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Abstract: The Kriging surrogate model in complex simulation problems uses as few expensive
objectives as possible to establish a global or local approximate interpolation. However, due to the
inversion of the covariance correlation matrix and the solving of Kriging-related parameters, the
Kriging approximation process for high-dimensional problems is time consuming and even impossi-
ble to construct. For this reason, a high-dimensional Kriging modeling method through principal
component dimension reduction (HDKM-PCDR) is proposed by considering the correlation param-
eters and the design variables of a Kriging model. It uses PCDR to transform a high-dimensional
correlation parameter vector in Kriging into low-dimensional one, which is used to reconstruct
a new correlation function. In this way, time consumption of correlation parameter optimization
and correlation function matrix construction in the Kriging modeling process is greatly reduced.
Compared with the original Kriging method and the high-dimensional Kriging modeling method
based on partial least squares, the proposed method can achieve faster modeling efficiency under the
premise of meeting certain accuracy requirements.

Keywords: surrogate model; Kriging; high-dimensional problems; principal component dimen-
sion reduction

1. Introduction

The surrogate model [1–5], also called a “response surface model”, a “meta model”,
an “approximate model” or a “simulator”, has been applied to different engineering design
fields. Commonly used surrogate models include PRS (polynomial response surface) [6,7],
Kriging [8–12], RBF (radial basis function) [13,14], SVR (support vector regression) [15,16]
and MARS (multiple adaptive spline regression). According to [17] et al., Kriging (also
known as Gaussian process model) is widely used. The main reason for this is that the
Kriging model can attain better approximation accuracy compared to the other meth-
ods mentioned above, and it can handle simple or complex, linear or nonlinear, low-
dimensional or high-dimensional problems. Secondly, Kriging can predict the uncertainty
of unknown points, and its basis function usually has adjustable parameters. Moreover,
the Kriging model can ensure the smoothness of the function, high execution efficiency
and good accuracy.

Although Kriging was developed nearly 70 years ago and has been widely used
in various fields, it always has some shortcomings in the process of dealing with high-
dimensional problems. As shown in [18], using the DACE toolbox in MATLAB and
150 points to construct a Kriging model for a 50-dimensional problem requires 240 to 400 s,
which is time consuming. For high-dimensional problems, constructing a Kriging model
requires a great deal of computational cost, which limits the application of the Kriging
model to high-dimensional problems.
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To solve the key problem of the “curse of dimensionality”, scholars have proposed
various feasible strategies. A new method [19] combining Kriging modeling technology
and a dimensionality reduction method has been proposed. This method uses slice inverse
regression technology and constructs a new projection vector to reduce the original input
vector without losing the basic information of the model’s response. In the sub-region
after dimensionality reduction, a new Kriging correlation function is constructed using
the tensor product of multiple correlation function projection directions. By studying the
correlation coefficient and distance correlation of the Kriging model, an effective Kriging
modeling method [20] based on a new spatial correlation function is created to promote
modeling efficiency. There are also gradient enhancement Kriging methods that use partial
gradient sets to balance modeling efficiency and model accuracy. Chen et al. [21] mainly use
feature selection techniques to predict the impact of each input variable on the output and
rank them, and then select the gradient according to empirical evaluation rules. Mohamed
A. et al. [22] also proposed a new gradient enhancement alternative model method based
on partial least squares, which greatly reduced the number of correlation parameters to
enhance modeling efficiency. In addition, a new method based on principal component
analysis (PCA) [23] has been proposed to approximate high-dimensional proxy models. It
seeks the best linear combination coefficient that can be provided with the smallest error
without using any integral. S. Marelli et al. [24] combined Kriging, polynomial chaos
expansion and kernel PCA to prove and verify that the proposed high-dimensional proxy
modeling method can effectively solve high-dimensional problems.

The above mentioned dimensionality reduction method reduces modeling time while
ensuring that certain model accuracy requirements are met. After all, things have two sides.
The improvement in modeling efficiency leads to a loss in accuracy to a certain extent.
Therefore, how to improve modeling efficiency as much as possible while reducing the loss
in accuracy requires further study.

For this reason, a high-dimensional Kriging modeling method through principal
component dimension reduction (HDKM-PCDR) is proposed. Through this method, the
PCDR strategy can convert high-dimensional correlation parameters in the Kriging model
into low-dimensional ones, which are used to reconstruct new correlation functions. The
process of establishing correlation functions such as these can reduce the time consumption
of correlation parameter optimization and correlation function matrix construction in the
modeling process. Compared with the original Kriging method and the high-dimensional
Kriging modeling method based on partial least squares, this method has better modeling
efficiency under the premise of meeting certain accuracy requirements. In addition, the
high-dimensional modeling method proposed in this article for the Kriging model will
provide other researchers with new ideas and directions for the high-dimensional modeling
research of surrogate models.

The remaining sections of this article are as follows. The second section introduces
the characteristics of the Kriging model and its correlation parameter. The third section
introduces the key issues of the proposed method and the specific implementation process
in detail. In the fourth section, several high-dimensional benchmark functions and a
simulation example are tested. Finally, conclusions are drawn and future research directions
are envisioned.

2. Kriging Model

For experimental design sample X = [x1, . . . , xm]T(X ∈ <m×n) and corresponding ob-
jective Y = [y1, . . . , ym]

T(Y ∈ <m×1), the Kriging surrogate model combining polynomial
regression and stochastic process can be expressed as

Y(x) = Fβ + Z(x) (1)

where parameter Y(x) is a predicted function of interest. In this regression matrix F with
F ∈ <m×p, its elements are usually calculated by the first-order or second-order regression
function of known observation points, and sometimes F can also be a constant regression
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matrix. The weight β of the regression function is a p-dimensional column vector. The
random process Z(x) with zero mean and variance can be stated as

E [Z(x)] = 0, E [Z(x)Z
(

w)] = σ2R(θ, ω, x) (2)

where θ is the correlation parameter and σ2 is the process variance. For any two different
observations ω and x, the spatial correlation kernel function R (θ, ω, x) is shown in
Equation (3).

R(θ, ω, x) =
n

∏
i=1

Ri(θi, ωi − xi) (3)

After determining the correlation among all sample points, the differentiability of
the surface, the smoothness of the Kriging model and the influence of nearby points can
be regulated by R (θ, ω, x). There are generally seven choices for the spatial correlation
function. However, the most widely used is the Gaussian correlation model [25,26]. It can
be expressed by

Ri

(
θi, wk − xk

)
= exp

(
−θi

∣∣∣wk − xk
∣∣∣2) (4)

According to the above analysis, the covariance correlation matrix R can be stated by
Formula (5).

Rm×m =


R(x1, x1) R(x1, x2) . . . R(x1, xm)
R(x2, x1) R(x2, x2) . . . R(x2, xm)

...
...

. . .
...

R(xm, x1), R(xm, x2) . . . R(xm, xm)

 (5)

Due to unbiased estimation, the regression problem Fβ ≈ Y has a generalized least squares
solution β̂ =

(
FTR−1F

)−1FTR−1Y and a variance estimate σ̂2 = (Y− Fβ̂)TR−1(Y− Fβ̂)/m.
As seen in Formula (2), process variance σ2 and correlation parameter θ are closely

related among matrix R. The unconstrained optimization problem of the maximum likeli-
hood estimation in Equation (6) is maximized to determine optimal parameter θ.

−(m ln σ2 + ln|R|)/2 (6)

3. HDKM-PCDR Method
3.1. Use PCDR to Generate New Low-Dimensional Kernel Function

The mathematical theory of the principal component (PC) dimensionality reduction
method is PCA, which is used here to reduce the dimensionality of the Kriging design
variables. It uses the idea of dimensionality reduction. Under the premise of losing little
potential function information, all indicators are transformed into several comprehensive
ones by the multivariate statistical method. These comprehensive indicators after conver-
sion are called principal components (PCs). Different linear combinations of original design
variables can constitute different PCs. Under the condition that the PCs are independent
of each other and meet the accuracy, the PCs after dimensionality reduction have greater
advantages in modeling efficiency than the original variables. These are especially suitable
for research into high-dimensional complex problems.

Suppose that the study of a certain problem involves n indicators denoted by x1, x2, . . . ,
xn. Therefore, the n-dimensional random vector x =

(
x1, x2, . . . , xn)T for any sampling

point is formed by these n indicators. A new compound variable v in Equation (7) can be
obtained by linear transformation of x; then, v is the PC we seek. If the first h (h <= n) PCs
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are selected, this is equivalent to reducing the number of indicators from n to h (that is,
from n dimension to h dimension).

v1 = u11x1 + u12x2 + . . . + u1nxn

v2 = u21x1 + u22x2 + . . . + u2nxn

. . . . . .
vn = un1x1 + un2x2 + . . . + unnxn

(7)

The greater the variance in the principal component vi, the greater the amount of
original data information carried. We always hope that the PCs (zi = uT

i x) are independent
of each other and have the largest possible variance. However, in fact, if there is no
restriction on ui, it may make the variance increase arbitrarily; the problem will therefore
become meaningless. For this reason, linear transformation needs to follow the following
principles:

Principle 1. Ensure that uT
i ui is equal to 1, that is, u2

i1 + u2
i2 + . . . + u2

in = 1 (i = 1, 2, . . . , n);

Principle 2. Make vi and vj irrelevant, that is cov(vi, vj) = 0, i 6= j; i, j = 1, 2, . . . , n;

Principle 3. Ensure that v1 is the one with the largest variance among all linear combinations
of x1, x2, . . . , xn that satisfy principle 1; v2 is the one with the largest variance among all linear
combinations of x1, x2, . . . , xn when it is not correlated with v1 ; follow this rule, etc., vn is the one
with the largest variance among all linear combinations of x1, x2, . . . , xn when it is not correlated
with v1, v2, . . . , vn−1.

Based on the above three principles, the determined composite variable v1, v2, . . . , vn
is the first to the nth PC of the original variable. And the variances of the composite variable
v1, v2, . . . , vn are arranged in descending order.

According to the above analysis, the specific calculation process of the PCDR method
is described as follows:

Step 1: Calculation of the covariance matrix. Suppose and offer the covariance matrix of
the sample data is ∑ = σ2R =

(
sij
)

n×n.
Step 2: Find the eigenvalue λi of ∑ and the corresponding unit eigenvector ui, and arrange
the eigenvalues λi of the covariance matrix ∑ as λ1, λ2, . . . , λn (λ1 ≥ λ2 . . . λn) in order
of magnitude, and the corresponding unit eigenvectors u1, u2, . . . , ud are the coefficient
vectors of the principal component vi( i = 1, 2, . . . , n), respectively.
Step 3: Choice of PCs. The variance value of each PC vi is equal to the corresponding
λi [27]. Therefore, the contribution rate CRi of the eigenvalue (or variance) is used to reflect

the amount of information; that is, CRi = λi/
n
∑

i=1
λi .

Then, the value h can be determined by the cumulative contribution rate of variance
in Equation (8).

CR(h) =
h

∑
i=1

λi/
n

∑
i=1

λi (8)

When the cumulative contribution rate is greater than 80%, we believe that the PC can
reflect the characteristic of the original variable to a certain extent, and the corresponding
parameter h is the final selected principal component number:

Step 4: Determine a new conversion matrix according to the known sample data and using
the formula zi = ui1x1 + ui2x2 + . . . + uidxd(i = 1, . . . , h) to calculate the value of the h PCs;
meanwhile, the n*h transformation matrix is obtained. This matrix is used as a weight to
replace Formula (3) and recalculate the new kernel function in a more efficient way.
Step 5: Generate new kernel function. First, the linear mapping expression is defined and
shown in Equation (9).
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Fl : B→ B
x 7→

[
u1

l x1, . . . , un
l xn
]

l = 1, . . . , h
(9)

where B is a hypercube belonging to <d and is represented by the product of the space
interval in each direction. The corresponding kernel function is expressed as

Rl(θl , Fl(x), Fl(w)) =
n

∏
i=1

exp
(
−θl

∣∣∣ui
lw

i − ui
l x

i
∣∣∣2) (10)

Finally, through the tensor product of h kernel functions, a new kernel function based
on Kriging and PCA (KPCA), as shown in Equation (11), can be generated. For new
spatial correlation kernel function, we can use the reduced-dimensional Formula (11) to
replace the high-dimensional Formula (3) so as to improve the modeling efficiency of the
Kriging model.

RKPCA(x, w) =
h

∏
l=1

Rl(Fl(x), Fl(w))

=
h

∏
l=1

n
∏
i=1

exp
(
−θl

∣∣ui
lw

i − ui
l x

i
∣∣2), ∀x, w ∈ B

(11)

Next, take the two-dimensional GP function as an example to describe the dimension-
ality reduction process of the PCDR more clearly. First, use the LHD sampling method
to randomly select 20 sample points, which are shown in Figure 1a. Next, calculate the
covariance matrix of the sample points and use the eigenvector with the largest eigenvalue
in the matrix as the first principal direction (the dotted line in Figure 1a). The first principal
direction is essentially the coefficient in the linear transformation vector. In this way, the
linear transformation of Equation (7) maps the original data points to the direction of the
first principal component (as shown in Figure 1b). Thus far, the first four steps in the PCDR
method are completed. The fifth step is to calculate a new spatial kernel function through
the data points after dimensionality reduction, and then complete the low-dimensional
Kriging modeling.
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Figure 1. Take the GP function as an example, and the selection of the first principal component in the process of turning
two-dimensional data into one-dimensional data. In (a), the 20 sample points are obtained through LHD sampling. After
calculating the covariance matrix using these 20 sampling points, the first principal direction (the dotted line) is formed by
the eigenvector with the largest eigenvalue in the matrix. In (b), the original 20 sampling points are mapped to the first
principal direction through the linear transformation of Equation (7).
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3.2. Specific Implementation of HDKM-PCDR Method

The process of the HDKM-PCDR is shown and stated in detail in Figure 2. Addition-
ally, its specific implementation steps are presented as follows:

Step 1: Initial sampling. LHD (Latin Hypercube Design) method [28] is employed to
generate the initial sample points. To facilitate comparison with other methods, different
initial sampling points will be selected for different real function evaluation times.
Step 2: Build or update sample data. If the sampling data are obtained by the initial LHD
method, we will establish the sample data set {S, Y} for the first time. If a new sampling
point (s, y) is generated by LHD in the optimization process, we will update the sample
data set, i.e., [S, s]→ S, [Y, y]→ Y.
Step 3: Generate new low-dimensional kernel function.
Step 4: Use new kernel function to rapidly construct the Kriging model.
Step 5: Generate a new candidate point by Latin Hypercube Design.
Step 6: Check the evaluation number of the expensive function.
Step 7: Expensive function evaluation at the new update point.
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4. Numerical Test

The KPLS method was proposed by Bouhlel et al. in 2016, and [29,30] demonstrated
that the KPLS method is highly effective at solving high-dimensional problems. The KPLS
combining PLS (partial least squares) technique and Kriging model uses the least squares
dimensionality reduction method in the process of establishing the Kriging model, which
reduces the number of hyper-parameter calculations of the model to be consistent with the
number of PCs retained by the PLS, thereby accelerating the construction of the Kriging
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model. For this reason, we can prove the effectiveness of HDKM-PCDR by comparing
HDKM-PCDR with the KPLS method. If the test result of HDKM-PCDR is better, it can
prove the effectiveness of the HDKM-PCDR method. In addition, Kriging is also used as a
comparison method to verify the applicability of the HDKM-PCDR method for solving
high-dimensional problems.

To compare HDKM-PCDR and KPLS methods in a better and more detailed way, this
work keeps the number of PCs retained in the two methods consistent. The modeling time
and modeling error of the two methods are tested when one principal component, two PCs
and three PCs are retained, respectively.

According to the characteristics of the function’s multimodality, the complexity degree
(the number of valleys or ridges) and the level of dimensionality, the 20-dimensional
Griewank function, the 40-dimensional SUR function, the 60-dimensional DixonPrice
function and the 80-dimensional Michalewicz function shown below are chosen as the
Benchmark functions.

Griewank function:

y(x) =
20

∑
i=1

x2
i

4000
−

20

∏
i=1

cos(
xi√

i
) + 1 − 600 ≤ xi ≤ 600 (12)

SUR function:

y(x) = (x1 − 1)2 + (x40 − 1)2 + 40
39

∑
i=1

(40− i)(x2
i − xi+1)

2 − 3 ≤ xi ≤ 2 (13)

DixonPrice function:

y(x) = (x1 − 1)2 +
60

∑
i=2

i(2x2
i − xi−1)

2 − 10 ≤ xi ≤ 10 (14)

Michalewicz function:

y(x) = −
80

∑
i=1

sin(xi) sin160(
ix2

i
π

) 0 ≤ xi ≤ π (15)

For each test function, it is tested in two cases. The first case is to obtain 10 initial
sampling points through LHD, and then new sampling points will be added until the total
number of samples reaches 100. The second case is to obtain 20 initial sampling points;
when the total number of samples reaches 200, stop the HDKM-PCDR method. The total
number of sampling points here is reflected in Tables 1–4. For the test in each case, in order
to reflect the robustness and effectiveness of the HDKM-PCDR, the average value of ten
repeated runs is taken as the final test result.

Table 1. Test results on time and RMSE for the Griewank function.

Test Method
100 Sample Points 200 Sample Points

Time (s) RMSE Time (s) RMSE

Kriging 7.5573 11.9916 74.1562 8.6062
HDKM-PCDR-1 0.7652 10.3085 6.5901 6.6526

KPLS-1 0.8119 10.1789 6.6855 6.8414
HDKM-PCDR-2 1.3173 9.6095 13.7230 5.4336

KPLS-2 1.3510 9.9492 13.7983 6.8227
HDKM-PCDR-3 2.5512 9.3348 30.8119 5.4700

KPLS-3 2.7733 9.8196 30.9308 6.7632
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Table 2. Test results on time and RMSE for the SUR function.

Test Method
100 Sample Points 200 Sample Points

Time (s) RMSE Time (s) RMSE

Kriging 18.2212 1.3791 × 104 216.5188 1.1123 × 104

HDKM-PCDR-1 1.2272 1.2820 × 104 12.8934 8.8252 × 103

KPLS-1 1.9691 1.2301 × 104 14.1654 7.0127 × 103

HDKM-PCDR-2 2.2761 1.1949 × 104 23.5094 7.6304 × 103

KPLS-2 2.3510 1.2795 × 104 24.1808 8.4033 × 103

HDKM-PCDR-3 4.1168 1.2322 × 104 55.3962 8. 3669 × 103

KPLS-3 4.7523 1.2576 × 104 55.7409 8. 7498 × 103

Table 3. Test results on time and RMSE of the DixonPrice function.

Test Method
100 Sample Points 200 Sample Points

Time (s) RMSE Time (s) RMSE

Kriging 61.4766 2.8969 × 105 664.3026 2.1001 × 105

HDKM-PCDR-1 2.9292 2.8021 × 105 24.3048 1.9415 × 105

KPLS-1 2.8138 2.8041 × 105 25.0655 1.9264 × 105

HDKM-PCDR-2 4.8741 2.7954 × 105 54.7819 1.8945 × 105

KPLS-2 5.9279 2.7961 × 105 56.8854 1.8879 × 105

HDKM-PCDR-3 15.2038 2.6808 × 105 126.8160 1.8643 × 105

KPLS-3 13.6838 2.6488 × 105 137.2857 1.8654 × 105

Table 4. Time and RMSE of the Michalewicz function.

Test Method
100 Sample Points 200 Sample Points

Time (s) RMSE Time (s) RMSE

Kriging 126.6239 0.1296 1289.3620 0.0925
HDKM-PCDR-1 3.4028 0.1276 25.9314 0.0916

KPLS-1 3.6180 0.1276 26.9781 0.0918
HDKM-PCDR-2 4.7722 0.1248 53.1837 0.0920

KPLS-2 5.0228 0.1264 53.8481 0.0923
HDKM-PCDR-3 19.3122 0.1241 184.6957 0.0915

KPLS-3 32.3037 0.1238 285.4663 0.0908

The results of the time consumption and modeling error (RMSE-Root Mean Square
Error) of the four test functions are shown in Tables 1–4. The time is the total modeling time
spent during the whole sampling process for all sample points. The RMSE in these tables
can be obtained by using “leave one out cross” validation [31]. The concrete expression
of RMSE is shown in Equation (12). Here, parameter k represents the number of samples
in the current data. If the Kriging model is used to estimate the variance of point xi, we
first need to reconstruct the Kriging model with the remaining k-1 sampling points, except
for point xi. Then, calculate the estimated variance ŝ2

i of point xi by using the newly built
Kriging model and Formula (8). After repeating k times to complete the variance estimation
of these k sampling points, the average value can be calculated to obtain the RMSE with
Equation (12).

RMSE =
1
k

√√√√ k

∑
i=1

ŝ2
i (16)

Under the condition of different sample points, box plots of 10 test results of each test
function are, respectively, shown in Figures 3–6 to further demonstrate the stability and
effectiveness of the HDKM-PCDR method, as well as to express it intuitively.
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Figure 3. Time and RMSE of the Griewank function.
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Figure 4. Cont.
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Figure 4. Time and RMSE of the SUR function.
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Figure 5. Time and RMSE of the DixonPrice function.
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Figure 6. Time and RMSE of the Michalewicz function.

First, let us take a look at the modeling time test results of the algorithms from
subgraphs (a) and (c) in Figures 3–6. Compared with ordinary Kriging and KPLS methods,
from the median (red solid line) of the time box plots and the size (the area formed by
the upper quartile and the lower quartile) of the box, the median line value shown by the
proposed method is the lowest, and the frame area is also the smallest. In addition, it has
fewer outliers. For example, in the Griewank function test of 200 sampling points, the
HDKM-PCDR-3 method and the KPLS-3 method have abnormal points. However, the
abnormal points generated by the HDKM-PCDR-3 method are located below the box plot,
while the abnormal point of KPLS-3 is located above the box plot. This shows that the
time consumed by HDKM-PCDR-3 in the ten test cycles has a smaller value in a certain
test, while KPLS-3 has a larger value. Therefore, the proposed method has the shortest
modeling time in the process of each test, and the fluctuation of the time spent in these
ten modeling times is not large. These test results show that the HDKM-PCDR modeling
method has better stability and efficiency.

The modeling time and model accuracy in each of the four tables are the average of
the results obtained after ten runs of each benchmark function. All tests were performed in
Matlab2018a by a Lenovo machine equipped with an i5–4590 3.3 GHz CPU and 4 GB RAM.
As expected, for these four benchmark functions, the HDKM-PCDR method and the KPLS
method under the dimensionality reduction condition use 100 and 200 sampling points to
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establish the Kriging model. The corresponding time spent and the approximate accuracy
of the model are better than the Kriging method without direct dimensionality reduction.
For the HDKM-PCDR method and the KPLS using the idea of dimensionality reduction, the
modeling time shown by the HDKM-PCDR-n (n = 1, 2, 3) method stays ahead of the KPLS-n
(n = 1, 2, 3) method under the condition of reducing the same dimensions. For Griewank,
SUR and DixonPrice functions, although the modeling time of the proposed method is
slightly lower than that of KPLS, the total modeling time of the two methods is not much
different. For the more complex Michalewicz function, the HDKM-PCDR-3 method takes
only a little more than half of the time of the KPLS-3 method, which also shows that
the HDKM-PCDR method has higher efficiency in dealing with multi-dimensional and
multi-peak complex problems. In terms of model accuracy, except for the KPLS-1 method
at 100 points, the test results of Griewank function using the proposed method perform
best. Other than the KPLS-1 method in the case of 100 points and 200 points, the RMSE
obtained by the HDKM-PCDR method to test the SUR function meets the high accuracy
requirements. For the DixonPrice and Michalewicz functions, the two methods are evenly
matched, and both have advantages. However, considering modeling time and model
accuracy, the proposed method is slightly better.

Next, let us look at the test results of the modeling accuracy of the algorithm from
sub-graphs (b) and (d) in Figures 3–6. Theoretically speaking, the RMSE (model accu-
racy) of the ordinary Kriging method without dimensionality reduction should be the
best. However, as can be seen from subgraphs (b) and (d), the fact is just the opposite.
Judging from the median RMSE in the Griewank function test results, the HDKM-PCDR
performs better than the KPLS. For SUR function, in addition to KPLS-1, the accuracy
results in other cases are still slightly better than the proposed method. For the DixonPrice
function and the Michalewicz function, these two dimensionality reduction methods are
evenly matched, and each has its own merits. However, KPLS-2 and KPLS-3 both showed
better performance of abnormal points in some test functions, which is better than the
proposed method. However, in general, the proposed method is still stronger than KPLS,
and can ensure that the accuracy of the problem after dimensionality reduction meets
certain requirements.

In summary, the following conclusions can be drawn for all the above test results:
(1) Compared to the non-dimensionality reduction Kriging method, regardless of the
modeling time and the accuracy of the model, the HDKM-PCDR method and the KPLS
method using dimensionality reduction have been improved. (2) The modeling time of
the HDKM-PCDR method is almost always shorter than that of the KPLS method while
retaining the same number of PCs. Additionally, with the increase in the dimension and the
number of sample points, the efficiency advantage of the HDKM-PCDR method becomes
more and more obvious. The main reason for this is that the proposed method reduces the
size of the hyperparameter correlation matrix in the Kriging model, which is equivalent to
simplifying the internal structure of the Kriging model, thereby improving the efficiency
of Kriging modeling. (3) However, in terms of modeling accuracy, for different functions,
the proposed method and the KPLS method have their own advantages in accuracy. For
example, HDKM-PCDR’s test results of Griewank function show that its modeling accuracy
is higher. The results of the proposed method and the KPLS method for the other three
benchmark functions are basically evenly divided. The main reason is explained as follows:
the reduction in the proposed method is mainly for the reduction in the dimensions of the
related hyperparameters, which directly leads to the reduction in the correlation matrix,
while the KPLS method also considers the PLS method and the Kriging estimation of
the sampling points. These two different reduction methods consider different angles for
the reduction problem, resulting in approximate accuracy sometimes being better than
KPLS; sometimes, KPLS is better than the proposed method, but the overall accuracy
values are not much different and are even close. (4) In some special circumstances, when
the dimensionality of the problem is higher after dimensionality reduction, the model’s
accuracy will decrease instead. For example, when the Michalewicz function is tested
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at 200 sampling points, it appears that the accuracy of HDKM-PCDR-1 and KPLS-1 are
better than HDKM-PCDR-2 and KPLS-2. The reason for this result may be that the sample
point contains a large amount of information when it is reduced to one-dimensional data.
In other words, the weight of the function on a certain dimensional variable is too large.
However, this situation is rare seen in practice.

5. Air Traffic Control Radar Design

With the continuous and rapid development of China’s air traffic field, air traffic
control technology has higher and higher requirements for the perception of future air
traffic situations. In order to ensure the flight safety of aircraft and the normal operation
of air traffic in real time, a radar detection system has been set up. This radar detection
system can monitor the flight range of an aircraft in real time. In this case, unfortunate
events such as missing aircraft can be avoided.

In order to better design the above air traffic control radar, we simulated an air
traffic control (ATC) radar design through Simulink simulation software in MATLAB.
The simulation model can be divided into three main subsystems: radar, aircraft and
weather. The specific air traffic control model diagram is shown in Figure 7. The air traffic
control radar simulation system designed in this paper introduces real-time data such as
flight information, radar signals, weather forecast, aircraft resistance and flight mileage
as simulation parameters in the simulation process. In order to make the parameters of
the radar system design easier to change and easier to determine their values, this model
provides a GUI (see Figure 8). The parameters of radar and weather can be changed through
the GUI. The effect of different parameters can be seen on the oscilloscope screen during
simulation. The oscilloscope screen shows the actual range of the aircraft and the change
over time in the aircraft’s range estimated by radar under certain parameter settings.

Mathematics 2021, 9, x FOR PEER REVIEW 15 of 18 
 

 

rectly established with the data obtained from the simulation, and modeling time and 
modeling error were also recorded. 

 
Figure 7. Air traffic control system. 

 
Figure 8. Air traffic radar design parameters. 

Figure 9 shows the results of modeling time and modeling error in a modeling pro-
cess. In order to better compare the time for the HDKM-PCDR method to establish 
Kriging and to directly establish the Kriging model, the time in Figure 7 has removed the 
time used for simulation. In this modeling process, there are 10 initial sample points, and 
the corresponding expensive estimates of the sample points are obtained through simu-
lation. The Kriging model is established by the HDKM-PCDR method, and the modeling 
time at this time (excluding time for simulation estimation) is recorded as a first-time 
value. In each iteration, a sample point is added, and the corresponding expensive esti-

Figure 7. Air traffic control system.

This paper takes the design variables as the parameter settings of the air traffic control
radar design simulation system, so that the simulation results can be obtained by Simulink.
Since the simulation result changes with time, the maximum range of radar detection
is taken as the simulation result and output to the MATLAB workspace. Based on the
simulation results and the HDKM-PCDR method, one, two and three principal components
are retained to construct the Kriging model, and the modeling time and modeling error
in the three cases are recorded. In addition, the Kriging model was directly established
with the data obtained from the simulation, and modeling time and modeling error were
also recorded.
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Figure 8. Air traffic radar design parameters.

Figure 9 shows the results of modeling time and modeling error in a modeling process.
In order to better compare the time for the HDKM-PCDR method to establish Kriging
and to directly establish the Kriging model, the time in Figure 7 has removed the time
used for simulation. In this modeling process, there are 10 initial sample points, and the
corresponding expensive estimates of the sample points are obtained through simulation.
The Kriging model is established by the HDKM-PCDR method, and the modeling time
at this time (excluding time for simulation estimation) is recorded as a first-time value.
In each iteration, a sample point is added, and the corresponding expensive estimate is
simulated; modeling time at this time (excluding the time for the simulation estimate) is
recorded as a time value. Repeat the iterative process until final sample number is 100, and
then stop the iterative process.
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Figure 9. (a) Test results on modeling time of air traffic control systems throughout the Kriging, HDKM-PCDR-1, HDKM-
PCDR-2 and HDKM-PCDR-3 methods. (b) Test results on RMSE of air traffic control systems throughout the Kriging,
HDKM-PCDR-1, HDKM-PCDR-2 and HDKM-PCDR-3 methods.
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The following two conclusions can be drawn from the figure: (a) It can be seen from
the figure that, as the number of sample points increases, the time required for HDKM-
PCDR and Kriging to build a model gradually increases. However, with the increase in
the number of sample points, the time required to directly establish the Kriging model is
greater than the time required to establish the model of HDKM-PCDR. In the end, the time
difference is 8 times, 6 times and 3.2 times, respectively. (b) It can be seen from the figure
that the modeling error is gradually reduced as the number of sample points increases.
The modeling error of the HDKM-PCDR-1 method is unstable and large, but it is not
much different from the modeling error of the Kriging method. The modeling errors of
the HDKM-PCDR-2 and HDKM-PCDR-3 methods are very close to those of the Kriging
method. In summary, the HDKM-PCDR method can improve the modeling efficiency of
the Kriging model when the modeling accuracy loss is small.

6. Conclusions

The complexity of engineering problems causes calculating time to be expensive.
Therefore, the Kriging surrogate model is used to reduce this burden. However, when using
the Kriging model to approximate high-dimensional problems, the modeling process is also
time consuming. The most time is spent during the inversion of the covariance correlation
matrix and the solving of the Kriging correlation parameter. To this end, a high-dimensional
Kriging modeling method through principal component dimension reduction (HDKM-
PCDR) is proposed. In this method, the PCDR way of considering design variables and
correlation parameters can convert the high-dimensional correlation parameter in Kriging
into a low-dimensional one, which is used to reconstruct a new correlation function. In
this way, it will reduce the time spent optimizing correlation parameters and constructing
the correlation function matrix in the Kriging modeling process. Compared with the
original Kriging method and the high-dimensional Kriging modeling based on partial
least squares, the proposed method has better modeling efficiency while meeting certain
accuracy requirements.

When dealing with high-dimensional problems, the proposed method has certain
deficiencies in relation to model accuracy. In principal component dimensionality reduction,
it is necessary to ensure that the cumulative contribution rate of the first few principal
components extracted reaches a higher level (that is, the variable after dimensionality
reduction has a higher amount of information). In this case, when the correlation between
the original design variables is weak, too many principal components may be selected,
which is not conducive to improvements in Kriging modeling efficiency. In future research,
we will further explore new sampling strategies by combining factors such as prediction
target, variance, and distance. In this way, more promising sampling points can be obtained
to improve the model accuracy.

Author Contributions: Conceptualization, Y.L.; methodology, Y.L. and J.S. (Junjun Shi); software,
J.S. (Junjun Shi); writing—original draft, Y.L.; writing—review and editing, Y.L., J.S. (Junjun Shi),
Z.Y., J.S. (Jingfang Shen), Y.W. and S.W. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by National Natural Science Foundation of China (No. 51775472),
Science and Technology Innovation Talents in Universities of Henan Province (No. 21HASTIT027)
and Henan Excellent Youth Fund Project (No. 202300410346), Training plan of Young Backbone
Teachers in Universities of Henan Province (No. 2020GGJS209).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Mathematics 2021, 9, 1985 16 of 17

References
1. Jensen, W.A. Response surface methodology: Process and product optimization using designed experiments. J. Qual. Technol.

2017, 49, 186. [CrossRef]
2. Fan, Y.; Lu, W.; Miao, T.; Li, J.; Lin, J. Multiobjective optimization of the groundwater exploitation layout in coastal areas based on

multiple surrogate models. Environ. Sci. Pollut. Res. Int. 2020, 27, 19561–19576. [CrossRef]
3. Dubourg, V.; Sudret, B.; Bourinet, J.M. Reliability-based design optimization using kriging surrogates and subset simulation.

Struct. Multidiscip. Optim. 2011, 44, 673–690. [CrossRef]
4. Kaymaz, I. Application of kriging method to structural reliability problems. Struct. Saf. 2005, 27, 133–151. [CrossRef]
5. Azizsoltani, H.; Gaxiola-Camacho, J.R.; Haldar, A. Site-specific seismic design of damage tolerant structural systems using a

novel concept. Bull. Earthq. Eng. 2018, 16, 3819–3843. [CrossRef]
6. Fan, C.; Huang, Y.; Wang, Q. Sparsity-promoting polynomial response surface: A new surrogate model for response prediction.

Adv. Eng. Softw. 2014, 77, 48–65. [CrossRef]
7. Rashki, M.; Azarkish, H.; Rostamian, M.; Bahrpeyma, A. Classification correction of polynomial response surface methods for

accurate reliability estimation. Struct. Saf. 2019, 81, 101869. [CrossRef]
8. Li, T.; Yang, X. An efficient uniform design for Kriging-based response surface method and its application. Comput. Geotech. 2019,

109, 12–22. [CrossRef]
9. Van Stein, B.; Wang, H.; Kowalczyk, W.; Emmerich, M.; Bäck, T. Cluster-based Kriging approximation algorithms for complexity

reduction. Appl. Intell. 2019, 50, 778–791. [CrossRef]
10. Namura, N.; Shimoyama, K.; Obayashi, S. Kriging surrogate model with coordinate transformation based on likelihood and

gradient. J. Glob. Optim. 2017, 68, 827–849. [CrossRef]
11. Li, Y.; Shi, J.; Cen, H.; Shen, J.; Chao, Y. A kriging-based adaptive global optimization method with generalized expected

improvement and its application in numerical simulation and crop evapotranspiration. Agric. Water Manag. 2021, 245, 106623.
[CrossRef]

12. Li, Y.; Shi, J.; Shen, J.; Cen, H.; Chao, Y. An adaptive Kriging method with double sampling criteria applied to hydrogen
preparation case. Int. J. Hydrog. Energy 2020, 45, 31689–31705. [CrossRef]

13. Dou, S.-Q.; Li, J.-J.; Kang, F. Health diagnosis of concrete dams using hybrid FWA with RBF-based surrogate model. Water Sci.
Eng. 2019, 12, 188–195. [CrossRef]

14. Durantin, C.; Rouxel, J.; Désidéri, J.-A.; Glière, A. Multifidelity surrogate modeling based on radial basis functions. Struct.
Multidiscip. Optim. 2017, 56, 1061–1075. [CrossRef]

15. Yan, C.; Shen, X.; Guo, F. An improved support vector regression using least squares method. Struct. Multidiscip. Optim. 2017, 57,
2431–2445. [CrossRef]

16. Hamed, Y.; Alzahrani, A.I.; Shafie, A.; Mustaffa, Z.; Ismail, M.C.; Eng, K.K. Two steps hybrid calibration algorithm of support
vector regression and K-nearest neighbors. Alex. Eng. J. 2020, 59, 1181–1190. [CrossRef]

17. Keshtegar, B.; Mert, C.; Kisi, O. Comparison of four heuristic regression techniques in solar radiation modeling: Kriging method
vs RSM, MARS and M5 model tree. Renew. Sustain. Energy Rev. 2018, 81, 330–341. [CrossRef]

18. Liu, B.; Zhang, Q.; Gielen, G. A Gaussian Process Surrogate Model Assisted Evolutionary Algorithm for Medium Scale Expensive
Optimization Problems. IEEE Trans. Evol. Comput. 2014, 18, 180–192. [CrossRef]

19. Zhou, Y.; Lu, Z. An enhanced Kriging surrogate modeling technique for high-dimensional problems. Mech. Syst. Signal. Process.
2020, 140, 106687. [CrossRef]

20. Fu, C.; Wang, P.; Zhao, L.; Wang, X. A distance correlation-based Kriging modeling method for high-dimensional problems.
Knowl. Based Syst. 2020, 206, 106356. [CrossRef]

21. Chen, L.; Qiu, H.; Gao, L.; Jiang, C.; Yang, Z. A screening-based gradient-enhanced Kriging modeling method for high-dimensional
problems. Appl. Math. Model. 2019, 69, 15–31. [CrossRef]

22. Bouhlel, M.A.; Martins, J. Gradient-enhanced kriging for high-dimensional problems. Eng. Comput. 2019, 35, 157–173. [CrossRef]
23. Hajikolaei, K.H.; Wang, G.G. High Dimensional Model Representation With Principal Component Analysis. J. Mech. Des. 2013,

136, 011003. [CrossRef]
24. Lataniotis, C.; Marelli, S.; Sudret, B. EXTENDING CLASSICAL SURROGATE MODELING TO HIGH DIMENSIONS THROUGH

SUPERVISED DIMENSIONALITY REDUCTION: A DATA-DRIVEN APPROACH. Int. J. Uncertain. Quantif. 2020, 10, 55–82.
[CrossRef]

25. Martin, J.D. Computational Improvements to Estimating Kriging Metamodel Parameters. J. Mech. Des. 2009, 131, 084501.
[CrossRef]

26. Martin, J.D.; Simpson, T.W. Use of kriging models to approximate deterministic computer models. AIAA J. 2005, 43, 853–863.
[CrossRef]

27. Chauhan, D.; Mathews, R. Review on Dimensionality Reduction Techniques; Springer International Publishing: Cham, Switzerland,
2020; Volume 49, pp. 356–362.

28. Tang, B. Latin Hypercube Designs. In Encyclopedia of Statistics in Quality and Reliability; Wiley: Hoboken, NJ, USA, 2008.
29. Bouhlel, M.A.; Bartoli, N.; Otsmane, A.; Morlier, J. An Improved Approach for Estimating the Hyperparameters of the Kriging

Model for High-Dimensional Problems through the Partial Least Squares Method. Math. Probl. Eng. 2016, 2016, 1–11. [CrossRef]

http://doi.org/10.1080/00224065.2017.11917988
http://doi.org/10.1007/s11356-020-08367-2
http://doi.org/10.1007/s00158-011-0653-8
http://doi.org/10.1016/j.strusafe.2004.09.001
http://doi.org/10.1007/s10518-018-0329-5
http://doi.org/10.1016/j.advengsoft.2014.08.001
http://doi.org/10.1016/j.strusafe.2019.101869
http://doi.org/10.1016/j.compgeo.2019.01.009
http://doi.org/10.1007/s10489-019-01549-7
http://doi.org/10.1007/s10898-017-0516-y
http://doi.org/10.1016/j.agwat.2020.106623
http://doi.org/10.1016/j.ijhydene.2020.08.174
http://doi.org/10.1016/j.wse.2019.09.002
http://doi.org/10.1007/s00158-017-1703-7
http://doi.org/10.1007/s00158-017-1871-5
http://doi.org/10.1016/j.aej.2020.01.033
http://doi.org/10.1016/j.rser.2017.07.054
http://doi.org/10.1109/TEVC.2013.2248012
http://doi.org/10.1016/j.ymssp.2020.106687
http://doi.org/10.1016/j.knosys.2020.106356
http://doi.org/10.1016/j.apm.2018.11.048
http://doi.org/10.1007/s00366-018-0590-x
http://doi.org/10.1115/1.4025491
http://doi.org/10.1615/Int.J.UncertaintyQuantification.2020031935
http://doi.org/10.1115/1.3151807
http://doi.org/10.2514/1.8650
http://doi.org/10.1155/2016/6723410


Mathematics 2021, 9, 1985 17 of 17

30. Bouhlel, M.A.; Bartoli, N.; Otsmane, A.; Morlier, J. Improving kriging surrogates of high-dimensional design models by Partial
Least Squares dimension reduction. Struct. Multidiscip. Optim. 2016, 53, 935–952. [CrossRef]

31. Vehtari, A.; Gelman, A.; Gabry, J. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat.
Comput. 2017, 27, 1413–1432. [CrossRef]

http://doi.org/10.1007/s00158-015-1395-9
http://doi.org/10.1007/s11222-016-9696-4

	Introduction 
	Kriging Model 
	HDKM-PCDR Method 
	Use PCDR to Generate New Low-Dimensional Kernel Function 
	Specific Implementation of HDKM-PCDR Method 

	Numerical Test 
	Air Traffic Control Radar Design 
	Conclusions 
	References

