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Abstract: This paper studies a discrete-time dynamic duopoly game with homogenous goods. Both
firms have to decide on investment where investment increases production capacity so that they are
able to put a larger quantity on the market. The downside, however, is that a larger quantity raises
pollution. The firms have multiple objectives in the sense that each one maximizes the discounted
profit stream and appreciates a clean environment as well. We obtain some surprising results. First,
where it is known from the continuous-time differential game literature that firms invest more
under a feedback information structure compared to an open-loop one, we detect scenarios where
the opposite holds. Second, in a feedback Nash equilibrium, capital stock is more sensitive to
environmental appreciation than in the open-loop case.

Keywords: game theory; corporate environmentalism; dynamic multi-objective duopoly; open-loop
equilibrium; feedback Nash equilibrium

1. Introduction

Corporate social responsibility (CSR) emphasizes that a firm does not just care about
profit maximization, but has at the same time other objectives in mind that benefit society.
According to Wirl et al. [1], examples of CSR projects are environmental reports, philan-
thropic support and sponsoring, energy and environmental management, mentoring and
educational programs for workers, family-friendly workplaces and more. Wirl et al. [1]
studied a dynamic model where a firm optimizes over CSR activities. Lambertini et al. [2]
consider CSR activities in a strategic setting. In particular, a Cournot game is designed
where one firm, as usual, maximizes profits, but where the other firm is a CSR firm in the
sense that consumer surplus and pollution are also taken into account. Lambertini et al. [2]
reach the surprising result that, provided the market is sufficiently large, the CSR firm earns
higher profits. Yanase [3] also considers CSR activities but in that sense solely concentrates
on the environment. The study investigates how an increase in the firms’ environmental
consciousness affects the environment and economic welfare. Feichtinger et al. [4] take a
similar approach by analyzing a dynamic oligopoly in which environmental externalities
are taken into account in the firms’ objectives.

Our paper studies a dynamic duopoly in which the firms accumulate capital. The
positive side is that with the capital stock firms can produce goods which can be sold
on the market, resulting in firm profits. The negative side is that the production process
of both firms causes pollution. As in the literature just mentioned, the firm takes both
these elements explicitly into account. The new element of our research, however, is that
we take a multi-objective approach, in that at the same time firms strive to maximize
profits and minimize pollution (the different weights between the two objectives are
not a priori fixed). In so doing, we obtain the new result that, compared to an open-loop
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information structure, in a feedback Nash equilibrium the firms are less sensitive to changes
in environmental appreciation.

Our approach is close to albeit different from that of Rettieva [5]. She considers a
dynamic, discrete time, two-player game model where the players use a common resource.
Both players have two goals to optimize over an infinite horizon, namely maximizing
profit from selling fish and minimizing catching costs (the value of those costs depends on
both players’ catches). (She also studies the case where the players have different random
horizons.) She introduces an original version of the Nash bargaining scheme (one for
each goal), where status quo points are computed in different cases. (Those cases refer to
different instances of zero-sum games.) Multi-criteria cooperative equilibria are considered
by Rettieva [6].

Our contribution differs in several ways from that of Rettieva. First, we are interested
in a pollution-control problem, and not in a resource-management problem. Second, we
do not rely on the Nash bargaining approach; we follow an approach that can be loosely
called Nash equilibrium with Pareto equilibrium. More precisely, in equilibrium each
firm chooses a Pareto-optimal solution to its multi-objective problem. Third, among the
objectives pursued by the players, one is especially environmental (whereas we may think
that in Rettieva’s setting players actually have two economic objectives). (This paper is
related to, but also differs from, the papers by Kuzyutin, Gromova and Pankratova [7,8]
who develop a cooperative game theory approach of dynamic multi-criteria decision
analysis and who pay special attention to the time-consistency issue).

Our paper is also connected to the work of Crettez and Hayek (2021) [9] who study
a dynamic Cournot duopoly where production causes pollution, albeit without capital
accumulation. They notably show that contrary to the case where the firms’ objective
just concerns profit maximization, there exist Nash equilibria where production is lower
than in the cooperative equilibrium. (In our setting, when firms have a unique objective,
cooperating means behaving like a monopolist. A monopolist usually reduces production
in order to raise the price of its product.) This stems from the fact that in a Nash equilibrium
firms do not coordinate on the choice of the relative weight given to the environmental
objective. This result highlights the fact that when firms pursue multiple and separate
objectives, equilibrium behavior can display an over-reaction. In this paper, we also
obtain this form of over-compliance. Here, however, open-loop equilibria differ from
feedback equilibria, whereas in the work of Crettez and Hayek [9], open-loop equilibria
are all feedback.

In addition to the literature that studies corporate social responsibility within a dy-
namic framework, our paper is also connected to straightforward capital accumulation
models where firms maximize profits. A seminal paper in that area is that of Reynolds
(1987) [10] who finds, as a major result, that firms invest more under a feedback information
structure than under an open-loop one. If firms put the environmental weights to zero,
we in fact have the same problem as in the work of Reynolds [10]. However, there is a
difference, because where Reynolds [10] studies a continuous time framework, our model
is in discrete time. Very surprisingly, it turns out that we find scenarios where in the long
run the open-loop equilibrium admits steady state capital stocks that are bigger than in the
feedback case.

Other approaches of multiple objective games and Stackelberg games can be found in
recent publications such as [11–15].

The paper is organized as follows. Section 2 presents the model. Sections 3 and 4
develop the open loop and the feedback Nash equilibria, respectively. The cooperative
equilibrium is analyzed in Section 5. Section 6 compares the different equilibrium outcomes
and Section 7 concludes the paper.



Mathematics 2021, 9, 1983 3 of 34

2. Model

Consider a dynamic duopoly where firms produce the same type of goods and where
the inverse demand function at date t is given by

p(q1t, q2t) = max{0, a− b(q1t + q2t)}, a > 0, b > 0.

In the expression above, qit denotes the quantity supplied by firm i at date t, a is the
maximum willingness to pay for the product and b represents the sensibility of the market
price to the volume of production brought to the market. (We shall always assume that
p(q1t, q2t) is strictly positive. We can also interpret a as being the maximum willingness
to pay minus the average production cost (in that case, we assume that this average cost
is constant)).

For simplicity, production is proportional to the stock of capital Kit held by each firm
i at date t, and we set the proportionality coefficients equal to one: qit = Kit. The law of
motion of the capital stock is as follows

Kit+1 = Iit + (1− δ)Kit, (1)

where Iit is the investment rate of firm i at date t, and δ is a depreciation rate (0 < δ < 1).
(This is a discrete-time variant of the model proposed by Reynolds [10] (see also Lambertini

(2018) [16] p. 73).) We assume that it costs I2
it
2 for firm i to decrease/increase its capital stock

by an amount Iit (in the event that Iit < 0, we have Iit ≥ −(1− δ)Kit).
Production is a polluting activity. To simplify the analysis, we suppose that emissions

are equal to total production, i.e., q1t + q2t, and that the dynamics of the pollution stock xt
is written as follows

xt+1 = ηxt + q1t + q2t, (2)

where 0 < 1− η < 1 is the natural decay rate of pollution, and x0, the initial value of
pollution, is given.

Firm i’s objective is given by the following multi-objective program.

max
(Iit)t

{
∞

∑
t=0

βt

(
a− b

(
Kit + K3−it)

)
Kit −

I2
it
2

)
,−

∞

∑
0

βtxt

}
(3)

subject to

Kit+1 = Iit + (1− δ)Kit, (4)

xt+1 = ηxt + Kit + K3−it, (5)

Iit ≥ −(1− δ)Kit, (6)

x0, Ki0, and (K3−it)t being given, (7)

In the program above, (K3−it)t is a bounded sequence such that 0 ≤ K3−it ≤ a for all t.
The meaning of the program above is that firm i tries to maximize the value of its profit

∑∞
0 βt(a− b(Kit + K3−it)Kit −

I2
it
2
)

where β is a discount factor such that 0 < β < 1, and
to minimize ∑∞

0 βtxt, a measure of intertemporal pollution. For simplicity again, in this
measure future values of pollution are discounted at the same rate as future receipts.

3. Open-Loop Nash Equilibria

We next state the definition of an open-loop equilibrium for our dynamic game.

Definition 1. A Nash equilibrium is a sequence of decisions ( Î1t, Î2t)t such that ( Îit)t is a solution
to problems (3)–(7) when ( Î3−it)t is given, i = 1, 2.
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Notice that the sequence ( Î3−it)t determines the sequence of (K̂3−it)t that is supposed
to be given in problem (3)–(7).

Before presenting optimality conditions for an open-loop Nash equilibrium, notice
that in any equilibrium each firm chooses a Pareto-optimal solution to its multi-objective
problem. (This is why some authors call Nash equilibria for multi-objective games Pareto-
Nash equilibria. See, e.g., Qu and Ji (2016) [17] Section 1.2 for a quick literature review.) As
a consequence, in any equilibrium each firm gives a relative weight to its environmental
objective. In the sequel, we will denote by λ2 the relative weight of the environmental
objective of firm 1 and by γ2 the corresponding relative weight of firm 2. Of course, not all
pairs of weights (λ2, γ2) will be admissible in equilibrium.

3.1. Optimality Conditions

The next result determines the set of equilibrium weights given by the two firms to
their environmental objectives as well as the equilibrium investment rates.

Proposition 1. For each pair (λ2, γ2) of relative weights given to the environmental objectives of
firms 1 and 2, respectively, satisfying the following conditions

βλ2

1− βη

(
2b + δ(

1
β
− 1 + δ)

)
− bβγ2

1− βη
< a

(
b + δ(

1
β
− 1 + δ)

)
, (8)

βγ2

(1− βη)

(
2b + δ(

1
β
− 1 + δ)

)
− bβλ2

(1− βη)
< a

(
b + δ(

1
β
− 1 + δ)

)
, (9)

there is an open-loop Nash equilibrium (I1t, I2t)t such that Iit > −(1− δ)Kit, i = 1, 2, with

I1t =
K10

2
(
rt

1
(
r1 − (1− δ)

)
+ st

1
(
s1 − (1− δ)

))
+ D1

(
1− st+1

1 − (1− δ)(1− st
1)
)

+
K20 − C

2
(
rt

1
(
r1 − (1− δ)

)
− st

1
(
s1 − (1− δ)

))
.

(10)

I2t =
K20

2
(
rt

1
(
r1 − (1− δ)

)
+ st

1
(
s1 − (1− δ)

))
+ D2

(
1− st+1

1 − (1− δ)(1− st
1)
)

+
K10 − C

2
(
rt

1
(
r1 − (1− δ)

)
− st

1
(
s1 − (1− δ)

))
,

(11)

where

C =
2a− (λ2+γ2)β

1−βη

δ(−1 + δ + 1/β) + 3b
,

D1 =
a− bC− λ2β

1−βη

δ(−1 + δ + 1/β) + b
, D2 =

a− bC− γ2β
1−βη

δ(−1 + δ + 1/β) + b
,

r1 =
(1− δ)2 + 3b + 1/β−

√
∆

2(1− δ)
,

s1 =
(1− δ)2 + b + 1/β−

√
∆′

2(1− δ)
,

∆ = ((1− δ)2 + 3b + 1/β)2 − 4(1− δ)2/β

∆′ = ((1− δ)2 + b + 1/β)2 − 4(1− δ)2/β.
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The equilibrium values of and K1t, K2t, xt are given by

K1t = K10
(rt

1 + st
1)

2
+ D1(1− st

1) +
(K20 − C)

2
(rt

1 − st
1), (12)

K2t = K20
(rt

1 + st
1)

2
+ D2(1− st

1) +
(K10 − C)

2
(rt

1 − st
1), (13)

xt = ηt(x0 −
K10 + K20 − C

r1 − η
− C

1− η

)
+ rt

1
K10 + K20 − C

r1 − η
+

C
1− η

. (14)

Proof. From Theorem 4.2 in the work of Hayek [18], we know that if a bounded sequence
(I1t)t is a solution to problem (3)–(7) such that I1t > −(1− δ)K1t, then there exist λ1 ≥ 0,
λ2 ≥ 0, (µt)t in `1 (the set of sequence (xt)t such that ∑∞

t=0 |xt| is a real number), (ψt)t in
`1, not all nil, such that any each date, (I1t)t maximizes the following Hamiltonian, given
(I2t, K2t)t:

H(I1t, K1t, xt, λ1, λ2, µt, ψt) = λ1
(

βt(a− b(K1t + K2t)K1t −
I2
1t
2
)
+ λ2(−βtxt)

+ µt+1
(
ηxt + K1t + K2t

)
+ ψt+1

(
I1t + (1− δ)K1t

)
The first-order conditions are given by

0 = −λ1βt I1t + ψt+1, (15)

ψt = λ1βt(a− 2bK1t − bK2t
)
+ µt+1 + (1− δ)ψt+1, (16)

µt = −λ2βt + ηµt+1. (17)

The last two equations refer to the dynamics of the shadow values ψt and µt of the
capital stock and pollution, respectively.

Note that since (µt)t in `1, (ψt)t in `1, the familiar transversality condition is
necessarily satisfied.

Since H is concave in (It, Kt) and since the familiar transversality condition is satisfied,
the first-order conditions above are sufficient. We now study these conditions in detail.

Observe that λ1 6= 0. Otherwise, we would have ψt+1 = 0 for all t, which in turn
would yield µt+1 = 0 for all t, so that λ2 = 0. All those variables would be nil, which
is impossible.

By a standard argument, we obtain

µt = −
λ2βt

1− βη
. (18)

The following dynamic system obtained from Equations (1), (2) and (15)–(17) remains
to be solved. (Its solution will be an open-loop Nash equilibrium since the Hamiltonians
are concave and the transversality condition is satisfied).

ψt = λ1βt(a− 2bK1t − bK2t
)
− λ2βt+1

1− βη
+ (1− δ)ψt+1 (19)

K1t+1 =
ψt+1

λ1βt + (1− δ)K1t, (20)

xt+1 = ηxt + K1t + K2t. (21)
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Since λ1 > 0, we can set λ1 = 1. Defining ψt
βt = Ψt, Equations (19) and (20) can be

written as

Ψt = a− 2bK1t − bK2t −
βλ2

1− βη
+ β(1− δ)Ψt+1, (22)

K1t+1 = βΨt+1 + (1− δ)K1t, (23)

Combining the two equations above, we obtain

K1t − (1− δ)K1t−1

β
=
(
a− 2bK1t − bK2t

)
− βλ2

1− βη
+ β(1− δ)

K1t+1 − (1− δ)K1t
β

. (24)

Rearranging, we obtain

(1− δ)K1t+1 − K1t

(
(1− δ)2 + 2b + 1/β

)
+ (1− δ)K1t−1/β = −a + bK2t +

βλ2

1− βη

or

(1− δ)K1t+2 − K1t+1

(
(1− δ)2 + 2b + 1/β

)
+ (1− δ)K1t/β = −a + bK2t+1 +

βλ2

1− βη
(25)

This equation also holds for firm 3− i. By considering symmetry and taking the
optimality conditions for both firms into account, we obtain

(1− δ)(K1t+2 + K2t+2)− (K1t+1 + K2t+1)
(
(1− δ)2 + 3b + 1/β

)
+ (1− δ)(K1t + K2t)/β

= −2a +
β(λ2 + γ2)

1− βη
.

Set Zt = K1t + K2t. We obtain:

(1− δ)Zt+2 − Zt+1

(
(1− δ)2 + 3b + 1/β

)
+ (1− δ)Zt/β

= −2a +
β(λ2 + γ2)

1− βη

Define:

∆ =
(
(1− δ)2 + 3b + 1/β

)2
− 4(1− δ)2/β

=
(
(1− δ)2 + 3b + 1/β− 2(1− δ)/

√
β
)(

(1− δ)2 + 3b + 1/β + 2(1− δ)/
√

β
)
> 0

since the expression (1− δ)2 + 3b + 1/β− 2(1− δ)/
√

β > 0, being a decreasing function
of β which is positive for β = 1.

Solving the above difference equation, we obtain Zt = c1rt
1 + c2rt

2 + C, where

C :=
−2a + (λ2+γ2)β

1−βη

(1− δ)− ((1− δ)2 + 3b + 1/β) + (1− δ)/β

=
−2a + (λ2+γ2)β

1−βη

(1− δ)− ((1− δ)2 + 3b)− δ/β
=

−2a + (λ2+γ2)β
1−βη

δ(1− δ− 1/β)− 3b

=
2a− (λ2+γ2)β

1−βη

δ(−1 + δ + 1/β) + 3b
.

(26)
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Moreover,

r1 =
(1− δ)2 + 3b + 1/β−

√
∆

2(1− δ)
(27)

=
2(1− δ)

β[(1− δ)2 + 3b + 1/β +
√

∆]
(28)

r2 =
(1− δ)2 + 3b + 1/β +

√
∆

2(1− δ)
(29)

Zt = c1rt
1 + c2rt

2 + C. (30)

Observe that r1r2 = 1/β > 1 and r2 > 1. We also have r1 < 1.
To show that r1 < 1, we shall prove that (1− δ)2 + 3b + 1/β−

√
∆ < 2(1− δ).

We have

(1− δ)2 + 3b + 1/β− 2(1− δ) <
√

∆

⇐⇒ ((1− δ)2 + 3b + 1/β− 2(1− δ))2 < ∆ (since (1− δ)2 + 3b + 1/β− 2(1− δ) > 0

⇐⇒ ((1− δ)2 + 3b + 1/β)2 − 4(1− δ)((1− δ)2 + 3b + 1/β) + 4(1− δ)2 < ((1− δ)2 + 3b + 1/β)2 − 4(1− δ)2/β

⇐⇒ δ(1− δ)− (3b + 1/β) < −(1− δ)/β

⇐⇒ δ(1− δ− 1/β)− 3b < 0

In this case, since Zt is bounded, we have c2 = 0 and Zt = c1rt
1 + C.

Notice that Zt > 0 if

C > 0⇔ λ2 + γ2 <
2a(1− βη)

β
.

The right condition holds since it is implied by conditions (8) and (9).
Then, Zt = c1rt

1 + C = (Z0 − C)rt
1 + C = (K10 + K20 − C)rt

1 + C = (K10 + K20)rt
1 +

C(1− rt
1) > 0.

Now, setting K2t+1 = Zt+1 − K1t+1 in Equation (25), we obtain

(1− δ)K1t+2 − K1t+1

(
(1− δ)2 + b + 1/β

)
+ (1− δ)K1t/β = −a + bZt+1 +

βλ2

1− βη

or

(1− δ)K1t+2 − K1t+1

(
(1− δ)2 + b + 1/β

)
+ (1− δ)K1t/β = −a + bc1rt+1

1 + bC +
βλ2

1− βη
.

Solving the above difference equation we obtain K1t = d1st
1 + d2st

2 + Dt where

Dt =
−a + bC + λ2β

1−βη

(1− δ)− ((1− δ)2 + b + 1/β) + (1− δ)/β

+
bc1

((1− δ)r2
1 − ((1− δ)2 + b + 1/β)r1 + (1− δ)/β)

rt+1
1 .

By definition of r1, we have

(1− δ)r2
1 −

(
(1− δ)2 + 3b +

1
β

)
r1 +

(1− δ)

β
= 0. (31)

Therefore, the denominator in the fraction above reduces to 2br1 and thus
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Dt =
a− bC− λ2β

1−βη

δ(−1 + δ + 1/β) + b
+

c1

2
rt

1 = D1 +
c1

2
rt

1

where

D1 =
a− bC− λ2β

1−βη

δ(−1 + δ + 1/β) + b
. (32)

Notice that

∆′ =
(
(1− δ)2 + b + 1/β

)2
− 4(1− δ)2/β > 0

s1 =
(1− δ)2 + b + 1/β−

√
∆′

2(1− δ)
=

2(1− δ)

β[(1− δ)2 + b + 1/β +
√

∆′]

s2 =
(1− δ)2 + b + 1/β +

√
∆′

2(1− δ)
.

We observe again that s1s2 = 1/β > 1, s2 > 1 and s1 < 1.
In this case, since K1t is bounded we have d2 = 0 and K1t = d1st

1 + Dt and we have
K2t = Zt − K1t. More precisely, d1 = K10 − D0 and

D0 = D1 +
c1

2
, (33)

where c1 = (K10 + K20 − C).
We therefore obtain:

K1t = d1st
1 + Dt

= (K10 − D0)st
1 + D1 +

c1

2
rt

1

= (K10 − (D1 +
c1

2
))st

1 + D1 +
c1

2
rt

1

= (K10 − D1)st
1 + D1 +

c1

2
rt

1 −
c1

2
st

1

= K10st
1 + D1(1− st

1) +
(K10 + K20 − C)

2
(rt

1 − st
1)

= K10
(rt

1 + st
1)

2
+ D1(1− st

1) +
(K20 − C)

2
(rt

1 − st
1).

(34)

We now must make sure that K1∞ > 0. This implies that D1 > 0. Using the expressions
of D1 and C, we obtain that D1 > 0 if and only if :

βλ2

1− βη

(
2b + δ(−1 + δ +

1
β
)

)
− bβγ2

1− βη
< a

(
b + δ(−1 + δ +

1
β
)

)
. (35)

which is condition (8). We obtain K2t by subtracting K1t from Zt.

K2t = (K10 + K20)rt
1 + C(1− rt

1)−
(

K10
(rt

1 + st
1)

2
+ D1(1− st

1) +
(K20 − C)

2
(rt

1 − st
1)

)

= K20
(rt

1 + st
1)

2
+ C− D1(1− st

1) +
(−C)

2
(rt

1 + st
1) +

(K10)

2
(rt

1 − st
1)

= K20
(rt

1 + st
1)

2
+ (C− D1)(1− st

1) +
(K10 − C)

2
(rt

1 − st
1)

= K20
(rt

1 + st
1)

2
+ D2(1− st

1) +
(K10 − C)

2
(rt

1 − st
1).

(36)
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where D2 = C− D1 =
a−bC− γ2β

1−βη

δ(−1+δ+1/β)+b (where we have used Equations (26) and (32)).

We also have to make sure that K2∞ > 0. This implies that C > D1. Using the
expressions of C and D1, this condition can be written as

βγ2

(1− βη)

(
2b + δ(

1
β
− 1 + δ)

)
− bβλ2

(1− βη)
< a

(
b + δ(

1
β
− 1 + δ)

)
. (37)

which is condition (9).
Finally, we obtain xt+1 = ηxt + K1t + K2t = ηxt + Zt = ηxt + (K10 + K20−C)rt

1 + C so

xt = ηt(x0 −
K10 + K20 − C

r1 − η
− C

1− η

)
+ rt

1
K10 + K20 − C

r1 − η
+

C
1− η

.

The proposition above shows that there are multiple interior Nash equilibria, each
characterized by a pair of relative weights (λ2, γ2) given their environmental objectives.

Condition (8) defines an upper bound for the environmental appreciation parameter
λ2 such that the firm wants to be an active producer in the long run, translating into K1t > 0.
Analogously, condition (9) is a similar condition for γ2 with respect to the long run level of
K2. Furthermore, conditions (8) and (9) imply

λ2 + γ2 <
2a(1− βη)

β
, (38)

This condition ensures that C > 0, so that in the long run K1t + K2t is positive.
The above condition is clear: if both firms give too much weight to their environmental

objective, then they do not need to accumulate capital, because doing so will lead to an
increase in pollution. Condition (8) will hold for large a, because then the market is
profitable. It will not hold for large λ2, because firm 1 does not like to pollute and therefore
reduces investments. It will hold for large γ2. Then, firm 2 has less incentive to invest,
which increases the output price for firm 1, making investment for firm 1 more profitable.

3.2. Sensitivity Analysis

Lemma 1. Consider two open-loop Nash equilibria with different relative weights λ2 given to
the environmental objective of firm 1 and the same relative weight γ2 given to the environmental
objective of firm 2. Then, for every time instant, the capital stock of the first firm K1t is always lower
in the equilibrium associated with the higher value of λ2.

Proof. We show below that ∂K1t
∂λ2

< 0.
Using Equation (34), we have

∂K1t
∂λ2

=
∂D1

∂λ2
(1− st

1)−
∂C
∂λ2

(rt
1 − st

1)

2

where

C =
2a− ( (λ2+γ2)β

1−βη )

δ(−1 + δ + 1/β) + 3b
, D1 =

a− bC− ( λ2β
1−βη )

δ(−1 + δ + 1/β) + b
.

Set G = δ(1− δ− 1/β)− b < 0.

∂C
∂λ2

=
−β

(1− βη)[δ(−1 + δ + 1/β) + 3b]
< 0, (39)

∂D1

∂λ2
= [

b∂C
∂λ2

+
β

1− βη
]/G. (40)
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When t is large, the sign of ∂K1t
∂λ2

is the same as that of ∂D1

∂λ2
. We obtain:

∂D1

∂λ2
=

β

(1− βη)G

[
1− b

δ(−1 + δ + 1
β ) + 3b

]
< 0 (41)

since

1 >
b

δ(−1 + δ + 1
β ) + 3b

. (42)

Moreover, this negative effect exists both in the short and the long run (because

− ∂C
∂λ2

(rt
1−st

1)
2 < 0, since one can check that r1 < s1). Therefore, we always have ∂K1t

∂λ2
< 0.

Notice that this is in contrast with the model without capital accumulation of Crettez
and Hayek [9] where a change in λ2 has an indeterminate effect on the production level.

Lemma 2. Consider two open-loop Nash equilibria with different relative weights γ2 given to
the environmental objective of firm 2 and the same relative weight λ2 given to the environmental
objective of firm 1. Then, for every time instant, the capital stock of the first firm K1t is always
higher in the equilibrium associated with the higher value of γ2.

Proof. Using Equation (34), we have

∂K1t
∂γ2

=
∂D1

∂γ2
(1− st

1)−
∂C
∂γ2

(rt
1 − st

1)

2
(43)

We have

∂C
∂γ2

=
−β

(1− βη)[δ(−1 + δ + 1/β) + 3b]
< 0, (44)

∂D1

∂γ2
= − 1

G
b∂C
∂γ2

< 0, (45)

where we recall that G = δ(1− δ− 1/β)− b < 0. Since r1 < s1, the Lemma follows.

Notice that we obtain the same result as when there is no capital. Both results are
somewhat connected. When γ2 becomes larger, firm 2 invests less (which is predicted by
Lemma 1 but now with application to firm 2) which increases the output price, making
investment for firm 1 more profitable. We next study feedback Nash equilibria.

4. Feedback Nash Equilibria

Let us assume that the investment rate of firm 3 − i is given by a function I3−it
(Kit, K3−it, xt) that depends on the state variables (feedback rule). Then, firm 3− i’s capital
accumulation reads

K3−it+1 = I3−it(Kit, K3−it, xt) + (1− δ)K3−it, (46)

with K3−i0 also being given.
We set firm i’s problem as follows

max
(Iit)t

{
∞

∑
0

βt

(
a− b(Kit + K3−it))Kit −

I2
it
2

)
,−

∞

∑
0

βtxt

}
(47)
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subject to

Kit+1 = Iit + (1− δ)Kit, (48)

K3−it+1 = I2(Kit, K3−it, xt) + (1− δ)K3−it, (49)

xt+1 = ηxt + Kit + K3−it, (50)

Kit ≥ 0, x0, Ki0, K3−i0. (51)

This problem motivates the following definition.

Definition 2. A feedback Nash equilibrium is a pair of decision rules ( Î1(K1, K2, x), Î2(K1, K2, x))
such that the sequence (Iit)t determined by Iit = Îi(K1t, K2t, xt) is a solution to problems (47)–(51)
when I3−i = Î3−i , i = 1, 2.

Notice that any decision rule for the investment rate must select a Pareto-optimal
solution to problems (47)–(51). As was observed in the study of the open-loop equilibrium,
in any feedback equilibrium each firm gives a relative weight to its environmental objective.
We shall denote again by λ2 the relative weight of the environmental objective of firm 1
and by γ2 the corresponding relative weight of firm 2.

4.1. Necessary Conditions for a Feedback Nash Equilibrium

If (I1t)t is a solution to problems (47)–(51), then according to Theorem 4.2 in the work
of Hayek (2018) [18] there exist two non-negative real numbers λ1 and λ2, sequences (µt)t,
(ψt)t, (θt)t in `1, not all nil, such that for all t, I1t maximizes the following Hamiltonian

H(I1t, K1t, xt, λ1, λ2, µt, ψt, θt) = λ1

(
βt(a− b(K1t + K2t)

)
K1t −

I2
1t
2

)
+ λ2(−βtxt)

+ µt+1
(
ηxt + K1t + K2t

)
(52)

+ ψt+1
(

I1t + (1− δ)K1t
)

+ θt+1
(

I2(K1t, K2t, xt) + (1− δ)K2t
)

(53)

We now look for a solution to the optimality conditions by assuming that

I2t = τ2
1 K1t + τ2

2 K2t + τ2
3 .

That is, we conjecture that the firms’ decisions do not depend on the pollution stock
(because pollution enters in a linear way in the firms’ objectives). This assumption implies
the following first-order conditions:

0 = −λ1βt I1t + ψt+1, (54)

ψt = λ1βt(a− 2bK1t − bK2t
)
+ µt+1 + (1− δ)ψt+1 + θt+1τ2

1 , (55)

θt = −λ1βtbK1t + µt+1 + θt+1
(
τ2

2 + 1− δ
)

(56)

µt = −λ2βt + ηµt+1 (57)

In the system above, ψt and θt stand for the shadow prices of firm 1 and firm 2’s
capital stocks, respectively, and µt is the shadow price of pollution. To solve the first-order
conditions we shall look for a linear investment rule such as I1 = τ1

1 K1t + τ1
2 K2t + τ1

3 .
To determine the coefficients of the investment rules used by the two firms, we proceed
as follows. Firstly, we solve for the dynamics of the capital stocks which is completely
determined by the linear investment rules used by both firms. Secondly, we look for a
sequence of shadow prices that result from the dynamics of the capital stock and pollution.
Thirdly, we look for conditions on the investment rules ensuring that these rules give the
optimal decisions given the sequences of shadow prices. To put it differently, we look for
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linear rules that satisfy a fixed-point property (for both players). This property is displayed
in the following lemma.

Lemma 3. If a feedback Nash equilibrium exists with I1t = τ1
1 K1t + τ1

2 K2t + τ1
3 , I2t = τ2

1 K1t +
τ2

2 K2t + τ2
3 with τ1

2 6= 0, τ2
1 6= 0 then the coefficients of these rules satisfy the following conditions

τ1
1 = β

[(
−2b + (1− δ)τ1

1
)
(τ1

1 + 1− δ) +
(
−b + (1− δ)τ1

2
)
τ2

1 +
bz2

1

z1β
(

τ2
2 +1−δ

)
−1

z2−(τ1
1 +1−δ))

z2−z1

− bz2
2

z2β
(

τ2
2 +1−δ

)
−1

z1−(τ1
1 +1−δ)

z2−z1

]

τ1
2 = β

[(
−2b + (1− δ)τ1

1
)
τ1

2 +
(
−b + (1− δ)τ1

2
)
(τ2

2 + 1− δ)− bz2
1

z1β
(

τ2
2 +1−δ

)
−1

τ1
2

z2−z1

+
bz2

2

z2β
(

τ2
2 +1−δ

)
−1

τ1
2

z2−z1

]

τ1
3 = β

[
a +

(
−2b + (1− δ)τ1

1
)
τ1

3 +
(
−b + (1− δ)τ1

2
)
τ2

3 −
λ2β

1−βη + (1− δ)τ1
3

+βτ2
1

[
λ2β

(1−βη)
(

β
(

τ2
2 +1−δ

)
−1
) + bC f

β
(

τ2
2 +1−δ

)
−1
− bz2

1

z1β
(

τ2
2 +1−δ

)
−1

C f (z2−1)+τ1
3

z2−z1
+

bz2
2

z2β
(

τ2
2 +1−δ

)
−1

C f (z1−1)+τ1
3

z2−z1

]]
and an analogous system for τ2

1 , τ2
2 and τ2

3 , where

C f =
−τ1

3 (τ
2
2 − δ) + τ1

2 τ2
3

−τ1
2 τ2

1 + (τ1
1 − δ)(τ2

2 − δ)

z1 =
τ1

1 + τ2
2 + 2(1− δ)−

√
(τ1

1 − τ2
2 )

2 + 4τ1
2 τ2

1

2
,

z2 =
τ1

1 + τ2
2 + 2(1− δ) +

√
(τ1

1 − τ2
2 )

2 + 4τ1
2 τ2

1

2
.

Proof. Consider the first-order conditions. Relying on a reasoning used in the proof of
Proposition 1, we can assume that λ1 = 1. The first-order condition can then be written as

0 = −βt I1t + ψt+1,

ψt

βt =
(
a− 2bK1t − bK2t

)
− λ2β

1− βη
+ (1− δ)

ψt+1

βt +
θt+1τ2

1
βt ,

K1t+1 =
ψt+1

βt + (1− δ)K1t

θt

βt = −λ1bK1t −
λ2β

1− βη
+

θt+1

βt

(
τ2

2 + 1− δ
)
,

K2t+1 = I2(K1t, K2t, xt) + (1− δ)K2t,

= τ2
1 K1t + τ2

2 K2t + τ2
3 + (1− δ)K2t,

= K2t(τ
2
2 + 1− δ) + τ2

1 K1t + τ2
3 .
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Set Ψt =
ψt
βt , Θt =

θt
βt , the above system can be rewritten into:

Ψt+1 =
I1t
β

=
τ1

1 K1t + τ1
2 K2t + τ1

3
β

(58)

Ψt =
(
a− 2bK1t − bK2t

)
− λ2β

1− βη
+ (1− δ)βΨt+1 + βτ2

1 Θt+1, (59)

K1t+1 = Ψt+1β + (1− δ)K1t, (60)

Θt = −bK1t −
λ2β

1− βη
+ Θt+1β

(
τ2

2 + 1− δ
)
, (61)

K2t+1 = K2t(τ
2
2 + 1− δ) + τ2

1 K1t + τ2
3 . (62)

Hence, from Equations (58), (60) and (62), we obtain

K1t+1 = (τ1
1 + 1− δ)K1t + τ1

2 K2t + τ1
3 (63)

K2t+1 = τ2
1 K1t + K2t(τ

2
2 + 1− δ) + τ2

3 (64)

So, K2t =
K1t+1−(τ1

1 +1−δ)K1t−τ1
3

τ1
2

and substituting in Equation (64), we obtain after a

few algebras

K1t+2 − (τ1
1 + 1− δ + τ2

2 + 1− δ)K1t+1 + (−τ1
2 τ2

1 + (τ1
1 + 1− δ)(τ2

2 + 1− δ))K1t

= τ1
3 − τ1

3 (τ
2
2 + 1− δ) + τ1

2 τ2
3 .

Solving the sequential equation above, we obtain

K1t = c1zt
1 + c2zt

2 + C f

where

z1 =
τ1

1 + τ2
2 + 2(1− δ)−

√
(τ1

1 − τ2
2 )

2 + 4τ1
2 τ2

1

2
, (65)

z2 =
τ1

1 + τ2
2 + 2(1− δ) +

√
(τ1

1 − τ2
2 )

2 + 4τ1
2 τ2

1

2
, (66)

C f =
−τ1

3 (τ
2
2 − δ) + τ1

2 τ2
3

−τ1
2 τ2

1 + (τ1
1 − δ)(τ2

2 − δ)
> 0. (67)

Notice that we must have

0 ≤ z1 ≤ 1, 0 ≤ z2 ≤ 1.

Now we can obtain K2t from

K2t =
K1t+1 − (τ1

1 + 1− δ)K1t − τ1
3

τ1
2

.

In what follows, we shall obtain Θt from (61), then Ψt from (59) and finally use (58) to
identify τ1

j (j = 1, 2, 3) in terms of τ2
j . Proceeding analogously with equations from player’s

2 FOC will give τ2
j in terms of τ1

j .
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The general solution of the sequential equation, Equation (61), is given by

Θt = d

(
1

β
(
τ2

2 + 1− δ
))t

+
λ2β

(1− βη)(β
(
τ2

2 + 1− δ
)
− 1)

+
bC f

β
(
τ2

2 + 1− δ
)
− 1

(68)

+
bc1

z1β
(
τ2

2 + 1− δ
)
− 1

zt
1 +

bc2

z2β
(
τ2

2 + 1− δ
)
− 1

zt
2 (69)

where

d = Θ0 −
λ2β

(1− βη)(β
(
τ2

2 + 1− δ
)
− 1)

− bC f

β
(
τ2

2 + 1− δ
)
− 1

− bc1

z1β
(
τ2

2 + 1− δ
)
− 1
− bc2

z2β
(
τ2

2 + 1− δ
)
− 1

Notice that we must have d = 0 since lim
t−→∞

βtΘt = lim
t−→∞

θt = 0 (as (θt)t is in `1) and

it holds that 0 < τ2
2 + 1− δ < 1. Indeed if τ2

2 + 1− δ > 1, then K2t is unbounded.
Now using Equation (69) in Equation (58) we obtain

Ψt = a− 2bK1t − bK2t −
λ2β

1− βη
+ (1− δ)β

[
τ1

1 K1t + τ1
2 K2t + τ1

3
β

]
+

βτ2
1

[
λ2β

(1− βη)(β
(
τ2

2 + 1− δ
)
− 1)

+

bC f

β
(
τ2

2 + 1− δ
)
− 1

+
bc1

z1β
(
τ2

2 + 1− δ
)
− 1

zt+1
1 +

bc2

z2β
(
τ2

2 + 1− δ
)
− 1

zt+1
2

]
and

Ψt+1 = a− 2bK1t+1 − bK2t+1 −
λ2β

1− βη
+ (1− δ)β

[
τ1

1 K1t+1 + τ1
2 K2t+1 + τ1

3
β

]
+

βτ2
1

[
λ2β

(1− βη)(β
(
τ2

2 + 1− δ
)
− 1)

+

bC f

β
(
τ2

2 + 1− δ
)
− 1

+
bc1

z1β
(
τ2

2 + 1− δ
)
− 1

zt+2
1 +

bc2

z2β
(
τ2

2 + 1− δ
)
− 1

zt+2
2

]

= a +
(
−2b + (1− δ)τ1

1

)(
(τ1

1 + 1− δ)K1t + τ1
2 K2t + τ1

3

)
+
(
−b + (1− δ)τ1

2

)[
τ2

1 K1t + K2t(τ
2
2 + 1− δ) + τ2

3

]
− λ2β

1− βη
+ (1− δ)τ1

3 + βτ2
1

[
λ2β

(1− βη)(β
(
τ2

2 + 1− δ
)
− 1)

+

bC f

β
(
τ2

2 + 1− δ
)
− 1

+
bz2

1
z1β
(
τ2

2 + 1− δ
)
− 1

c1zt
1 +

bz2
2

z2β
(
τ2

2 + 1− δ
)
− 1

c2zt
2

]
.
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Therefore,

Ψt+1 =
[(
−2b + (1− δ)τ1

1
)
(τ1

1 + 1− δ) +
(
−b + (1− δ)τ1

2
)
τ2

1
]
K1t

+
[(
−2b + (1− δ)τ1

1
)
τ1

2 +
(
−b + (1− δ)τ1

2
)
(τ2

2 + 1− δ)
]
K2t

+a +
(
−2b + (1− δ)τ1

1
)
τ1

3 +
(
−b + (1− δ)τ1

2
)
τ2

3 −
λ2β

1−βη + (1− δ)τ1
3

+βτ2
1

[
λ2β

(1−βη)(β
(

τ2
2 +1−δ

)
−1)

+

bC f

β
(

τ2
2 +1−δ

)
−1

+
bc1z2

1

z1β
(

τ2
2 +1−δ

)
−1

zt
1 +

bc2z2
2

z2β
(

τ2
2 +1−δ

)
−1

zt
2

]
.

(70)

We shall now express zt
1 and zt

2 in terms of K1t, K2t. We have

K1t = c1zt
1 + c2zt

2 + C f

τ1
2 K2t = K1t+1 − (τ1

1 + 1− δ)K1t − τ1
3 ,

= c1zt+1
1 + c2zt+1

2 + C f − (τ1
1 + 1− δ)(c1zt

1 + c2zt
2 + C f )− τ1

3

= (c1z1 − c1(τ
1
1 + 1− δ))zt

1 + (c2z2 − c2(τ
1
1 + 1− δ))zt

2 − (τ1
1 − δ)C f − τ1

3 .

We shall then solve the following system{
c1zt

1 + c2zt
2 = K1t − C f

(c1z1 − c1(τ
1
1 + 1− δ))zt

1 + (c2z2 − c2(τ
1
1 + 1− δ))zt

2 = τ1
2 K2t + (τ1

1 − δ)C f + τ1
3

We obtain

zt
1 =

K1t
(
z2 − (τ1

1 + 1− δ)
)
− C f (z2 − 1)− τ1

2 K2t − τ1
3

c1(z2 − z1)
, (71)

zt
2 =

τ1
2 K2t + τ1

3 − K1t
(
z1 − (τ1

1 + 1− δ)
)
+ C f (z1 − 1)

c2(z2 − z1)
. (72)

Substituting the two above expression in Equation (70), we obtain

Ψt+1 =

[(
−2b + (1− δ)τ1

1

)
(τ1

1 + 1− δ) +
(
−b + (1− δ)τ1

2

)
τ2

1 +
bc1z2

1
z1β
(
τ2

2 + 1− δ
)
− 1

z2 − (τ1
1 + 1− δ)

c1(z2 − z1)

−
bc2z2

2
z2β
(
τ2

2 + 1− δ
)
− 1

z1 − (τ1
1 + 1− δ

c2(z2 − z1)

]
K1t

+

[(
−2b + (1− δ)τ1

1

)
τ1

2 +
(
−b + (1− δ)τ1

2

)
(τ2

2 + 1− δ)−
bc1z2

1
z1β
(
τ2

2 + 1− δ
)
− 1

τ1
2

c1(z2 − z1)

+
bc2z2

2
z2β
(
τ2

2 + 1− δ
)
− 1

τ1
2

c2(z2 − z1)

]
K2t

+a +
(
−2b + (1− δ)τ1

1

)
τ1

3 +
(
−b + (1− δ)τ1

2

)
τ2

3 −
λ2β

1− βη
+ (1− δ)τ1

3

+βτ2
1

[
λ2β

(1− βη)(β
(
τ2

2 + 1− δ
)
− 1)

+

bC f

β
(
τ2

2 + 1− δ
)
− 1
−

bc1z2
1

z1β
(
τ2

2 + 1− δ
)
− 1

C f (z2 − 1) + τ1
3

c1(z2 − z1)
+

bc2z2
2

z2β
(
τ2

2 + 1− δ
)
− 1

C f (z1 − 1) + τ1
3

c2(z2 − z1)

]
.
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Since Ψt+1 = I1t
β =

τ1
1 K1t+τ1

2 K2t+τ1
3

β , using the equation above, we obtain by identifica-
tion that

τ1
1 = β

[(
−2b + (1− δ)τ1

1
)
(τ1

1 + 1− δ) +
(
−b + (1− δ)τ1

2
)
τ2

1 +
bz2

1

z1β
(

τ2
2 +1−δ

)
−1

z2−(τ1
1 +1−δ))

z2−z1

− bz2
2

z2β
(

τ2
2 +1−δ

)
−1

z1−(τ1
1 +1−δ)

z2−z1

]

τ1
2 = β

[(
−2b + (1− δ)τ1

1
)
τ1

2 +
(
−b + (1− δ)τ1

2
)
(τ2

2 + 1− δ)− bz2
1

z1β
(

τ2
2 +1−δ

)
−1

τ1
2

z2−z1

+
bz2

2

z2β
(

τ2
2 +1−δ

)
−1

τ1
2

z2−z1

]

τ1
3 = β

[
a +

(
−2b + (1− δ)τ1

1
)
τ1

3 +
(
−b + (1− δ)τ1

2
)
τ2

3 −
λ2β

1−βη + (1− δ)τ1
3

+ βτ2
1

[
λ2β

(1−βη)
(

β
(

τ2
2 +1−δ

)
−1
) + bC f

β
(

τ2
2 +1−δ

)
−1
− bz2

1

z1β
(

τ2
2 +1−δ

)
−1

C f (z2−1)+τ1
3

z2−z1
+

bz2
2

z2β
(

τ2
2 +1−δ

)
−1

C f (z1−1)+τ1
3

z2−z1

]]
By analogy we can deduce the system satisfied by τ2

1 , τ2
2 , τ2

3 .

An important question is related to how the environmental appreciation parameter λ2
affects firm 1’s incentive to invest. First of all, we observe that it does not interfere with the
way the capital stocks of both firms influence I1. The reason for this is that the marginal
pollution effect of I1 is not influenced by K1 or K2, since, whatever the value of K1 or K2 is,
an additional unit of I1 always enlarges pollution by one unit. However, still the marginal
effect of I1 is more negative when λ2 is larger. This is captured by the negative effect of λ2
on τ1

3 , the constant part of the investment rule.

4.2. Symmetric and Partially Symmetric Nash Equilibria

From now on, following Reynolds (1987), we shall focus on partially symmetric Nash
equilibria where τ1

1 = τ2
2 , τ1

2 = τ2
1 , τ1

3 6= τ2
3 . That is, firms are symmetric except with regard

to the choices of the relative weight associated with the environmental objective. Indeed,
for firm 1, the conditions given in the Lemma above reduce to

τ1
1 = β

[(
−2b + (1− δ)τ1

1
)
(τ1

1 + 1− δ) +
(
−b + (1− δ)τ1

2
)
τ1

2 + 1
2

bz2
1

z1β
(

τ1
1 +1−δ

)
−1

+ 1
2

bz2
2

z2β
(

τ1
1 +1−δ

)
−1

]

τ1
2 = β

[(
−2b + (1− δ)τ1

1
)
τ1

2 +
(
−b + (1− δ)τ1

2
)
(τ1

1 + 1− δ)− bz2
1

z1β
(

τ1
1 +1−δ

)
−1

τ1
2

z2−z1

+
bz2

2

z2β
(

τ1
1 +1−δ

)
−1

τ1
2

z2−z1

]

τ1
3 = β

[
a +

(
−2b + (1− δ)τ1

1
)
τ1

3 +
(
−b + (1− δ)τ1

2
)
τ2

3 −
λ2β

1−βη + (1− δ)τ1
3

+ βτ1
2

[
λ2β

(1−βη)
(

β
(

τ1
1 +1−δ

)
−1
) + bC f

β
(

τ1
1 +1−δ

)
−1
− bz2

1

z1β
(

τ1
1 +1−δ

)
−1

C f (z2−1)+τ1
3

z2−z1

+
bz2

2

z2β
(

τ1
1 +1−δ

)
−1

C f (z1−1)+τ1
3

z2−z1

]]
.
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We can obtain τ2
3 in firm 2’s investment rule similarly (see Equation (81)). We now

have the following result.

Lemma 4. In a partially symmetric feedback Nash equilibrium, we have −(1− δ) ≤ τ1
1 ≤ δ and

−1/2 ≤ τ1
2 < 0.

Proof. By definition, in a partially symmetric feedback Nash equilibrium τ1
1 = τ2

2 , τ1
2 = τ2

1 .
However, from Equations (65) and (66) and the fact that 0 ≤ z1 ≤ 1,0 ≤ z1 ≤ 1, we have

z1 = τ1
1 − |τ1

2 |+ 1− δ, 0 ≤ τ1
1 − |τ1

2 |+ 1− δ ≤ 1,

z2 = τ1
1 + |τ1

2 |+ 1− δ, 0 ≤ τ1
1 + |τ1

2 |+ 1− δ ≤ 1.

Now, the condition 0 ≤ τ1
1 − |τ1

2 |+ 1− δ implies |τ1
2 | ≤ τ1

1 + 1− δ so −(1− δ) ≤ τ1
1 .

Moreover, the condition τ1
1 + |τ1

2 |+ 1− δ ≤ 1 implies τ1
1 ≤ δ. Hence, it holds that

−(1− δ) ≤ τ1
1 ≤ δ.

Thus,
0 ≤ τ1

1 + (1− δ) ≤ 1

Since |τ1
2 | =

1
2 (z2 − z1) we have |τ1

2 | ≤
1
2 . Let us now show that τ1

2 < 0.
Consider the equation

τ1
2 = β

[(
−2b + (1− δ)τ1

1
)
τ1

2 +
(
−b + (1− δ)τ1

2
)
(τ1

1 + 1− δ)− bz2
1

z1β
(

τ1
1 +1−δ

)
−1

τ1
2

z2−z1

+
bz2

2

z2β
(

τ1
1 +1−δ

)
−1

τ1
2

z2−z1

]
Assume τ1

2 > 0. The above equation can be written as

τ1
2 = β

[(
−2b + (1− δ)τ1

1
)
τ1

2 +
(
−b + (1− δ)τ1

2
)
(τ1

1 + 1− δ)− bz2
1

z1β
(

τ1
1 +1−δ

)
−1

1
2 +

bz2
2

z2β
(

τ1
1 +1−δ

)
−1

1
2

]
τ1

2
[
1− β((1− δ)τ1

1 + (1− δ)(τ1
1 + 1− δ)

]
=

β

[(
−2bτ1

2 − b(τ1
1 + 1− δ)−

bz2
1

z1β
(
τ1

1 + 1− δ
)
− 1

1
2
+

bz2
2

z2β
(
τ1

1 + 1− δ
)
− 1

1
2

]
τ1

2
[
1− β(1− δ)(2τ1

1 + 1− δ)
]
=

β

[(
−2bτ1

2 − b(τ1
1 + 1− δ)−

bz2
1

z1β
(
τ1

1 + 1− δ
)
− 1

1
2
+

bz2
2

z2β
(
τ1

1 + 1− δ
)
− 1

1
2

]
Notice that (1− δ)(2τ1

1 + 1− δ) ≤ (1− δ)(1 + δ) = (1− δ)2 < 1.
Notice also that bz2

zβ
(

τ1
1 +1−δ

)
−1

is decreasing with z (knowing that τ1
1 < 1

β − (1− δ)).

So bz2
2

z2β
(

τ1
1 +1−δ

)
−1

τ1
2

z2−z1
≤ bz2

1

z1β
(

τ1
1 +1−δ

)
−1

τ1
2

z2−z1
since z2 ≥ z1.

Thus the left-hand side of the equation is positive while the right-hand side is negative,
which shows that τ1

2 cannot be positive.

Thus, an increase in own capital stock triggers a less than proportional increase in
own investment. The same remark applies for an increase in the other firm’s capital stock.
More precisely, each firm’s investment rate decreases with the capital stock of the other
firm. That is because the higher the capital stock of the other firm, the lower the market
price (this is in line with Reynolds’ finding [10]).
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It is not easy to see how the investment rule changes with b, the parameter describing
how the equilibrium price depends on the production sent to the market. Figure 1 illustrates
that both τ1

1 and τ1
2 decrease with b (the simulations are robust to change in δ and β). The

larger b, is, the more negative the effect of an increase in K1 or K2 on the output price. This
makes investment less profitable, which is reflected by τ1

1 and τ1
2 being decreasing in b.

Figure 1. Effects of change of b on τ1
1 and τ1

2 , where tau(1) and tau(2) denote, respectively, τ1
1 and τ1

2 .

Interestingly, we see that τ1
1 is more negative than τ2

2 . This is because the negative
effect of K2 on I2 is just caused by the fact that if K2 is larger the output price is lower,
which negatively affects the profitability of investment. In the work of Dawid et al. [19],
this is called the size effect, and, similarly to K2, this effect also holds for K1. In addition
to this effect, a larger value of K1 also raises the cannibalization effect of investment. The
cannibalization effect says that investing raises capital stock and then a decrease in the output
price makes the profitability lower, because the output price decrease is multiplied by a
larger capital stock. So, we conclude that the negative value of τ2 is caused by just the size
effect, while the larger negative value (in absolute terms) of τ1 is caused by the sum of the
size and the cannibalization effect.

Up to now, we have only presented necessary conditions for the existence of a feed-
back Nash equilibrium. We now give a sufficient condition for the existence of feedback
Nash equilibria.

4.2.1. Existence and Properties of Symmetric Feedback Nash Equilibria

We first address the existence of completely symmetric equilibria when firms give the
same relative weights to their environmental objective—that is, τ1

3 = τ2
3 , and we have

Proposition 2. Assume that b is small enough. For any pair (λ2, γ2) of relative weights given by
the two firms to their environmental objectives, satisfying 0 ≤ λ2 = γ2 ≤ a(1−βη)

β , there exists a
symmetric feedback Nash equilibrium.
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Proof. Consider the conditions given for a symmetric feedback Nash equilibrium:

τ1
1 = β

[(
−2b + (1− δ)τ1

1
)
(τ1

1 + 1− δ) +
(
−b + (1− δ)τ1

2
)
τ1

2 + 1
2

bz2
1

z1β
(

τ1
1 +1−δ

)
−1

+ 1
2

bz2
2

z2β
(

τ1
1 +1−δ

)
−1

]
τ1

2 = β
[(
−2b + (1− δ)τ1

1
)
τ1

2 +
(
−b + (1− δ)τ1

2
)
(τ1

1 + 1− δ)− bz2
1

z1β
(

τ1
1 +1−δ

)
−1

τ1
2

2|τ1
2 |

+
bz2

2

z2β
(

τ1
1 +1−δ

)
−1

τ1
2

2|τ1
2 |

]
τ1

3 = β
[

a +
(
−2b + (1− δ)τ1

1
)
τ1

3 +
(
−b + (1− δ)τ1

2
)
τ1

3 −
λ2β

1−βη + (1− δ)τ1
3

+ βτ1
2

[
λ2β

(1−βη)
(

β
(

τ1
1 +1−δ

)
−1
) + bC f

β
(

τ1
1 +1−δ

)
−1
− bz2

1

z1β
(

τ1
1 +1−δ

)
−1

C f (z2−1)+τ1
3

z2−z1
+

bz2
2

z2β
(

τ1
1 +1−δ

)
−1

C f (z1−1)+τ1
3

z2−z1

]]
We have τ1

2 < 0. So, from Equations (65) and (66), we have z1 = τ1
1 + τ1

2 + (1− δ) and
z2 = τ1

1 − τ1
2 + (1− δ). Summing the first two lines of the system above, we obtain

τ1
1 + τ1

2 = β
[
−3b + (1− δ)(τ1

1 + τ1
2 )
]
(τ1

1 + τ1
2 + 1− δ) +

βbz2
1

βz1(τ
1
1 + 1− δ)− 1

,

or, using the definition of z1

z1 − (1− δ) = β
[
−3b + (1− δ)

(
z1 − (1− δ)

)]
z1 +

βbz2
1

βz1(τ
1
1 + 1− δ)− 1

.

Set

g(z1) = z1 − (1− δ)− β
[
−3b + (1− δ)

(
z1 − (1− δ)

)]
z1 −

βbz2
1

βz1(τ
1
1 + 1− δ)− 1

.

Observe that g(0) = −(1− δ) < 0. Let us show that g(1) > 0. We have

g(1) = δ− β[−3b + (1− δ)δ]− βb
β(τ1

1 + 1− δ)− 1

= 3bβ + δ(1− β(1− δ))− βb
β(τ1

1 + 1− δ)− 1
> 0

since 0 ≤ τ1
1 + (1− δ) ≤ 1 and 0 < β < 1. So, there exists z1 ∈ [0, 1] such that g(z1) = 0

Now subtracting the second line from the first one of the system of equations,
we obtain

τ1
1 − τ1

2 = β
[
−2b + (1− δ)τ1

1

]
(τ1

1 − τ1
2 + 1− δ)

+ β
[
−b + (1− δ)τ1

2

]
(−τ1

1 + τ1
2 − (1− δ)) +

βbz2
2

βz2(τ
1
1 + 1− δ)− 1

,

or

τ1
1 − τ1

2 = β
[
(−b + (1− δ)(τ1

1 − τ1
2 )
]
(τ1

1 − τ1
2 + 1− δ)

+
βbz2

2
βz2(τ

1
1 + 1− δ)− 1

,

Using the definition of z2 in the equation above we obtain

z2 − (1− δ) = β[−b + (1− δ)(z2 − (1− δ)]z2 +
βbz2

2
βz2(τ

1
1 + 1− δ)− 1

.
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Set

h(z2) = z2 − (1− δ)− β[−b + (1− δ)(z2 − (1− δ)]z2 −
βbz2

2
βz2(τ

1
1 + 1− δ)− 1

.

We have h(0) = −(1− δ) < 0. Let us now show that h(1) > 0. Moreover,

h(1) = δ− β[−b + (1− δ)δ]− βb
β(τ1

1 + 1− δ)− 1

= βb + δ2 − βb
β(τ1

1 + 1− δ)− 1
> 0

since 0 ≤ τ1
1 + (1− δ) ≤ 1 and 0 < β < 1. So there exists z2 ∈ [0, 1] such that h(z2) = 0.

Consider now the function F defined on [−(1− δ), δ] by

F(τ1
1 ) = τ1

1 − β
[(
−2b + (1− δ)τ1

1
)
(τ1

1 + 1− δ) +
(
−b + (1− δ)τ1

2 (τ
1
1 )
)
τ1

2 (τ
1
1 ) +

1
2

b(z1(τ
1
1 ))

2

z1(τ
1
1 )β
(
τ1

1 + 1− δ
)
− 1

+
1
2

b(z2(τ
1
1 ))

2

z2(τ
1
1 )β
(
τ1

1 + 1− δ
)
− 1

]
.

Clearly, F is continuous on [−(1− δ), δ]. Using 0 ≤ z1 = τ1
1 − |τ1

2 |+ 1− δ ≤ 1 and
0 ≤ z2 = τ1

1 + |τ1
2 |+ 1− δ ≤ 1, we see that when τ1

1 = −(1− δ), then τ1
2 (−(1− δ)) =

z1(−(1− δ)) = 0, z2(−(1− δ)) = 0. Thus, F(−(1− δ)) = −(1− δ) < 0.
When τ1

1 = δ, then reasoning as above we have τ1
2 (δ) = 0, z1(δ) = 1, z2(δ) = 1.

Then, F(δ) = δ− β
[
(−2b + (1− δ)δ + b

β−1
1
2 +

b
β−1

1
2

]
= δ(1− β(1− δ)) + 2bβ− β b

β−1 > 0.

Hence, there exists τ1
1 ∈ [−(1− δ), δ] such that F(τ1

1 ) = 0. It is now important to obtain τ1
2

as |τ1
2 | = τ1

1 + 1− δ− z1.
Therefore, we have shown the existence of τ1

1 , τ1
2 , z1, z2 that satisfy the two equations

that must hold in an equilibrium.
Finally, we can use the last equation to obtain an expression for τ1

3 (τ2
3 = τ1

3 in a
completely symmetric equilibrium). However, first notice using the definitions of C f ,
namely Equation (67) and z1, and noting that C̃ f is defined in a similar way as C f , that we
have in a completely symmetric equilibrium

C̃ f = C f =
−τ1

3 (τ
1
1 − δ− τ1

2 )

(τ1
1 − δ− τ1

2 )(τ
1
1 − δ + τ1

2 )
= −

τ1
3

(τ1
1 − δ + τ1

2 )
= −

τ1
3

z1 − 1
=

τ1
3

1− z1
> 0. (73)

Building on this observation, we can use the definition of τ1
3 to obtain

τ1
3 = β

[
a +

(
−2b + (1− δ)τ1

1
)
τ1

3 +
(
−b + (1− δ)τ1

2
)
τ1

3 −
λ2β

1−βη + (1− δ)τ1
3

+ βτ1
2

[
λ2β

(1−βη)
(

β
(

τ1
1 +1−δ

)
−1
) + bC f

β
(

τ1
1 +1−δ

)
−1
− bz2

1

z1β
(

τ1
1 +1−δ

)
−1

C f (z2−1)+τ1
3

z2−z1
+

bz2
2

z2β
(

τ1
1 +1−δ

)
−1

C f (z1−1)+τ1
3

z2−z1

]]
.

Notice that C f (z1 − 1) + τ1
3 = 0 and C f (z2−1)+τ1

3
z2−z1

= C f . Using the equation above, we
then obtain

τ1
3 =

β

[
a− λ2β

1−βη + βτ1
2

λ2β

(1−βη)
(

β
(

τ1
1 +1−δ

)
−1
)
]

S + T
(74)
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where

S = 1− β
[(
−2b + (1− δ)τ1

1
)
+ (1− δ) +

(
−b + (1− δ)τ1

2
)]

(75)

= 3βb + 1− β(1− δ)(τ1
1 + τ1

2 + 1) (76)

T = βτ1
2

1
z1 − 1

[ b
β
(
τ1

1 + 1− δ
)
− 1
−

bz2
1

z1β
(
τ1

1 + 1− δ
)
− 1

]
. (77)

In particular, if (as in Reynolds, 1987) λ2 = γ2 = 0 we have

τ1
3 =

βa
S + T

. (78)

We want S + T > 0 to have τ1
3 > 0, otherwise, firm i’s capital stock cannot always be

non-negative.

Observe that S is positive since z1 < 1 < 1/(β(1 − δ)) − δ = 1−βδ+βδ2

β−βδ Now, let

us turn to T. Recall that z1 − 1 < 0. Moreover, b
β
(

τ1
1 +1−δ

)
−1
− bz2

1

z1β
(

τ1
1 +1−δ

)
−1

< 0 since

bz2
1

z1β
(

τ1
1 +1−δ

)
−1

is decreasing with z1 (knowing that τ1
1 < 1

β − (1− δ)). (In fact, when z1 = 0,

b
β
(

τ1
1 +1−δ

)
−1
− bz2

1

z1β
(

τ1
1 +1−δ

)
−1

< 0, when z1 = 1, this expression equals 0). So

β2τ1
2

1
(τ1

1 − δ + τ1
2 )

(
b

(β
(
τ1

1 + 1− δ
)
− 1)

−
bz2

1
(z1β

(
τ1

1 + 1− δ
)
− 1)

) < 0.

Now, we notice that S + T > 0 is always true when b = 0. So, τ1
3 > 0 if b is small

enough and λ2 = γ2 = 0.
If λ2 = γ2 but are different from zero then sufficient conditions to have τ1

3 > 0 under

the hypotheses of the proposition are that b is small enough and 0 ≤ λ2 ≤ a(1−βη)
β .

Proposition 2 extends the result of Reynolds [10] by taking into account firms’ envi-
ronmental concerns. The next proposition shows precisely how firms’ investment rules
change with the common environmental concern (λ2) in the completely symmetric case.

Proposition 3. Suppose that the assumptions of Proposition 2 hold. Then, each firm’s investment
rule is a decreasing function of their environmental concern.

Proof. In the completely symmetric case, the constant term of both firms’ investment rules
is given by Equation (74)

τ1
3 =

β

[
a− λ2β

1−βη + βτ1
2

λ2β

(1−βη)
(

β
(

τ1
1 +1−δ

)
−1
)
]

S + T
.

Under the assumptions of Proposition 2, the denominator S + T is positive. We have

∂τ1
3

∂λ2
= − β

(S + T)(1− βη)

−1 + βz2

β
(
τ1

1 + 1− δ
)
− 1

.

The result follows since the second fraction in the expression above is positive.

Recall that only the constant terms in the investments rule depend on the relative
weights given to the environmental objectives. The proposition states that these constant
terms decrease when firms become more environmentally concerned. This proposition
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is somewhat expected, and it is similar to what we found in the open-loop case. It is
illustrated in Figure 2.

Figure 2. τ1
3 = τ2

3 depending on λ2 = γ2, where tau3 denotes τ1
3 = τ2

3 .

4.2.2. Existence and Properties of Partially Symmetric Equilibria

Here, we extend the previous section by allowing for the environmental appreciation
parameters to be different, i.e., λ2 6= γ2. We obtain the following results.

Proposition 4. The difference τ1
3 − τ2

3 is a decreasing function of λ2 and an increasing function
of γ2.

Proof. Using the expression of τ1
3 given in Lemma 3, we know that:

τ1
3 = β

[
a +

(
−2b + (1− δ)τ1

1
)
τ1

3 +
(
−b + (1− δ)τ1

2
)
τ2

3 −
λ2β

1− βη
+ (1− δ)τ1

3

βτ2
1

[
λ2β

(1− βη)
(

β
(
τ2

2 + 1− δ
)
− 1
) + bC f

β
(
τ2

2 + 1− δ
)
− 1
−

bz2
1

z1β
(
τ2

2 + 1− δ
)
− 1

C f (z2 − 1) + τ1
3

z2 − z1

+
bz2

2
z2β
(
τ2

2 + 1− δ
)
− 1

C f (z1 − 1) + τ1
3

z2 − z1

]] (79)

However, τ2
2 = τ1

1 . Thus,

τ1
3 = β

[
a +

(
−2b + (1− δ)τ1

1
)
τ1

3 +
(
−b + (1− δ)τ1

2
)
τ2

3 −
λ2β

1− βη
+ (1− δ)τ1

3

βτ2
1

[
λ2β

(1− βη)
(

β
(
τ1

1 + 1− δ
)
− 1
) + bC f

β
(
τ1

1 + 1− δ
)
− 1
−

bz2
1

z1β
(
τ1

1 + 1− δ
)
− 1

C f (z2 − 1) + τ1
3

z2 − z1

+
bz2

2
z2β
(
τ1

1 + 1− δ
)
− 1

C f (z1 − 1) + τ1
3

z2 − z1

]] (80)

By considering symmetry, we have (with τ1
2 = τ2

1 )
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τ2
3 = β

[
a +

(
−2b + (1− δ)τ1

1
)
τ2

3 +
(
−b + (1− δ)τ1

2
)
τ1

3 −
γ2β

1− βη
+ (1− δ)τ2

3

βτ2
1

[
γ2β

(1− βη)
(

β
(
τ1

1 + 1− δ
)
− 1
) + bC̃ f

β
(
τ1

1 + 1− δ
)
− 1
−

bz2
1

z1β
(
τ1

1 + 1− δ
)
− 1

C̃ f (z2 − 1) + τ2
3

z2 − z1

+
bz2

2
z2β
(
τ1

1 + 1− δ
)
− 1

C̃ f (z1 − 1) + τ2
3

z2 − z1

]] (81)

Thus,

τ1
3 − τ2

3 = β

[(
−2b + (1− δ)τ1

1
)
(τ1

3 − τ2
3 ) +

(
−b + (1− δ)τ1

2
)
(τ2

3 − τ1
3 )−

β(λ2 − γ2)

1− βη

+(1− δ)(τ1
3 − τ2

3 )

βτ2
1

[
β(λ2 − γ2)

(1− βη)
(

β
(
τ1

1 + 1− δ
)
− 1
) + b(C f − C̃ f )

β
(
τ1

1 + 1− δ
)
− 1

−
bz2

1
z1β
(
τ1

1 + 1− δ
)
− 1

(C f − C̃ f )(z2 − 1) + τ1
3 − τ2

3
z2 − z1

+
bz2

2
z2β
(
τ1

1 + 1− δ
)
− 1

(C f − C̃ f )(z1 − 1) + τ1
3 − τ2

3
z2 − z1

]]
(82)

Now, we have

C f =
−τ1

3 (τ
1
1 − δ) + τ1

2 τ2
3

−τ1
2 τ1

2 + (τ1
1 − δ)(τ1

1 − δ)
> 0. (83)

C̃ f =
−τ2

3 (τ
1
1 − δ) + τ1

2 τ1
3

−τ1
2 τ1

2 + (τ1
1 − δ)(τ1

1 − δ)
> 0. (84)

and thus

C f − C̃ f =
−(τ1

3 − τ2
3 )(τ

1
1 − δ) + τ1

2 (τ
2
3 − τ1

3 )

−(τ1
2 )

2 + (τ1
1 − δ)2

(85)

−(τ1
3 − τ2

3 )(τ
1
1 + τ1

2 − δ)

−(τ1
2 )

2 + (τ1
1 − δ)2

(86)

=
−(τ1

3 − τ2
3 )

τ1
1 − τ2

1 − δ
(87)

We also have

(C f − C̃ f )(z2 − 1) + τ1
3 − τ2

3 =
−(τ1

3 − τ2
3 )

τ1
1 − τ2

1 − δ
(τ1

1 − τ1
2 − δ) + τ1

3 − τ2
3 (88)

= 0, (89)
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and

(C f − C̃ f )(z1 − 1) + τ1
3 − τ2

3 =
−(τ1

3 − τ2
3 )

τ1
1 − τ2

1 − δ
(τ1

1 + τ2
1 − δ) + τ1

3 − τ2
3 (90)

= (τ1
3 − τ2

3 )
−(τ1

1 + τ2
1 − δ) + τ1

1 − τ2
1 − δ

τ1
1 − τ2

1 − δ
(91)

= (τ1
3 − τ2

3 )
−(τ1

1 + τ2
1 − δ) + τ1

1 − τ2
1 − δ

τ1
1 − τ2

1 − δ
(92)

= (τ1
3 − τ2

3 )
−2τ1

2
τ1

1 − τ2
1 − δ

. (93)

So, using z2 − z1 = −2τ1
2 , we obtain

τ1
3 − τ2

3 = β

[(
−2b + (1− δ)τ1

1
)
(τ1

3 − τ2
3 ) +

(
−b + (1− δ)τ1

2
)
(τ2

3 − τ1
3 )−

β(λ2 − γ2)

1− βη

+(1− δ)(τ1
3 − τ2

3 )

βτ2
1

[
β(λ2 − γ2)

(1− βη)
(

β
(
τ1

1 + 1− δ
)
− 1
) + b

β
(
τ1

1 + 1− δ
)
− 1
−(τ1

3 − τ2
3 )

τ1
1 − τ2

1 − δ

+
bz2

2
z2β
(
τ1

1 + 1− δ
)
− 1

(τ1
3 − τ2

3 )
1

τ1
1 − τ2

1 − δ
.

]]
(94)

Hence,

(τ1
3 − τ2

3 )

(
1− β

((
−2b + (1− δ)τ1

1
)
−
(
−b + (1− δ)τ1

2
)
+ (1− δ) − β

τ2
1

τ1
1 − τ2

1 − δ

(
b

β
(
τ1

1 + 1− δ
)
− 1

−
bz2

2
z2β
(
τ1

1 + 1− δ
)
− 1

)))

= β

[
− β(λ2 − γ2)

1− βη
+ βτ2

1

[
β(λ2 − γ2)

(1− βη)
(

β
(
τ1

1 + 1− δ
)
− 1
)]]

(95)

Regarding the right-hand side, observe that

− β(λ2 − γ2)

1− βη
+ βτ2

1

[
β(λ2 − γ2)

(1− βη)
(

β
(
τ1

1 + 1− δ
)
− 1
)]

=
β(λ2 − γ2)

1− βη

(
−1 +

βτ1
2

β
(
τ1

1 + 1− δ
)
− 1

)

=
β(λ2 − γ2)

1− βη

(
βτ1

2 − (β(τ1
1 + 1− δ

)
− 1)

β
(
τ1

1 + 1− δ
)
− 1

)

=
β(λ2 − γ2)

1− βη

(
β(τ1

2 − τ1
1 − 1 + δ

)
+ 1

β
(
τ1

1 + 1− δ
)
− 1

)

=
β(λ2 − γ2)

1− βη

(
−βz2 + 1

β
(
τ1

1 + 1− δ
)
− 1

)

= − β(λ2 − γ2)

1− βη

(
1− βz2

1− β
(
τ1

1 + 1− δ
))

(96)

Thus,
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(τ1
3 − τ2

3 )

(
1− β

((
−2b + (1− δ)τ1

1
)
−
(
−b + (1− δ)τ1

2
)
+ (1− δ)− β

bτ2
1

τ1
1 − τ2

1 − δ

(
1

β
(
τ1

1 + 1− δ
)
− 1

−
z2

2
z2β
(
τ1

1 + 1− δ
)
− 1

)))

= −β
β(λ2 − γ2)

1− βη

(
1− βz2

1− β
(
τ1

1 + 1− δ
))

(97)

Notice that

1 − β
((
−2b + (1− δ)τ1

1
)
−
(
−b + (1− δ)τ1

2
)
+ (1− δ)

)
= βb + 1 − β(1 − δ)z2 > 0. (98)

Moreover,

1
β
(
τ1

1 + 1− δ
)
− 1
−

z2
2

z2β
(
τ1

1 + 1− δ
)
− 1

=

(1− z2)
(

βz2(τ
1
1 + 1− δ)− (1 + z2)

)(
β(τ1

1 + 1− δ)− 1
)(

z2β(τ1
1 + 1− δ)− 1

) < 0. (99)

Hence,

τ1
3 − τ2

3 =

−β
β(λ2−γ2)

1−βη

(
1−βz2

1−β
(

τ1
1 +1−δ

))
βb + 1− β(1− δ)z2 + β2 bτ2

1
z2−1

(1−z2)(βz2(τ
1
1 +1−δ)−(1+z2))(

β(τ1
1 +1−δ)−1

)(
z2β(τ1

1 +1−δ)−1
) (100)

=

−β
β(λ2−γ2)

1−βη

(
1−βz2

1−β
(

τ1
1 +1−δ

))
βb + 1− β(1− δ)z2 − b β2τ2

1
1+z2

βz2(τ
1
1 +1−δ)−(1+z2)(

β(τ1
1 +1−δ)−1

)(
z2β(τ1

1 +1−δ)−1
) . (101)

As for the denominator, its sign is positive if (consider the factor of b):

1− βτ2
1

βz2(τ
1
1 + 1− δ)− (1 + z2)(

β(τ1
1 + 1− δ)− 1

)(
z2β(τ1

1 + 1− δ)− 1
) . (102)

Observe that(
β(τ1

1 + 1− δ)− 1
)(

z2β(τ1
1 + 1− δ)− 1

)
− βτ1

2

(
βz2(τ

1
1 + 1− δ)− (1 + z2)

)
(103)

=
(
z2β(τ1

1 + 1− δ)− 1
)(

β(τ1
1 + 1− δ)− 1− βτ2

1

)
+ βτ1

2 (1− z2) (104)

=
(
z2β(τ1

1 + 1− δ)− 1
)(

β(τ1
1 − τ1

2 + 1− δ)− 1
)
+ βτ1

2 (1− z2) (105)

=
(
z2β(τ1

1 + 1− δ)− 1
)
(βz2 − 1) + βτ1

2 (1− z2) (106)

≥ (1− z2)
(

1− z2β(τ1
1 + 1− δ) + βτ1

2 )
)

(107)

≥ (1− z2)
(

1− β(τ1
1 + 1− δ + τ1

2 )
)

(108)

= (1− z2)(1− βz2) > 0. (109)

Therefore, τ1
3 − τ2

3 decreases with λ2 and increases with γ2.
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Proposition 5. Suppose that b is small enough and that

λ2 <
a(1− βη)

β(1 + 1−δ
2 )

, (110)

γ2 <
a(1− βη)

β(1 + 1−δ
2 )

. (111)

Then, there exists a partially symmetric feedback Nash equilibrium.

Proof. The existence of τ1
1 and τ1

2 (which are equal to τ2
2 and τ2

1 , respectively) can be
obtained as in the proof of Proposition 2. We can then use the proof of Proposition 4 to
obtain an expression of both τ1

3 and τ2
3 . To achieve this we use the fact that

C f =
τ1

3 (τ
1
2 − τ1

1 + δ)− τ1
2 (τ

1
3 − τ2

3 )

(τ1
1 − δ)2 − (τ1

2 )
2

(112)

C f (z2 − 1) + τ1
3

z2 − z1
= −

τ1
3

τ1
1 − δ + τ1

2
+

1
2

τ1
3 − τ2

3

τ1
1 − δ + τ1

2
(113)

= −1
2

τ1
3 − τ2

3
1− z1

. (114)

C f (z1 − 1) + τ1
3

z2 − z1
=

1
2

τ1
3 − τ2

3

τ1
1 − δ− τ1

2
(115)

= −1
2

τ1
3

1− z2
. (116)

Recall that for τ1
3 we have

τ1
3 = β

[
a +

(
−2b + (1− δ)τ1

1
)
τ1

3 +
(
−b + (1− δ)τ1

2
)
(τ2

3 − τ1
3 + τ1

3 )−
λ2β

1− βη
+ (1− δ)τ1

3

βτ2
1

[
λ2β

(1− βη)
(

β
(
τ1

1 + 1− δ
)
− 1
) + bC f

β
(
τ1

1 + 1− δ
)
− 1
−

bz2
1

z1β
(
τ1

1 + 1− δ
)
− 1

C f (z2 − 1) + τ1
3

z2 − z1

+
bz2

2
z2β
(
τ1

1 + 1− δ
)
− 1

C f (z1 − 1) + τ1
3

z2 − z1

]] (117)

Therefore, we obtain

τ1
3

[
1− β

((
−2b + (1− δ)τ1

1
)
+
(
−b + (1− δ)τ1

2
)
+ (1− δ)

)]
= β

[
a− λ2β

1− βη
+
(
−b + (1− δ)τ1

2
)
(τ2

3 − τ1
3 )

βτ2
1

[
λ2β

(1− βη)
(

β
(
τ1

1 + 1− δ
)
− 1
) + b

β
(
τ1

1 + 1− δ
)
− 1

(
τ1

3 (τ
1
2 − τ1

1 + δ)− τ1
2 (τ

1
3 − τ2

3 )

(τ1
1 − δ)2 − (τ1

2 )
2

)

−
bz2

1
z1β
(
τ1

1 + 1− δ
)
− 1

(
−

τ1
3

τ1
1 − δ + τ1

2
+

1
2

τ1
3 − τ2

3

τ1
1 − δ + τ1

2

)

+
bz2

2
z2β
(
τ1

1 + 1− δ
)
− 1

1
2

τ1
3 − τ2

3

τ1
1 − δ− τ1

2

]]
(118)

or
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τ1
3

[
1− β

((
−2b + (1− δ)τ1

1
)
+
(
−b + (1− δ)τ1

2
)
+ (1− δ) + βτ1

2
b

β(τ1
1 + 1− δ)− 1

τ1
2 − τ1

1 + δ

(τ1
1 − δ)2 − (τ1

2 )
2

+βτ1
2

bz2
1

z1β
(
τ1

1 + 1− δ
)
− 1

1
τ1

1 − δ + τ1
2

)]

= β

[
a− λ2β

1− βη
+
(
−b + (1− δ)τ1

2
)
(τ2

3 − τ1
3 )

+βτ2
1

[
λ2β

(1− βη)
(

β
(
τ1

1 + 1− δ
)
− 1
) + b

β
(
τ1

1 + 1− δ
)
− 1

−τ1
2 (τ

1
3 − τ2

3 )

(τ1
1 − δ)2 − (τ1

2 )
2

−
bz2

1
z1β
(
τ1

1 + 1− δ
)
− 1

1
2

τ1
3 − τ2

3

τ1
1 − δ + τ1

2

+
bz2

2
z2β
(
τ1

1 + 1− δ
)
− 1

1
2

τ1
3 − τ2

3

τ1
1 − δ− τ1

2

]]

(119)

Rearranging, we obtain

τ1
3

[
1− β

((
−2b + (1− δ)τ1

1
)
+
(
−b + (1− δ)τ1

2
)
+ (1− δ)− βτ1

2
b

1− β(τ1
1 + 1− δ)

1
1− z1

+βτ1
2

bz2
1

1− z1β
(
τ1

1 + 1− δ
) 1

1− z1

)]

= β

[
a− λ2β

1− βη
− βτ2

1
λ2β

(1− βη)
(
1− β

(
τ1

1 + 1− δ
))]

+β(τ1
3 − τ2

3 )

[
−
(
−b + (1− δ)τ1

2
)

+
bβτ2

1
(1− z1)(1− z2)

[
1

1− β
(
τ1

1 + 1− δ
)τ1

2 −
1
2

z2
1(1− z2)

1− z1β
(
τ1

1 + 1− δ
)

+
1
2

z2
2(1− z1)

1− z2β
(
τ1

1 + 1− δ
)]]

(120)

Now we have

lim
b→0

τ1
3 =

β

[
a− β

1−βz2
1−β(τ1

1 +1−δ)

(
λ2 − (1− δ)τ1

2 (λ2 − γ2)
)]

1− β(1− δ)(τ1
1 + τ1

2 + 1)
(121)

Since λ2 is upper bounded by a(1−βη)

β(1+ 1−δ
2 )

, the expression above is positive. Then, it

remains so when b is small enough. The same argument applies to τ2
3 .

Proposition 6. Assume that the assumptions of Proposition 5 holds. Then, τ1
3 is a decreasing

function of λ2 and an increasing function of γ2 and vice versa for τ2
3 .

Proof. The assertion is true for τ1
3 when b is small enough (see Equation (121)).

This result generalizes what was seen in the symmetric case and in the open-loop case.
Notice that a larger γ2 reduces the investment rate of firm 2 and thus its capital K2. This
increases the output price, which in turn raises the profitability of investment for firm 1.
The proposition is illustrated in Figure 3.
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Figure 3. τ1
3 and τ2

3 depending on λ2 and γ2, where tau31 and tau32 denote, respectively, τ1
3 and τ2

3 .

5. Cooperative Equilibrium

There are several ways to define cooperation for multi-objective firms. For instance,
one could consider that firms collectively address the problem including all the firms’ objec-
tives. Here, we follow a slightly different road. We suppose that both firms maximize the
aggregate sum of their profits, i.e., they behave as a monopoly and minimize the aggregate
pollution level. This implies that what matters for them is the effect of the aggregate value
Zt of the capital stock on the aggregate profits and pollution. More formally, we assume
that firms solve the following problem

max
(Iit ,I3−it)t

{
∞

∑
t=0

βt

(
(a− bZt)Zt −

I2
it
2
−

I2
3−it
2

)
, −

∞

∑
0

βtxt

}
(122)

subject to

Zt+1 = Iit + I3−it + (1− δ)Zt, (123)

xt+1 = ηxt + Zt, Z0 = Ki0 + K3−i0 being given. (124)

and the solution is the cooperative equilibrium.

Proposition 7. For any weight ν given to the environmental objective of the firms that is such that
ν

β
1−βη < a, there exists a cooperative equilibrium Zt = (K10 + K20 − C”)vt

1 + C” where

v1 =
2(1− δ)

β
[
(1− δ)2 + 4b + 1/β +

√
∆”
] ,

∆′′ =
(
(1− δ)2 + 4b + 1/β

)2
− 4(1− δ)2/β,

C” =
2(a− ν

β
1−βη )

δ(−1 + δ + 1/β) + 4b
.

Proof. Optimality conditions. Proceeding as in the preceding optimization problem, if a
sequence (I1t, I2t) is solution to problem (122)–(124), then from Theorem 4.2 in the work of
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Hayek (2018) there exist λ ≥ 0, ν ≥ 0, (µt)t in `1, (ψt)t in `1 not all nil, such that any each
date, (I1t, I2t) maximize the following Hamiltonian

H(I1t, I2t, Zt, xt, λ, ν, µt, ψt) = λβt((a− bZt)Zt −
I2
1t
2
−

I2
2t
2
)
− νβtxt

+ µt+1
(
ηxt + Zt

)
+ ψt+1

(
I1t + I2t + (1− δ)Zt

)
.

The first-order conditions are given by

0 = −λβt I1t + ψt+1, (125)

0 = −λβt I2t + ψt+1, (126)

ψt = λβt(a− 2bZt
)
+ µt+1 + (1− δ)ψt+1, (127)

µt = −νβt + ηµt+1. (128)

It holds that λ 6= 0. Otherwise, we would have ψt+1 = 0 for all t, which in turn would
yield µt+1 = 0 for all t, and thus ν = 0, so that all those multipliers would be nil, which is
impossible. Then set λ = 1. Notice that we obtain I1t = I2t =

ψt+1
βt . This is because firms’

cost functions are similar. Now by a standard argument, we also obtain

µt = −
νβt

1− βη
. (129)

Let us now solve the following dynamic system

ψt = βt(a− 2bZt
)
+ (− νβt+1

1− βη
) + (1− δ)ψt+1, (130)

Zt+1 = 2
ψt+1

βt + (1− δ)Zt, (131)

xt+1 = ηxt + Zt. (132)

Setting ψt
βt = Ψt in the system above, we obtain

Ψt =
(
a− 2bZt

)
− νβ

1− βη
+ (1− δ)βΨt+1, (133)

Zt+1 = 2βΨt+1 + (1− δ)Zt. (134)

Using Equation (133) in (134), we obtain

(1− δ)Zt+2 − Zt+1

(
(1− δ)2 + 4b + 1/β

)
+ (1− δ)Zt)/β = 2ν

β

1− βη
− 2a (135)

We have
Zt = w1vt

1 + w2vt
2 + C”

where

v1 =
(1− δ)2 + 4b + 1/β−

√
∆”

2(1− δ)
, (136)

v2 =
(1− δ)2 + 4b + 1/β +

√
∆”

2(1− δ)
, (137)

∆′′ =
(
(1− δ)2 + 4b + 1/β

)2
− 4(1− δ)2/β, (138)

C′′ =
2(a− ν

β
1−βη )

δ(−1 + δ + 1/β) + 4b
. (139)
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Notice that v1 = 2(1−δ)

β[(1−δ)2+4b+1/β+
√

∆′′ ]
< 1, and as v1v2 = 1/β > 1, v2 > 1. Since Zt is

bounded, we have w2 = 0 and thus Zt = (K10 + K20 − C”)vt
1 + C′′.

This equilibrium is built in the same way as the open-loop equilibria and has similar
properties. We study the differences between the different equilibria in the next section.

6. Comparison

Some comparisons of equilibria seem to only be amenable by way of a numerical
analysis. We shall, however, only focus on analytical results. We begin by studying the
differences between open-loop and feedback equilibria and then we consider the differences
between cooperative and non-cooperative open-loop equilibria.

6.1. Comparing the Open-Loop and the Feedback Nash Analysis in the Completely Symmetric Case

Let us fist contrast the open-loop and the feedback cases when we have full symmetry
and when firms are not environmentally concerned.

• Case λ2 = γ2 = 0 (no environmental concern)

The long-run equilibrium values of the capital stock in the open-loop and feedback
Nash equilibria are:

D1 =
−a

δ(1− δ− 1/β)− 3b
=

a
δ(1/β− (1− δ)) + 3b

(140)

C f =
a

(1− z1)(1/β− (1− δ)(z1 + δ)) + 3b + T/β)
(141)

where T is a function that goes to zero when so does b. We have the following result

Proposition 8. Suppose that τ1
1 < 0. Then there is a threshold b such that whenever b is lower

than b, the long-run value C f of the (total) capital stock in the feedback Nash equilibrium is lower
than the long-run value D1 of the capital stock in the open-loop equilibrium. When τ1

1 > 0, C f can
be either greater of lower than D1

1.

Proof. First of all we rearrange the expression of the long-run value of the capital stock
in a feedback Nash equilibrium. From Equation (73) and the assumption that firms are
symmetric, we obtain

C f =
−τ1

3

τ1
1 + τ1

2 − δ
=

τ1
3

1− z1
.

Likewise, from Equation (78) we have τ1
3 = βa

S+T and from Equation (77) we obtain

S + T = 1− β(−3b + (1− δ)(τ1
1 + τ1

2 + 1))

+β2τ1
2

b
(τ1

1 − δ + τ1
2 )

(
1

(β
(
τ1

1 + 1− δ
)
− 1)

−
z2

1
(z1β

(
τ1

1 + 1− δ
)
− 1)

)

= 1− β(−3b + (1− δ)(z1 + δ)) + T

where T goes to zero when b goes to zero.
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Let us study the sign of the difference d̃ between the denominators of C f and D1,
where

d̃ = (1− z1)(1/β− (1− δ)(z1 + δ)) + 3b + T/β)− δ(1/β− (1− δ))− 3b

= (1− z1 − δ)1/β + (1− δ)(δ− (1− z1)(z1 + δ)) + (1− z1)T/β− 3bz1

= (1− z1 − δ)1/β + (1− δ)(δ− z1 − δ + z2
1 + z1δ) + (1− z1)T/β− 3bz1

= (1− z1 − δ)1/β− (1− δ)z1(1− z1 − δ) + (1− z1)T/β− 3bz1

= (1− z1 − δ)(1/β− (1− δ)z1) + (1− z1)T/β− 3bz1.

To study the sign of
(1− z1 − δ)(1/β− (1− δ)z1)

notice that z1 = τ1
1 + τ1

2 + (1− δ), 1− z1 − δ = −τ1
1 − τ1

2 . So, when τ1
1 < 0 we have

(1− z1 − δ) > 0 and hence

(1− z1 − δ)(1/β− (1− δ)z1) > 0

When b goes to zero, T goes to zero and the difference d̃ > 0; thus, C f < D1.
However the sign is indeterminate when τ1

1 > 0. If τ1
1 > |τ1

2 | then d̃ < 0 and thus
C f > D1. If τ1

1 < |τ1
2 | and b goes to zero, T goes to zero and the difference d̃ becomes

positive. Therefore, C f < D1.

The important conclusion from Proposition 8 is that scenarios exist where firms accu-
mulate more capital under open loop than under feedback. This contradicts Reynolds [10]
who finds that firms invest more under a feedback information structure. The difference be-
tween the two approaches is that Reynolds studies a continuous-time framework, whereas
we work in discrete time. Apparently, choosing either of the two can generate substantially
different results.

• Case λ2 = γ2 6= 0 (environmental concern)

Next, we determine the effect of a marginal increase in λ2 on the steady-state value of
the capital stock associated with the open-loop and feedback Nash equilibria.

Proposition 9. In the long-run, the capital stock in a feedback Nash equilibrium is less sensitive
to a change in λ2 than in an open-loop equilibrium. Moreover a rise in environmental concern
leads to a smaller decrease in the capital stock in the feedback Nash equilibrium than in the open-
loop equilibrium.

Proof. As for the open-loop equilibrium, recall from (41) that

∂D1

∂λ2
= −2b− δ(1− δ− 1/β)

b− δ(1− δ− 1/β)

β
1−βη

3b− δ(1− δ− 1/β)
(142)

As for the feedback Nash equilibrium, we obtain from (73) and (74)

∂C f

∂λ2
=

1
1− z1

β[− β
1−βη + βτ1

2
β

(1−βη)(β
(

τ1
1 +1−δ

)
−1)

]

S + T

with
S + T = 1− β(−3b + (1− δ)(τ1

1 + τ1
2 + 1))

+β2τ1
2

b
(τ1

1 − δ + τ1
2 )

(
1

(β
(
τ1

1 + 1− δ
)
− 1)

−
z2

1
(z1β

(
τ1

1 + 1− δ
)
− 1)

).

From what was seen in Proposition 8 when either τ1 < 0 or τ1
1 <| τ1

2 |, and b is small
enough, then (1− z1)(S + T) ≥ 3b− δ(1− δ− 1/β).
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Moreover, regarding the numerator of ∂C f

∂λ2
, we have

−1 + βτ1
2

1
β(τ1

1 + 1− δ)− 1
=

1 + β(τ1
2 − τ1

1 − (1− δ))

β(τ1
1 + 1− δ)− 1

. (143)

But since 0 < τ1
1 − τ1

2 + 1− δ < 1, we have 0 > −τ1
1 + τ1

2 − (1− δ) > −1, and this

implies that the numerator of ∂C f

∂λ2
is negative. Then, it follows that∣∣∣∣∣∂C f

∂λ2

∣∣∣∣∣ <
∣∣∣∣∂D1

∂λ2

∣∣∣∣. (144)

From Proposition 9 we can draw the important conclusion that in a feedback Nash
equilibrium capital stock is less sensitive to environmental appreciation than in the open-
loop case.

6.2. Cooperative vs. Non-Cooperative Open-Loop Equilibria

Here, we ask whether pollution could be lower in an open-loop non-cooperative
equilibrium, compared to the cooperative solution. To address this question we focus
on the long run. Denote by Znc

∞ the long-run total value of the capital stock when firms
compete and Zc

∞ the total value of the capital stock when firms cooperate. Notice that to
compare the long-run values of pollution under non-cooperation and cooperation, it is
sufficient to compare the total long-run value of the capital stock, as pollution is a positive
linear function of production, which is itself equal to the capital stock. After a little algebra,
we obtain the following proposition.

Proposition 10. The capital stock in a duopoly is lower than in the cooperative equilibrium whenever

2a(1−βη)b
β + 2ν

(
δ(−1 + δ + 1

β ) + 3b
)

δ(−1 + δ + 1
β ) + 4b

< λ2 + γ2. (145)

Proof. The proposition follows from the comparison of the long-run value C of the capital
stock in the open-loop Nash equilibria given by Equation (26) and the long-run value C′′ of
the capital stock in the cooperative equilibrium given by Equation (139).

Recall, however, that, according to (38), λ2 + γ2 < 2a(1−βη)
β . Thus, when λ2 + γ2 is

large, but not too large, it is possible that firms pollute less when they compete than when
they cooperate. To obtain this result it is necessary that ν < (λ2 + γ2)/2.

What is the intuition for this result? Recall that firms do not coordinate their environ-
mental concerns. So, they can be more concerned than in the cooperative case. Due to this,
they can reduce their production more than in the cooperative case. This result extends the
findings of Crettez and Hayek [9] to the case where firms accumulate capital.

7. Conclusions

This paper studies a dynamic duopoly in which firms accumulate capital and have
environmental concerns. They both take profits and pollution explicitly into account. They
thus have multiple objectives whose weights are not a priori fixed. We have studied
open-loop and feedback Nash equilibria. In each kind of equilibrium, each firm chooses a
Pareto-optimal solution to its multi-objective problem.

We have paid attention to the existence of completely or partially symmetric Nash
equilibria and to what we have called the cooperative equilibrium. We have obtained the
new result that, compared to an open-loop information structure, in a feedback Nash equi-
librium the firms are less sensitive to changes in environmental appreciation. Moreover,
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whereas it is known from the continuous-time differential game literature that firms invest
more in a feedback information structure compared to an open-loop one, we detect scenar-
ios where the opposite holds (in the case where firms have no environmental concerns).
The complexity of the equations made it difficult to analytically compare all the different
cases. The fully asymmetric equilibria were not treated either for the same reason.

We have also shown that firms may over-reduce pollution in a non-cooperative
equilibrium compared to the cooperative equilibrium. This result extends what was found
in a setting overlooking capital accumulation to the case where capital accumulation
is possible.

There are at least four issues that need further research. In this paper, we have assumed
that the only way firms can reduce pollution is to slow or decrease capital accumulation.
There is no denying that this is a strong assumption. It is, however, relevant is some
cases where companies choose to close an airline for short hauls or a coal-fire power
station. Yet, an avenue for further research is to study how firms would change their capital
accumulation policies if they could mitigate pollution or rely on more efficient technologies.

Second, the demand-side of our model does not depend on the firms’ concerns for the
environment. Yet, it is plausible that there exists a positive link between environmental
consciousness of firms and the demand for their products (because consumers better value
the products sold by environmentally friendly firms). Therefore, it might be worthwhile for
firms to take this positive link into account when deciding on their investment programs.
Third, one could study some sequential move games, like a Stackelberg duopoly, and
compare the different equilibria. A fourth avenue for further research would be the
consideration of the scenario in which the future values of pollution are discounted at
different rates (see, for instance, (Cabo et al. [20])).
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