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Abstract: The main aim of the paper is to present an algorithm to solve approximately initial
value problems for a scalar non-linear fractional differential equation with generalized proportional
fractional derivative on a finite interval. The main condition is connected with the one sided
Lipschitz condition of the right hand side part of the given equation. An iterative scheme, based on
appropriately defined mild lower and mild upper solutions, is provided. Two monotone sequences,
increasing and decreasing ones, are constructed and their convergence to mild solutions of the given
problem is established. In the case of uniqueness, both limits coincide with the unique solution of the
given problem. The approximate method is based on the application of the method of lower and
upper solutions combined with the monotone-iterative technique.

Keywords: Riemann–Liouville proportional fractional derivative; differential equations; impulses;
initial value problem; lower solutions; upper solutions; monotone-iterative technique

1. Introduction

Fractional differential equations are effective in both theoretical and applied mathe-
matics and arise in models of medicine, engineering, biochemistry, thermal and mechanical
systems, acoustics and modeling of materials, etc. There are different forms of fractional
derivatives and consequently numerous fractional derivatives have appeared (see, for
example, [1–6] and the references cited therein). Jarad et al. [7] introduced a new gener-
alized proportional derivative which is well-behaved and has several advantages over
classical derivatives and generalizes known derivatives in the literature. For recent contri-
butions relevant to fractional differential equations via generalized proportional deriva-
tives, see e.g., [8–12]. We note that initial value problems for Riemann–Liouville fractional
differential equations differ from the Caputo fractional ones and requires a separate study.

The theory of impulsive differential equations has undergone rapid development over the
years (see, for example, the monographs by Benchohra et al. [13], Lakshmikantham et al. [14],
Samoilenko and Perestyuk [15], and the references therein). Impulses were also considered
for fractional-order differential systems, and the theory of impulsive fractional differential
systems was presented in the literature, mainly for fractional derivatives of Caputo type
(see for example, [16–18]).

Note that most fractional differential equations have no explicit solutions, so develop-
ing approximate methods is usually required. In this paper, a new algorithm for approxi-
mate solving an initial value problem for scalar non-linear fractional differential equations
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with generalized proportional fractional derivative is proposed. This method is based on
the application of the method of lower and upper solutions and the monotone-iterative
technique. Two monotone sequences, increasing and decreasing ones, are constructed and
their convergence to mild solutions of the given problem is established. In the case of
uniqueness, both limits coincide with the unique solution of the given problem.

2. Main Results
2.1. Statement of the Problem

Let {ti}m+1
i=1 be a sequence of points with

0 = t0 < · · · < ti < ti+1 < · · · < tm+1 = T, i = 1, 2, . . . , m.

Consider the following fractional differential equation with the generalized propor-
tional fractional derivative with fractional initial and impulsive conditions (PIVP):

(R
ti
Dα,ρu)(t) = ψ(t, u(t)), t ∈ (ti, ti+1], i = 0, 1, 2, . . . , m,

lim
t→ti+

(
e

1−ρ
ρ (t−ti)(t− ti)

1−αu(t)
)
=

Ψi(u(ti − 0))ρ1−α

Γ(α)
, i = 1, 2, . . . , m,

lim
t→0+

(
e

1−ρ
ρ tt1−αu(t)

)
=

u0ρ1−α

Γ(α)
,

(1)

where u : [0, T]→ R is a function, ρ ∈ (0, 1], α ∈ (0, 1) are two reals, u0 is a real constant,
and ψ : [0, T]×R → R and Ψi : R → R, i = 1, 2, . . . , m are two functions. We recall that
the generalized proportional fractional integral and the generalized proportional fractional
derivative of a function υ : [a, b]→ R are defined, respectively, by (see [7])

(aI
α,ρυ)(t) =

1
ραΓ(α)

∫ t

a
e

ρ−1
ρ (t−s)

(t− s)α−1υ(s) ds, t ∈ (a, b],

and

(R
a Dα,ρv)(t) =

1
ρ1−αΓ(1− α)

D1,ρ
(∫ t

a
e

ρ−1
ρ (t−s)

(t− s)−αυ(s) ds
)

, t ∈ (a, b],

where (D1,ρυ)(t) = (Dρυ)(t) = (1− ρ)υ(t) + ρυ′(t).

Remark 1. Note that the generalized proportional fractional derivative of Riemann–Liouville
fractional type leads to an appropriate definition of the impulsive conditions similar to the initial
condition (see the last two equations in problem (1). Additionally, we consider the case when the
lower limit of the fractional derivative is changed at any impulsive point.

Observe that a solution of the PIVP (1) can have singularities at the points ti, for
i = 0, 1, 2, . . . , m.

Let

C1−α,ρ([a, b]) =
{

u : [a, b]→ R : u(·) ∈ C((a, b]), lim
t→a+

(
e

1−ρ
ρ (t−a)

(t− a)1−αu(t)
)
< ∞

}

and

PC1−α,ρ([0, T]) =
{

u : [0, T]→ R : u ∈ C1−α,ρ([ti, ti+1]) for all i = 0, 1, 2, . . . , m
}

equipped with the norms

|x|C1−α,ρ [a,b] = max
t∈[a,b]

∣∣∣∣e
1−ρ

ρ (t−a)
(t− a)1−αx(t)

∣∣∣∣
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and
|x|PC1−α,ρ [a,b] = max

i=0,1,2,...,m
|x|C1−α,ρ [ti ,ti+1]

,

respectively. Note that C1−α,ρ([a, b]) is a Banach space. If

un ∈ C1−α,ρ([a, b]), n = 1, 2, . . . and = |un − u|C1−α,ρ [a,b] → 0

then u ∈ C1−α,ρ([a, b]).

2.2. Explicit Solution of the Impulsive Linear Fractional Equation

Consider the linear scalar impulsive fractional equation with the generalized propor-
tional fractional derivative and the initial value condition (IVP)

(R
ti
Dα,ρu)(t) = λu(t) + f (t), t ∈ (ti, ti+1],

lim
t→ti+

(
e

1−ρ
ρ (t−ti)(t− ti)

1−αu(t)
)
=

Pk(u(ti − 0))ρ1−α

Γ(α)
i = 1, 2, . . . , m,

lim
t→0+

(
e

1−ρ
ρ tt1−αu(t)

)
=

u0ρ1−α

Γ(α)

(2)

where λ is a real constant, and f ∈ C([0, T]), Pk : R → R, k = 0, 1, 2, . . . , m are given
functions. We recall the following result (see (Theorem 2) in [12]):

Lemma 1. The IVP (2) has a unique solution u ∈ PC1−α,ρ[0, T] given by

u(t) =Pk(u(tk − 0))e
ρ−1

ρ (t−tk)Eα,α

(
λ

(
t− tk

ρ

)α)( t− tk
ρ

)α−1

+
1

ραΓ(α)

∫ t

tk

(t− s)α−1e(ρ−1)
(

t−s
ρ

)
Eα,α

(
λ

(
t− s

ρ

)α)
f (s) ds,

(3)

for t ∈ (tk, tk+1], k = 0, 1, 2, . . . , m, where P0(u(t0 − 0)) ≡ u0.

Consider the special case when Pk(u) = µku+γk, k = 1, 2, . . . , m, i.e., consider the IVP

(R
ti
Dα,ρu)(t) = λu(t) + f (t), t ∈ (ti, ti+1],

lim
t→ti+

(
e

1−ρ
ρ (t−ti)(t− ti)

1−αu(t)
)
=

[µiu(ti − 0) + γi]ρ
1−α

Γ(α)
, i = 1, 2, . . . , m,

lim
t→0+

(
e

1−ρ
ρ tt1−αu(t)

)
=

u0ρ1−α

Γ(α)
,

(4)

with µk, γk ∈ R, k = 1, 2, . . . , m.
As a special case of Lemma 1 we obtain the following explicit form of the solution

of (4):

Lemma 2. The IVP (4) has a unique solution u ∈ PC1−α,ρ[0, T] given by

u(t) =





u0 A0(t) + I f
0 (t), for t ∈ (0, t1],

µk Ak(t)
[
u0 ∏k−1

j=0 (µj Aj(tj+1)) + ∑k−1
j=0 I f

j (tj+1)∏
k−j−1
p=j+1(µp Ap(tp+1))

]

+Ak(t)∑k
j=1 γj ∏k−1

p=j(µp+1 Ap(tp+1)) + I f
k (t),

for t ∈ (tk, tk+1], k = 1, 2, . . . , m,

(5)
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where µ0 = 1, γ0 = 0, and for t ∈ (tk, tk+1], k = 0, 1, 2, . . . , m,

I f
k (t) =

1
ραΓ(α)

∫ t

tk

(t− s)α−1e(ρ−1)
(

t−s
ρ

)
Eα,α

(
λ

(
t− s

ρ

)α)
f (s) ds, (6)

and

Ak(t) = e
ρ−1

ρ (t−tk)Eα,α

(
λ

(
t− tk

ρ

)α)( t− tk
ρ

)α−1
> 0. (7)

Remark 2. According to Lemma 1, the solution u(·) of the linear problem (4) satisfies

u(t) =





u0 A0(t) + I f
0 (t), t ∈ (0, t1](

µku(tk − 0) + γk

)
Ak(t) + I f

k (t), t ∈ (tk, tk+1], k = 1, 2, . . . , m.
(8)

Proof. We will use an induction argument. First, let t ∈ (0, t1]. By (6) and Lemma 1 with
k = 0 we get

u(t) = u0 A0(t) + I f
0 (t) = u0(µ0 A0(t)) + I f

0 (t).

Let t ∈ (t1, t2]. By (6) and Lemma 1 with k = 1 we obtain

u(t) = [µ1u(t1 − 0) + γ1]A1(t) + I f
1 (t)

= u0(µ1 A1(t))(µ0 A0(t1)) + I f
0 (t1)(µ1 A1(t)) + γ1 A1(t) + I f

1 (t)
(9)

Let t ∈ (t2, t3]. By (6) and Lemma 1 with k = 2 we get

u(t) = [µ2u(t2 − 0) + γ2]A2(t) + I f
2 (t)

= µ2[µ1u0 A0(t1)A1(t2) + I f
0 (t1)(µ1 A1(t2)) + γ1 A1(t2) + I f

1 (t2)]A2(t)

+ γ1 A2(t) + I f
2 (t)

= u0(µ1 A1(t2))(µ0 A0(t1))(µ2 A2(t)) + I f
0 (t1)(µ1 A1(t2))µ2 A2(t)

+ I f
1 (t2)(µ2 A2(t)) + γ1 A1(t2)(µ2 A2(t)) + γ2 A2(t) + I f

2 (t)

= µ2 A2(t)

[
u0

2−1

∏
j=0

(µj Aj(tj+1)) +
2−1

∑
j=0

I f
j (tj+1)

2−j−1

∏
p=j+1

(µp Ap(tp+1))

]

+ A2(t)
2

∑
j=1

γj

2−1

∏
p=j

(µp+1 Ap(tp+1)) + I f
2 (t).

(10)

Let t ∈ (t3, t4]. Then

u(t) = [µ3u(t3 − 0) + γ3]A3(t) + I f
3 (t)

= (µ3 A3(t))[u0(µ1 A1(t2))(µ0 A0(t1))(µ2 A2(t3)) + I f
0 (t1)(µ1 A1(t2))µ2 A2(t3)

+ I f
1 (t2)(µ2 A2(t3)) + γ1 A1(t2)(µ2 A2(t3)) + γ2 A2(t3) + I f

2 (t3)]

+ γ3 A3(t) + I f
3 (t)

= µ3 A3(t)

[
u0

3−1

∏
j=0

(µj Aj(tj+1)) +
3−1

∑
j=0

I f
j (tj+1)

3−j−1

∏
p=j+1

(µp Ap(tp+1))

]

+ A3(t)
3

∑
j=1

γj

3−1

∏
p=j

(µp+1 Ap(tp+1)) + I f
3 (t).

(11)
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2.3. Mild Lower/Upper Solutions

Let Li, Mi, i = 1, 2, . . . , m be positive constants (to be determined later). Then PIVP (1)
can be equivalently written in the form

(R
0 Dα,ρu)(t) = −Liu(t) + F(t, u(t)), t ∈ (ti, ti+1], i = 0, 1, 2, . . . , m,

lim
t→ti+

(
e

1−ρ
ρ (t−ti)(t− ti)

1−αu(t)
)
=

[Miu(ti − 0) + Gi(u(ti − 0))]ρ1−α

Γ(α)
,

i = 1, 2, . . . , m,

lim
t→0+

(
e

1−ρ
ρ tt1−αu(t)

)
=

u0ρ1−α

Γ(α)
,

(12)

where
F(t, u) = ψ(t, u) + Liu, u ∈ R, t ∈ (ti, ti+1], i = 0, 1, 2, . . . , m, (13)

and
Gi(x) = Ψi(x)−Mix, x ∈ R, i = 1, 2, . . . , m. (14)

The solution x ∈ PC1−α,ρ([0, T]) of PIVP (12), based on Lemma 2 with λ = −L,
f (t) = F(t, x(t)), µi = Mi, and γi = Gi(x(ti − 0)), i = 1, 2, . . . , m, has the form

x(t) =





u0 A0(t) + I0(t, x), t ∈ (0, t1]

Mk Ak(t)
[
u0 ∏k−1

j=0 (Mj Aj(tj+1))

+∑k−1
j=0 Ij(tj+1, x)∏

k−j−1
p=j+1(Mp Ap(tp+1))

]

+Ak(t)∑k
j=1

(
Ψj(x(tj − 0))−Mj ∏k−1

p=j(Mp+1 Ap(tp+1)) + Ik(t, x),

t ∈ (tk, tk+1], k = 1, 2, . . . , m,

(15)

where for t ∈ (tk, tk+1] and k = 0, 1, 2, . . . , m,

Ak(t) = e
ρ−1

ρ (t−tk)
(
−Lk

(
t− tk

ρ

)α) ( t− tk
ρ

)α−1
> 0, (16)

and

Ik(t, x) =
1

ραΓ(α)

∫ t

tk

(t− s)α−1e(ρ−1)( t−s
ρ )Eα,α

(
−Lk

(
t− s

ρ

)α)(
ψ(s, x(s)) + Lkx(s)

)
ds. (17)

Remark 3. According to Lemma 1, the solution x ∈ PC1−α,ρ([0, T]) of PIVP (12) satisfies

x(t) =[Mkx(tk − 0) + Gk(x(tk − 0))]Ak(t) + Ik(t, x), (18)

for t ∈ (tk, tk+1], x ∈ C1−α,ρ([tk, tk+1], and k = 1, 2, . . . , m.

Based on (15) we will define mild lower/upper solutions of (1).

Definition 1. We say that function x ∈ PC1−α,ρ([0, T]) is a mild solution of PIVP (1) if it satisfies

x(t) =





u0 A0(t) + I0(t, x) for t ∈ (0, t1],

Mk Ak(t)
[
u0 ∏k−1

j=0 (Mj Aj(tj+1)) + ∑k−1
j=0 Ij(tj+1, x)∏

k−j−1
p=j+1(Mp Ap(tp+1))

]

+Ak(t)∑k
j=1

(
Ψj(x(tj − 0))−Mx(tj − 0)

)
∏k−1

p=j(Mp+1 Ap(tp+1))

+Ik(t, x) for t ∈ (tk, tk+1], k = 1, 2, . . . , m,

(19)
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where Ak(t), Ik(t, x), t ∈ (tk, tk+1], k = 0, 1, 2, . . . , m are defined by (16) and (17), respectively.

Proposition 1. The mild solution x ∈ PC1−α,ρ([0, T]) of PIVP (1) satisfies the equalities

lim
t→tk+

(
e

1−ρ
ρ (t−tk)(t− tk)

1−αx(t)
)
=

Ψk(x(tk − 0))ρ1−α

Γ(α)
, k = 1, 2, . . . , m.

Proof. The claim follows from Remark 3, Definition 1, (14), the two following equalities

e
1−ρ

ρ (t−tk)(t− tk)
1−α Ak(t) = Eα,α

(
−Lk

(
t− tk

ρ

)α)
ρ1−α, t ∈ (tk, tk+1], k = 1, 2, . . . , m,

Eα,α(0) =
1

Γ(α)
,

and from

e
1−ρ

ρ (t−tk)(t− tk)
1−α Ik(t, x)

=
1

ραΓ(α)

∫ t

tk

e
1−ρ

ρ (s−tk)
(

t− tk
t− s

)1−α

Eα,α

(
−Lk

(
t− s

ρ

)α)(
ψ(s, x(s)) + Lkx(s)

)
.

Definition 2. We say that function x ∈ PC1−α,ρ([0, T]) is a mild lower (a mild upper) solution of
the PIVP (1) if it satisfies the integral inequalities

x(t) ≤ (≥)





u0 A0(t) + I0(t, x) for t ∈ (0, t1],

Mk Ak(t)
[
u0 ∏k−1

j=0 (Mj Aj(tj+1)) + ∑k−1
j=0 Ij(tj+1, x)∏

k−j−1
p=j+1(Mp Ap(tp+1))

]

+Ak(t)∑k
j=1

(
Ψj(x(tj − 0))−Mjx(tj − 0)

)
∏k−1

p=j(Mp+1 Ap(tp+1))

+Ik(t, x) for t ∈ (tk, tk+1], k = 1, 2, . . . , m.

(20)

2.4. Monotone-Iterative Technique

For any function v ∈ PC1−α,ρ([0, T]) we define the operator

Ω(v)(t) =





u0 A0(t) + I0(t, v), t ∈ (0, t1],

Mk Ak(t)
[
u0 ∑k−1

j=0 (Mj Aj(tj+1))

+∑k−1
j=0 Ij(tj+1, v)∏

k−j−1
p=j+1(Mp Ap(tp+1))

]

+Ak(t)∑k
j=1

(
Ψj(v(tj − 0))−Mjv(tj − 0)

)
∏k−1

p=j(Mp+1 Ap(tp+1))

+Ik(t, v), t ∈ (tk, tk+1], k = 1, 2, . . . , m,

(21)

with Ak(t), Ik(t, x), t ∈ (tk, tk+1], k = 0, 1, 2, . . . , m, the functions F and G defined by (13),
(14), (16), (17), respectively.
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Remark 4. Note that, from Proposition 1 and (14), it follows that the function x(t) = Ω(v)(t)
satisfies the equalities

lim
t→0+

(
e

1−ρ
ρ tt1−αx(t)

)
=

u0ρ1−α

Γ(α)
,

lim
t→ti+

(
e

1−ρ
ρ (t−ti)(t− ti)

1−αx(t)
)
=

[Mix(ti − 0) + Gi(v(ti − 0))]ρ1−α

Γ(α)

=
[Mi(x(ti − 0)− v(ti − 0)) + Ψi(v(ti − 0))]ρ1−α

Γ(α)
, i = 1, 2, . . . , m.

(22)

Theorem 1. Let the following conditions be fulfilled:

1. The functions v, w ∈ PC1−α,ρ([0, T]) are a mild lower solution and a mild upper solution of
the PIVP (1), respectively, such that v(t) ≤ w(t) for t ∈ (0, T];

2. The function ψ ∈ C(∪m
k=0(tk, tk+1]×R,R) and there exist constants Lk > 0 such that, for

any t ∈ (tk, tk+1], k = 0, 1, 2, . . . , x, y ∈ R, if v(t) ≤ x ≤ y ≤ w(t) then the inequality

ψ(t, x)− ψ(t, y) ≤ Lk(x− y)

holds;
3. The functions Ψk ∈ C(R,R), k = 1, 2, . . . , m, and there exist constants Mk > 0, such that,

for any x, y ∈ R, if v(tk) ≤ x ≤ y ≤ w(tk) then the inequalities

Ψk(x)−Ψk(y) ≤ Mk(x− y)

hold.

Then, there exist two sequences of functions {v(n)(·)}∞
n=0 and {w(n)(·)}∞

n=0, with v(n), w(n) ∈
PC1−α,ρ([0, T]), such that:

[a] The sequences {v(k)(t)}∞
k=0 and {w(k)(t)}∞

k=0 are defined by v(0)(t) = v(t), w(0)(t) = w(t)
and

v(n+1)(t) = Ω(v(n))(t) for t ∈ (0, T], n ≥ 0, (23)

and

w(n+1)(t) = Ω(w(n))(t) for t ∈ (0, T], n ≥ 0. (24)

[b] For any j = 0, 1, 2, . . . the functions v(j)(·) and w(j)(·) are mild lower and mild upper
solutions of PIVP (1), respectively;

[c] The sequence {v(j)(·)}∞
j=0 is increasing, i.e., v(j−1)(t) ≤ v(j)(t), for t ∈ (0, T], j = 1, 2, . . . ;

[d] The sequence {w(j)(·)}∞
j=0 is decreasing , i.e., w(j−1)(t) ≥ w(j)(t), for t ∈ (0, T], j =

1, 2, . . . ;
[e] The inequality

v(k)(t) ≤ w(k)(t), for t ∈ (0, T], k = 1, 2, . . . (25)

holds.
[f] For any k = 0, 1, 2, . . . , m, the sequences {Ṽ(n)

k (·)}}∞
n=1 and {W̃k(·)}}∞

n=1 converge uni-
formly on [tk, tk+1], k = 0, 1, 2, . . . , m to Ṽk ∈ C1−α,ρ([tk, tk+1]) and W̃k ∈ C1−α,ρ([tk, tk+1]),
respectively, where

Ṽ(n)
0 (t) =





u0
Γ(α) , t = 0,

e
1−ρ

ρ t( t
ρ

)1−αv(n)(t), t ∈ (0, t1],
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W̃(n)
0 (t) =





u0
Γ(α) , t = 0,

e
1−ρ

ρ t( t
ρ

)1−αw(n)(t), t ∈ (0, t1],

and for k = 1, 2, . . . , m,

Ṽ(n)
k (t) =





Mk(v(n)(tk−0)−v(n−1)(tk−0))+Ψk(v(n−1)(tk−0))
Γ(α) , t = tk,

e
1−ρ

ρ (t−tk)
( t−tk

ρ

)1−αv(n)(t), t ∈ (tk, tk+1],

W̃(n)
k (t) =





Mk(w(n)(tk−0)−w(n−1)(tk−0))+Ψk(w(n−1)(tk−0))
Γ(α) , t = tk,

e
1−ρ

ρ (t−tk)
( t−tk

ρ

)1−αw(n)(t), t ∈ (tk, tk+1].

[g] The functions V ∈ PC1−α,ρ([0, T]) and W ∈ PC1−α,ρ([0, T]) are mild solutions of the PIVP
(1) on [0, T] and V(t) ≤W(t), t ∈ [0, T], where

V(t) = e
ρ−1

ρ (t−tk)
(

t− tk
ρ

)α−1
Ṽk(t),

W(t) = e
ρ−1

ρ (t−tk)
(

t− tk
ρ

)α−1
W̃k(t), t ∈ (tk, tk+1], k = 0, 1, 2, . . . , m.

Proof. Define
v(0)(t) = v(t), w(0)(t) = w(t),

and for n ≥ 0,
v(n+1)(t) = Ω(v(n))(t), w(n+1)(t) = Ω(w(n))(t).

From Remark 4 it follows that, for all k = 1, 2, . . . , m, the equalities

lim
t→tk+

(
e

1−ρ
ρ (t−tk)(t− tk)

1−αv(n+1)(t)
)

=
[Mk(v(n+1)(tk − 0)− v(n)(tk − 0)) + Ψi(v(n)(tk − 0))]ρ1−α

Γ(α)
,

lim
t→tk+

(
e

1−ρ
ρ (t−tk)(t− tk)

1−αw(n+1)(t)
)

=
[Mk(w(n+1)(tk − 0)− w(n)(tk − 0)) + Ψi(w(n)(tk − 0))]ρ1−α

Γ(α)
, n = 0, 1, 2, . . .

(26)

hold. According to Remark 3, the functions v(n+1)(·), w(n+1)(·) satisfy

v(n+1)(t) = u0 A0(t) + I0(t, v(n)), w(n+1)(t) = u0 A0(t) + I0(t, w(n)), t ∈ (0, t1], (27)

and also

v(n+1)(t) = [Mkv(n+1)(tk − 0) + Gk(v(n)(tk − 0))]Ak(t) + Ik(t, v(n)),

w(n+1)(t) = [Mkw(n+1)(tk − 0) + Gk(w(n)(tk − 0))]Ak(t) + Ik(t, w(n)),

t ∈ (tk, tk+1], k = 1, 2, . . . , m.

(28)
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We use induction to prove properties of the sequences of successive approximations.
First, let n = 1. The function v(·) is a mild lower solution of PIVP (1). Therefore, for
t ∈ (0, T], it satisfies the inequalities

v(0)(t) = v(t) ≤ u0 A0(t) + I0(t, v(0)) = v(1)(t), t ∈ (0, t1],

v(0)(t) = v(t) ≤ Mk Ak(t)

[
u0

k−1

∏
j=0

(Mj Aj(tj+1)) +
k−1

∑
j=0

Ij(tj+1, v)
k−j−1

∏
p=j+1

(Mp Ap(tp+1))

]

+ Ak(t)
k

∑
j=1

(
Ψj(v(tj − 0))−Mjv(tj − 0)

) k−1

∏
p=j

(Mp+1 Ap(tp+1)) + Ik(t, v),

= v(1)(t), t ∈ (tk, tk+1], k = 1, 2, . . . , m.

(29)

From inequality (29) it follows that v(0)(t) ≤ v(1)(t), t ∈ (0, T]. Then, from condition
(A1) and equality (17), we get

Ik

(
t, v(0)

)

=
1

ραΓ(α)

∫ t

tk

(t− s)α−1e(ρ−1)
(

t−s
ρ

)
Eα,α

(
−Lk

(
t− s

ρ

)α)(
ψ
(

t, v(0)(s)
)
+ Lkv(0)(s)

)
ds,

=
1

ραΓ(α)

∫ t

tk

(t− s)α−1e(ρ−1)
(

t−s
ρ

)
Eα,α

(
−Lk

(
t− s

ρ

)α)(
ψ
(

t, v(1)(s)
)
+ Lkv(1)(s)

)
ds,

+
1

ραΓ(α)

∫ t

tk

(t− s)α−1e(ρ−1)
(

t−s
ρ

)
Eα,α

(
−Lk

(
t− s

ρ

)α)(
ψ
(

t, v(0)(s)
)
− ψ

(
t, v(1)(s)

)

+ Lkv(0)(s) + Lv(1)(s)
)

ds ≤ Ik

(
t, v(1)

)
, k = 0, 1, 2, . . . , m.

(30)

From the definition of the operator Ω, conditions (A1) and (A2) with

x = v(0)(t) ≤ y = v(1)(t),

inequality (30) and the inequality

Ψj(v(0)(tj − 0))−Ψj(v(1)(tj − 0))−Mj(v(0)(tj − 0)− v(1)(tj − 0)) ≤ 0, (31)

for j = 1, 2, . . . , m, we obtain

v(1)(t) = u0 A0(t) + I0(t, v(0)) ≤ u0 A0(t) + I0(t, v(1)), t ∈ (0, t1],

v(1)(t) = Mk Ak(t)

[
u0

k−1

∏
j=0

(Mj Aj(tj+1)) +
k−1

∑
j=0

Ij(tj+1, v(0))
k−j−1

∏
p=j+1

(Mp Ap(tp+1))

]

+ Ak(t)
k

∑
j=1

(
Ψj(v(0)(tj − 0))−Mjv(0)(tj − 0)

) k−1

∏
p=j

(Mp+1 Ap(tp+1)) + Ik(t, v(0))

≤ Mk Ak(t)

[
u0

k−1

∑
j=0

(Mj Aj(tj+1)) +
k−1

∑
j=0

Ij(tj+1, v(1))
k−j−1

∏
p=j+1

(Mp Ap(tp+1))

]

+ Ak(t)
k

∑
j=1

(
Ψj(v(1)(tj − 0))−Mjv(1)(tj − 0)

) k−1

∏
p=j

(Mp+1 Ap(tp+1)) + Ik(t, v(1)),

t ∈ (tk, tk+1], k = 1, 2, . . . , m.

(32)

Therefore, function v(1) ∈ PC1−α,ρ([0, T]) is a mild lower solution of PIVP (1).
From the definition of functions v(i)(·), i = 1, 2, conditions (A1), (A2) with

x = v(0)(t) ≤ y = v(1)(t),
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inequalities (30) and (31), we obtain for t ∈ (tk, tk+1], k = 0, 1, 2, . . . , m,

v(1)(t) ≤ u0 A0(t) + I0(t, v(1)) = v(2)(t), t ∈ (0, t1],

v(1)(t) ≤ v(2)(t) + Ak(t)
k

∑
j=1

(
Ψj(v(0)(tj − 0))−Ψj(v(1)(tj − 0))

−Mj(v(0)(tj − 0)− v(1)(tj − 0))
) k−1

∏
p=j

(Mp+1 Ap(tp+1))

≤ v(2)(t), t ∈ (tk, tk+1], k = 1, 2, . . . , m.

(33)

Inductively we can prove that the functions v(n)(·), n = 1, 2, . . . , are mild lower
solutions of PIVP (1) and that

v(n)(t) ≤ v(n+1)(t), t ∈ (tk, tk+1], k = 0, 1, 2 . . . , m, n = 0, 1, 2, . . . .

Similarly, we have w(0)(t) ≥ w(1)(t) and the functions w(n)(·), n = 1, 2, . . . , are mild
upper solutions of PIVP (1) and

w(n)(t) ≥ w(n+1)(t), t ∈ (tk, tk+1], k = 0, 1, 2 . . . , m, n = 0, 1, 2, . . . .

From condition 1 it follows that v(0)(t) ≤ w(0)(t), for t ∈ [0, T]. Similar to the
inequality (30), we could prove that the inequality

Ik

(
t, v(0)

)
≤ Ik

(
t, w(0)

)
, t ∈ (tk, tk+1], k = 0, 1, 2, . . . , m

holds. Therefore, from the definition of the operator Ω, conditions (A1), (A2) with
x = v(0)(t) ≤ y = w(0)(t), we get

v(1)(t)− w(1)(t)

= Mk Ak(t)

[
k−1

∑
j=0

(
Ij(tj+1, v(0))− Ij(tj+1, w(0))

) k−j−1

∏
p=j+1

(Mp Ap(tp+1))

]

+ Ak(t)
k

∑
j=1

(
Ψj(v(0)(tj − 0))−Ψj(w(0)(tj − 0))

−Mjv(0)(tj − 0) + Mjw(0)(tj − 0)
) k−1

∏
p=j

(Mp+1 Ap(tp+1))

+ Ik(t, v(0))− Ik(t, w(0)) ≤ 0, t ∈ (tk, tk+1], k = 1, 2, . . . , m.

(34)

In a similar way we can prove the inequality (25). Therefore, claims [b]-[e] are estab-
lished. We now prove the convergence, i.e., claim [f]. For that, consider the interval [0, t1].
Define the sequence {V(n)

0 (t)}∞
1 by

V(n)
0 (t) = e

1−ρ
ρ t
(

t
ρ

)1−α

v(n)(t), (0, t1].

From the definition of the functions v(n)(·) we get that

lim
t→0+

V(n)
0 (t) = ρα−1 lim

t→0+

(
e

1−ρ
ρ tt1−αv(n)(t)

)
= ρα−1 u0ρ1−α

Γ(α)
.

Thus, we define V(n)
0 (0) = u0

Γ(α) , n = 1, 2, . . . . Multiplying the equalities (23) by

e
1−ρ

ρ t( t
ρ

)1−α, we obtain on (0, t1]:
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V(n)
0 (t) = u0Eα,α

(
−L0

(
t
ρ

)α)

+

( t
ρ

)1−α

ραΓ(α)

∫ t

0
(t− s)α−1e(1−ρ)

(
s
ρ

)
Eα,α

(
−L0

(
t− s

ρ

)α)[
ψ

(
s, e

ρ−1
ρ s
(

s
ρ

)α−1
V(n)

0 (s)

)

+L0e
ρ−1

ρ s
(

s
ρ

)α−1
V(n)

0 (s)

]
ds.

(35)

According to claims [c]-[e], the sequence {V(n)
0 (·)}∞

n=0 is monotonic and bounded
on [0, t1]. Also, this sequence is equicontinuous on [0, t1]. Therefore, it is uniformly
convergent on [0, t1]. Let Ṽ0(t) = limn→∞ V(n)

0 (t), t ∈ [0, t1]. According to the claims
[c]-[e], the inequalities

V(n)
0 (t) ≤ Ṽ0(t), t ∈ [0, t1], n = 1, 2, . . . , (36)

hold. Take the limit as n→ ∞ in (35), use the continuity of the function ψ and we obtain
the Volterra fractional integral equation

Ṽ0(t) = u0Eα,α

(
−L0

(
t
ρ

)α)

+

( t
ρ

)1−α

ραΓ(α)

∫ t

0
(t− s)α−1e(1−ρ)

(
s
ρ

)
Eα,α

(
−L0

(
t− s

ρ

)α)[
ψ

(
s, e

ρ−1
ρ s
(

s
ρ

)α−1
Ṽ0(s)

)

+L0e
ρ−1

ρ s
(

s
ρ

)α−1
Ṽ0(s)

]
ds, for t ∈ (0, t1].

(37)

Denote

V0(t) = e
ρ−1

ρ t
(

t
ρ

)α−1
Ṽ0(t) ∈ C1−α,ρ([0, t1]).

Therefore, the equalities

lim
t→0+

(
e

1−ρ
ρ tt1−αV0(t)

)
= ρ1−α lim

t→0+
Ṽ0(t) =

u0ρ1−α

Γ(α)

and

V0(t) = u0Eα,α

(
−L0

(
t
ρ

)α)
e

ρ−1
ρ t
(

t
ρ

)α−1

+
1

ραΓ(α)

∫ t

0
(t− s)α−1Eα,α

(
−L0

(
t− s

ρ

)α)
[ψ(s, V0(s)) + L0V0(s)]ds, t ∈ (0, t1].

(38)

hold.
We will now use an induction argument. Consider the interval [tk, tk+1], where

k ∈ {1, . . . , m}, is a fixed integer. Define the sequence {V(n)
k (·)}∞

n=1 by

V(n)
k (t) = e

1−ρ
ρ (t−tk)

(
t− tk

ρ

)1−α

v(n)(t)
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on (tk, tk+1]. From the definition of the functions v(n)(·), Remark 4 and equalities (26),
we get

lim
t→tk+

V(n)
k (t) = ρα−1 lim

t→tk+

(
e

1−ρ
ρ (t−tk)(t− tk)

1−αv(n)(t)
)

=
Mk(v(n)(tk − 0)− v(n−1)(tk − 0)) + Ψk(v(n−1)(tk − 0))

Γ(α)
.

(39)

Thus, we define

V(n)
k (tk) =

Mk(v(n)(tk − 0)− v(n−1)(tk − 0)) + Ψk(v(n−1)(tk − 0))
Γ(α)

, n = 1, 2, . . . .

Multiply the equalities (28) by e
1−ρ

ρ (t−tk)
( t−tk

ρ

)1−α, and we obtain on (tk, tk+1]:

V(n)
k (t) = e

1−ρ
ρ (t−tk)

(
t− tk

ρ

)1−α

v(n)(t)

=

[
Mke

ρ−1
ρ (t−tk)

(
t− tk

ρ

)α−1
V(n)

k (tk − 0)

+Gk

(
e

ρ−1
ρ (t−tk)

(
t− tk

ρ

)α−1
V(n−1)

k (tk − 0)

)]
Eα,α

(
−Lk

(
t− tk

ρ

)α)

+

(
t−tk

ρ

)1−α

ραΓ(α)

∫ t

tk

(t− s)α−1e(1−ρ)
( s−tk

ρ

)
Eα,α

(
−Lk

(
t− s

ρ

)α)

×
[

ψ

(
s, e

ρ−1
ρ (s−tk)

(
s− tk

ρ

)α−1
V(n−1)

k (s)

)

+Lke
ρ−1

ρ (s−tk)
(

s− tk
ρ

)α−1
V(n−1)

k (s)

]
ds.

(40)

According to claims [c]-[e], the sequence {V(n)
k (·)}∞

n=0 is monotonic and bounded
on [tk, tk+1]. This sequence is equicontinuous on [tk, tk+1]. Therefore, it is uniformly
convergent on [tk, tk+1]. Let

Ṽk(t) = lim
n→∞

V(n)
k (t), t ∈ [tk, tk+1].

According to the claims [c]-[e], the inequalities

V(n)
k (t) ≤ Ṽk(t), t ∈ [tk, tk+1], n = 1, 2, . . . ,

hold. Take the limit as n→ ∞ in (40), use the continuity of the function ψ, the definition
(14) of the function Gk, and we obtain the Volterra fractional integral equation

Ṽk(t) = Ψk

(
e

ρ−1
ρ (t−tk)

(
t− tk

ρ

)α−1
Ṽk(tk − 0)

)
Eα,α

(
−Lk

(
t− tk

ρ

)α)

+

(
t−tk

ρ

)1−α

ραΓ(α)

∫ t

tk

(t− s)α−1e(1−ρ)
( s−tk

ρ

)
Eα,α

(
−Lk

(
t− s

ρ

)α)

×
[

ψ

(
s, e

ρ−1
ρ (s−tk)

(
s− tk

ρ

)α−1
Ṽk(s)

)

+Lke
ρ−1

ρ (s−tk)
(

s− tk
ρ

)α−1
Ṽk(s)

]
ds, t ∈ [tk, tk+1],

(41)
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and

lim
t→tk+

Ṽk(t) =
Ψi(e

ρ−1
ρ (t−tk)

( t−tk
ρ

)α−1Ṽk(tk − 0))

Γ(α)
.

Denote

Vk(t) = e
ρ−1

ρ (t−tk)
(

t− tk
ρ

)α−1
Ṽk(t) ∈ C1−α,ρ([tk, tk+1]).

Therefore, the equalities

lim
t→tk+

(
e

1−ρ
ρ (t−tk)(t− tk)

1−αVk(t)
)
= ρ1−α lim

t→tk+
Ṽk(t) =

Ψi(Vk(tk − 0))ρ1−α

Γ(α)

and

Vk(t) = Ψk(Vk(tk − 0))Eα,α

(
−Lk

(
t− tk

ρ

)α)
e

ρ−1
ρ (t−tk)

(
t− tk

ρ

)α−1

+
1

ραΓ(α)

∫ t

tk

(t− s)α−1e(ρ−1)
(

t−s
ρ

)
Eα,α

(
−Lk

(
t− s

ρ

)α)

× [ψ(s, Vk(s)) + LkVk(s)] ds, t ∈ [tk, tk+1]

(42)

hold. Define the function V(t) = Vk(t) for t ∈ (tk, tk+1], k = 1, 2, . . . , m. Then, function
V ∈ PC1−α,ρ([0, T]) is a mild solution of the PIVP (1) on [0, T], i.e., the functions V(·) and
W(·) satisfy the initial value problem in (1).

Similarly, we can construct a sequence {W(n)
k (·)}∞

n=1, k = 0, 1, 2, . . . , m and the limit

functions W̃k(·), k = 0, 1, 2, . . . , m such that W̃k(t) ≤ W(n)
k (t), t ∈ [tk, tk+1], n = 1, 2, . . . ,

and Ṽk(t) ≤ W̃k(t). Then similarly, we define W ∈ PC1−α,ρ([0, T]), which is a mild solution
of PIVP (1) and V(t) ≤W(t), t ∈ [0, T].

2.5. Example

Consider the PIVP

(R
0 D0.3,0.5x)(t) =

x2(t)
t + 1

for t ∈ (0, 2] ∪ (2, 2.35],

lim
t→2+

(
e

1−0.5
0.5 (t−2)(t− 2)1−0.3y(t)

)
= 0,

lim
t→0+

(
e

1−0.5
0.5 tt1−0.3y(t)

)
= 0,

(43)

with ψ(t, x) = x2

t+1 , α = 0.3, ρ = 0.5.
Consider the function

v0(t) =
{

t−0.4, t ∈ (0, 2],
(t− 2)−0.45, t ∈ (2, 2.35].

Let t ∈ [0, 2] and v0(t) = t−0.4 ≤ x ≤ y. Then,

1
t + 1

(x + y) ≥ 2
1

t + 1
t−0.4 ≥ 2

3
2−0.4

and
x2

t + 1
− y2

t + 1
=

1
t + 1

(x + y)(x− y) ≤ 2
3

2−0.4(x− y),
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Therefore, we could choose the constant L0 = 2
3 2−0.4. Then the inequality

t−0.4 ≤ 1
0.50.3Γ(0.3)

∫ t

0
(t− s)−0.7e−t+sE0.3,0.3

(
−2

3
2−0.4(t− s)0.3

)

×
( s−0.8

s + 1
+

2
3

2−0.4s−0.4
)

ds
(44)

holds (see Figure 1, left).

Version August 11, 2021 submitted to Mathematics 15 of 16

Figure 1. Graphs of v0(t) = t−0.4 and the integral in (44) with t ∈ (0, 2] (left) and of v0(t) =

(t− 2)−0.45 and the integral (45) with t ∈ (2, 2.35] (right).

i.e. L1 = 2
3.35 0.35−0.45. Then the inequality

(t− 2)−0.45 ≤ 1
0.50.3Γ(0.3)

∫ t

2
(t− s)−0.7e−t+sE0.3,0.3

(
− 2

3.35
0.35−0.45(t− s)0.3

)

×
( (s− 2)−0.9

s + 1
+

2
3.35

0.35−0.45(s− 2)−0.45
)

ds

holds (see Figure 1 (right)).94

From inequalities (44) and (45) it follows that the function v0(t) is a mild lower95

solution of PIVP (43) on [0, 2.35](see Definition 2).96

Now, apply the suggested iterative scheme given by formulas (23) and (24) with
the operator Ω defined by Eq. (21) to obtain for n = 0, 1, 2, 3, . . . the successive approxi-
mations by
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From inequalities (44) and (45) it follows that the function v0(t) is a mild lower solution

of PIVP (43) on [0, 2.35] (see Definition 2).
Now, apply the suggested iterative scheme given by Formulas (23) and (24) with the oper-

ator Ω defined by Equation (21) to obtain for n = 0, 1, 2, 3, . . . the successive approximations
by
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According to Theorem 1 the sequence of successive approximations {vn+1(t)} is an
increasing one and it is convergent to a mild solution of PIVP (43) on [0, 2.35].

3. Conclusions

Recently many different types of fractional derivatives are defined and applied to
model more adequate real world phenomena. One of the last introduced fractional deriva-
tives is the so called generalized proportional fractional derivative, which is a generalization
of the classical Caputo and Riemann–Liouville fractional ones. The main difficulties in the
application of these derivatives to differential equations is that it is very difficult to obtain
exact solutions even in the scalar case. As a result we require some algorithm to solve the
corresponding initial value problems approximately. In this paper an approximate method
for solving an initial value problem for a scalar non-linear fractional differential equation
with generalized proportional fractional derivative of Riemann–Liouville type on a finite
interval is proposed. We study the case when some impulsive perturbations with negligible
small action time are applied to the equation. In connection with these impulses we set up
in appropriate way both the impulsive and the initial conditions. Additionally, we consider
the case when the lower limit of the fractional derivative is hanged at any impulsive time.
The suggested approximate scheme is based on the method of lower and upper solutions
combined with the monotone-iterative technique. Mild lower and mild upper solutions
are defined in an appropriate way. Two monotone sequences, increasing and decreasing
ones, are constructed and their convergence to mild solutions of the given problem is
established. In the case of uniqueness, both limits coincide with the unique solution of the
given problem. To the best of our knowledge it is the first approximate scheme suggested
to the initial value problem of this type of fractional differential equation.
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