSN(w0; λ)}α, if y∗i ≤ 0,

α

σ(yi + 1)
fSN(wi; λ){FSN(wi; λ)}α−1, if 0 < y∗i < 1,

1− {FSN(w1; λ)}α, if y∗i ≥ 1
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with w0, w1, and wi defined as in (25).

7. Examples

In this section, we present two examples which allow us to illustrate the applicability
of the proposed models.

7.1. Example 1

The first example is related to the household expenditure on food of 38 households
taken from Griffiths et al. [41]; this dataset is available in the betareg library of the R Devel-
opment Core Team [42]. The response variable is the relationship or rate of food/income,
that is, the proportion of the family income spent on food, while the explanatory variables
are: the family income mentioned above and the number of people living in the household.
Ferrari and Cribari-Neto [4] modeled this set of variables through the beta regression
model; therefore, we will implement the fit of the proportion of family income spent on
food, explained through the covariates family income and number of people living at home,
using PSN, SN, PN, and normal families of distributions, by using a logit link function.
Likewise, we will fit the truncated PSN model with a logit link function. The estimation
of the parameters for the previously mentioned models was carried out via maximum
likelihood by using the optim function of R Development Core Team [42]. To compare the
distributions in question, the AIC criteria by Akaike [43] and the corrected AIC (AICC) of
Cavanaugh [44] were used. The criteria are defined by

AIC = −2`(ϕ) + 2p and AICC = −2`(ϕ) +
2n(p + 1)
n− p− 2

where p is the number of parameters of the model in question. The maximum likelihood
estimates, with standard errors in parentheses, are presented in Table 1. According to the
results shown by the AIC and AICC criteria, the best fit is the truncated PSN-logit (TPSNL),
followed by the PSN and SN models with logit link function.

Table 1. Parameter estimates (standard errors) with logit link function for the normal, Beta, SN, PN
PSN, and TPSN regression models.

Estimator Beta Normal-Logit SN-Logit PN-Logit PSN-Logit TPSNL

δ̂0 −0.6225 −1.0665 −1.2348 −0.8717 −1.1259 −1.2810
(0.2238) (0.2061) (0.1123) (0.1363) (0.1995) (0.1663)

δ̂1 −0.0122 0.0997 0.1376 0.0995 0.1246 0.1376
(0.0030) (0.0086) (0.0114) (0.0077) (0.0179) (0.0167)

δ̂2 0.1184 −0.0258 −0.0513 −0.0266 −0.0441 −0.0488
(0.0353) (0.0025) (0.0050) (0.0020) (0.0071) (0.0067)

σ̂ 35.610 0.0374 0.0232 0.0271 0.0189 0.0202
(8.080) (0.0083) (0.0021) (0.0053) (0.0031) (0.0029)

λ̂ 6.4714 7.4719 7.8010
(0.9057) (2.1724) (1.7758)

α̂ 0.3771 0.2814 0.3891
(0.1575) (0.1463) (0.1867)

AIC −82.66 −132.42 −150.30 −129.77 −152.54 −153.73
AICC −78.78 −128.55 −145.59 −125.06 −146.81 −148.00

We now compare the normal-logit (NL) model with the PSN-logit (PSNL) model
through a hypothesis test.

H0 : (λ, α) = (0, 1) versus H1 : (λ, α) 6= (0, 1).
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Using the likelihood ratio statistic,

Λ =
LNL(ϕ̂)

LPSNL(ϕ̂)

where L(·) denotes the likelihood function, we obtain

−2 log(Λ) = 24.1226

which is greater than the value of the χ2
2,95% = 5.99. Thus, the PSN-logit model is a good

alternative for fitting the dataset. The PSN-logit model is also compared to the PN-logit
(PNL) model and the SN-logit (SNL) model by the hypothesis tests

H01 : λ = 0 versus H11 : λ 6= 0, and H02 : α = 1 versus H12 : α 6= 1,

respectively, using the likelihood ratio statistics

Λ1 =
LPNL(ϕ̂)

LTPSNL(ϕ̂)
and Λ2 =

LSNL(ϕ̂)

LTPSNL(ϕ̂)
.

The numerical results were

−2 log(Λ1) = 24.7694 and − 2 log(Λ2) = 4.2394

which is greater than χ2
1,95% = 3.84. The TPSNL model showed a better fit to the data

compared to the other considered models.
The transformed martingale residuals rMTi , introduced by Barros et al. [45], were

considered with the goal to identify atypical observations and/or model misspecification.
The transformed martingale residuals are defined by

rMTi = sgn(rMi )
√
−2[rMi + υi log(υi − rMi )]; i = 1, 2, . . . , n

where rMi = υi + log(S(ei, ϕ̂)) is the martingale residual introduced by Ortega et al. [46];
υi is an indicator function of the censorship of the ith observation with υi = 0 if the ith
observation is censored and υi = 1 if the ith observation is uncensored; sgn(·) is the sign
function; and S(ei; ϕ̂) represents the survival function evaluated at ei, where ϕ̂ are the MLE
for ϕ.

The rMTi plots with a generated envelope for the SN, PSN, and PSNT models are
presented in Figure 1a–c. The graphs show that the PSN and PSNT regression models with
logit link function present good fits, compared to the rest of the fitted regression models.
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Figure 1. Envelope graphs for rMTi : (a) SN-logit model, (b) PSN-logit, and (c) PSNT-Logit.
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7.2. Example 2

In the second example, we consider a dataset referring to the broadcasting of cable
television in the USA. The data correspond to 282 communities that are essentially in-
dividual franchise areas with cable television allocation. The data were taken from The
Federal Communications Commission (FCC) and are described in detail in Appendix E
of FCC 93–177 [47]. The variable of interest, Y, is the proportion of households with cable
television that purchase additional services.

The explanatory variables are: Z1 = the logarithm of the average income in the
franchise (lin) given in thousands of dollars; Z2 = the percentage of children in the
franchise (child); Z3 = the number of channels with local signal (ltv); and (Z4=) the age in
years of the cable television system (agehe). This dataset is inflated to zero, 68 zeros, which
corresponds to 21.98% of the observations, that is, the dataset is left censored. A graph of
the response variable Y = proportion of households with cable television that purchase
additional services can be seen in Figure 2a. For this set of variables, the beta zero inflated
(BIZ) linear regression model, the truncated PSN inflated at zero (PSNIZ) linear regression
model, and the generalized two-part PSN model were fitted with detection limit at yi = 0,
that is, zero-censored (CGPSN), these last two had a logit link function between zero and
one, yi ∈ (0, 1). After fitting each of these models, it was found that the significant variables
were the logarithm of income (Z1), for the component in (0,1), and the variable years of
age of the cable television system (Z4), for the censored part at yi = 0. The estimates of the
parameters and the fitted models are found in Table 2. According to the AIC and AICC
criteria, the CGPSN and PSNIZ models present a good fit compared to the BIZ model.

Table 2. Maximum likelihood estimates of the parameters for fitted models.

ϕ̂ BIZ CGPSN PSNIZ

π̂0i
exp (−0.7147−0.090z4i)

1+exp (−0.7147−0.0904z4i)
exp (−0.7992−0.0948z4i)

1+exp (−0.7992−0.0948z4i)
exp (−0.7147−0.0904z4i)

1+exp (−0.7147−0.0904z4i)

η̂i
exp(−8.295+0.736z1i)

1+exp(−8.295+0.736z1i)
exp(−8.9465+0.7862z1i)

1+exp(−8.9465+0.7862z1i)
exp(−8.6806+0.7749z1i)

1+exp(−8.6806+0.7749z1i)

σ̂ 1.7830 (0.0902) 0.2444 (0.0293) 0.2402 (0.0194)
λ̂ 3.3627 (1.4804) 2.1795 (1.0192)
α̂ 0.2803 (0.2849) 0.3592 (0.2804)

AIC 121.95 112.75 111.91
AICC 124.26 115.43 114.57

The rMTi graphs with envelopes generated for the BIZ, PSNIZ, and GCPSN models are
found in Figures 2b and 3a,b, which show that the PSNIZ and CGPSN regression models
with logit link present a good fit, compared to the BIZ model—that is to say that these
models are new alternatives to fit variables of rate and proportions, such as the proportion
of households with cable TV that acquire additional services.
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Figure 2. (a) Histogram for the variable Y and (b) envelope graphics for rMTi , BIZ model.
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Figure 3. Envelope graphics for rMTi , (a) GCPSN-logit model, and (b) PSNIZ-logit model.

8. Conclusions

In this paper, new regression models for fitting data on the intervals (0, 1), [0, 1), (0, 1],
or [0, 1] were proposed. The main statistical properties of the proposed models and the
problem of the parameters’ estimation are studied in detail by using the maximum likeli-
hood method. For the fitting regression model, which can explain the phenomena under
study, such as rates or proportions, a logit link function was implemented, with which it is
guaranteed that the prediction obtained by the model is between zero and one. The results
show that the models present a non-singular information matrix, and the applications
show great potential in the proposed models, are more flexible than certain rival models,
and fit better to some real datasets.
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Appendix A. Elements of the Observed Information Matrix for the Discrete Part of the
Inflated UPSN Model

In this section, expressions for the elements of the observed information matrix for
the discrete part of the inflated unit-power-skew-normal model are presented.

Jδ(0)rδ(0)r′
=

n

∑
i=1

z(0)ipz(0)ip′ exp(z>(0)iδ(0))(
1 + exp(z>

(0)iδ(0)) + exp(z>
(1)iδ(1))

)2

+
n

∑
i=1

z(0)ipz(0)ip′ exp(z>(0)iδ(0)) exp(z>(1)iδ(1))(
1 + exp(z>

(0)iδ(0)) + exp(z>
(1)iδ(1))

)2 ,

Jδ(1)qδ(0)r
= −

n

∑
i=1

z(0)ipz(1)iq exp(z>(0)iδ(0)) exp(z>(1)iδ(1))(
1 + exp(z>

(0)iδ(0)) + exp(z>
(1)iδ(1))

)2 ,

Jδ(1)qδ(1)q′
=

n

∑
i=1

z(1)iqz(1)iq′ exp(z>(1)iδ(1))(
1 + exp(z>

(0)iδ(0)) + exp(z>
(1)iδ(1))

)2

+
n

∑
i=1

z(1)iqz(1)iq′ exp(z>(1)iδ(1)) exp(z>(0)iδ(0))(
1 + exp(z>

(0)iδ(0)) + exp(z>
(1)iδ(1))

)2 ,
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