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Abstract: This paper presents a solution for a real-world roadside assistance problem. Roadside
incidents can happen at any time. Depending on the type of incident, a specific resource from
the roadside assistance company can be sent on site. The problem of allocating resources to these
road-side incidents can be stated as a multi-objective function and a large set of constraints, including
priorities and preferences, resource capacities and skills, calendars, and extra hours. The request
from the client is to a have real-time response and to attempt to use only open source tools. The
optimization objectives to consider are the minimization of the operational costs and the minimization
of the time to arrive to each incident. In this work, an innovative approach to near-optimally solving
this problem in real-time is proposed, combining a heuristic approach and linear programming. The
results show the great potential of this approach: operational costs were reduced by 19%, the use of
external providers was reduced to half, and the productivity of the resources owned by the client
was significantly increased.

Keywords: roadside assistance; resources scheduling optimization; real-time allocation; multi-
objective function

1. Introduction

Roadside assistance is a service that helps the drivers of cars, motorcycles, and bicycles
whose vehicles have suffered a mechanical failure (or accident) that has left them stranded.
Resolving one of these incidents may involve starting a car, diagnosing and repairing
the problem, towing a vehicle, changing a flat tire, freeing a vehicle that is stuck in the
snow, or helping people who have been trapped. Depending on the type of incident,
a company-specific resource will be dispatched to the site. If the incident can be repaired on
the spot, a technician will provide assistance with a properly equipped vehicle; otherwise,
if the incident cannot be repaired, a tow truck will most likely be used to remove the
damaged vehicle.

Roadside assistance companies serving their customers in dynamic locations face
the same problem: defining resource allocation that minimizes operating costs while
maintaining the level of service above a certain threshold. Resources are limited and often
have specific characteristics to take into account. For example, a resource may need a
certain skill to qualify as a candidate to be assigned to a certain task. Different resources
may also incur different fixed and/or variable costs, which must be taken into account
when comparing options. Additionally, issues may also have some specific requirements
or characteristics that could affect the allocation, such as their urgency or even specific
requests from customers to provide them with a certain type of resource. Finally, regulations
regarding worker breaks, as well as contract requirements, will determine the feasibility of
a solution.
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This research, far from attempting to improve the current theoretical solutions, focuses
on facing a real-world practical problem, proposing and implementing a solution that takes
into account all the restrictions (whatever the type) collected by the company. The Real
Automòbil Club de Catalunya (RACC (https://www.racc.cat) accessed on 18 August 2021)
is a roadside assistance company that operates in Spain. They cover almost 2000 mechanical
incidents every day, manage around 145 resources, and make use of autonomous tow trucks
as well as external providers to cover those incidents that cannot be covered by their own
resources (either because the arrival time would be too late, the allocation of their own
resources is too expensive, or the incident type requires a skill set that is not available at
the time).

Currently, the RACC is forecasting the number of incidents that occur each day at a
very high level, without distinction between different geographic areas, type of incident,
or time of day. With this estimate, they can make medium to long-term decisions, such
as fleet size or determining the number of resources to work each shift and scheduling
vacations. However, operational and tactical decisions often require smaller granularity:
having a good approximation of the number of incidents of a certain type at a specific time
of day would allow them not only to improve the organization of work shifts but also
to locate a resource with a skill set closer to where an assignable incident is most likely
to occur. Thus far, all resources started their shifts at some fixed base locations and then
moved according to the work orders they were assigned to.

The company has software that automatically assigns the incidents that are simple
enough, that is, those that require skills that most of the resources have. However, this
happens only 40% of the time, while the other 60% of assignments are done manually.
In both cases, this decision is made primarily based on the proximity of each resource to
the incident that is being assigned, with closer resources being more likely to be selected if
they meet the minimum requirements.

To assess the quality of assignments, two main Key Performance Indicators (KPIs) are
used: the resource utilization (the time during which a resource is traveling or working
to resolve an incident out of the total working hours of the resource considered) and the
compliance percentage with the Service Level Agreement (SLA). The SLA is the maximum
contractual time between the moment the request is received and the moment the assigned
resource arrives at the scene of the incident. If the resource arrives later than specified,
a penalty is added to the operational cost of the service.

Both the current SLA and resource utilization are lower than expected. Therefore,
the RACC has been looking for a solution that improves its daily operations, making better
use of its own resources, reducing operating costs and complying with the SLA of its
clients whenever possible. The solution designed to achieve this objective consists of the
integration of three modules (See Figure 1):

• Prediction of the number of incidents: Machine Learning Model Competition to
predict the incidents by region, hour, and type. (Module 1 in Figure 1)

• Location Optimization Algorithm: Dynamic decision making of the optimal location
of each resource based on the data history, clusters, and current status. (Module 2 in
Figure 1)

• Real-Time Resource Allocation Optimization Algorithm: To decide which resource
should be allocated to each incident in real-time, taking into account all business
rules and aiming to minimize operational costs while ensuring the target service level.
(Module 3 in Figure 1)

https://www.racc.cat
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Figure 1. Relationship between the three modules (in blue, scope of this paper).

The third module is the one that has the most direct impact on day-to-day operations
and, therefore, the one that is most likely to lead to a significant reduction in operating
costs if optimized. For this reason, the RACC decided to take this as a first step, to improve
it in the future by incorporating the first two modules. Thus, the main objective of this
work is to propose an approach that automatically assigns 100% of incoming incidents,
minimizing operating costs while respecting all business requirements. As said above,
this is not a theoretical problem but a real customer problem, with incidents that arise
in real-time and must be assigned in a matter of seconds. Furthermore, all the results
presented in this article have been implemented and are currently part of the RACC resource
allocation software.

The results that have been implemented consist of an optimization algorithm that
has been specifically designed to solve this problem, combining heuristics and linear
programming (LP) to create an efficient and effective solution. The objective is to determine
the optimal allocation of resources to incidents in real-time, minimizing a combination of
service costs and arrival time, finding the right balance between cost and service according
to the RACC specifications.

Although, at first glance, it might seem to be a Vehicle Routing Problem [1–3], this
problem is in fact more similar to a dynamic parallel machines scheduling problem [4–6],
where resources are heterogeneous machines that will be assigned to jobs as they arrive.
Then, the time required for a resource to arrive to the incident’s location can be understood
as the set-up time of the machine.

Therefore, the main contribution of this paper is the innovative approach taken to
almost optimally solve this multi-objective problem in real-time. The design of the solution
and its implementation were developed for a real-world problem, which involves different
characteristics and requirements to the theoretical and more limited problems.

The remainder of this paper is organized as follows. In Section 2 the relevant liter-
ature is reviewed. Section 3 is devoted to formally describing the problem scope. Sec-
tion 4 presents the solution approach. Section 5 presents the computational experiments
performed to calibrate the model and their results. The performance of the solution in
production, and a set of benchmarks are defined. Finally, Section 6 concludes this work
and proposes possible future research lines.

2. Related Literature

At first sight, the problem we face in this paper might be erroneously linked to a certain
kind of combinatorial problems regarding vehicles and routes: the Vehicle Routing Problem
(VRP) [1–3]. That would be true if all the problem information was well known a priori
and we were interested in minimizing the sum of the vehicles route lengths; however, this
is not the case. We deal with a dynamic problem, where jobs are not known until they
happen, and hence we do not create an optimal route for each vehicle taking into account
distances, the clients’ time windows, etc.

Although there are Dynamic VRPs in the literature [7], the focus and objectives of
these problems are different from ours. We react to the appearance of jobs by looking for
the best assignment in that specific moment, which is measured by its contribution to the
total setup time and the cost of the operations. Therefore, we consider the whole problem
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closer to a scheduling one [8–10], where breakdowns (or more generally, incidents) are
jobs, and the cars/trucks sent by the company to fix them or tow the vehicle to a garage
are machines. Each of the steps that compose this scheduling involve an allocation of a
resource to an incident.

Accordingly, the problem can be considered a parallel machine scheduling prob-
lem [4,5], where jobs are processed by one machine and the system contains several
machines ready to process jobs. We have heterogeneous machines, and jobs arrive dynami-
cally in real-time. Each job consists of a single task (i.e., an incident), and can be assigned
to a specific set of machines (those resources with the necessary skills to do the repair).

The setup times and processing times are different for each job-machine pair. The setup
time is the time that it takes for the resource to move from its current position to the
location of the incident. The resources’ skill level determines the processing time to solve
the incident, which can be an on site repair or a tow to the garage. The objective function
aims to minimize both the total setup time and the cost of the operations. Thus, a trade-off
between setup times and costs must be found. This is the basis of our problem.

Scheduling problems are known to be NP-Complete. If all the information is given
in advance, and then the optimization procedure can be run off-line, it is referred to as
static scheduling. However, if part of the information is not known until some events
happen, then we will be facing a dynamic scheduling problem [6]. Our problem belongs
to the second type. In this case, the problem complexity is NP-Hard, since the special
case in which machines are identical, and the information is known in advance is also
NP-hard [11,12].

Some authors [13–17] defined and classified dynamic scheduling problems consider-
ing different features: the nature of the real-time events, the rescheduling strategies, and
the rescheduling triggers. They gathered and classified solution approaches and techniques
used in different papers.

In relation to the nature of the events happening in the system, there are two different
kinds of events: resource-related and/or job-related events. In our case, both possibilities
coexist. The later are the most common ones, i.e., the appearance of new jobs (emergen-
cies/breakdowns). However, resources may also generate events, such as unexpected
temporary cuts in driver availabilities.

Rescheduling strategies happen when a real-time event appears and the current
schedule has to be redone. In the literature, two strategies are considered: a complete
rescheduling and a simple repair. We do not work with a “current schedule” and mod-
ify/redo it when rescheduling is triggered, but build it in a completely reactive scheduling
approach, as mentioned before. Since we may reschedule those jobs that are already allo-
cated but did not start being processed, a repair strategy is the one that fits the best with
our problem.

Another important decision to consider is when to reschedule, i.e, what rescheduling
triggers are taken into account. The related literature includes three possibilities: periodic
reschedules, event-driven schedules, and hybrid solutions. In our case, given that the
system is not extremely busy, periodic reschedules are done every minute. This is a balance,
since it allows the system to gather a few incidents to run the optimization, instead of
always making greedy local choices for single jobs, and, on the other hand, does not delay
the company response to customers at all.

Regarding general approaches to dynamic scheduling, Ouelhadj and Petrovic [13]
proposed three possibilities: completely reactive scheduling (on line), robust pro-active
scheduling, and predictive reactive scheduling. Our case is clearly the first, since no
firm schedule is generated in advance and all decisions are made locally in real-time.
The same paper classifies the techniques used to tackle dynamic scheduling problems into
five groups: heuristics, metaheuristics, multi-agent based solutions, multi-agent scheduling
architectures, and other Artificial Intelligence techniques. In this sense, we are presenting
a hybrid approach in which we combine heuristics and linear programming. A deeper
explanation of the problem and proposed solution can be found in the next sections.
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To the best of our knowledge, no published works deal exactly with the same problem
we are presenting, with the exception of a few simplified examples. Therefore, we have
selected some recent ones that, despite not facing roadside assistance issues, are conceptu-
ally similar to ours. Ozbay et al. [18] applied scheduling and allocation to traffic incident
management, where the authors proposed different MILP (Mathematical Integer Linear
Programming) models with probabilistic constraints in order to address two sub-problems:
incident response and resource allocation for traffic incident management. In the former,
they solve the problem statically, taking into account the stochastic resource requirements at
the sites of the potential incidents. In this sense, our approach is more accurate considering
real-time incidents and solving the problem dynamically.

Other works regarding emergency response management systems are discussed
in Mukhopadhyay et al. [19], where the authors drew the emergency response pipeline
combining several models depending on certain criteria: static vs. dynamic work, allocation
or dispatching-oriented, etc. Most referenced papers work on stages related to allocation
rather than the real-time scheduling, which we are focusing on.

Apart from emergency response management, parallel machine scheduling is mainly
found in two industrial fields: industrial production and computing (more specifically,
operating systems). There are also some papers that directly work on the generic scheduling
problem without contextualization. It is in these fields where we find closer examples
to ours.

In Barbosa and Moreira [20], the authors proposed a dynamic scheduling method that
repairs the predictive schedule when new jobs are submitted. The scheduling method is
divided into a scheduling strategy and a scheduling algorithm based on an adaptation
of the Heterogeneous Earliest-Finish-Time (HEFT) algorithm, called P-HEFT, to handle
parallel tasks in heterogeneous clusters while optimizing the makespan.

Yu et al. [21] studied an agent-based scheduling problem of two identical parallel
machines. In this case, different experiments are performed, where jobs can be processed
by one or two machines. These jobs are ready to be processed at time 0, and hence,
a predictive-reactive strategy is used to define the scheduling. In the field of operating
systems, Feldmann et al. [22] presented an online tailor-made algorithm to schedule jobs
on parallel machines with different topologies. One of the main differences regarding our
work is that job resource requirements are known beforehand, while their running times
are not. Similarly, in a more recent paper, Fu et al. [23] defined a master–slave genetic
algorithm to determine the job assignments, job sequence, and resource allocation. Unlike
our work, there is a dynamic resource allocation for jobs that need additional resources,
which allows assignments and reassignments.

Another similar approach can be found in Wu and Che [24], where a memetic differ-
ential evolution algorithm was proposed to solve an unrelated parallel machine scheduling
problem following the objective to minimize both the makespan and total energy con-
sumption. Finally, Cheng and Huang [25] proposed a hybrid genetic algorithm with a
self-adaptive releasing time control (GARTC) to find a near-optimal solution in Just-in-Time
scheduling, attempting to minimize the total earliness and tardiness delivery.

As mentioned before, none of these examples tackled the same problem we present in
this paper. These papers provide us with successful approaches that have already been
applied to similar problems.

3. Problem Scope and Definition

The problem presented in this work consists of two key elements to handle: incidents
and resources. Examples of roadside incidents could include the replacement of a tire or
battery, a fuel or a towing service. These can happen at any time, any day of the year,
for any location within a specific area. This case-study has been solved for the region of
Catalonia, however, is easily scalable to other regions of Spain where the client currently
operates.
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Regarding resources, they are geolocated or are assumed to be found at a base location,
and each one has a set of specific skills determining the type of roadside service it can be
assigned to. Resources owned by the company are prioritized. However, there are others
outsourced to external providers. Costs related to the company’s resources are lower than
those of the providers’ fleets.

The allocation of resources to roadside incidents must be compliant with specific
requirements indicated by the client that are classified into five categories, as shown in
Figure 2.

Figure 2. Main requirements.

• Ensuring the right prioritization

– Resource priority.
Resources are prioritized as follows (from higher to lower priority): (i) Resources
owned by the client, (ii) freelance tow trucks, and (iii) other external providers.

– Resource preferred by the client.
If there is a resource preferred by the client, it will have higher priority than
the others as long as it does not compromise the service level. If the preferred
resource is available and arrives on time, no optimization is required, unless there
is a conflict with some other incident requiring the same resource.

– Resource exclusive for the client.
There are some clients with exclusive resources assigned in advance. In this case,
these will have higher priority if it does not compromise the service level.

– Resource excluded for a client.
There are some resources that cannot be assigned to specific clients.

• Allocating the right resource

– Resource capacities.
Resources owned by the client and freelance tow trucks are individual resources.
This means that they can only attend one incident at a time. External providers
are third parties that are (theoretically) considered to have infinite capacity.

– Resource skills.
For a resource to be considered a candidate for an incident, its skills must meet (at
least) those required by the incident. This is the case for all resources, including
external providers, which usually have a broader set of skills as they include a
whole fleet of resources owned by the third party.

• Finding an optimal and feasible route

– Services with more than one location.
This happens when the vehicle involved in the incident needs to be moved from
the original location of the incident to a repair shop. In these cases, the service
distance is not only the distance between the current position of the resource and
the incident’s location, but also the distance between the incident’s location and
the repair shop.

– Flexible work calendar and extra hours.
Each resource has its own availability and willingness to work extra hours.

– Arrival time at the location of the incident.
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There is an upper bound that, when exceeded, leads to high financial penalties.
This is tightly linked to the resources location at the moment the incident occurs
and to the traffic situation.

– Resources return to their base location at the end of each shift.
Some time must be saved at the end of each shift so that each resource is able to
arrive at its base location on time. This affects the solution as a resource that is
sent to cover incidents that are far away from its base location will need more
time to go back than one that covers incidents closer to the base location.

– Real-time traffic.
The optimal solution can be significantly different depending on the traffic status.
Times and costs are computed using information retrieved from the Google
Distance Matrix API (https://developers.google.com/maps/documentation/
distance-matrix/overview accessed on 18 August 2021) in real-time.

• Providing a balanced solution

– Balanced allocation of resources.
Some resources have a broader set of skills or skills that are required more
frequently than others. The solution must avoid over-loading some resources
while others remain idle most of the time.

– Balancing cost vs. arrival time.
The minimization of operational costs and the compliance with the client’s SLA
are two objectives that do not always lead to the same optimal solution.

– Service level.
The company expects to ensure an overall service level above a certain threshold.
This threshold can be violated, leading to an additional cost in the objective
function. There is a maximum arrival time of 90 min that can never be exceeded.
If exceeded, incidents will be manually assigned.

• Defining a realistic and failure-proof execution logic

– Algorithm execution frequency. The optimization algorithm can run when a
change on the status of a Work Order (WO) happens, when a new WO is created,
or after a certain time period is elapsed (every minute as default configuration,
except if the previous execution is not finished, then it will be when it finishes).

– Possibility to reallocate a WO that is already planned but still not in progress.
This can be due to the fact that the resource has rejected the allocation or to the
fact that there is a better allocation available.

– Possibility to allocate some WO manually. Manual allocation will override any
conflicting automatic allocations.

The characteristics presented above make the resource allocation problem a key
challenge to face as it directly impacts the core business of our client. To the best of our
knowledge, no commercial software offers the possibility to include all these requirements
in a flexible and efficient way. Henceforth, to solve this problem, a fully customized engine
needs to be developed from scratch.

Formally, the problem can be stated as a multi-objective function and a set of con-
straints. The objectives to consider are the minimization of the operational costs and the
minimization of the arrival time to incidents (time from the notification of the incident until
the resource arrival to the location). The former includes resources fixed costs, resources
variable costs (by km) and the financial penalty related to services that are not covered in
compliance with the SLA. These costs will vary depending on the time frame (day/night
shift) and on the day (business days/holidays). The arrival time can include the time until
the resource is made available (if it was just about to start its shift or was working on
another WO), and the travel time from its current position to the location of the incident.

https://developers.google.com/maps/documentation/distance-matrix/overview
https://developers.google.com/maps/documentation/distance-matrix/overview
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4. Solution Approach

The aim of this section is to present an innovative method of resource scheduling
and allocation of roadside services in real-time while minimizing the operational costs,
minimizing the arrival times (which will imply an improvement of the service level), and
satisfying all the requirements and business constraints.

Given that the optimization is performed in real-time, a short response time is required
from the optimization algorithm. Therefore, taking into account the size of the problem
and the fact that the proposed solution must be scalable to wider regions, we hypothesize
that a hybrid approach, combining a heuristic approach together with an exact method, is
more appropriate than an exact method. Additionally, information on the current status
of the traffic is needed to perform the optimization. The Google Distance Matrix API is
used to retrieve this information, with a significantly high response time for each candidate
resource to evaluate. Hence, retrieving the time to go from each of the available resources
to the incident is not an option.

Accordingly, we propose using a heuristic approach that computes a ranking of re-
sources for each incident, prior to a linear programming optimization, which, in turn,
decides the best assignment of resources to incidents. Most of the requirements are con-
sidered in the heuristic approach to generate the list of candidates for each incident: (i)
the maximum arrival time is 90 min; (ii) work schedules must be complied with, with a
flexibility of 15 min before and after the beginning and end of each shift, respectively; (iii)
resources must be able to come back to their base location before the end of each shift; and
(iv) resources have at least the same skills as the ones required by the WO for them to be a
considered a candidate.

Then, linear programming ensures that: (i) the resource capacity is not exceeded (a
resource can handle, at most, one incident at the same time; however, incidents can be
pre-allocated to resources that will be available in the near future), (ii) the use of external
providers is limited to circumstances where there are no other resources compliant with
the SLA, (iii) at least one resource will be allocated to each incident, and (iv) the allocation
of resources to incidents when the resources are not candidates for the incident is set to 0.
The final solution was developed through multiple iterations with the client, progressively
adding complexity to the logic and jointly analyzing the impact of each of the requirements
into the final solution.

Algorithm 1 presents how the approach works. The procedure SolveAllocation expects
work orders (wos) as inputs, which represent all the new incidents and all incidents that are
still not accepted by resources, the list of available resources, and the following parameters:
the minimum number of candidates per work order; the estimated delays for external
providers; and the SLA penalization parameters. This procedure is executed every minute
if the previous execution has finished; or when the previous execution finishes.

After preparing the solution structure (line 5) and obtaining the last request time (line
6), the heuristic method (lines 7 to 13) reduces the dimension of the problem allowing the
use of linear programming (line 14) to solve the allocation problem. Thanks to the heuristic
approach, the number of times that the Google Distance Matrix API is called is also
reduced, which consequently dramatically shortens the execution time of the procedure,
allowing a real-time response. Finally, the approach ends creating the service into the ERP
system and updating the status of the resources (lines 15 and 16).

Details about the heuristic approach and the linear programming model are explained
in the following.
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Algorithm 1 Main Algorithm.

1: procedure SOLVEALLOCATION(wos, resources, parameters)
2: wos: group of new work orders to assign
3: resources: list of all known resources
4: parameters: algorithm parameters (minimum number of candidates per wo, estimated delays

for providers, and SLA penalization parameters)
5: solution← empty solution . Stores the services/pairings resource-wo
6: currentTime← getLastRequestTime(wos)
7: for all wo in wos do . Heuristic
8: availableResources← getAvailableResources(currentTime, wo, resources)
9: sortedResources← getSortedResources(parameters, wo, availableResources)

10: candidates← getBestKResources(parameters, wo, sortedResources)
11: candidatesSF← getSFResources(parameters, wo, candidates)
12: add candidatesSF to candidatesByWO
13: end for
14: bestResourcesByWO← lpSolutionWOs(candidatesByWO, parameters) . Linear

Programming
15: solution← createServices(wos, bestResourcesByWO)
16: updateAssignedResources(bestResourcesByWO)
17: return solution
18: end procedure

4.1. Heuristic

The operation of the heuristic approach (lines 7 to 13) can be summarized in four
main steps.

• Step 1: For each WO, the set of available resources is computed taking into account
both the availability and skills. Only resources having at least the skills required
by the incident are taken into account. A resource is considered available if its shift
begins in the next 15 min or has already started and not ended. Resources that are
currently working on another WO are also considered. This is done in the function
getAvailableResources (line 8).

• Step 2: Available candidates are sorted in the function getSortedResources (line 9). They
are sorted by their euclidean distance to the incident location to create a ranking of
the closest resources, which will then be further evaluated. This is done to avoid
retrieving traveling time information from the Google Distance Matrix API for all
candidates, as it takes a significant amount of time.

• Step 3: Once all available resources are sorted, the k nearest candidates using the
euclidean distance and the maximum radius of x km are selected through function
getBestKResources (line 10). The variables k and x are input parameters that the client
can change at any moment, and the final number of nearest candidates is the maximum
between the input parameter k and the number of incidents to be allocated. When the
minimum number of k candidates is not reached within the predefined radius x, all
other resources are considered and sorted by distance to select the nearest k candidates.
These rankings are performed likewise and separately for each of the three kinds of re-
sources. If there are enough candidates (k) for the first ranking, which includes the best
resources owned by the company, no further rankings are computed. Otherwise, a sec-
ond ranking also including freelance tow trucks is computed. If there are not enough
candidates yet, the third ranking including external providers is then computed.

• Step 4: Finally, a selection factor (SF) is calculated for each resource in function getS-
FResources (line 11). Since the optimization objective is to minimize both operational
costs and arrival time, the SF is calculated using both and as follows:

SFwo,r =
costr − µc

σc
+

timer − µt

σt
∀r ∈ candidates (1)

where
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– costr is the value resulting from adding the fixed cost of the selected resource r
with the product of the variable cost and the service distance (distance from the
current location of the resource to the place where the incident is located and to
its destination if the car needs to be moved to a second location).

– timer is the estimated arrival time for the resource r retrieved through the Google
Distance Matrix API in real-time.

– µc is the mean cost value for all candidates.
– σc is the standard deviation for the cost of all candidates.
– µt is the mean time value for all candidates.
– σt is the standard deviation for the time of all candidates.

4.2. Linear Programming

Once the heuristic method has created the list of k candidates for each type of resource,
function lpSolutionWOs (line 14) is run. It builds and solves the linear programming
problem optimizing all the allocations at the same time. The formulation is detailed below.

Sets

• R ∈ {1..r}: all resources.
• F ∈ R: owned resources and freelance tow trucks.
• O ∈ {1..o}: group of incidents to be optimized simultaneously.
• N = (r, o)|r ∈ R, o ∈ O: non-considered pairs (a candidate for one WO is not

necessarily a good candidate for another WO, and thus the pair would not be a valid
choice).

• P = (r, o, k)|r ∈ R, o ∈ O, k ∈ R: all combinations of external provider or freelance tow
truck over the SLA, incident and freelance tow truck under the SLA. P is generated
by iterating over the subset of incidents that have at least one freelance tow truck
under the SLA as a candidate. For each of these incidents and for each freelance tow
truck that respects the SLA for the corresponding incident, a triplet is created for
each external provider or tow truck over the SLA that are also candidates for this
same incident.

Parameters

• cij: SF of the pair formed by a resource i ∈ R and an incident j ∈ O.

Variables

• xij: binary decision variable; its value is 1 when the resource i ∈ R is allocated to the
incident j ∈ O.

min
x ∑
∀i∈R

∑
∀j∈O

cij · xij (2)

s.t. ∑
∀i∈R

xij = 1 ∀j ∈ O (3)

∑
∀j∈O

xij ≤ 1 ∀i ∈ F (4)

∑
∀l∈O

xkl ≥ xij ∀(i, j, k) ∈ P (5)

xij = 0 ∀i ∈ R, ∀j ∈ O|(i, j) ∈ N (6)

xij ∈ {0, 1} (7)

The objective function consists of the sum of the SFs for all pairs of resource–incident
that are finally allocated. Given that the SF leverages the total cost (cost of the allocation
and cost of the penalization for non-compliance with the SLA) and the arrival time to the
incident location, the aim is to minimize the value of the objective function. Constraint (3)
ensures that all the incidents are allocated to some resource.

Constraint (4) avoids the allocation of a finite resource (owned resource or freelance
tow truck) to more than one incident at the same time. Constraint (5) sets the priority for
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freelance tow trucks under the SLA over freelance tow trucks over the SLA and external
providers. Constraint (6) avoids the allocation of those resources that are not candidates for
a given incident. Finally, decision variables xij are defined as Boolean through constraint (7).

5. Computational Experiments

The computational experiments are divided into three blocks: Pre-Production, Pro-
duction, and Benchmarks. Pre-Production includes results from the experiments that were
obtained by simulating one day in the past. These one-day experiments allowed us and
RACC to assess the performance of the solution proposal against real data recovered from
their historical files. Once the results showed that the proposal was a good improvement,
the algorithm was put into production. The results from the first two months (before
COVID-19) are presented in the second block, Production. Finally, a set of benchmark prob-
lems is listed. We generated this since there were no similar benchmarks in the literature
that matched our proposal.

5.1. Pre-Production

The implementation of the approach was achieved using Python, including the linear
programming model, which requires the library Pyomo and the solver glpk. All the experi-
ments were run locally using a computer with a Windows operating system and 32 GB of
RAM. In that environment, the optimization of any allocation of incidents required around
1 s.

The approach was evaluated by simulating one day of activity and comparing the
results with what happened in reality on that day. The results were thoroughly analyzed to
ensure the behavior of the algorithm met all requirements even when there are candidates
really close to each other in terms of objective function value.

The day of activity was selected randomly and corresponded to 17 September 2018,
from 6 a.m. to 3 p.m., in the area of Catalonia (Barcelona, Girona, Lleida, Tarragona). A set
of 567 incidents was extracted and used to test the algorithm, using 147 owned resources
(each of which has its own working schedule), 46 tow trucks, and 427 external providers.
These are the real numbers of incidents that happened and resources that were available
during that day.

Figures used in this section to describe the final results are part of a user interface (UI)
that was built in R Shiny to iterate the solution with the client through different versions
of the algorithm.

Figures 3–5 show the main results in terms of resource utilization, cost by resource
type and distance, before and after the optimization. The light grey shows the values from
the allocation performed in reality (according to the historical data), and the dark grey
shows the equivalent results obtained using the resource allocation optimization algorithm.

In terms of resource utilization:

• Work orders covered by resources owned by the company increased from 256 to 295.
• Freelance tow truck use increased in the number of incidents covered, from 96 to 168.
• The usage of external providers was dramatically reduced to more than half, from

215 incidents to 104.

We checked that our algorithm only allocated 15.7% of the incidents to the same type
of resource allocated in reality. Additionally, the overall cost of the operations was reduced
by 18.88% in this sample. Considering the initial cost of the client as the 100%:

• The external providers cost was reduced from 64.41% to 28.03% of the total.
• The freelance tow trucks cost was almost double since they almost doubled the number

of services. This represented 17.50% and went up to 33.19% with the optimization.
• The cost of resources owned by the company increased slightly from 18.09% to 19.90%.
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Figure 3. Resource utilization before (light grey) and after (dark grey) the optimization.

Figure 4. Total Cost savings and evolution of the percentage by resource type.

Figure 5. Distance by resource type, before (light grey) and after (dark grey) the optimization.

Finally, the overall distance traveled was reduced:
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• The distance traveled for the owned resources was reduced slightly (from 3530 Km to
3416 km) although the number of services covered increased, which means that these
resources increased their productivity while reducing their movements.

• The freelance tow truck distance traveled was doubled (from 1562 to 3239 km) since
they almost doubled the number of services.

• The external providers distance traveled was reduced to less than half of what they
were doing in reality from 3866 to 1761 km.

Figure 6 shows an example of the ranking created for one specific incident. In this
ranking, the selection factor leverages the cost and time of arrival to determine one single
metric that is used to sort the resources from the best (most negative) to the worse (Step 4
of the heuristic described in Section 4).

Figure 6. Ranking of the top resources for one specific incident.

5.2. Production

The shift to production was performed during the first half of 2020 in a phased manner,
starting in January in the Balearic Islands. We consider January, February, and March the
pre-COVID19 period, since the workload and performance were generally representative
of a typical year.

The automatic allocation of mechanical incidents performed using the former system
was around 40%, and a portion of these automatically allocated incidents were either
allocated to resources that lacked some of the required skills or to resources that were not
available for some reason. Certain times were assigned to external providers even when an
owned resource could have provided the service. With this new solution, the automatic
allocation was already over 80% during the first months in production, with fewer misallo-
cations due to unexpected situations and data quality issues (incomplete WO information
and partial or misspelled addresses, wrong or a lack of geolocation data, etc.). This percent-
age is expected to increase once the data quality issues are resolved and the algorithm is
fine-tuned to handle these unprecedented situations.

It is important to highlight that there are incidents that are not linked only to one
location but two, which means that the vehicle will need to be towed from the first to the
second. Until now, the incident would be assigned to the freelance tow truck or external
provider nearest to the first coordinate, regardless of where the second coordinate was.
However, the pricing of these resources is directly proportional to the total kilometers
traveled from when they leave until they return to their base, which led to very high costs
for this type of service. The new algorithm takes this into account and, therefore, might
select a tow truck that is between the two coordinates or even further away if the arrival
time is good enough and the allocation is cheaper. The client estimates savings linked to
the reduction of the operational costs for this kind of services to be around 15 to 20% on
average, going up to 200% in certain cases.



Mathematics 2021, 9, 1982 14 of 20

To properly understand the following results, it is important to define the “coverage”.
This is defined as the percentage of repairable incidents that are covered by resources
owned by the client out of the total number of repairable incidents received. The higher
the coverage, the more efficiently resources are used. Figure 7 shows a comparison of the
number of repairable incidents and the coverage that was recorded from February to March
in 2019 and 2020. During these months, while February and March show a significant drop
in the number of repairable incidents, the percentage of coverage went from an average of
16% to 22% across the two months, which represents an increase of 37.5% for the coverage.

Figure 7. Number of repairable incidents (a) & coverage (b) on the Balearic Islands, 2019 vs. 2020.

5.3. Benchmark

The aim of this section is to provide a benchmark set for this problem (small, mid, and
large instances) and to test our proposed approach with it. Two separate experiments are
proposed: a single run of the algorithm to allocate one or more incidents, and multiple
runs of the algorithm to solve, in real-time, the allocations of a certain time interval. The
first is used to assess the performance of the algorithm in terms of the goodness of the
solution, the value of the objective function, and the execution time. The second is used
to test its capacity to run in real-time, since the allocations performed in one instant will
directly affect those performed over the next minutes.

Some simplifications were made in order to make the experiments easier to reproduce.
These can be classified in the following categories: pricing of the resources, penalization of
freelance tow trucks and external providers, and shift flexibility.

• The pricing of resources was done through API calls to the client’s pricing system.
In this case, an estimate of the average fixed and variable costs for each kind of
resource will be given and used to run the benchmarks.

• Freelance tow trucks and external providers were assumed to have a fixed delay of
20 and 30 min, respectively, which was added to the expected arrival time retrieved
from Google. This assumption was removed to run the benchmarks.

• Shifts and breaks have, in reality, a flexibility of 15 min, and employees can work
extra-hours at an extra cost. These assumptions were removed for simplicity reasons.

Additionally, the following information and parameters were needed in order to run
the benchmarks and obtain comparable KPIs:

• The maximum arrival time for a resource to be valid was 90 min.
• The time required to load or unload a vehicle was 10 min. This was done every

time the incident was non-repairable and there was triangulation (two coordinates
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representing the origin of the incident and the destination to which the vehicle will
need to be towed to).

• The penalization for going over the 30 min SLA was computed as follows:

– 0 if the arrival time is below the SLA;

– min

40,
(

arrivaltime− SLA
2

)
+ p

( arrivaltime− SLA
p1

)
0

 , otherwise.

where p0 = 5 and p1 = 35 are the penalization factors, SLA is 30 min, and arrival_time
is the arrival time in minutes. This function and parameters were created together
with the client in order to approximate their current cost per minute over the SLA.
The function parameters can be changed by the client whenever the current values no
longer reflect reality.

• Owned resources do not have a fixed cost. The fixed cost for freelance tow trucks and
external providers was assumed to be 25 e. The variable cost for all resources was
0.75 e/km.

5.3.1. Single-Run Experiments

Table 1 describes the inputs generated for the single-run experiments. There are three
sizes (small, medium, and large), different numbers of work orders, and different numbers
of available resources that are specified as owned/freelance tow trucks/external providers.

Table 1. Single-run benchmarks.

ID Size N◦ of WO N◦ of Resources Description

01 Small 3 3/3/5 Barcelona, 15 August 2018
02 Small 3 3/3/5 Outskirts of Barcelona, 15 August 2018
03 Small 3 2/1/5 Costa Brava, 15 August 2018
04 Medium 8 7/5/10 Barcelona, 4 September 2018
05 Medium 8 7/5/10 Outskirts of Barcelona, 28 August 2018
06 Medium 7 5/1/10 Costa Brava, 15 August 2018
07 Large 15 20/10/20 Barcelona, 4 September 2018
08 Large 14 15/10/20 Outskirts of Barcelona, 5 September 2018
09 Large 14 10/10/20 Barcelona, 27 August 2018

Input data for each instance includes four files:

• workorders.csv includes the incidents, and the information is described in Table 2.
• resources.csv includes the resources, and the information is described in Table 3.

Notice that 862471001 is for external provider, 862471002 for tow truck, and 862471003
for owned resource.

• calendars.csv specifies the resource availability for those resources that are not avail-
able 24/7, as described in Table 4.

• current_time.csv contains a single cell indicating the time at which the optimization
takes place.
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Table 2. Columns in file workorders.csv.

Column Name Description

workorder_id ID of the WO
start_time Time for which the service is expected
end_time Maximum arrival time
latitude Latitude of the incident
longitude Longitude of the incident
destination_latitude If specified, latitude of the destination
destination_longitude If specified, longitude of the destination
postal_code Postal code of the WO’s location
estimated_duration Estimated duration of the WO
skills Skills required to solve the incident
product ID of the type of service to be provided

Table 3. Columns in file resources.csv.

Column Name Description

res_id ID of the resource
res_type Type of the resource
latitude Current latitude of the resource
longitude Current longitude of the resource
base_latitude Latitude of the resource’s base location
base_longitude Longitude of the resource’s base location
skills Resource skills
is_24h 1 if the resource is available 24 h, 0 otherwise

Table 4. Columns in file calendars.csv.

Column Name Description

res_id ID of the resource
start_time Shift start time
end_time Shift end time
duration Shift duration
time_off If true, the resource is not available at the moment

Two outputs are provided for each instance using two files.

• benchmark_kpis.txt includes the main KPIs of the execution, as described in Table 5.
• allocated_resources.csv includes the allocation by WO, as described in Table 6.

Table 5. Columns in file benchmark_kpis.txt.

Column Name Description

total_execution_time Total execution time
solve_time Solve time of the linear programming
objective_function_value Total value of the objective function
total_cost Total cost of the services
arrival_time Mean arrival time
n_wo Number of WO optimized
n_owned_resource Number of owned resources
n_tow_truck Number of tow trucks
n_external_provider Number of external providers
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Table 6. Columns in file allocated_resources.csv.

Column Name Description

workorder_id ID of the WO
execution_time Date and time of the start of the execution
resource_id ID of the resource
type Type of resource
dt_displacement Time of displacement between the current location and the incident
dt_arrival Total time of arrival
total_cost Total cost of the service, including SLA penalization if needed
allocation_cost Allocation cost of the service
penalty SLA penalty
distance Distance from the resource’s current position to the incident location
distance_tarif Distance used to compute the allocation cost
selection_factor Selection factor balancing time and cost
time_factor Time factor, after standardization
cost_factor Cost factor, after standardization
sf_offset Offset added to the selection factor so that each resource type is

prioritized
is_under_sla True if the resource is compliant with the SLA, false otherwise
is_busy True if the resource is busy when the allocation occurs, false

otherwise
start_time Start time of the WO
end_time End time of the WO
is_preallocation True if the WO is preallocated to a busy resource, false otherwise

A summary of the main results is shown in Table 7. As can be seen, the increase of
execution time when the number of grouped incidents increases is not really a problem.
The total execution time and solving time are quite similar because the number of resources
and location impacts the execution time.

Table 7. Single-run benchmark main results.

ID
Execution Solve Objective

Total Cost
Mean Arrival

Time [s] Time [s] Function Value Time [min]

01 2 2 −2.29 92.15 16.70
02 4 3 −0.09 117.58 22.02
03 2 2 −2.31 468.17 40.68
04 5 5 13.70 189.83 15.48
05 6 6 6.47 310.58 21.05
06 6 6 0.47 606.24 20.82
07 9 9 11.46 344.88 17.39
08 9 9 2.99 361.55 20.31
09 9 9 33.37 521.26 17.87

5.3.2. Multi-Run Benchmark

Table 8 describes the inputs generated for the multi-run experiments. Similarly to
the single-run experiments, there are three sizes (small, medium, and large), different
number of work orders, and different number of available resources that are specified as
owned/freelance tow trucks/external providers. The files provided as input are identical,
the only difference being that the time at which each work order arrives might be signif-
icantly different, which makes it necessary to run the algorithm in real-time, grouping
incidents that happen approximately at the same moment.
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Table 8. Multi-run benchmarks.

ID Size N◦ of WO N◦ of Resources Description

01 Small 63 5/5/30 Costa Brava, 10 September 2018, 7 a.m.–7 p.m.
02 Small 74 5/5/30 Costa Brava, 3 September 2018, 7a.m.–7p.m.
03 Small 65 5/5/30 Costa Brava, 30 July 2018, 7 a.m.–7 p.m.
04 Medium 269 10/10/30 Barcelona, 3 September 2018, 7 a.m.–7 p.m.
05 Medium 243 10/10/30 Barcelona, 10 September 2018, 7 a.m.–7 p.m.
06 Medium 238 10/10/30 Barcelona, 30 July 2018, 7 a.m.–7 p.m.
07 Large 767 35/25/100 Catalonia, 3 September 2018, 7 a.m.–5 p.m.
08 Large 641 35/25/100 Catalonia, 10 September 2018, 7 a.m.–5 p.m.
09 Large 629 35/25/100 Catalonia, 30 July 2018, 7 a.m.–5 p.m.

The outputs for the multi-run experiments include the same outputs in the single-run,
with one additional column in the benchmark_kpis.txt: n_unassigned, which indicates the
number of WO that could not be allocated (because of a skill that none of the available
resources had). There is one additional output, occupation_rates.csv, which includes the
occupation ratios of owned resources, as described in Table 9.

Table 9. Occupation_rates.csv.

Column Name Description

res_id ID of the resource
t_busy Total time busy
t_available Total time available
occupation_ratio Occupation ratio, computed as the percentage

of time available that the resource is busy
t_moving Total time moving
t_working Total time working
moving_ratio Moving ratio, computed as the percentage

of time available that the resource is moving
working_ratio Working ratio, computed as the percentage

of time available that the resource is working

A summary of the main results is shown in Table 10. As can be seen, the average
solve time for each PO is usually very low, except for the instances with a large amount
of incidents. This is due to the number of incidents in each execution of the algorithm
and also on the number of available resources.

Table 10. The multi-run benchmark main results.

ID
Execution Solve Time/ Objective

Total Cost
Mean Arrival

Time [s] WO [s] Function Value Time [min]

01 64 0.48 −131.88 3587.46 24.58
02 89 0.85 −140.39 5056.79 29.84
03 70 0.70 −80.49 2540.94 14.68
04 270 0.93 −484.40 9864.19 18.89
05 247 0.88 −433.53 6825.44 17.33
06 236 0.86 −495.86 6594.45 17.66
07 642 1.93 −1373.20 42,368.39 23.21
08 578 1.70 −1059.22 30,084.68 20.50
09 847 2.89 −1229.14 38,668.21 30.44

6. Conclusions

In this paper, we proposed an innovative approach to solve the real-time allocation of
resources to incidents combining a heuristic approach with linear programming to obtain a
globally optimal solution in an efficient way. The proposal leverages real-time data feeds,
such as the current traffic status and each resource’s position and working status to first
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create a candidate list of the best potential resources. Then, it evaluates and selects the best
candidate for each of the multiple concurrent incidents that are optimized simultaneously,
thus, leading to the optimal global solution.

Through a one-day simulation, the performance of the algorithm was tested and
compared to the real decisions made by the current system in charge of the allocation.
The obtained results show the great potential of this approach: operational costs were
reduced by around 19%, the use of external providers was reduced to half, and the produc-
tivity of each owned resource saw a significant increase. Then, the step into production
during the months of February and March for certain regions in Spain further confirmed
these results with an increase of 37.5% in coverage.

Finally, a set of benchmarks was provided in order to assess the performance of
the algorithm both in single runs (the simultaneous optimization of multiple incidents)
and in simulation runs (runs that simulate a real-time optimization throughout one day).
Single run benchmarks showed that the increase of execution time when the number of
grouped incidents increased was not a problem. Simulation runs showed that, in reality,
few incidents were solved at the same time, and the average solving time for each WO was
very low.

This work will be further developed with improvements regarding the cost function
and the business requirements, learning from the new situations that may arise from its
functioning into production. Then, the prediction of the number of incidents by region
and type will be developed (the first module shown in Figure 1), as it can be used, among
others, to further improve the performance of the real-time resource allocation algorithm.
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