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Abstract: The idea of hybrid approaches have become a powerful strategy for tackling several
complex optimisation problems. In this regard, the present work is concerned with contributing
with a novel optimisation framework, named learning-based linear balancer (LB2). A regression
model is designed, with the objective to predict better movements for the approach and improve
the performance. The main idea is to balance the intensification and diversification performed by
the hybrid model in an online-fashion. In this paper, we employ movement operators of a spotted
hyena optimiser, a modern algorithm which has proved to yield good results in the literature. In
order to test the performance of our hybrid approach, we solve 15 benchmark functions, composed of
unimodal, multimodal, and mutimodal functions with fixed dimension. Additionally, regarding the
competitiveness, we carry out a comparison against state-of-the-art algorithms, and the sequential
parameter optimisation procedure, which is part of multiple successful tuning methods proposed
in the literature. Finally, we compare against the traditional implementation of a spotted hyena
optimiser and a neural network approach, the respective statistical analysis is carried out. We
illustrate experimental results, where we obtain interesting performance and robustness, which
allows us to conclude that our hybrid approach is a competitive alternative in the optimisation field.

Keywords: metaheuristics; machine learning; hybrid approach; optimisation

1. Introduction

In recent years, the constant increase in complexity of the problems to be solved in
the industry and academy have raised the necessity to further improve and evolve new
techniques. In this context, hybrid approaches have been a standard and focus of multiple
works. They have proved to be the most successful strategy in terms of solving capacity
tackling hard optimisation problems [1]. In modern approaches, the use of randomised
optimisation methods have been the focus of work by the scientist community, a well-
known example are the metaheuristics. They have been successfully used to solve large
instance of complex and difficult optimisation problems, being useful when exact methods
are unable to provide solutions in a reasonable amount of time [2]. Usually, in the design
behind an algorithm, we find multiple complex items which are in charge of carrying out
the work in order to solve optimisation problems [3]. Inherent features, like intensification
and diversification [4–6], which are in control on how the approach can exploit and explore
the search space, respectively. Additionally, parameters and search components, such
as population, probabilities, search operators, initial solutions, and so on, comprehend
important family items in the work of an approach. In order to be intelligent, an agent which
works in a changing environment should have the ability to learn [7]. If the approach can
learn and adapt, we do not need to foresee and provide solutions for all possible situations
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which may appear on run-time. Machine learning, being part of artificial intelligence,
encircle a number of algorithms with the aim to optimise a performance criterion using
example data or past experience [8–10]. A well-known style of learning is the supervised
learning, which is mainly composed by learning functions with the aim of predict values,
and some of his classical objectives are regression and classification [11].

In this paper, we examine whether a formal relationship between an effective balance
of intensification and diversification, influenced by a regression model, and a classic
configuration of a metaheuristic exists, and whether it is sufficiently strong to be exploited
for an automated framework. Most metaheuristics operate in a sequential, iterative, and
in a previously designed manner, but the environment where they operate usually has
a dynamic nature. Additionally, they are stochastic algorithms, which comprehends
deterministic and random components. The stochastic components can take many forms,
such as simple randomisation by randomly sampling the search space or by random walks.
Thus, the randomness brings certain degree of uncertainness in the search. For instance,
if an agent just finished performing an intensification movement, and the next step in
the process performs a diversification movement, it has no certainty on reaching a better
neighbourhood. In Figure 1, we illustrate a graphic example of a situation where a white
agent needs to make a move; we aim to help the agent to have higher possibility to reach a
green dot (possible best solution) or a yellow dot (less possible best solution) than a red
dot (bad solution). The objective in the design of this framework is to let the approach
learn how to orchestrate the work performed by the agents in every iteration, hence, we
enforce the decision making of the approach and make him learn from previous iterations
on run-time. In this regard, two components are designed: movements operators; in this
work we employ movements from the spotted hyena optimiser (SHO) algorithm [12], and
a regression model. First, SHO is an interesting modern metaheuristic, which has proved
to yield good results in solving optimisation problems [13,14]. It is mainly based in the
grouping behaviours of a special type of Hyena, where the strong point in the algorithm is
the clustering features of the agents searching in the solution space. On the other hand,
the learning model, is where the central axis of the work is completed by linear regression
analysis. The work is completed as follows: dynamic data generated by the agents through
iterations will be managed by the learning model. In this context, each time a threshold
amount of iteration is met, a regression analysis is carried out by the learning model.
Thus, the search will be influenced by the resulting knowledge from the previous learning
process.

The efficiency of LB2 proposed in this research is evaluated in three phases by solving
15 well-known mathematical optimisation problems. The employed benchmark concerns
unimodal, multimodal, and mutimodal functions with fixed dimension. Additionally,
these continuous functions comprehends multiple features, such as being convex, non-
differentiable, unconstrained, and so on. Regarding the experimentation phases, we
compare our results with state-of-the-art optimisation methods, such as particle swarm
optimisation (PSO) [15], gravitational search algorithm (GSA) [16], differential evolution
(DE) [17], whale optimisation algorithm (WOA) [18], vapour–liquid equilibrium (VLE)
[19], and an hybrid between Nelder–Mead algorithm and dragonfly algorithm (INMDA)
[20]. In the second phase, we compare against sequential parameter optimisation (SPO)
[21]. The key work in SPO is performed by a prediction model, bringing improvements
in the parameters values and algorithm performance in an iterative scheme. Third, we
carry out a statistical evaluation of the results obtained by the traditional implementation
of SHO, neural network (NN) [22], sine cosine algorithm (SCA) [23], and our proposed
hybrid approach. Finally, we illustrate interesting experimental results, where the proposed
hybrid approach achieves good performance proving to be a good and competitive option
to tackle continuous optimisation problems.

The rest of this paper is organised as follows. The related work is introduced in the
next section. The proposed hybrid approach is explained in Section 3. Section 4 illustrates
the experimental results. Finally, we conclude and suggest some lines of future research.
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Figure 1. Graphic example of the search space illustrating green dots possible best solutions, yellow
dots less possible best solutions, and red dots bad solutions.

2. Related Work

This work proposes a learning-based hybrid approach, where the main feature is the
capability to influence the search performed by the agents ruled by the movements of
SHO. Therefore, following the taxonomy illustrated by Talbi in [24], our proposed work
can be described as a low-level teamwork hybridisation. Concerning the works reported in
the literature between machine learning and metaheuristics [8,25], it is well-known that
this relationship is not a one-way street, we do not have only approaches were machine
learning techniques assist and enhance metaheuristics, but also the other way around:
machine learning models improved by metaheuristics, is a much consolidated group in
the hybridisation field [26–30]. This paper is concerned with the first group, where novel
approaches have been proposed, such as [31], where a diversification-based learning (DBL)
framework is proposed. DBL is designed under families of components introduced in the
field of metaheuristics and machine learning that have broad applications in optimisation.
Additionally, a novel approach based on two well-known components is presented in [32],
an hybrid between intelligent guided adaptive search (IGAS) and path-relinking algorithm,
named IGASPR. The main learning phase is ruled by the means of growing neural gas
(GNG), the objective is to influence the construction of solutions controlling the features
of the best solutions in each iteration. Concerning proposed works under the influence
of regression analysis, [33] illustrates a data mining based approach for PSO. The main
ideas behind that contribution is that the parameter selection task can appropriately be
addressed by a data mining-based approach. The designed model employs a regression
analysis by means of non-linear regression models, the main objective is to learn suitable
parameters values from previous moves for PSO on run-time. In this field, this type of
scheme is also known as specifically-located hybridisation and it is concerned with the
parameter control strategies. In the literature, [34] also employ this type of hybridisation.
The authors propose an hybrid employing Tabu search (TS) and support vector machine
(SVM). The proposed approach is designed to tackle on hard combinatorial optimisation
problems, such as knapsack problem, set covering problem, and the travelling salesman
problem. The main task concerns the selection of decision rules from a corpus of solutions
generated in a randomly fashion, which are used to predict high quality solutions for a
given instance and it is used to fine-tune and guide the search performed by TS. However,
it is stated by the authors that the complexity of the approach is a key factor, they highlight
the time consumed and knowledge necessarily needed to implement, the process to build
the corpus, and the extraction of the classification rule. On the other hand, regarding
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hybrid specialising in intensification and diversification, to the best of our knowledge there
was none under the influence of a regression model. However, in [25], the feasible options
on intensification employing clustering [35] and frequent itemsets using association rules
[36,37] are illustrated. Regarding diversification, the use of clustering [35], self-organising
maps (SOM) [38], and binary space-partitioning (BSP) trees [39] have proved to be good
options balancing this issue in different approaches.

The LB2 proposed in this work draws inspiration by the following arguments. Firstly,
the scarce literature concerning machine learning mainly associated to regression model
assisting metaheuristics. Second, most approaches are problem-dependant, for instance,
in [32], the problem to be tackled by the regression model is the selection of best fitted
parameters for PSO in order to improve the performance. It is a good exploratory and
pioneer approach considering this attempt to be on run-time. However, the uncertainty in
extrapolating this specifically-located implementation to other approaches is high, espe-
cially taking into account the "no free lunch" theorem. Therefore, our proposition focus in
two major issues when designing a global search method, diversification, and intensifica-
tion. Thus, if we analyse the metaheuristic field, they are general features who are always
present. Third, the technique selected is a highly relevant issue. It is stated and explained
by authors, in [33], the level of complexity is an issue to take into account in the design
of the hybrid. Thus, we think this issue may have an impact replicating the results and
extrapolating the implementation to an unknown environment. In this context, we employ
classic techniques, where the novel mechanism are the clear advantages provided by our
proposed hybrid approach.

3. Proposed Hybrid Approach

In this section we present the proposed LB2 framework, we discuss the main ideas
in the design, motivations, and inspiration behind the proposed approach. Firstly, in
order to carry out the search in the solution space, the strategy employed is inspired by
population-based metaheuristics. The main idea is to perform using a set of agents who
evolve under the influence of multiple equations, known as movement of operators. In
this regard, they are usually classified as intensification and diversification concerning the
work performed, exploitation or exploration of the search space. In this work we employ
SHO and his four movement operators, where each hyena is currently an agent in the
framework.

The second answer proposed is concerned with the component in charge of the
regression analysis. In this first attempt to design LB2 the main concern was the complexity
of the employed technique [40,41]. In this regard, multiple techniques and methods to carry
out a regression analysis [42], such as linear models, SVM, and decision-tree-based models.
Thus, a linear model was selected because it is the most commonly used, and all other
regression methods build upon an understanding on how linear regression works [43,44].
Nevertheless, the regression model can potentially evolve in a more complex component, a
more detailed explanation is presented in Section 5.

The global conceptualisation of the proposed hybrid is illustrated in Figure 2. It
is based in the behaviour of multiple agents with the same attributes, also known as
population. They are controlled by the movements of SHO, influenced and balanced by the
learning-based model. A general description is presented in Section 3.1. The methodology
and detailed explanation of the proposed approach is explained in Section 3.2. In Section 3.3,
the population-based metaheuristic is presented, and the proposed algorithm is illustrated
in Section 3.4.
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Figure 2. Graphic example of the search process.

3.1. General Description

The proposed LB2 follows a population-based strategy, which concerns multiple
agents evolving in the solution space, intensification and diversification are performed,
and the process is terminated when a threshold amount of iteration is met. Dynamically
adjusting the configuration and behaviour is an important topic that continues to be of
growing interest. This work, in order to carry out the search, proposes two components:
scheme and β. Firstly, the scheme is concerned with the amount of intensification and
diversification to be performed in each iteration by the population. Regarding β, it is a
parameter employed as the threshold where the learning model needs to carry out the
regression analysis. The knowledge generated will be used to influence the selection
mechanism, which manages the scheme that needs to be performed. In this regard, the
selection will dynamically rule over the work of each agent, indicating the amount of
exploration and exploitation to carry out in the search space. The proposed steps of the
proposed LB2 are described as follows:

Step 1: Set parameters concerning the population-based algorithm: B,E,h, termination
criteria for the search.
Step 1.1: Set termination criteria for the search: set amount of iterations to perform LB2.
Step 2: Set parameters concerning the learning model: scheme, probabilities, β.
Step 2.1: Set schemes for intensification and diversification.
Step 2.2: Set the probabilities for each scheme to be selected by the selection mechanism.
Step 2.3: Set the value for threshold β.
Step 3: Generation of the initial population size to perform in the search.
Step 4: while the termination criteria is not met.
Step 5: For each agent:
Step 5.1: Selection mechanism on intensification: the scheme is selected and the exploitation
is carried out.
Step 5.2: Management of dynamic data generated.
Step 5.3: Selection mechanism on diversification: the scheme is selected and the exploration
is carried out.
Step 5.4: Management of dynamic data generated.
Step 6: Update parameters concerning the population-based algorithm: B,E,h.
Step 7: Check if the threshold β has been met.
Step 7.1: Perform regression analysis.
Step 7.2: Management of the knowledge generated: update scheme probabilities.

3.2. Methodology

Firstly, we need to define the schemes to perform through the search, in this first
attempt designing LB2, three levels where proposed and illustrated in Table 1. They define
the amount of work that needs to be performed in each iteration, the selection issue is
tackled by the means of probabilities, and they are defined as follows.
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for intensification: pi =
1

ISsoft
+

1
ISmedium

+
1

IShard
= 1

for diversification: pd =
1

DSsoft
+

1
DSmedium

+
1

DShard
= 1

where the probability pi and pd will be modified by the learning model every β amount of
iterations. This model is in charge of the regression analysis ruled by the means of linear
regression, where the fitted function is of the form:

y = wx + b

where y corresponds to the dependant variable, which is the fitness and the value we
want to predict. x represent the independent variable, which correspond to the scheme
performed. In this simple linear regression model proposed, we present the close rela-
tionship between the fitness and his convergence with the balance of intensification and
diversification performed. Regarding our proposed learning-model, we define three fitted
functions for each scheme on intensification and three for each scheme on diversification.
They are represented as follows:

For intensification:
yi−soft = wixi−soft + bi

yi−medium = wixi−medium + bi

yi−hard = wixi−hard + bi

For diversification:
yd−soft = wixd−soft + bd

yd−medium = wixd−medium + bd

yd−hard = wixd−hard + bd

In order to carry out the analysis, we employ the least squares method which is a
well-known approach used. We evaluate the grade of relationship between the works
performed by the agents in the amount of intensification and diversification with the best
fitness values reached. The model will make the decision based as follows:

W(xi) = MIN(yi−soft, yi−medium, yi−hard) and

W(xd) = MIN(yd−soft, yd−medium, yd−hard)

where W(xi) and W(xd) represent the schemes with the highest possibilities to achieve
better performance in the next β iterations. The regression model will modify the prob-
abilities of selection for each scheme. Thus, when the threshold is met, the process of
selection, carried out in a Monte Carlo roulette fashion, will be influenced. Additionally,
we highlight that all benchmark functions are minimisation problems which are aligned
with our proposed function MIN.

Regarding the threshold β, important issues need to be considered, such as amount
of total iterations, computing capacity, number of agents as population, and number of
schemes in the approach. In this work, small test were carried out with β values 200, 500,
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and 1000. However, we concluded that the best performance was achieved with a value of
1000.

A practical example can be described as follows: At the beginning, in each iteration,
the approach will select a scheme using a probabilistic roulette for the intensification
and diversification. Thus, for a three way scheme, as displayed in Table 1, the initial
probabilities for each scheme to be selected was in a 33.3%–33.3%–33.3% ratio. Additionally,
the regression model is always storing and sorting the fitness values and agents on run-time.
When the threshold β is met, the model performs a computing process corresponding to the
regression analysis. Thus, it is decided which scheme have the highest chance to achieve a
high performance over the next β amount of iterations. To do so, the probabilities values of
each scheme for intensification and diversification are updated, giving the winning scheme
a higher probability to be chosen. For instance, we designed a ratio of 60%–20%–20% ratio,
a graphic example is illustrated in Figure 3. Here, the scheme assigned with a blue color
had a minimum value in the resulting regression analysis compared with the other two
schemes, in this case, the winner is assigned a higher value of probability to be selected,
and so on.

(a) Roulette at the beginning (b) Roulette after model intervention

Figure 3. Graphic example of the modification of probabilities by the model.

3.3. Spotted Hyena Optimiser

In this paper, we instantiate SHO as a means to carry out the search of solutions in
order to solve optimisation problems. The movement operators are organised as illustrated
in Table 2 with the aim to be employed by LB2. The main feature of SHO is the cohesive
clustering in his population [12]. The mathematical model concerns diversification meth-
ods: encircling prey, hunting, and search for prey. Additionally, intensification method:
attacking prey. Additionally, they are described as follows:

1. Encircling prey: Each hyena takes the current best candidate solution as the target
prey. They will try to move towards the best position defined.

Dh =
∣∣B · Pp(x)− P(x)

∣∣ (1)

P(x + 1) = Pp(x)− E · Dh (2)

where Dh is the distance between the current spotted hyena and the prey, x indicates
the current iteration, B and E are coefficient vectors, Pp is the position of the prey, and
P is the position of the spotted hyena. The vectors B and E are defined as follows:

B = 2 · rnd1 (3)

E = 2h · rnd2 − h (4)

h = 5− (Iteration ∗ (5/Maxiteration)) (5)

where Iteration = 1, 2, 3, . . . , Maxiteration, rnd1 and rnd2 are random vectors in [0, 1].



Mathematics 2021, 9, 1976 8 of 23

2. Hunting: The hyenas make a cluster towards the best agent so far to update their
positions. The equations are proposed as follows:

Dh = |B · Ph − Pk| (6)

Pk = Ph − E · Dh (7)

Ch = Pk + Pk+1 + ... + Pk+N (8)

where Ph is the best spotted hyena in the population, and Pk indicates the position of
other spotted hyenas. Here, N is the number of spotted hyenas, which is computed
as follows:

N = countnos(Ph, Ph+1, Ph+2, ..., (Ph + M)) (9)

Here, M is a random vector [0.5, 1], nos defines the number of solutions and count all
candidate solutions plus M, and Ch is a cluster of N number of optimal solutions.

3. Attacking Prey: SHO works around the cluster forcing the spotted hyenas to assault
towards the prey. The following equation was proposed:

P(x + 1) = Ch/N (10)

Here, P(x + 1) updates the positions of each spotted hyenas according to the position
of the best search agent and save the best solution.

4. Search for Prey: The agents mostly search the prey based on the position of the cluster
of spotted hyenas, which reside in vector Ch. SHO makes use of the coefficient vector
E and B with random values to force the search agents to move far away from the
prey. This mechanism allows the algorithm to search globally.

Table 1. Example of the standard work to be completed by the approach.

Scheme Amount of
Intensification

Amount of
Diversification

Soft 1 1
Medium 2 2

Hard 3 3

Table 2. Organisation example of the pool of movement operators from metaheuristics.

Pool of Operators

Intensification Diversification

Exploitation movement 1 Exploration movement 1
Exploitation movement 2 Exploration movement 2

: :

3.4. Proposed Algorithm

In this subsection, we illustrate the designed algorithm. Algorithm 1 depicts the
general framework our proposed approach, where the operators of SHO performs intensifi-
cation and diversification under the influence and balance of our regression model. Finally,
Algorithm 2 presents the work in charge of the regression model. The regression analysis
is performed and the vectors with controls values are modified.
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Algorithm 1 Proposed LB2

1: Set initial parameters for SHO
2: Set initial parameters for regression model
3: Generate initial population
4: while (i ≤MaximumIteration) do
5: for each agent in the population do
6: StandardIntensification = Select-scheme-by-Roulette
7: while (StandardIntensification) do
8: Perform intensification operators
9: end while

10: if check if a best value was reached using StandardIntensification then
11: Update data structures with best values reached
12: end if
13: StandardDiversification = Select-scheme-by-Roulette
14: while (StandardDiversification) do
15: Perform diversification operators
16: end while
17: if Check if a best value was reached using StandardDiversification then
18: Update data structures with best values reached
19: end if
20: end for
21: if Check threshold β then
22: Call to Algorithm 2: Regression Model
23: end if
24: end while

Algorithm 2 Regression Model
1: while review of dynamic-data for all xi−soft do
2: Management of dataframe with dynamic-data
3: end while
4: Compute statistical modelling method: yi−soft
5: while review of dynamic-data for all xi−medium do
6: Management of dataframe with dynamic-data
7: end while
8: Compute statistical modelling method: yi−medium
9: while review of dynamic-data for all xi−hard do

10: Management of dataframe with dynamic-data
11: end while
12: Compute statistical modelling method: yi−hard
13: while review of dynamic-data for all xd−soft do
14: Management of dataframe with dynamic-data
15: end while
16: Compute statistical modelling method: yd−soft
17: while review of dynamic-data for all xd−medium do
18: Management of dataframe with dynamic-data
19: end while
20: Compute statistical modelling method: yd−medium
21: while review of dynamic-data for all xd−hard do
22: Management of dataframe with dynamic-data
23: end while
24: Compute statistical modelling method: yd−hard
25: Data structures with regression analysis are updated
26: Check MIN(yi−soft, yi−medium, yi−hard)
27: Check MIN(yd−soft, yd−medium, yd−hard)
28: Update probabilities for intensification scheme
29: Update probabilities for diversification scheme

4. Experimental Results

This section describes the experimentation process to evaluate the performance of our
proposed LB2. In this work we make use of 15 standard benchmark test functions. These
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benchmark are described in Section 4.1, and the experimental setup is described in Section
4.2 along the respective analysis in Section 4.3.

4.1. Benchmark Test Functions

In order to test the performance and demonstrate the efficiency of our proposed hy-
brid approach, we applied 15 well-known benchmark function, Table 3. These function
are divided into three main categories, such as unimodal [45] represented in Equations
(11)–(14) and Figures 4 and 5, multimodal [46] represented in Equations (15)–(19) and
Figures 6 and 7, and fixed-dimension multimodal [45,46], Equations (20)–(25) and Figures
8 and 9. Regarding the features of these functions, f1 to f9 are high-dimensional problems.
On the other hand, f10 to f15 comprehends low-dimensional problems. Additionally, all
test functions reflect different degrees of complexity, f1 to f4 are convex, f7, f11, and f13
are non-convex, f5, f6, and f8 are non-linear functions. Regarding the justification behind
the selection of this set of functions, f1 to f4 have only one global optimum and has no
local optima, which makes this first group of functions highly appropriate to study the
convergence rate and intensification ability of our proposed approach. Additionally, f5 to
f15 concerns large search space and multiple local solutions besides the global optimum.
Thus, they are useful evaluating how efficient the approach is avoiding local optima and
the diversification abilities. Additionally, it is well-known that functions from the second
group, f5 to f9, correspond to a group of very difficult problems to solve for optimisation
algorithms, where there is an exponentially increase in number of dimensions [47]. Finally,
all these functions are minimisation problems.

Table 3. Optimum values reported for the benchmark functions in the literature, with their corresponding solutions and
search subsets.

Function Search Subsets Opt Sol

f1(x) [−100, 100]30 0 [0]30

f2(x) [−10, 10]30 0 [0]30

f3(x) [−100, 100]30 0 [0]30

f4(x) [−30, 30]30 0 [1]30

f5(x) [−500, 500]30 −12,596.487 [420.9687]30

f6(x) [−5.12, 5.12]30 0 [0]30

f7(x) [−32, 32]30 0 [0]30

f8(x) [−600, 600]30 0 [0]30

f9(x) [−50, 50]30 0 [1]30

f10(x) [−65.536, 65.536]2 1 [−32]2

f11(x) [−5, 5]2 −1.0316285 (0.08983, −0.7126) and
(−0.08983, 0.7126)

f12(x) [−5, 10] for x1
and [0, 15] for x2

0.397887 (−3.142, 12.275), (3.142, 2.275),
and (9.425, 2.425)

f13(x) [−2, 2]2 3 (0, −1)
f14(x) [0, 1]3 −3.86 (0.114, 0.556, 0.852)
f15(x) [0, 1]6 −3.32 (0.201, 0.150, 0.477, 0.275, 0.275, 0.377, 0.657)

Unimodal functions:

Sphere Function

f1(x) = f (x1, x2, ..., xn) =
n

∑
i=1

x2
i (11)

Schwefel’s Function No. 2.22

f2(x) =
n

∑
i=1
|xi|+

n

∏
i=1
|xi| (12)



Mathematics 2021, 9, 1976 11 of 23

Schwefel’s Function No. 1.2

f3(x) =
n

∑
i=1

(
i

∑
j=1

xj

)2

(13)

Generalised Rosenbrock’s Function

f4(x) =
n−1

∑
i=1

[
100(x2

i − xi+1)
2 + (1− xi)

2
]

(14)

(a) f1, Sphere Function (b) f2, Schwefel’s Function No. 2.22

Figure 4. Unimodal benchmark mathematical functions f1 and f2 in a 3D view.

(a) f3, Schwefel’s Function No. 1.2 (b) f4, Generalised Rosenbrock’s Function

Figure 5. Unimodal benchmark mathematical functions f3 and f4 in a 3D view.

Multimodal functions:

Generalised Schwefel’s Function No. 2.26

f5(x) = −
n

∑
i=1

xi sin (
√
|xi|) (15)

Generalised Rastrigin’s Function

f6(x) = 10n +
n

∑
i=1

(x2
i − 10 cos (2πxi)) (16)

Ackley’s Function

f7(x) = −20exp(−0.2

√
1
n

n

∑
i=1

x2
i )− exp(

1
n

n

∑
i=1

cos (2πxi)) + 20 + exp(1) (17)

Generalised Griewank’s Function

f8(x) = 1 +
n

∑
i=1

x2
i

4000
−

n

∏
i=1

cos (
xi√

i
) (18)
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Generalised Penalised Function

f9(x) =
π

n
×
{

10 sin2(πy1) +
n−1

∑
i=1

(yi − 1)2
[
1 + 10 sin2(πyi+1)

]
+ (yn − 1)2

}

+
n

∑
i=1

u(xi, 10, 100, 4)

(19)

where u(xi, a, k, m) is equal to

1. k(xi − a)m if xi > a

2. 0 if −a ≤ xi ≤ a

3. k(−xi − a)m if xi < −a

and

1. yi = 1 + 1
4 (xi + 1)

(a) f5, Generalised Schwefel’s Function No. 2.26 (b) f6, Generalised Rastrigin’s Function

Figure 6. Multimodal benchmark mathematical functions f5 and f6 in a 3D view.

(a) f8, Generalised Griewank’s Function (b) f9, Generalised Penalised Function No. 01

Figure 7. Multimodal benchmark mathematical functions f8 and f9 in a 3D view.

Multimodal functions with fixed dimensions:
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Shekel’s Foxholes Function

f10(x) =

[
1

500
+

25

∑
j=1

1

j + ∑2
i=1
(
xi − ai,j

)6

]−1

(20)

where:

ai,j =

[
−32 −16 0 16 32 −32 ... 0 16 32
−32 −32 −32 −32 −32 −16 ... 32 32 32

]

Six-hump Camel Back Function

f11(x) = 4x2
1 − 2.1x4

1 +
1
3

x6
1 + x1x2 − 4x2

2 + 4x4
2 (21)

Branin’s Function

f12(x) =

(
x2 −

5.1x2
1

4π2 +
5x1

π
− 6

)2

+ 10
(

1− 1
8π

)
cos(x1) + 10 (22)

Goldstein-Price Function

f13(x) =
[
1 + (x1 + x2 + 1)2

(
19− 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2

)]
[
30 + (2x1 − 3x2)

2
(

18− 32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2

)] (23)

Hartman’s Function No.1

f14(x) = −
4

∑
i=1

ci e

[
−

3

∑
j=1

ai,j
(
xj − pi,j

)2
]

(24)

where the values of a, c, and p are tabulated in Table. 4

Table 4. Values of aij, ci, and pij for function f14(x); n = 3 and j = 1, 2, 3.

i aij ci pij

1 3 10 30 1 0.3689 0.1170 0.2673
2 0.1 10 35 1.2 0.4699 0.4387 0.7470
3 3 10 30 3 0.1091 0.8732 0.5547
4 0.1 10 30 3.2 0.03815 0.5743 0.8828

Hartman’s Function No.2

f15(x) = −
4

∑
i=1

ci e

[
−

6

∑
j=1

ai,j
(
xj − pi,j

)2
]

(25)

where the values of a, c and p are tabulated in Table 5.

Table 5. Values of aij, ci, and pij for function f15(x); n = 6 and j = 1, 2, ..., 6.

i aij ci pij

1 10 3 17 3.5 1.7 8 1 0.131 0.169 0.556 0.012 0.828 0.588
2 0.05 10 17 0.1 8 14 1.2 0.232 0.413 0.830 0.373 0.100 0.999
3 3 3.5 1.7 10 17 8 3 0.234 0.141 0.352 0.288 0.304 0.665
4 17 8 0.05 10 0.1 14 3.2 0.404 0.882 0.873 0.574 0.109 0.038
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(a) f10, Shekel’s Foxholes Function (b) f11, Six-hump Camel Back Function

Figure 8. Multimodal functions with fixed dimensions f10 and f11 in a 3D view.

(a) f12, Branin’s Function No. 01 (b) f13, Goldstein-Price Function

Figure 9. Multimodal functions with fixed dimensions f12 and f13 in a 3D view.

4.2. Algorithms Used for Comparison and Experimental Setup

In order to compare the results obtained, we designed this step in three phases.
First phase, we compare against state-of-the-art optimisation methods reported in [18,
19,48], such as particle swarm optimisation (PSO) [15], gravitational search algorithm
(GSA) [16], differential evolution (DE) [17], whale optimisation algorithm (WOA) [18],
vapour–liquid equilibrium (VLE) [19], and an hybrid between Nelder–Mead algorithm
and dragonfly algorithm (INMDA) [20]. In the second phase we compare against SPO [21],
which is a heuristic that combines classical and modern statistical techniques to improve
the performance of search algorithms. Finally, we take a closer look at the performance
achieved by the traditional SHO, a neural network (NN) [22], and a sine cosine algorithm
(SCA) [23] approach solving the benchmark functions in comparison with our proposed
approach. Regarding the implementation of traditional SHO, the number of search agents
was set to 30, control parameter h with values in range of [5, 0], the constant M in the
range of [0.5, 1], and the value for number of generations was 10,000. Regarding the neural
network, the design was defined as follows: For each benchmark function, a total of one
million randomly generated solutions were created. On the other hand, we designed a
multi-layer perceptron. The main components comprehend an input node, 7 hidden layers
of 50 nodes, and an output equal to the number of dimensions for each function. The
training was carried out employing the gradient descent method [49] over 1000 iterations
for each randomly generated solution. The main objective behind the NN proposed is
the prediction of better function values on run-time. The implementation was performed
in python 3.7 and run in an environment windows 10 with 64 bits on Core i-5 processor
with 2.40 GHz and 8 GB memory. Finally, regarding the experimentation phase, for each
benchmark function the algorithm utilises 30 independent runs.

4.3. Performance Comparison

In this subsection, we illustrate and demonstrate the performance of our proposed
LB2 tackling the benchmark functions described in the Section 4.1.
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4.3.1. First Experimentation Phase

First, all results obtained by SHO and LB2 were rounded to four decimals. The results
published for PSO, GSA, DE, WOA, and VLE, were rounded in Tables 6–8 to four decimals,
using scientific notation, only for presentation purposes. However, all computations
were carried out using the reported decimals by their respective authors. Regarding the
performance on unimodal functions, Table 6 illustrates the results and comparison in f1
to f4, the average (Avg) and standard deviation (StdDev) are presented and compared,
and we highlight in bold the best values reached. Additionally, it is well-known that
unimodal functions can help us to measure the exploitation capabilities of our proposed
approach. In this regard, it is surprising how good LB2 performed. It was the second
most efficient algorithm tackling this set of benchmark function just behind INMDA.
Additionally, the small values reached corresponding to the StdDev shows that it is a
very solid algorithm. Concerning the multimodal functions and multimodal functions
with fixed dimensions, both sets can help us to evaluate the potential of our algorithm
in carrying out the exploration. Tables 7 and 8 illustrates the results and comparison on
functions f5 to f9 and f10 to f15 correspondingly, the average (Avg) and standard deviation
(StdDev) are presented, and we highlight in bold the best values reached. Surprisingly, the
LB2 attained really good results and small Avg and StdDev values once again, proving
to be a competitive approach able to tackle continuous problems. Moreover, having a
relatively good performance in these three previous set of benchmark test functions, we
can conclude that this first attempt corresponding to the LB2 has the potential to be a
competitive approach.

4.3.2. Second Experimentation Phase

In this subsection, we compare against SPO, which has proved to be a good and
competitive option in the field of parameter tuning. In this work, we compare the results
obtained by our LB2 against the works reported and implemented in [21]. They imple-
mented a PSO and a PSO + SPO approach, they solve 4 benchmark test functions. Table 9
illustrates the best values reached, where the first column, named problem, represent the 4
functions solved by the approach reported (2 unimodal and 2 multimodal). Column 2, 3,
and 4, represent the best values achieved by PSO and PSO + SPO (both implemented by
the authors), and our proposed LB2. It is clear the superiority of our approach reaching all
4 optimum values. However, in future work, in order to improve the hybrid methodology
proposed in this work, we have as an objective the implementation and comparison of SPO
and F-Race approaches in order to bring a more detailed and larger competition between
multiple optimisation and tuning tools.
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Table 6. Results comparison in unimodal benchmark functions.

F SHO LB2 WOA DE GSA PSO VLE INMDA

Avg StdDev Avg StdDev Avg StdDev Avg StdDev Avg StdDev Avg StdDev Avg StdDev Avg StdDev

f1 0.0006 0.0005 0.0000 0.0000 0.0000 0.0000 8.2000× 10−14 5.9000× 10−14 2.5300× 10−16 0.0000 1.3600× 10−4 2.0200× 10−4 4.4989× 10−7 1.413× 10−6 0.0000 0.0000
f2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.5000× 10−9 9.9000× 10−10 5.5655× 10−2 0.1941 4.2144× 10−2 4.5421× 10−2 3.0840× 10−6 6.0498× 10−6 0.0000 0.0000
f3 0.0007 0.0005 0.0000 0.0000 5.3900× 10−7 2.9300× 10−6 6.8000× 10−11 7.4000× 10−11 8.9353× 102 3.1896× 102 70.126 22.119 5.2020 0.7986 0.0000 0.0000
f4 2.7511 0.0502 6.7549× 10−7 5.4204× 10−7 27.866 0.7636 0.0000 0.0000 67.543 62.225 96.718 60.116 79.199 37.400 0.0000 0.0000

Table 7. Results comparison in multimodal benchmark functions.

F SHO LB2 WOA DE GSA PSO VLE INMDA

Avg StdDev Avg StdDev Avg StdDev Avg StdDev Avg StdDev Avg StdDev Avg StdDev Avg StdDev

f5 −1.0867× 104 0.5059 −1.2569× 104 0.0014 −5.0808× 103 6.9580× 102 −1.1080× 104 5.7470× 102 −2.8211× 103 4.9304× 102 −4.8413× 103 1.1528× 103 −1.2566× 104 68.705 −2245.1500 2.8400
f6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 69.200 38.800 25.968 7.4701 46.704 11.629 34.5830 17.8860 0.0000 0.0000
f7 4.4408× 10−16 0.0000 4.4409× 10−16 0.0000 7.4043 9.8976 9.7000× 10−8 4.2000× 10−8 6.2087× 10−2 0.23628 0.27602 0.50901 3.1704 3.9211 0.0000 1.6200× 10−16

f8 0.0000 0.0000 0.0000 0.0000 2.8900× 10−4 1.5860× 10−3 0.0000 0.0000 27.702 5.0403 9.2150× 10−3 7.7240× 10−3 0.5074 0.5041 0.0000 0.0000
f9 1.906 0.0865 1.8286 1.5985× 10−9 0.3397 0.2149 7.9000× 10−15 8.0000× 10−15 1.7996 0.95114 6.9170× 10−3 2.6301× 10−2 0.2369 0.2877 0.0000 0.0000

Table 8. Results comparison in multimodal benchmark functions with fixed-dimension.

F SHO LB2 WOA DE GSA PSO VLE INMDA

Avg StdDev Avg StdDev Avg StdDev Avg StdDev Avg StdDev Avg StdDev Avg StdDev Avg StdDev

f10 2.1326× 10−8 5.0161× 10−10 1.0000 0.0000 2.1120 2.4986 0.99800 3.3000× 10−16 5.8598 3.8313 3.6272 2.5608 0.99800 2.5294× 10−7 N/A N/A
f11 0.0000 0.0000 0.0000 0.0000 −1.0316 4.2000× 10−7 −1.0316 3.1000× 10−13 −1.0316 4.8800× 10−16 −1.0316 6.2500× 10−16 −1.0315 1.8408× 10−4 N/A N/A
f12 0.8718 0.0502 1.5436 0.4223 0.39791 2.7000× 10−5 0.39789 9.9000× 10−9 0.39789 0.0000 0.39789 0.0000 0.39815 4.5697× 10−4 N/A N/A
f13 36.0716 4.1607 32.6845 1.4854× 10−8 3.0000 4.2200× 10−15 3.0000 2.0000× 10−15 3.0000 4.1700× 10−15 3.0000 1.3300× 10−15 3.0097 1.6256× 10−2 N/A N/A
f14 −2.1211 0.1284 −2.0081 5.0800× 10−10 −3.8562 2.7060× 10−3 N/A N/A −3.8628 2.2900× 10−15 −3.8628 2.5800× 10−15 −3.8628 6.6880× 10−5 N/A N/A
f15 −0.8515 0.3541 −1.5870 0.5016 −2.9811 0.37665 N/A N/A −3.3178 2.3081× 10−2 −3.2663 6.0516× 10−2 −3.3179 2.1311× 10−2 N/A N/A

Table 9. Comparison results of SPO against LB2 proposed.

Problem PSO PSO + SPO LB2

Sphere 2.82× 10−9 1.66× 10−21 0
Rosenbrock 148.84 4.20 0

Rastrigin 10.43 0.98 0
Griewangk 0.12 0.07 0
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4.3.3. Third Experimentation Phase

In this subsection, we present a comparison of LB2 against a traditional SHO and a
neural network approach, both implementation made by us. Tables 10–12 illustrates a
summary of the values achieved in the experimentation phase. Column F corresponds
to the test function solved, and Opt depicts the global optimum for the given function.
Column best, worst, and Avg are the given values for best value reached, worst value
reached, the mean value, and the Avg time achieved in 30 executions.

Regarding Table 10, LB2 achieved 7 optimum values in f1– f3, f5, f6, f8, and f10,
in comparison of SHO which achieved 5 optimum values in f1– f3, f6, f8. Additionally,
regarding non-optimum values reached, our proposed approach is superior in 5 values
in functions f4, f5, f9, f13, and f15. However, the same goes for SHO in functions f11, f12,
and f14. Regarding Table 9, LB2 achieve better values than the NN approach implemented.
However, in functions f13 and f14 the performance of our proposed approach falls behind
considerably. Regarding Table 12, small differences can be observed, LB2 reached 1 more
optimum value. However, the biggest difference concerns the robustness in the overall
performance illustrated on columns Avg and StdDev. This can be observed in functions f4,
f5, and f10.

Regarding the average time achieved in the three illustrated tables, significant differ-
ence can be observed between NN, SCA, and LB2. In the hardest test function, multimodal,
and multimodal with fixed-dimension, NN falls significantly behind against SCA and LB2

in solving time, which is the strong point on these types of algorithms. Additionally, we
highlight the drawback behind a NN approach, the costly process of training and tuning of
the model. Nevertheless, the objective behind this test, presented in Table 11, concerns the
future incorporation of new learning methods to LB2.

Regarding the room for improvements observed in the performance, values achieved
in column StdDev for f5, f11, f14, and f15 can be interpreted as the approach being trapped
in local optima. The discussion follows two possible issues: the value employed as β and
the scheme values for the diversification process. Firstly, the proposed value for threshold
β is static through the search, the consequence can be interpreted as the approach expecting
a more balanced and timely feedback from the learning model. Thus, when a local optima
is detected, a proper answer can be delivered and carried out on run-time. Nevertheless,
the incorporation of a learning-based component managing a dynamic β value on run-time
will be proposed in order to tackle this issue. On the other hand, regarding the scheme
values for diversification, the employment of static values through the search can be a
critical issue. The amount and frequency on which diversification is carried out will be our
next focus as a balanced exploration in the search space needs to be performed.

In order to further analyse and demonstrate the improvement in the performance
of the hybridisation in optimisation tools, a statistical analysis is carried out. To this end
we compare convergence and we analyse the 30 executions performed for each function
through the Kolmogorov Smirnov Lilliefors (Lilliefors 1967) [50] and Wilcoxon’s signed
rank (Mann and Whitney 1947) [51] statistical tests. Additionally, in order to carry the
statistical analysis of this phase, we make use of the RStudio software to conduct both tests.
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Table 10. Results comparison of SHO vs. LB2.

F Opt SHO LB2

Best Worst Avg StdDev Avg Time(s) Best Worst Avg StdDev Avg Time(s)

f1 0 0 0.0021 0.0006 0.0005 51.6432 0 0 0 0 50.2377
f2 0 0 0 0 0 78.9275 0 0 0 0 80.7524
f3 0 0 0.0009 0.0007 0.0005 95.5684 0 0 0 0 96.3627
f4 0 2.7091 2.9351 2.7511 0.0502 75.8810 1.59197× 10−7 1.2262× 10−6 6.7549× 10−7 5.4204× 10−7 71.0024
f5 −12,569.487 −1.1318× 104 −0.9653× 104 −1.0867× 104 0.5059 121.3511 −1.2570× 104 −1.2567× 104 −1.2569× 104 0.0014 110.3354
f6 0 0 0 0 0 172.9312 0 0 0 0 60.6482
f7 0 4.4408× 10−16 4.4408× 10−16 4.4408× 10−16 0 256.8700 4.4408× 10−16 4.4409× 10−16 4.4409× 10−16 0 24.9122
f8 0 0 0 0 0 198.8546 0 0 0 0 21.7758
f9 0 1.8290 2.5642 1.906 0.0865 256.8707 1.8285 1.8286 1.8286 1.5985× 10−9 24.9172
f10 1 2.1745× 10−8 2.0745× 10−8 2.1326× 10−8 5.0161× 10−10 130.3552 1 1 1 0 17.5661
f11 −1.0316 0 0 0 0 29.1582 0 0 0 0 7.5244
f12 0.3979 0.8298 0.9523 0.8718 0.0502 22.5778 1.1905 2.0325 1.5436 0.4223 4.5528
f13 3 32.6845 44.4562 36.0716 4.1607 35.7789 32.6845 32.6845 32.6845 1.4854× 10−8 3.6846
f14 −3.86 −2.4301 −2.0081 −2.211 0.1284 53.2235 −2.0081 −2.0080 −2.0081 5.0800× 10−10 7.1120
f15 −3.32 −1.1676 −0.4676 −0.8515 0.3541 80.4755 −2.1676 −2.1676 −2.1676 0 8.1145

Table 11. Results comparison of NN vs. LB2.

F Opt NN LB2

Best Worst Avg StdDev Avg Time(s) Best Worst Avg StdDev Avg Time(s)

f1 0 0.0639 0.2223 0.1068 0.0435 347.4073 0 0 0 0 50.2377
f2 0 1.2426 5.8827 4.4004 0.8284 375.2112 0 0 0 0 80.7524
f3 0 0.0001 0.0379 0.0103 0.0108 377.0420 0 0 0 0 96.3627
f4 0 211.4253 3037.6363 1376.6472 1041.5627 375.6543 1.59197× 10−7 1.2262× 10−6 6.7549× 10−7 5.4204× 10−7 71.0024
f5 −12,569.487 −1.2557× 104 −1.7363× 104 −1.2057× 104 2056.9973 357.8577 −1.2570× 104 −1.2567× 104 −1.2569× 104 0.0014 110.3354
f6 0 1.8672 7.8028 4.2664 1.5939 357.7703 0 0 0 0 60.6482
f7 0 0.2687 0.5169 0.3905 0.0689 350.7136 4.4408× 10−16 4.4409× 10−16 4.4409× 10−16 0 24.9122
f8 0 0.0416 1.1238 0.8017 0.1986 354.9282 0 0 0 0 21.7758
f9 0 29,752,063.66 29,800,464.52 29,792,019.73 9855.6445 357.1411 1.8285 1.8286 1.8286 1.5985× 10−9 24.9172
f10 1 0.0160 495.8931 214.7364 200.8041 343.9354 1 1 1 0 17.5661
f11 −1.0316 −0.0079 0.0103 0.0005 0.0041 344.4559 0 0 0 0 7.5244
f12 0.3979 10.0004 16.3393 12.2766 1.3941 369.1712 1.1905 2.0325 1.5436 0.4223 4.5528
f13 3 3.0227 5.4062 5.3044 1.5586 369.8705 32.6845 32.6845 32.6845 1.4854× 10−8 3.6846
f14 −3.86 −3.8417 −3.5163 −3.7177 0.0913 376.6538 −2.0081 −2.0080 −2.0081 5.0800× 10−10 7.1120
f15 −3.32 −1.4809 −0.7560 −1.0409 0.2019 342.6122 −2.1676 −2.1676 −2.1676 0 8.1145
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Table 12. Results comparison of SCA vs. LB2.

F Opt SCA LB2

Best Worst Avg StdDev Avg Time(s) Best Worst Avg StdDev Avg time(s)

f1 0 0 0 0 0 10.4656 0 0 0 0 50.2377
f2 0 0 0 0 0 17.3875 0 0 0 0 80.7524
f3 0 0 0 0 0 74.3906 0 0 0 0 96.3627
f4 0 1.33× 10−10 29 17.4000 14.9755 13.4296 1.59197× 10−7 1.2262× 10−6 6.7549× 10−7 5.4204× 10−7 71.0024
f5 −12,569.487 2.51× 10−7 0.0696 0.0181 0.0251 9.5828 −1.2570× 104 −1.2567× 104 −1.2569× 104 0.0014 110.3354
f6 0 0 0 0 0 11.2296 0 0 0 0 60.6482
f7 0 4.44× 10−16 4.44× 10−16 4.44× 10−16 0 15.1140 4.4408× 10−16 4.4409× 10−16 4.4409× 10−16 0 24.9122
f8 0 0 0 0 0 13.3500 0 0 0 0 21.7758
f9 0 1.8285 1.8416 1.8304 0.0042 78.2046 1.8285 1.8286 1.8286 1.5985× 10−9 24.9172
f10 1 0.0003 4.9301 1.0010 2.0705 28.9609 1 1 1 0 17.5661
f11 −1.0316 1.0316 1.0316 1.0316 2.3406× 10−16 2.7093 0 0 0 0 7.5244
f12 0.3979 0.1555 3.9503 1.1009 1.3759 2.9765 1.1905 2.0325 1.5436 0.4223 4.5528
f13 3 29.6845 30.0547 29.7444 0.1229 4.1765 32.6845 32.6845 32.6845 1.4854× 10−8 3.6846
f14 −3.86 1.8519 1.8519 1.8519 0 7.0265 −2.0081 −2.0080 −2.0081 5.0800× 10−10 7.1120
f15 −3.32 2.1523 2.1524 2.1524 0 9.5578 −2.1676 −2.1676 −2.1676 0 8.1145
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The process is as follows, samples were tested for normality using Kolmogorov
Smirnov Lilliefors test, having failed it (p-values > 0.05). Therefore, the non-parametric
Mann-Whitney test subsequently used to compare the quality of SHO and LB2 results. We
need to take in consideration the next two hypothesis:

H0 : µSHO = µLB2

H1 : µLB2 6= µSHO

where µSHO and µLB2 are the arithmetic median of fitness values achieved corresponding
to SHO and our proposed LB2. Again, at this next step we take into consideration that
the significance level is also established to 0.05, thus, smaller values that 0.05 defines that
H0 cannot be assumed. In this regard, Table 13 illustrate the comparison between the two
implementations, we highlight in bold the values where there is a statistically significant
winner.

Table 13. Exact p values obtained on the benchmark test functions.

F SHO LB2

f1 SHO - >0.05
LB2 >0.05 -

f2 SHO - >0.05
LB2 >0.05 -

f3 SHO - >0.05
LB2 >0.05 -

f4 SHO - 2.35 × 10−18

LB2 >0.05 -
f5 SHO - 6.611 × 10−7

LB2 >0.05 -
f6 SHO - >0.05

LB2 >0.05 -
f7 SHO - >0.05

LB2 >0.05 -
f8 SHO - >0.05

LB2 >0.05 -
f9 SHO - 7.01 × 10−7

LB2 >0.05 -
f10 SHO - 1.1 × 10−7

LB2 >0.05 -
f11 SHO - 0.02067

LB2 >0.05 -
f12 SHO - >0.05

LB2 0.04 -
f13 SHO - >0.05

LB2 >0.05 -
f14 SHO - 1.395 × 10−6

LB2 >0.05 -
f15 SHO - 1.863 × 10−9

LB2 >0.05 -

5. Conclusions and Future Work

In this paper, a novel learning-based framework was proposed. Well-known methods
and techniques are employed to design a competitive hybrid approach capable to tackle
on optimisation problems. The proposed framework performs under a population-based
strategy, multiple agents explore, learn, and evolve in the search space. In this regard, two
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main components were employed: a population-based algorithm, named spotted hyena
optimiser, and a learning model which is based in a statistical modelling method.

Regarding the results achieved solving the benchmark functions, LB2 demonstrated
to be a competitive method and a promising alternative to tackle optimisation problems.
However, some issues remains and improvements can be proposed. Firstly, LB2 needs
to be tested tackling benchmark functions with higher difficulty. In this regard, we are
considering more complex functions with higher dimensionality, such as CEC 2021’s
composite functions. Additionally, the incorporation of hard optimisation problems, such
as set covering problem (SCP), manufacturing cell design problem (MCDP) are being
considered as future testing objectives. On another hand, results illustrated in the third
experimentation phase can be interpreted as LB2 being trapped in local optima for certain
functions. Nevertheless, improvements can be carried out in order to tackle this issue. In
this regard, new learning-based components will be proposed. The main objective is to
dynamically adjust parameters, such as threshold β and the scheme for diversification
and intensification. The idea is to keep the balance in the feedback of dynamic data and
knowledge generated between the population and the learning model on run-time. Finally,
new learning methods will be implemented, the objective concerns the viability, certainty,
and confidence in the generated knowledge. Thus, a more complex component will be
designed in order to measure the profit behind the knowledge for a better decision making
through the search.
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