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Abstract: The Kriging surrogate model in complex simulation problems uses as few expensive 

objectives as possible to establish a global or local approximate interpolation. However, due to the 

inversion of the covariance correlation matrix and the solving of Kriging-related parameters, the 

Kriging approximation process for high-dimensional problems is time consuming and even im-

possible to construct. For this reason, a high-dimensional Kriging modeling method through prin-

cipal component dimension reduction (HDKM-PCDR) is proposed by considering the correlation 

parameters and the design variables of a Kriging model. It uses PCDR to transform a 

high-dimensional correlation parameter vector in Kriging into low-dimensional one, which is used 

to reconstruct a new correlation function. In this way, time consumption of correlation parameter 

optimization and correlation function matrix construction in the Kriging modeling process is 

greatly reduced. Compared with the original Kriging method and the high-dimensional Kriging 

modeling method based on partial least squares, the proposed method can achieve faster modeling 

efficiency under the premise of meeting certain accuracy requirements. 

Keywords: surrogate model; Kriging; high-dimensional problems; principal component dimension 

reduction 

 

1. Introduction 

The surrogate model [1–5], also called a “response surface model”, a “meta model”, 

an “approximate model” or a “simulator”, has been applied to different engineering 

design fields. Commonly used surrogate models include PRS (polynomial response 

surface) [6,7], Kriging [8–12], RBF (radial basis function) [13,14], SVR (support vector 

regression) [15,16] and MARS (multiple adaptive spline regression). According to [17] et 

al., Kriging (also known as Gaussian process model) is widely used. The main reason for 

this is that the Kriging model can attain better approximation accuracy compared to the 

other methods mentioned above, and it can handle simple or complex, linear or nonlin-

ear, low-dimensional or high-dimensional problems. Secondly, Kriging can predict the 

uncertainty of unknown points, and its basis function usually has adjustable parameters. 

Moreover, the Kriging model can ensure the smoothness of the function, high execution 

efficiency and good accuracy. 

Although Kriging was developed nearly 70 years ago and has been widely used in 

various fields, it always has some shortcomings in the process of dealing with 

high-dimensional problems. As shown in [18], using the DACE toolbox in MATLAB and 

150 points to construct a Kriging model for a 50-dimensional problem requires 240 to 400 

s, which is time consuming. For high-dimensional problems, constructing a Kriging 

model requires a great deal of computational cost, which limits the application of the 
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Kriging model to high-dimensional problems. 

To solve the key problem of the “curse of dimensionality”, scholars have proposed 

various feasible strategies. A new method [19] combining Kriging modeling technology 

and a dimensionality reduction method has been proposed. This method uses slice in-

verse regression technology and constructs a new projection vector to reduce the original 

input vector without losing the basic information of the model’s response. In the 

sub-region after dimensionality reduction, a new Kriging correlation function is con-

structed using the tensor product of multiple correlation function projection directions. 

By studying the correlation coefficient and distance correlation of the Kriging model, an 

effective Kriging modeling method [20] based on a new spatial correlation function is 

created to promote modeling efficiency. There are also gradient enhancement Kriging 

methods that use partial gradient sets to balance modeling efficiency and model accura-

cy. Chen et al. [21] mainly use feature selection techniques to predict the impact of each 

input variable on the output and rank them, and then select the gradient according to 

empirical evaluation rules. Mohamed A. et al. [22] also proposed a new gradient en-

hancement alternative model method based on partial least squares, which greatly re-

duced the number of correlation parameters to enhance modeling efficiency. In addition, 

a new method based on principal component analysis (PCA) [23] has been proposed to 

approximate high-dimensional proxy models. It seeks the best linear combination coeffi-

cient that can be provided with the smallest error without using any integral. S. Marelli et 

al. [24] combined Kriging, polynomial chaos expansion and kernel PCA to prove and 

verify that the proposed high-dimensional proxy modeling method can effectively solve 

high-dimensional problems. 

The above mentioned dimensionality reduction method reduces modeling time 

while ensuring that certain model accuracy requirements are met. After all, things have 

two sides. The improvement in modeling efficiency leads to a loss in accuracy to a certain 

extent. Therefore, how to improve modeling efficiency as much as possible while reduc-

ing the loss in accuracy requires further study. 

For this reason, a high-dimensional Kriging modeling method through principal 

component dimension reduction (HDKM-PCDR) is proposed. Through this method, the 

PCDR strategy can convert high-dimensional correlation parameters in the Kriging 

model into low-dimensional ones, which are used to reconstruct new correlation func-

tions. The process of establishing correlation functions such as these can reduce the time 

consumption of correlation parameter optimization and correlation function matrix con-

struction in the modeling process. Compared with the original Kriging method and the 

high-dimensional Kriging modeling method based on partial least squares, this method 

has better modeling efficiency under the premise of meeting certain accuracy require-

ments. In addition, the high-dimensional modeling method proposed in this article for 

the Kriging model will provide other researchers with new ideas and directions for the 

high-dimensional modeling research of surrogate models. 

The remaining sections of this article are as follows. The second section introduces 

the characteristics of the Kriging model and its correlation parameter. The third section 

introduces the key issues of the proposed method and the specific implementation pro-

cess in detail. In the fourth section, several high-dimensional benchmark functions and a 

simulation example are tested. Finally, conclusions are drawn and future research direc-

tions are envisioned. 

2. Kriging Model 

For experimental design sample T[ ] 1 mX , . . . , x x (
×m nX ) and corresponding 

objective T
1[ , . . . , ]mY y y (

×1mY ), the Kriging surrogate model combining polyno-

mial regression and stochastic process can be expressed as 
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( ) ( )Y Z Fx β x  (1)

where parameter ( )Y x  is a predicted function of interest. In this regression matrix F

with 
×m pF , its elements are usually calculated by the first-order or second-order 

regression function of known observation points, and sometimes F can also be a constant 

regression matrix. The weight β of the regression function is a p-dimensional column 

vector. The random process Z(x) with zero mean and variance can be stated as 

2E [ ( )] 0 E [ ( ) ( )] ( , , )Z Z Z R x x w θ ω x，   (2)

where θ is the correlation parameter and σ2 is the process variance. For any two different 

observations ω and x, the spatial correlation kernel function R (θ, ω, x) is shown in 

Equation (3). 

1

( , , )= ( ,  )
n

i i i i
i

R R x 


θ ω x  (3)

After determining the correlation among all sample points, the differentiability of 

the surface, the smoothness of the Kriging model and the influence of nearby points can 

be regulated by R (θ, ω, x). There are generally seven choices for the spatial correlation 

function. However, the most widely used is the Gaussian correlation model [25,26]. It can 

be expressed by 

   2

, expk k k k
i i iR w x w x      (4)

According to the above analysis, the covariance correlation matrix R can be stated by 

formula (5). 

1 1 1 2 1
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 (5)

Due to unbiased estimation, the regression problem YF has a generalized least 

squares solution ̂ =  
1T 1 T 1 F R F F R Y and a variance estimate 2̂ =

   1ˆ ˆ /
T

m Y F R Y F  . 

As seen in Formula (2), process variance σ2 and correlation parameter θ are closely 

related among matrix R. The unconstrained optimization problem of the maximum like-

lihood estimation in Equation (6) is maximized to determine optimal parameter θ. 

2( ln ln ) / 2 m R  (6)

3. HDKM-PCDR Method 

3.1. Use PCDR to Generate New Low-Dimensional Kernel Function 

The mathematical theory of the principal component (PC) dimensionality reduction 

method is PCA, which is used here to reduce the dimensionality of the Kriging design 

variables. It uses the idea of dimensionality reduction. Under the premise of losing little 

potential function information, all indicators are transformed into several comprehensive 

ones by the multivariate statistical method. These comprehensive indicators after con-

version are called principal components (PCs). Different linear combinations of original 
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design variables can constitute different PCs. Under the condition that the PCs are in-

dependent of each other and meet the accuracy, the PCs after dimensionality reduction 

have greater advantages in modeling efficiency than the original variables. These are 

especially suitable for research into high-dimensional complex problems. 

Suppose that the study of a certain problem involves n indicators denoted by

1 2, , , nx x x . Therefore, the n-dimensional random vector  
T1 2, , , nx x xx   for 

any sampling point is formed by these n indicators. A new compound variable v in 

Equation (7) can be obtained by linear transformation of x; then, v is the PC we seek. If the 

first h (h < = n) PCs are selected, this is equivalent to reducing the number of indicators 

from n to h (that is, from n dimension to h dimension). 

1 2
1 11 12 1

1 2
2 21 22 2

1 2
1 2

n
n

n
n

n
n n n nn

v u x u x u x

v u x u x u x

v u x u x u x

    


   


    









 (7)

The greater the variance in the principal component vi, the greater the amount of 

original data information carried. We always hope that the PCs ( T
i iz  u x ) are inde-

pendent of each other and have the largest possible variance. However, in fact, if there is 

no restriction on 
iu , it may make the variance increase arbitrarily; the problem will 

therefore become meaningless. For this reason, linear transformation needs to follow the 

following principles: 

Principle 1. Ensure that T
i iu u  is equal to 1, that is,  2 2 2

1 2 1 1,2, ,i i inu u u i n      ; 

Principle 2. Make 
iv  and 

jv irrelevant, that is cov( , ) 0,  ; , 1, 2, ,i jv v i j i j n    ; 

Principle 3. Ensure that 
1v  is the one with the largest variance among all linear combinations 

of 1 2, , , nx x x that satisfy principle 1; 
2v  is the one with the largest variance among all line-

ar combinations of 1 2, , , nx x x  when it is not correlated with
1v ; follow this rule, etc., 

nv  is 

the one with the largest variance among all linear combinations of 1 2, , , nx x x  when it is not 

correlated with
1 2 1, , ..., nv v v 

. 

Based on the above three principles, the determined composite variable 
1 2, ,..., nv v v  

is the first to the nth PC of the original variable. And the variances of the composite var-

iable
1 2, ,..., nv v v  are arranged in descending order.  

According to the above analysis, the specific calculation process of the PCDR 

method is described as follows: 

Step 1: Calculation of the covariance matrix. Suppose and offer the covariance matrix of 

the sample data is  2
ij n n
s


  R . 

Step 2: Find the eigenvalue 
i  of   and the corresponding unit eigenvector

iu , and 

arrange the eigenvalues 
i  of the covariance matrix   as 

 1 2 1 2, , , n n          in order of magnitude, and the corresponding unit 

eigenvectors 
1 2, , , du u u  are the coefficient vectors of the principal component

 1,2, ,iv i n  , respectively. 
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Step 3: Choice of PCs. The variance value of each PC 
iv  is equal to the corresponding 

i [27]. Therefore, the contribution rate 
iCR  of the eigenvalue (or variance) is used to 

reflect the amount of information; that is, 
1

n

i i i
i

CR  


  .  

Then, the value h can be determined by the cumulative contribution rate of variance 

in Equation (8). 

 
1 1

h n

i i
i i

CR h  
 

    (8)

When the cumulative contribution rate is greater than 80%, we believe that the PC 

can reflect the characteristic of the original variable to a certain extent, and the corre-

sponding parameter h is the final selected principal component number: 

Step 4: Determine a new conversion matrix according to the known sample data and 

using the formula 1 2 d
i i1 i2 idz u x u x u x    ( 1,...,i h ) to calculate the value of 

the h PCs; meanwhile, the n*h transformation matrix is obtained. This matrix is used as a 

weight to replace Formula (3) and recalculate the new kernel function in a more efficient 

way. 

Step 5: Generate new kernel function. First, the linear mapping expression is defined 

and shown in Equation (9). 

1
1

:

,..., 1,...,

l

n
l l n

F B B

u x u x l h



   x
 (9)

where B is a hypercube belonging to 
d  and is represented by the product of the space 

interval in each direction. The corresponding kernel function is expressed as 

      
1

2
, , = exp i i i i

l l l l l l l

n

i

R F F u w u x 


 x w  (10)

Finally, through the tensor product of h kernel functions, a new kernel function 

based on Kriging and PCA (KPCA), as shown in Equation (11), can be generated. For new 

spatial correlation kernel function, we can use the reduced-dimensional formula (11) to 

replace the high-dimensional formula (3) so as to improve the modeling efficiency of the 

Kriging model. 

      

 

KPCA
1

2

1 1

, ,

exp , ,

h

l l l
l

h n
i i i i

l l l
l i

R R F F

u w u x B



 



    





x w x w

x w

 (11)

Next, take the two-dimensional GP function as an example to describe the dimen-

sionality reduction process of the PCDR more clearly. First, use the LHD sampling 

method to randomly select 20 sample points, which are shown in Figure 1a. Next, calcu-

late the covariance matrix of the sample points and use the eigenvector with the largest 

eigenvalue in the matrix as the first principal direction (the dotted line in Figure 1a). The 

first principal direction is essentially the coefficient in the linear transformation vector. In 

this way, the linear transformation of Equation (7) maps the original data points to the 

direction of the first principal component (as shown in Figure 1b). Thus far, the first four 

steps in the PCDR method are completed. The fifth step is to calculate a new spatial 

kernel function through the data points after dimensionality reduction, and then com-

plete the low-dimensional Kriging modeling. 
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(a) (b) 

Figure 1. Take the GP function as an example, and the selection of the first principal component in the process of turning 

two-dimensional data into one-dimensional data. In Figure 1 (a), the 20 sample points are obtained through LHD sam-

pling. After calculating the covariance matrix using these 20 sampling points, the first principal direction (the dotted line) 

is formed by the eigenvector with the largest eigenvalue in the matrix. In Figure 1 (b), the original 20 sampling points are 

mapped to the first principal direction through the linear transformation of Equation (7). 

3.2. Specific Implementation of HDKM-PCDR Method 

The process of the HDKM-PCDR is shown and stated in detail in Figure 2. Addi-

tionally, its specific implementation steps are presented as follows: 

Step 1: Initial sampling. LHD (Latin Hypercube Design) method [28] is employed to 

generate the initial sample points. To facilitate comparison with other methods, different 

initial sampling points will be selected for different real function evaluation times. 

Step 2: Build or update sample data. If the sampling data are obtained by the initial 

LHD method, we will establish the sample data set {S, Y} for the first time. If a new 

sampling point (s, y) is generated by LHD in the optimization process, we will update 

the sample data set, i.e., [S, s] → S, [Y, y] → Y. 

Step 3: Generate new low-dimensional kernel function. 

Step 4: Use new kernel function to rapidly construct the Kriging model. 

Step 5: Generate a new candidate point by Latin Hypercube Design. 

Step 6: Check the evaluation number of the expensive function. 

Step 7: Expensive function evaluation at the new update point. 

First principal direction
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Figure 2. The implementation process of the HDKM-PCDR method. 

4. Numerical Test 

The KPLS method was proposed by Bouhlel et al. in 2016, and [29,30] demonstrated 

that the KPLS method is highly effective at solving high-dimensional problems. The 

KPLS combining PLS (partial least squares) technique and Kriging model uses the least 

squares dimensionality reduction method in the process of establishing the Kriging 

model, which reduces the number of hyper-parameter calculations of the model to be 

consistent with the number of PCs retained by the PLS, thereby accelerating the con-

struction of the Kriging model. For this reason, we can prove the effectiveness of 

HDKM-PCDR by comparing HDKM-PCDR with the KPLS method. If the test result of 

HDKM-PCDR is better, it can prove the effectiveness of the HDKM-PCDR method. In 

addition, Kriging is also used as a comparison method to verify the applicability of the 

HDKM-PCDR method for solving high-dimensional problems. 

To compare HDKM-PCDR and KPLS methods in a better and more detailed way, 

this work keeps the number of PCs retained in the two methods consistent. The modeling 

time and modeling error of the two methods are tested when one principal component, 

two PCs and three PCs are retained, respectively. 

According to the characteristics of the function’s multimodality, the complexity de-

gree (the number of valleys or ridges) and the level of dimensionality, the 20-dimensional 

Griewank function, the 40-dimensional SUR function, the 60-dimensional DixonPrice 

function and the 80-dimensional Michalewicz function shown below are chosen as the 

Benchmark functions.  
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( ) cos( ) 1 600 600
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i
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      x  (12)

SUR function:  
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2 2 2 2

1 40 1
1

( ) ( 1) ( 1) 40 (40 )( ) 3 2i i i
i

y x x i x x x


         x
 

(13)

DixonPrice function:  

60
2 2 2

1 1
2

( ) ( 1) (2 ) 10 10i i i
i

y x i x x x


      x  (14)

Michalewicz function:  

280
160

1

( ) sin( )sin ( ) 0i
i i

i

ix
y x x 



   x  (15)

For each test function, it is tested in two cases. The first case is to obtain 10 initial 

sampling points through LHD, and then new sampling points will be added until the 

total number of samples reaches 100. The second case is to obtain 20 initial sampling 

points; when the total number of samples reaches 200, stop the HDKM-PCDR method. 

The total number of sampling points here is reflected in Tables 1–4. For the test in each 

case, in order to reflect the robustness and effectiveness of the HDKM-PCDR, the average 

value of ten repeated runs is taken as the final test result. 

The results of the time consumption and modeling error (RMSE-Root Mean Square 

Error) of the four test functions are shown in Tables 1–4. The time is the total modeling 

time spent during the whole sampling process for all sample points. The RMSE in these 

tables can be obtained by using “leave one out cross” validation [31]. The concrete ex-

pression of RMSE is shown in Equation (12). Here, parameter k represents the number of 

samples in the current data. If the Kriging model is used to estimate the variance of point

ix , we first need to reconstruct the Kriging model with the remaining k-1 sampling 

points, except for point 
ix . Then, calculate the estimated variance 

2ˆ
is of point 

ix  by 

using the newly built Kriging model and Formula (8). After repeating k times to complete 

the variance estimation of these k sampling points, the average value can be calculated to 

obtain the RMSE with Equation (12). 

2

1

1
ˆRMSE



 
k

i
i

s
k

 

(16)

Table 1. Test results on time and RMSE for the Griewank function. 

Test Method 
100 Sample Points 200 Sample Points 

Time (s) RMSE Time (s) RMSE 

Kriging 7.5573 11.9916 74.1562 8.6062 

HDKM-PCDR-1 0.7652 10.3085 6.5901 6.6526 

KPLS-1 0.8119 10.1789 6.6855 6.8414 

HDKM-PCDR-2 1.3173 9.6095 13.7230 5.4336 

KPLS-2 1.3510 9.9492 13.7983 6.8227 

HDKM-PCDR-3 2.5512 9.3348 30.8119 5.4700 

KPLS-3 2.7733 9.8196 30.9308 6.7632 
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Table 2. Test results on time and RMSE for the SUR function. 

Test Method 
100 Sample Points 200 Sample Points 

Time (s) RMSE Time (s) RMSE 

Kriging 18.2212 1.3791 × 104 216.5188 1.1123 × 104 

HDKM-PCDR-1 1.2272 1.2820 × 104 12.8934 8.8252 × 103 

KPLS-1 1.9691 1.2301 × 104 14.1654 7.0127 × 103 

HDKM-PCDR-2 2.2761 1.1949 × 104 23.5094 7.6304 × 103 

KPLS-2 2.3510 1.2795 × 104 24.1808 8.4033 × 103 

HDKM-PCDR-3 4.1168 1.2322 × 104 55.3962 8. 3669 × 103 

KPLS-3 4.7523 1.2576 × 104 55.7409 8. 7498 × 103 

Table 3. Test results on time and RMSE of the DixonPrice function. 

Test Method 
100 Sample Points 200 Sample Points 

Time (s) RMSE Time (s) RMSE 

Kriging 61.4766 2.8969 × 105 664.3026 2.1001 × 105 

HDKM-PCDR-1 2.9292 2.8021 × 105 24.3048 1.9415 × 105 

KPLS-1 2.8138 2.8041 × 105 25.0655 1.9264 × 105 

HDKM-PCDR-2 4.8741 2.7954 × 105 54.7819 1.8945 × 105 

KPLS-2 5.9279 2.7961 × 105 56.8854 1.8879 × 105 

HDKM-PCDR-3 15.2038 2.6808 × 105 126.8160 1.8643 × 105 

KPLS-3 13.6838 2.6488 × 105 137.2857 1.8654 × 105 

Table 4. Time and RMSE of the Michalewicz function. 

Test Method 
100 Sample Points 200 Sample Points 

Time (s) RMSE Time (s) RMSE 

Kriging 126.6239 0.1296 1289.3620 0.0925 

HDKM-PCDR-1 3.4028 0.1276 25.9314 0.0916 

KPLS-1 3.6180 0.1276 26.9781 0.0918 

HDKM-PCDR-2 4.7722 0.1248 53.1837 0.0920 

KPLS-2 5.0228 0.1264 53.8481 0.0923 

HDKM-PCDR-3 19.3122 0.1241 184.6957 0.0915 

KPLS-3 32.3037 0.1238 285.4663 0.0908 

Under the condition of different sample points, box plots of 10 test results of each 

test function are, respectively, shown in Figures 3–6 to further demonstrate the stability 

and effectiveness of the HDKM-PCDR method, as well as to express it intuitively. 

First, let us take a look at the modeling time test results of the algorithms from sub-

graphs (a) and (c) in Figures 3–6. Compared with ordinary Kriging and KPLS methods, 

from the median (red solid line) of the time box plots and the size (the area formed by the 

upper quartile and the lower quartile) of the box, the median line value shown by the 

proposed method is the lowest, and the frame area is also the smallest. In addition, it has 

fewer outliers. For example, in the Griewank function test of 200 sampling points, the 

HDKM-PCDR-3 method and the KPLS-3 method have abnormal points. However, the 

abnormal points generated by the HDKM-PCDR-3 method are located below the box 

plot, while the abnormal point of KPLS-3 is located above the box plot. This shows that 

the time consumed by HDKM-PCDR-3 in the ten test cycles has a smaller value in a cer-

tain test, while KPLS-3 has a larger value. Therefore, the proposed method has the 

shortest modeling time in the process of each test, and the fluctuation of the time spent in 

these ten modeling times is not large. These test results show that the HDKM-PCDR 

modeling method has better stability and efficiency. 
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Figure 3. Time and RMSE of the Griewank function. 

  

(a) Time for 100 sampling points. (b) RMSE for 100 sampling points. 
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(a) Time for 100 sampling points. (b) RMSE for 100 sampling points. 

  

(c) Time for 200 sampling points. (d) RMSE for 200 sampling points. 
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(c) Time for 200 sampling points. (d) RMSE for 200 sampling points. 

Figure 4. Time and RMSE of the SUR function. 

  

(a) Time for 100 sampling points. (b) RMSE for 100 sampling points. 
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(c) Time for 200 sampling points. (d) RMSE for 200 sampling points. 

Figure 5. Time and RMSE of the DixonPrice function. 

The modeling time and model accuracy in each of the four tables are the average of 

the results obtained after ten runs of each benchmark function. All tests were performed 

in Matlab2018a by a Lenovo machine equipped with an i5–4590 3.3 GHz CPU and 4 GB 

RAM. As expected, for these four benchmark functions, the HDKM-PCDR method and 

the KPLS method under the dimensionality reduction condition use 100 and 200 sam-

pling points to establish the Kriging model. The corresponding time spent and the ap-

proximate accuracy of the model are better than the Kriging method without direct di-

mensionality reduction. For the HDKM-PCDR method and the KPLS using the idea of 

dimensionality reduction, the modeling time shown by the HDKM-PCDR-n (n = 1,2,3) 

method stays ahead of the KPLS-n (n = 1,2,3) method under the condition of reducing the 

same dimensions. For Griewank, SUR and DixonPrice functions, although the modeling 

time of the proposed method is slightly lower than that of KPLS, the total modeling time 

of the two methods is not much different. For the more complex Michalewicz function, 

the HDKM-PCDR-3 method takes only a little more than half of the time of the KPLS-3 

method, which also shows that the HDKM-PCDR method has higher efficiency in deal-

ing with multi-dimensional and multi-peak complex problems. In terms of model accu-

racy, except for the KPLS-1 method at 100 points, the test results of Griewank function 

using the proposed method perform best. Other than the KPLS-1 method in the case of 

100 points and 200 points, the RMSE obtained by the HDKM-PCDR method to test the 

SUR function meets the high accuracy requirements. For the DixonPrice and Michalewicz 

functions, the two methods are evenly matched, and both have advantages. However, 

considering modeling time and model accuracy, the proposed method is slightly better. 
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(a) Time for 100 sampling points. (b) RMSE for 100 sampling points. 

  

(c) Time for 200 sampling points. (d) RMSE for 200 sampling points. 

Figure 6. Time and RMSE of the Michalewicz function. 

Next, let us look at the test results of the modeling accuracy of the algorithm from 

sub-graphs (b) and (d) in Figures 3–6. Theoretically speaking, the RMSE (model accuracy) 

of the ordinary Kriging method without dimensionality reduction should be the best. 

However, as can be seen from subgraphs (b) and (d), the fact is just the opposite. Judging 

from the median RMSE in the Griewank function test results, the HDKM-PCDR performs 

better than the KPLS. For SUR function, in addition to KPLS-1, the accuracy results in 

other cases are still slightly better than the proposed method. For the DixonPrice function 

and the Michalewicz function, these two dimensionality reduction methods are evenly 

matched, and each has its own merits. However, KPLS-2 and KPLS-3 both showed better 

performance of abnormal points in some test functions, which is better than the proposed 

method. However, in general, the proposed method is still stronger than KPLS, and can 

ensure that the accuracy of the problem after dimensionality reduction meets certain 

requirements. 

In summary, the following conclusions can be drawn for all the above test results: (1) 

Compared to the non-dimensionality reduction Kriging method, regardless of the mod-

eling time and the accuracy of the model, the HDKM-PCDR method and the KPLS 

method using dimensionality reduction have been improved. (2) The modeling time of 
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the HDKM-PCDR method is almost always shorter than that of the KPLS method while 

retaining the same number of PCs. Additionally, with the increase in the dimension and 

the number of sample points, the efficiency advantage of the HDKM-PCDR method be-

comes more and more obvious. The main reason for this is that the proposed method 

reduces the size of the hyperparameter correlation matrix in the Kriging model, which is 

equivalent to simplifying the internal structure of the Kriging model, thereby improving 

the efficiency of Kriging modeling. (3) However, in terms of modeling accuracy, for dif-

ferent functions, the proposed method and the KPLS method have their own advantages 

in accuracy. For example, HDKM-PCDR’s test results of Griewank function show that its 

modeling accuracy is higher. The results of the proposed method and the KPLS method 

for the other three benchmark functions are basically evenly divided. The main reason is 

explained as follows: the reduction in the proposed method is mainly for the reduction in 

the dimensions of the related hyperparameters, which directly leads to the reduction in 

the correlation matrix, while the KPLS method also considers the PLS method and the 

Kriging estimation of the sampling points. These two different reduction methods con-

sider different angles for the reduction problem, resulting in approximate accuracy 

sometimes being better than KPLS; sometimes, KPLS is better than the proposed method, 

but the overall accuracy values are not much different and are even close. (4) In some 

special circumstances, when the dimensionality of the problem is higher after dimen-

sionality reduction, the model’s accuracy will decrease instead. For example, when the 

Michalewicz function is tested at 200 sampling points, it appears that the accuracy of 

HDKM-PCDR-1 and KPLS-1 are better than HDKM-PCDR-2 and KPLS-2. The reason for 

this result may be that the sample point contains a large amount of information when it is 

reduced to one-dimensional data. In other words, the weight of the function on a certain 

dimensional variable is too large. However, this situation is rare seen in practice. 

5. Air Traffic Control Radar Design 

With the continuous and rapid development of China’s air traffic field, air traffic 

control technology has higher and higher requirements for the perception of future air 

traffic situations. In order to ensure the flight safety of aircraft and the normal operation 

of air traffic in real time, a radar detection system has been set up. This radar detection 

system can monitor the flight range of an aircraft in real time. In this case, unfortunate 

events such as missing aircraft can be avoided. 

In order to better design the above air traffic control radar, we simulated an air traf-

fic control (ATC) radar design through Simulink simulation software in MATLAB. The 

simulation model can be divided into three main subsystems: radar, aircraft and weather. 

The specific air traffic control model diagram is shown in Figure 7. The air traffic control 

radar simulation system designed in this paper introduces real-time data such as flight 

information, radar signals, weather forecast, aircraft resistance and flight mileage as 

simulation parameters in the simulation process. In order to make the parameters of the 

radar system design easier to change and easier to determine their values, this model 

provides a GUI (see Figure 8). The parameters of radar and weather can be changed 

through the GUI. The effect of different parameters can be seen on the oscilloscope screen 

during simulation. The oscilloscope screen shows the actual range of the aircraft and the 

change over time in the aircraft’s range estimated by radar under certain parameter set-

tings. 

This paper takes the design variables as the parameter settings of the air traffic con-

trol radar design simulation system, so that the simulation results can be obtained by 

Simulink. Since the simulation result changes with time, the maximum range of radar 

detection is taken as the simulation result and output to the MATLAB workspace. Based 

on the simulation results and the HDKM-PCDR method, one, two and three principal 

components are retained to construct the Kriging model, and the modeling time and 

modeling error in the three cases are recorded. In addition, the Kriging model was di-



Mathematics 2021, 9, 1985 15 of 18 
 

 

rectly established with the data obtained from the simulation, and modeling time and 

modeling error were also recorded. 

 

Figure 7. Air traffic control system. 

 

Figure 8. Air traffic radar design parameters. 

Figure 9 shows the results of modeling time and modeling error in a modeling pro-

cess. In order to better compare the time for the HDKM-PCDR method to establish 

Kriging and to directly establish the Kriging model, the time in Figure 7 has removed the 

time used for simulation. In this modeling process, there are 10 initial sample points, and 

the corresponding expensive estimates of the sample points are obtained through simu-

lation. The Kriging model is established by the HDKM-PCDR method, and the modeling 

time at this time (excluding time for simulation estimation) is recorded as a first-time 

value. In each iteration, a sample point is added, and the corresponding expensive esti-
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mate is simulated; modeling time at this time (excluding the time for the simulation es-

timate) is recorded as a time value. Repeat the iterative process until final sample number 

is 100, and then stop the iterative process. 

  
(a) (b) 

Figure 9. (a) Test results on modeling time of air traffic control systems throughout the Kriging, HDKM-PCDR-1, 

HDKM-PCDR-2 and HDKM-PCDR-3 methods. (b) Test results on RMSE of air traffic control systems throughout the 

Kriging, HDKM-PCDR-1, HDKM-PCDR-2 and HDKM-PCDR-3 methods. 

The following two conclusions can be drawn from the figure: (a) It can be seen from 

the figure that, as the number of sample points increases, the time required for 

HDKM-PCDR and Kriging to build a model gradually increases. However, with the in-

crease in the number of sample points, the time required to directly establish the Kriging 

model is greater than the time required to establish the model of HDKM-PCDR. In the 

end, the time difference is 8 times, 6 times and 3.2 times, respectively. (b) It can be seen 

from the figure that the modeling error is gradually reduced as the number of sample 

points increases. The modeling error of the HDKM-PCDR-1 method is unstable and 

large, but it is not much different from the modeling error of the Kriging method. The 

modeling errors of the HDKM-PCDR-2 and HDKM-PCDR-3 methods are very close to 

those of the Kriging method. In summary, the HDKM-PCDR method can improve the 

modeling efficiency of the Kriging model when the modeling accuracy loss is small. 

6. Conclusions 

The complexity of engineering problems causes calculating time to be expensive. 

Therefore, the Kriging surrogate model is used to reduce this burden. However, when 

using the Kriging model to approximate high-dimensional problems, the modeling pro-

cess is also time consuming. The most time is spent during the inversion of the covariance 

correlation matrix and the solving of the Kriging correlation parameter. To this end, a 

high-dimensional Kriging modeling method through principal component dimension 

reduction (HDKM-PCDR) is proposed. In this method, the PCDR way of considering 

design variables and correlation parameters can convert the high-dimensional correlation 

parameter in Kriging into a low-dimensional one, which is used to reconstruct a new 

correlation function. In this way, it will reduce the time spent optimizing correlation pa-

rameters and constructing the correlation function matrix in the Kriging modeling pro-

cess. Compared with the original Kriging method and the high-dimensional Kriging 

modeling based on partial least squares, the proposed method has better modeling effi-

ciency while meeting certain accuracy requirements. 

When dealing with high-dimensional problems, the proposed method has certain 

deficiencies in relation to model accuracy. In principal component dimensionality re-

duction, it is necessary to ensure that the cumulative contribution rate of the first few 
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principal components extracted reaches a higher level (that is, the variable after dimen-

sionality reduction has a higher amount of information). In this case, when the correla-

tion between the original design variables is weak, too many principal components may 

be selected, which is not conducive to improvements in Kriging modeling efficiency. In 

future research, we will further explore new sampling strategies by combining factors 

such as prediction target, variance, and distance. In this way, more promising sampling 

points can be obtained to improve the model accuracy. 
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