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Abstract: The Kadomtsev–Petviashvili equation is known to be the leading term of a semi-infinite
hierarchy of integrable equations with evolutions given by times with positive numbers. Here, we
introduce new hierarchy directed to negative numbers of times. The derivation of such systems, as
well as the corresponding hierarchy, is based on the commutator identities. This approach enables
introduction of linear differential equations that admit lifts up to nonlinear integrable ones by
means of the special dressing procedure. Thus, one can construct not only nonlinear equations, but
corresponding Lax pairs as well. The Lax operator of this evolution coincides with the Lax operator of
the “positive” hierarchy. We also derive (1 + 1)-dimensional reductions of equations of this hierarchy.

Keywords: commutator identities; integrable hierarchies; reductions

1. Introduction

The main examples of (2 + 1) dimensional integrable hierarchies appear due to
Zakharov–Shabat systems [1], or the approach of Miwa–Jimbo–Date [2], as semi-infinite
sets of equations with a common Lax operator. These sequences start with the lowest (first)
equations, and then the numbers of times grow together with the order of the second Lax
operators. Thus, all the times associated to such a hierarchy can be called positive, as conse-
quent numbers of these times are positive. Here, by means of the Kadomtsev–Petviashvili
(KP) equation [3], we derive new kinds of integrable hierarchies that can be associated
to negative numbers of times. This approach was suggested in [4], where example of the
Davey–Stewartson (DS) hierarchy [5] was considered. Construction of such hierarchies
gives an essential extension of the set of integrable equations because the approach of [1,2]
is not fully applicable here.

In [6], we suggested a method for derivation of (2 + 1)-dimensional nonlinear in-
tegrable equations based on commutator identities on associative algebras. In [7], this
method was extended to the standard hierarchies of integrable equations. Here, we apply
it to hierarchies of negative numbers of times. Taking the algebraic similarity of operator
commutators and time derivatives into account, we associate commutator identities and
linear partial differential equations. Let A and B denote arbitrary elements of an arbitrary
associative algebra A. Then it is easy to check that we have the following commutator
identity [6]:

4[A3, [A, B]]− 3[A2, [A2, B]]− [A, [A, [A, [A, B]]]] = 0. (1)

Let element B now depend on three times:

Btm = [Am, B], (2)

where m = 1, 2, 3. Identity (1) readily proves that with respect to variables t1, t2, and t3,
this function obeys the linear equation

4
∂2B(t)
∂t1∂t3

− 3
∂2B(t)

∂t2
2
− ∂4B(t)

∂t4
1

= 0, (3)
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which is the linearized version of the Kadomtsev–Petviashvili (KP) equation [3],

4
∂2u(t)
∂t1∂t3

− 6u(t)ut1(t)−
∂4u(t)

∂t4
1

= 3
∂2u(t)

∂t2
2

. (4)

In order to present the expression for higher linearized equations of hierarchy, we
introduce adjoint actions

admB = [Am, B], (5)

so that (1) takes the form
4ad3ad1 − 3ad2

2 − ad4
1 = 0. (6)

It is easy to check that we have the following commutator identities [7],

2madmadm
1 =

(
ad2 + ad2

1
)m −

(
ad2 − ad2

1
)m, (7)

where m ≥ 1. We see that these identities can be formulated as expressions of higher adjoint
operations in terms of the lowest ones: ad1 and ad2. Thus, they can be understood as
relations on the commutative algebra of adjoint actions. Thanks to (2), relation (7) reduces
to the linear difference equation

2m∂tm ∂m
t1

B =
(
∂t2

+ ∂2
t1

)mB−
(
∂t2
− ∂2

t1

)mB, (8)

that is, to higher equations of the linearised KP hierarchy.
The characteristic property of these linear equations is the possibility of dressing them

to nonlinear integrable ones. This was proved for many different equations, including
differential-difference and non-Abelian ones. In what follows, we use the special dressing
procedure [6], to demonstrate that any linear equation that results from the commutator
identity can be lifted up to a nonlinear integrable one. Here, in analogy to the [4], our
aim is to extend the class of commutator identities and corresponding linear differential
equations to negative values of m in (7). We again consider ad1 and ad2 as generating and
start with derivations of ad−1 in their terms. Thus, we assume that the associative algebra
A contains unity and that element A is invertible, so that

ad−1B = [A−1, B]. (9)

Taking associativity into account, it is easy to check directly that we have the commuta-
tor identity

ad−1
(
ad2

2 − ad4
1
)
+ 4ad3

1 = 0. (10)

In analogy, we derive higher versions of this equation, that is,

ad−m
(
ad2

2 − ad4
1
)m

+ 2madm
1
[
(ad2 + ad2

1)
m − (ad2 − ad2

1)
m] = 0, (11)

that gives (10) in the case of m = 1. Now, thanks to (2), we get by (10) a linear equation for
element B:

∂t−1

(
∂2

t2
− ∂4

t1

)
B + 4∂3

t1
B = 0, (12)

and its “higher” analogs by (11) for m ≥ 1

∂t−m

(
∂2

t2
− ∂4

t1

)mB + 2n∂m
t1

[
(∂t2 + ∂2

t1
)m − (∂t2 − ∂2

t1
)m]B = 0. (13)

Next, we consider a dressing procedure that lifts up these equations to integrable nonlin-
ear ones.

2. Operator Realisation of the Elements of Associative Algebra

In order to develop a dressing procedure, we need to introduce a special realization of
elements of an associative algebra A, see [6]. Our construction here is close to the standard
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definition of the pseudo-differential operators. Let us denote the symbol of F ∈ A as F̃(t, z).
Here, t denotes a finite subset of real variables t = {. . . , t−2, t−1, t1, t2, . . .}, that is, times,
and z ∈ C denotes a complex parameter. Subset t includes variables t1, t2, and at least
one of the other variables of this list. On this set of symbols, we define the symbol of
composition of two elements of the algebra:

F̃G(t, z) =
1

2π

∫
dp
∫

dy F̃(t, z + ip)eip(t1−y)G̃(y, t′, z), (14)

where t′ denotes subset t without variable t1. We see that variable t1 plays here a special
role: the composition with respect to other variables is pointwise. In what follows, we
consider elements of algebra A, such that their symbols belong to the space of tempered
distributions of their arguments. The symbol of the unity operator is equal to 1, and we
choose the symbol of operator A as

Ã(t, z) = z. (15)

Thanks to (14), we have that for any F,

ÃmF(t, z) = (z + ∂t1)
m F̃(t, z), F̃Am(t, z) = zm F̃(t, z), (16)

where Am is understood as the m-th power in the sense of composition (14), where now
m ∈ Z. Then for m = 1, we get [A, F] = ∂t1 F in correspondence to (2), and then for any
m ∈ Z, we have in terms of symbols,

B̃tm(t, z) =
(
(z + ∂t1)

m − zm)B̃(t, z). (17)

Because of our assumption, the symbol B̃(t, z) admits Fourier transform with respect
to the variable t1, so the above relations show

B̃(t, z) =
∫

dp exp

(
∑
m

(
(z + ip)m − zm)tm

)
f (p, z), (18)

where m ∈ Z and f (p, z) are arbitrary functions independent of all tm. Let us mention that
here, we do not specify the set of “times” ti involved in (18). Set t can include more times
than three, but t1, t2, and every third time gives the evolution equation, generated by the
commutator identity. In (18), the summation in the exponent goes over a finite number
of terms, corresponding to times that are “switched on”, while other times are equated
to zero.

It is natural to impose on B̃(t, z) in (18) conditions of convergence of the integral and
boundedness of the limits of B̃(t, z) when t tends to infinity. We list two obvious conditions
that are enough for this. The first one is given by the choice f (p, z) = δ(p + 2zIm)g(z), so
that (18) takes the form

B̃(t, z) = exp

(
∑
m

(
zm − zm)tm

)
g(z), (19)

where g(z) is an arbitrary bounded function of its argument. The second case is given
by reduction f (p, z) = δ(zRe)h(p, zIm), where h(p, zIm) is an arbitrary function. Then, (18)
takes the form

B̃(t, z) =
∫

dp exp

(
∑
m

im((zIm + p)m − zm
Im
)
tm

)
h(p, zIm)δ(zRe). (20)
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Finally, in this case, in order to make B̃(t, z) bounded, we have to make the substitution

t2m → it2m. (21)

Below, we show that the choice of (19), or (20), results in two kinds of dynamical systems.

3. Dressing Procedure

The specific property of the above set of operators is the possibility to define the
operation of ∂̄-differentiation with respect to the complex variable z, F → ∂̄F. In terms of
symbols, it is defined (see [6]) as

(˜̄∂F)(t, z) =
∂F̃(t, z)

∂z
, (22)

where the derivative is understood in the sense of distributions. Thanks to (15), we get
equality

∂̄A = 0, (23)

that plays an essential role in what follows.
In terms of these definitions, we introduce (see [6]) the dressing operator K with

symbol K̃(t, z) by means of the ∂-problem

∂K = KB, (24)

where the product on the r.h.s. is understood in the sense of composition law (14). We
normalize solution K of the Equation (24) by the asymptotic condition

K̃(t, x, z)→ 1, z→ ∞. (25)

Thanks to (14) and (22), the equality (24) takes the explicit form

∂K̃(t, z)
∂z

= K̃(t, z) exp

(
∑
m

(
zm − zm)tm

)
g(z), (26)

for time evolutions given by (19) and the form

∂K̃(t, z)
∂z

= δ(zRe)
∫

dp K̃(t, ip) exp

(
∑
m

im(pm − zm
Im)tm

)
h′(p, zIm), (27)

h′(p, zIm) = h(p − zIm, zIm), for time evolutions given by (20). Thus, in the case (26),
Equation (24) gives the ∂-problem, while in the case (27), we get the Riemann–Hilbert problem.

An essential assumption for the following construction is the condition of unique
solvability of the problem (24), (25). The time evolution of the dressing operator follows
from this assumption. Say, due to (2), we get

∂Ktm = Ktm B + K[Am, B]. (28)

Correspondingly,

∂Ktmtn = Ktmtn B + Ktn [A
m, B] + Ktm [A

n, B] + K[Am, [An, B]],

so that taking the commutativity of Am and An into account, we get by (24), ∂(Ktmtn −
Ktntm) = (Ktmtn − Ktntm)B. Thus, the commutativity of derivatives

Ktmtn = Ktntm (29)

follows thanks to the unique solvability of the problem (24), (25).
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In [7], time derivatives of the dressing operator for positive times (m > 0 in (2)) were
calculated in terms of the asymptotic decomposition of the dressing operator K

K̃(t, z) = 1 + u(t)z−1 + v(t)z−2 + w(t)z−3 + o(z−3), (30)

where u, v, and w are multiplication operators, that is, their symbols are independent of z.
Say, by means of (28) for m = 1, we get ∂Kt1 = Kt1 B + K[A, B]. This can be written in the
form ∂(Kt1 + KA) = (Kt1 + KA)B, where (23) and (24) were used. Due to the condition of
unique solvability of (24), we derive by (25) that there exists such a multiplication operator
X that Kt1 + KA = (A + X)K. Thanks to (30), it is easy to see that it equals to zero, so
we have

Kt1 = [A, K], (31)

in correspondence to (2) for m = 1. However, the situation with Kt2 is more involved.
By (24), we derive ∂Kt2 = Kt2 B + K[A2, B] that, thanks to (24), gives ∂

(
Kt2 + KA2) =(

Kt2 + KA2)B, so that by (30), we get

Kt2 + KA2 = A2K− 2ut1 K. (32)

Our aim here is to follow the approach of [4], and chose t−1 as the third time starting
with times t1 and t2. Thus, we consider time evolutions given by (2)

Bt1 = [A, B], Bt2 = [A2, B], Bt−1 = [A−1, B]. (33)

The derivative with respect to t−1 of the dressing operator is given by (24):

∂Kt−1 = Kt−1 B + K[A−1, B], (34)

so that ∂Kt−1 = Kt−1 B + KA−1B− KBA−1, that is, thanks to (23),

∂(Kt−1 A + K) = (Kt−1 A + K)A−1BA. (35)

The situation here is more involved than in the case of positive numbers of times. In that
case, we were able to reduce equations to the form ∂(Ktm + KAm) = (Ktm + KAm)B, m > 0,
due to (23). However, for negative m, this equality gives an additional delta-term. Thus, in
order to use relation (35), we apply the substitution for A−1BA suggested in [4].

We consider symbols of operator B, K, and so forth, depending on the discrete variable
n ∈ Z besides variables t and z:

B(1) = ABA−1, B(−1) = A−1BA, (36)

where we denote B̃(±1)(t, n, z) = B̃(t, n± 1, z), K̃(±1)(t, n, z) = K̃(t, n± 1, z). It is easy to
see that these shifts commute with times t: (B(1))tj = (Btj)

(1), and so forth, and we extend
the definition of composition law (14) pointwise to symbols depending on n. Now because
of (24) ∂K(1) = K(1)ABA−1 so that due to the unique solvability of the problem (24), (25)
there exists multiplication operator ψ such that

K(1)A = (A + ψ)K, (37)

and thanks to (30), we derive
ψ = u(1) − u, (38)

where u(1)(t, n) = u(t, n + 1). Let us perform the shift n → n + 1 of (35) that due to (36)
gives ∂(K(1)

t−1
A + K(1)) = (K(1)

t−1
A + K(1))B, so that thanks to (25) there exists the multipli-

cation operator Z such that K(1)
t−1

A + K(1) = ZK. Due to (30), we derive that Z = 1 + u(1)
t−1

,
that is,

K(1)
t−1

A + K(1) = 1 + u(1)
t−1

K. (39)
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Thus, we constructed a (3 + 1)-dimensional integrable system with independent
variables t1, t2, t−1, and n. It is clear that this system is a combination of three integrable
systems with variables t1, t2, n (see (37)), t1, t−1, n and t1, t2, t−1. Set t1, t2, n gives
no negative numbers of times. Set t1, t−1, n generates a two-dimensional Toda lattice,
see [8–10]:

∂2φn

∂t1 ∂t−1

= eφn+1−φn − eφn−φn−1 , n ∈ Z. (40)

We see that the combination of time with negative numbers and discrete variables does
not lead to problems. This is different to choices of t1, t2, t−1 as the set of independent
variables: one cannot omit the dependence of K on n either in (37), or in (39). However, in
this case, we can exclude the shift of K with respect to n. Indeed, substituting K(1) for K in
(39) by means of (37) and using ψ in (38) as the new dependent variable, we get

Kt1t−1 + Kt1 A−1 + Kt−1 A + ψ(Kt−1 + KA−1)− ut−1 K = 0. (41)

Compatible evolutions (41) admit higher (in fact, lower) versions that involve times
t−m, m > 1, see (2). In analogy to (2) we get, for this case,

∂Kt−m = Kt−m B + K[A−m, B]. (42)

Multiplying this equality by Am from the right, we use a m-fold application of (36):
B[−m] = A−mBAm. Thus, (42) takes the form

∂(Kt−m Am + K) = (Kt−m Am + K)B[−m],

cf. (35). Again, thanks to the assumed unique solvability of the Inverse problem (24), (25)
we get that there exist such multiplication operators α0, . . . , αm−1, that

K[m]
t−m

Am + K[m] =
m−1

∑
j=0

αj AjK, (43)

where we applied an m-fold operation of shift. Operators αj are given in terms of operators
u, v, and so forth in (30). We omit these calculations here.

Next, we perform a (m− 1)-fold shift of discrete variables in Equation (37) that gives

K[m]Am =
(

A + ψ[m−1])(A + ψ[m−2]) · · · (A + ψ
)
K, (44)

where the multiplication operator ψ was defined in (38). The final expression follows as a
result of insertion of K[m] from (44) to (43), that again cancels dependence on the auxiliary
variable n.

4. Lax Pair and Nonlinear Equations

Equation (29) proves that the commutativity of evolutions (31) and (37) is a direct
consequence of commutativity of evolutions (2) and (36) and the consequence of unique
solvability of the problem (24), (25). This results in nonlinear equations of motion. In order
to simplify them, it is reasonable to use the Jost solutions defined by means of the symbol
of the dressing operator:

ϕ(t, z) = K̃(t, z)ezt1+z2t2+z−1t−1 . (45)

We omit here the dependence on n, as it was excluded from (41).
Due to this substitution, coefficients of Equations (32) and (41) become independent

on z:

ϕt2 = ϕt1t1 − 2ut1 ϕ, (46)

ϕt1t−1 = −ψϕt−1 + (1 + ut−1)ϕ, (47)
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where the first equation is the famous heat conductivity equation.
One can also rewrite (24) in terms of the Jost solutions. Say, by means of (19), we get

∂ϕ(t, z)
∂z

= ϕ(t, z)g(z), (48)

and by means of (20),

∂ϕ(t, z)
∂z

= δ(zRe)
∫

dpϕ(t, ip)h′(p, zIm). (49)

We see that equations on the Jost solutions are independent on all “time” variables, t.
Dependence on them, as well as on z in (46) and (47), is given by (25), that thanks to (45),
takes the form

lim
z→∞

ϕ(t, z)e−zt1−z2t2−z−1t−1 = 1. (50)

Notice that (48) is the standard ∂-problem with normalization condition (50), where
we have to perform the substitution mentioned in (19). At the same time, (49) shows
that the Jost solution in this case is analytic in the left and right half-planes of z with
discontinuity on the imaginary axis. Thus, here, the inverse problem is given in terms of
the Riemann–Hilbert problem; that is, we define boundary values of the Jost solution as
ϕ±(t, izIm) = limzRe→±0 ϕ(t, x, z) and set

ϕ+(t, izIm)− ϕ−(t, izIm) =
∫

dpϕ−(t, ip)h′(p, zIm), (51)

under condition (50) and the substitution given in (21). The difference between these two
formulations of the inverse problem results from the condition of boundedness of the
symbol of operator B in (19) and (20). In the case of (48), tm are real, while in the case of
(49), tm with odd m are real and are pure imaginary for even m, see (21). In summary, we
have here the two standard forms of the Lax operator: the heat conductivity equation and
non-stationary Schroedinger equation.

Time evolution with respect to t−1 results from the compatibility of (46) and (47):

ut2t−1 + ut1t1t−1 + 2ψut1t−1 + 2ψt1(1 + ut−1) = 0, (52)

ψt2 − ψt1t1 + 2ψt1 ψ− 2ut1t1 = 0. (53)

We have here the nonlinear evolution Equation (52) and the auxiliary function ψ obeying
(53). Results for higher differential operators follow as compatibility conditions of (32)
with (43), (44). Equations (52) and (53) and the Lax pair (46), (47) were derived in [11], see
the discussion in Section 6. The version of the system that results from substitution (21)
was not studied in the literature to our knowledge.

5. Dimensional Reductions

The dimensional reductions of the above integrable equations follow by delta-functional
behavior of functions g(z) and h′(p, zIm) in (19), (20). Taking the fact that both these func-
tions are independent on t into account, we get that such reductions are preserved under
time evolution. Due to the Inverse problem (24), (25) reductions of time-dependence of
the operator B are inherited by the dressing operator. In this way, we derive (1 + 1)-
dimensional integrable systems and their Lax pairs.

Say, for the operator B̃(t, z) in (19) depending on times t1, t2, and t−1, we can cancel
dependence on t2 by imposing condition

g(z) = δ(zRe)G(zIm). (54)
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Thanks to (19), this gives

B̃(t, z) = exp
(
−2i

[
zImt1 −

t−1

zIm

])
δ(zRe)G(zIm). (55)

Thus, the symbol of the operator K is also independent on t2, and now it is an analytic
function for zRe 6= 0. In order to preserve independence of the Jost solution on t2, we have
to change its definition (cf. (45)):

ϕ(t1, t−1, z) = K̃(t, z)ezt1+z−1t−1 . (56)

Thus, thanks to (46) and (47), this solution obeys the Lax pair, where the first equation
reads as

ϕt1t1 − 2ut1 ϕ = z2 ϕ, (57)

cf. (46), and the second equation coincides with (47).
In the same way, we derive from (52) and (53) the condition of compatibility for

these equations:

ut1t−1 + 2ψ(1 + ut−1) = 0, (58)

ψt1 − ψ2 + 2ut1 = 0, (59)

where both equations were integrated once with respect to t1. We see that the ∂-problem
in this case is the Riemann–Hilbert problem for function analytics in the right and left
half-planes on the complex z-plane with discontinuity given by (55) on the imaginary axis.
Function ϕ is normalized by conditions (25) and (56) at z→ ∞.

This is not the only reduction applicable to (19). Setting there

g(z) = δ(|z| − 1)g̃(z), (60)

we get scattering data, that is, the symbol of operator B, depending on two variables
t1 − t−1 and t2:

B̃(t, z) = δ
(

zRe −
√

1− z2
Im

)
e−2izIm

(
t1−t−1+2

√
1−z2

Imt2

)
g̃+(zIm)

+ δ
(

zRe +
√

1− z2
Im

)
e−2izIm

(
t1−t−1−2

√
1−z2

Imt2

)
g̃−(zIm). (61)

Thus, after shifting t1 → t1 + t−1, we exclude dependence on t−1 from B, and then from K.
Now, due to the delta-function in (61), we reduce the inverse problem (24) to the Riemann–
Hilbert problem on the circle |z| = 1 and normalization condition (25). The Jost solution is
defined here by means of relation

ϕ(t1, t2, z) = K̃(t1 + t−1, t−1, t2, z)ezt1+z2t2 , (62)

where the r.h.s. is independent on t−1. Thanks to this substitution, we reduce Equations (32)
and (41) to

ϕt1t1 = (λ− ψ)ϕt1 + (λψ− 1 + ut1)ϕ, (63)

ϕt2 = (λ− ψ)ϕt1 + (λψ− 1− ut1)ϕ, (64)

where we denoted λ = z + 1/z and integrated (63) with respect to t1. Considering the fact
that (53) is unchanged under this reduction, we substituted ϕt1t1 into it by means of (63),
that gave (64).
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The integrable equation follows either from compatibility of (63) and (64), or from (52)
after integration with respect to t1:

ut2 + ut1t1 − 2ψ(1− ut1) = 0, (65)

where the second Equation (53) is left unchanged.
In analogy, we can consider reductions of the other equations of this hierarchy.

6. Concluding Remarks

In the above, we introduced the hierarchy of integrable equations that can be called
a “negative KP hierarchy”. Lax operators of this hierarchy coincide with operators of the
“positive” one, while their time evolutions are essentially different. Indeed, if m > 0, we
get, by analogy to (32), that there exist operators Pm such that Ktm + KAm = PmK, where
symbols of Pm are polynomials with respect to z. Let us introduce K−1 as an inversion
of K in correspondence to (14), KK−1 = I. Then, see [1], Pm = (KAmK−1)+, where index
+ denotes the entire (with respect to z) part of the symbol in parentheses. It is clear that
in the case of m < 0, this relation gives zero. Moreover, the direct application of such a
construction to Equation (39) is senseless, as all terms there are of zero order. This was
the reason to develop the construction above with the inclusion of an auxiliary function ψ.
Thanks to (53), this function is defined by means of initial data u|t−1=0, that makes problem
(52), (53) closed.

We already mentioned that the Lax pair (46), (47) and system (52), (53) are known
in the literature [11]. Direct and inverse problems for this system were resolved in [12].
However, it is necessary to mention that the operators of the Lax pair were exchanged.
The linear problem was considered to be given by (47), and t2 was a time variable. Corre-
spondingly, spectral data of these two problems happen to be very different. In [12] it was
shown that there, we had two sets of spectral data because the Jost solution had a nonzero
∂-derivative and discontinuity on the real axis, while in the case here, the solution of the
heat conductivity equation in (46) has singularity of the first kind only. We also derived
(1 + 1)-integrable systems presented in Section 5.

Consideration here was close to [4], where the Davey–Stewartson hierarchy was used
as an example. Existence of both these hierarchies shows that this approach can be applied
to the construction of other new, integrable hierarchies.
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