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1. Introduction

Distributed-order differential equations have been investigated intensively in the
last few decades [1-7]. The concept of the distributed-order derivative was developed by
Caputo [1] and further developed by Caputo, Bagley, Torvik, Mainardi, and Gorenflo (just
to name a few) [2-8].

Diffusion equations with distributed-order may be regarded as a generalization of
integer- and fractional-order diffusion equations, and they can involve distributed-order
derivatives in time, or in space, or both. In particular, Caputo time distributed-order
diffusion equations, which are useful to describe ultra-slow diffusion processes [8], are
given by:

1 u(t,x) . du(t,x)
/Oc(zx) 30 do = 342

where the weighting function of the orders of the time derivatives is such that ¢c(«) > 0 and
1
c(a) da = C > 0[6,7]. The fractional derivatives correspond to the Caputo derivatives,

+f(tx), 0<t<T,0<x<IL, 1)

which for orders between zero and one are given by:

Mu(t,x) 1 /Ot(t—s)_“au(s’x) s, @)

ot T(1—a) s
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In fact, we easily see thatif c(«) = d(a — B), then (1) becomes the singular-order differential
equation:
Pu(t,x) _ %u(t,x)
otf a2
When 8 = 1, Equation (3) reduces to the classical (integer-order) diffusion equation. In the
case where 0 < B < 1, (3) is called the subdiffusion equation, and it has been the subject of
investigation by many researchers.

With the growing interest on this type of equation, numerical methods started being
developed. Diethelm and Ford [9] developed a basic framework for the numerical solution
of distributed-order differential equations. Ford and Morgado [10] discussed the existence
and uniqueness of solutions for this type of equation and also proposed a numerical method
for their approximation in the case where the initial conditions are not known. Morgado and
Rebelo [11] developed an implicit finite difference scheme for the numerical approximation
of the distributed-order time-fractional reaction-diffusion equation with a nonlinear source
term. Ye et al. [12] developed a numerical method based on a compact difference scheme for
a distributed-order time-fractional diffusion-wave equation. Wang et al. [13] derived and
analyzed a second-order accurate implicit numerical method for the Riesz space distributed-
order advection-dispersion equation, and Jin et al. [14] presented a numerical solution
of an initial boundary value problem for the distributed-order time-fractional diffusion
equation. They developed a space semidiscrete scheme based on the standard Galerkin
finite element method and established error estimates for both smooth and nonsmooth
initial data. A survey on numerical methods for these types of equations can be found
in [15].

These works struggled with the low convergence order of the numerical schemes,
since the solution of fractional differential equations may be nonsmooth at t = 0, even if
the data are infinitely smooth.

In [16], the authors showed that typical solutions of the single-order differential
Equation (3) possess a singularity at the origin in time, in the sense that they satisfy:

+f(t,x), 0<t<T,0<x<L. 3)

olu(t, x)

ot <C(14+t7%, =12 te(0,T], @)

for some positive constant C, a fact that brings serious difficulties in the derivation of
accurate numerical methods. In order to overcome this problem, the authors proposed the

use of a time-graded mesh:
. ryn
J
{ ! n =0

with some grading exponent r > 1 (note that » = 1 corresponds to a uniform mesh),
in which the grading exponent is properly chosen to recover the optimal convergence order
attained for sufficiently smooth solutions. Naturally, the grading exponent depends on the
order of the time derivative 8, and we refer the interested reader to [16] for more details.

Estimates as (4) are not easy to achieve for distributed-order diffusion equations
as (1) because the order of the time derivative is distributed over the interval [0,1], and
to the best of our knowledge, they have not been obtained so far. The use of time-graded
meshes without knowing how to properly choose the grading exponent is risky since,
as explained also in [16], larger grading exponents will densely place more mesh points
near the singularity, which originates the appearance of round-off errors.

Hence, in this paper, we consider initial-boundary value problems for (1), with the
initial condition and boundary conditions of the form:

u(0,x) = g(x), (6)

u(t,0) =ug, u(t,L) =uy, (7)
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where we assume that all the involved functions are continuous in their respective domains.
We propose a finite difference scheme on a nonuniform time mesh:

At={0:t0<i’1<-"<tn:T, i’i+1:t,'—l-Ti,i:O,l,...,I’l—l}. (8)

Since a singularity at the origin in time is expected, we consider nonuniform meshes such
that 7; < 7;41. In addition to the graded meshes (5), we are also interested in nonuniform
meshes of the kind (see [17]):

Ti:ti+1—ti:(i+1)717,i:(),l,...,l’l—l (9)

where 7 is a positive integer and # > 0.

n n
Taking into account the summation formulas Z k= M, Z 2= n(n+ 1)6(2” +1)

2 7
- k=1
2 _
Z © = ” + 1 and Z K= (n+1)(2n +?1,())(3n +3n 1>, we obtain, respectively:
2T
Mesh 1: (y =1) 5 = m? (10)
6T
Mesh2(y=2) 11 = oo, 11y (11
4T
Mesh 3: (y =3) 7 = 212 (12)
Mesh 4: (y =4) 5 = o (13)

nn+1)2n+1)(3n2+3n—1)"

The paper is organized as follows. In Section 2, we describe the numerical method.
In Section 3, we prove the stability and convergence of the numerical method. In Section 4,
we present some numerical results that validate the theoretical results obtained in the
previous section. The paper ends with the conclusions and plans for further investigation.

To the best of our knowledge, the use of this type of nonuniform meshes has never
been analyzed for distributed-order diffusion equations. As we will see in the section on
the numerical results, these meshes allow us to recover the optimal time convergence in
the case of problems with nonsmooth solutions.

2. Finite Difference Scheme

In order to numerically solve the problem (1), (6), (7), we start with the discretization
of the integral in (1). Let us consider a partition of the interval [0, 1] into N subintervals,

h
with equal length 1 = 1/N. Defining aj = jh — 5 j=1,...,N, we can use the midpoint
rule to obtain:
1 u(t, x 8“1 u(t, x)

In order to approximate the spatial derivative, we consider a uniform mesh, on the interval

[0, L], defined by the grid points x; = iAx,i =0,1,...,K, where Ax = %, and use:

O%u(t,x;) _ u(t,xip1) —2u(t,x;) +u(t,xi_q)
oxz (Ax)? ’

(15)

Substituting (14) and (15) in (1) and denoting U;(t) =~ u(t, x;), we obtain the semidiscretized
scheme:

N 9%l U; —2U; u_
nY (o at“/(t): +1(8) (Ax()t2)+ 1(t)

+f(tx), i=1,...,K—1. (16)
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From (7), we have:
Uo(t) = up, and Ug(t) =uy, (17)

and from (6):
uy(0) =g(x;), i=1,...,K—1. (18)

For the discretization of the fractional derivatives, we consider the nonuniform meshes (5)
and (10)—(13) and we use the L1 approximation formula (see [18]):

Yu(ty,-)
ai"‘fk Zr a u(tmer, ) —ultm,-)), m=0,1,....,k—1, k=1,...,n (19)

where the coefficients afr{ . are defined by:

L (tk - tm)liaj - (tk - tm+1)liaj

a =
m.k F(2 — 06])

(20)

Substituting in (16) and denoting by U¥ ~ u(t, x;), we obtain the finite difference scheme:

hic 2 1.'*1 (U’”H U;”)) -

uk

k k
kL—ouk+ Ul

(Ax)?

L4 fltx), i=1,...,K—=1, k=1,2,...,n. (21)

Hence, in order to obtain a numerical solution for (1), (6), and (7), we need to solve the
linear systems of Equation (21) noting that, taking (17) and (18) into account, we have:
Uh=uop, Ul =uy, 1=1,2,...,n (22)
u=g(x;), i=1,...,K—1. (23)
3. Stability and Convergence of the Numerical Method

In this section, we analyze the stability and convergence of the numerical scheme (21)—
(23). In what follows, C, depending on the context, denotes different positive constants.

3.1. Stability

Let us start by defining the operators L; (UF) and Lz(Uk Yfori=1,. -1, k=
1,2,...,nby:
N uk, , —2uk+uk
_ aj —
LyUf) = 1Y c(a)t . uf — == (Axl)z =, (24)
j=1

N N

- 1 & _ o

Lo(Uf 1) =1 ) lc(aj)Tkjlakil,kaf ) () y ;Ormlan;,k(u;ﬂ“ —ur). 9
= = m=|

Then, the numerical scheme (21)—(23) can be rewritten as:

Ly(Uf) = Ly(Us Y + f(te,x;), i=1,...,K—1, k=1,2,...,n. (26)

Proposition 1. The coefficients aiz,k, forj=1,...,N,satisfy:

. o

(i) A, >0, m=1,...k-1, k=12,

(i) Ty =T amk>0 m=1,. k—l, k=12,...,n

Proof. Letj=1,...,N.
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(i) This is straightforward since t,;, < t;;41 < f;
(if) Regarding (ii), note that:

1—a; 1—a;

(= t)Y = (e — t j

r(z o aj)Tn;lu:Z,k — ( k m) t ( kt 771+1) . (27)
m+1 = tm

By the mean value theorem, there must exist a §; € (t, t;;+1) such that:
T(2—a)) T, = —(1—aj)(t — &) " (28)
Analogously, there must exist a §» € (ty,+1,m+2) such that:
T2 —a))T ey o= —(1—a)) (b — &) ", (29)
Then,

2= ) (T, 10— Tl ) = (1= a) (—(h =&)Y+ (= 8) %) >0, (30)

since ¢1 < ¢2.
O

The result concerning the stability of the numerical scheme is presented in the follow-
ing theorem, where we prove that the error does not increase in each iteration given a small
perturbation on the initial condition.

Theorem 1. The numerical scheme (21)—(23) is unconditionally stable.

Proof. In order to analyze the stability of the numerical scheme, let:

§x)=g(x)+&, i=1,..., K—1,

and let UZ’.‘ and CIZZ‘ be the numerical solutions corresponding to the initial data g and &,
respectively. We easily see that:

Ll(s’,?) :Lz(slfl), i=1,... ,K=1k=1,...,n

Define EF = (s’{ sg ... s’;@l). We use mathematical induction to prove that:

||Ek||t>c> = max |s]f| < HEOHOO, k=1,...,n. (31)
1<i<K—1
Define:
N .
Ah,)=h) c(ucj)’rk_lak,’kﬂ, k=0,1,...,n—1. (32)
=1

Since the weighting function c(-) is nonnegative and a;:fk >0 fork=0,1,...,n—1,
we have that,

Ah,) >0, k=0,1,...,.n—1.
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Let us first prove that (31) holds for k = 1. Since A(h, 1)||EY||c = A(h, T0)|£},| for

some p € {1,2,...,K—1}, then:
2/el| — 2|l
1 _ 1 P P
A(h' TO)HE ||°° - A(h/ TO) 8p| + (AX)Z
2lep| — ey | — lej 4]
1 P p+1 p—1
< A(h,10)ley| (Ax)?
25 + el
Alh 1 p+l p—1
< |A(h e, — (Ax)
= [Li(ep)| = L1 ()| = [A(h, )] €)]

< A(h,1)|[E°[e

and therefore, (31) is satisfied for k = 1.

Let us now assume that ||E"||e < ||E%|| form = 1,2,...,k—1,
such that:
k k
ey | = ax [ei] = [[E*]e
Proceeding similarly as above:
k k ok
e 4 —2e, —¢
Al T )| < [A(h,T_y)eh — L~ P P
(h, e[| E¥[|oo < |A(h, T 1)€p (Ax)?
k k—
= |Li(€p)| = |La(ep )]
= hZC(% Ty 1“k 1k€ hZC ;) Z " a]
—1,% 0 S
= hzc(“]‘)To ‘lofkeerhZC(“]‘) Z(Tm+1am+lk
j: j:1 m=0
k=2 .
E c(aj) 7y ok‘sp“”’zl ;) 20( m+1“m+1k
: j= m=

since [€)] < ||E%||co and [€}y 1] < [|E°||co, we have that:

A(h,_q)||[EX ||oo<hZ cla;
j=1

—hZ D (5 [1E e

:A(h/Tk71)||EO||oo

1
< “0k+2 m+1“m+1k T “

and the result is proven. O

and let p € Nbe

m 78751)

-1 % . m+1

T, am"k)ep

T, )lep

)) [1E°]oo

Note that the result concerning the stability of the numerical scheme does not depend

on the definition of the mesh points (8).

3.2. Convergence

As in [19], we assume that that the solution of (1) with the initial condition (6) and

boundary conditions (7) satisfies (4).
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™*u(t;, -
In order to rewrite the L1 approximation of %, 0 < a < 1, we define the
operator:
j—1
Su(ty,) = Yttt (b, ) — u(tn, ), (33)
m=0

where t;, given in (8), are defined according to the mesh we use.
From [19], we know thatforj=1,...,n:

a"‘u(t- ) T
]’ — 0wl k
(Sixu(fj,o) - at“’ < tj & (tj‘l’ +k1’:nZa.?.(j\P

< tj”‘<‘1’1+kmax.‘1’k> since % <1,j=1,...,n

=2,...,] li
where:
¥ g sup (st |atu(e, ) - 242 (34)
s€(0,ty) 0s
2,(s .
¥ =2 (sup ) J L;)Ei ) , k=1,2,...,n. (35)
se tkflltk

Proposition 2. Let {t;} be the mesh points defined by (8), 6{ u(t;, -) the operator defined by (33),
and u the solution of (1). Then, under Assumption (4), we have:

a“u(i’]’, )

Bulty, ) - ]

‘ < Ctj*“n*e, j=1,...,n, 6 =min{ap, 2 —a} (36)
where a = r for the graded mesh (5), a = 2 for the mesh (10), a = 3 for the mesh (11), a = 4 for the
mesh (12), and a = 5 for the mesh (13), and C is a positive constant that does not depend on n.

Proof. The case where a graded mesh is used was already analyzed in [19]. Therefore, we
only consider the case where the remaining nonuniform meshes are used.
Let us first analyze ¥!.
ou(s,-)
s

L)

¥ < 7§ sup <51”‘
s€(0,t1)

u(ty,-) — ulto, ) D et sup (Sla
s€(0,t)

Since:

b 9u(s, -)
/0 e ds’

) — ul(ta, -
1/1(1,)1/[(0,)‘) < TgT(;lTéiﬂu(tl/') —u(t0,~)| =

[0
t]
< /
0

T5 sup (sl"‘
)

se (O,tl

du(s,-) ’ds < c/t1 sF1ds
0

ds
< Crg
and:
Ty sup (Sla a”(s')D <C sup sxsPl= CT(?
s€(0y) ds s€(0y)
we obtain:

¥l < cif < cn
where a = 2 for Mesh 1, a = 3 for Mesh 2, a = 4 for Mesh 3, and a = 5 for Mesh 4.

Let us now analyze Yk k=2,...,n.
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YE<CME sup PR < CER ayf2
s€(t_1tk)
e  For Mesh 1:

2 k—1
+26-2
< Ck2—1x+2(zx+ﬁ—2)yﬁ < Cok 22,28 — C(k)“ )

2 lX+lB—2 27‘5
¥ e T = oK) ”‘<k(k+1)y> <k+1>

n

_2‘5 _
<cC , x+26-2<0
—@-e), w1 28-2>0;

U For Mesh 2:

a+p—2 2-B
k< cuf 2 = o2 k(k+1)(2k+1) (k+1)(2k+1)
wh< cr ey = C(k ”) ( 6 " k—1)(2k—1)
k 0(+3ﬂ72
< CRRR-043P-2) B < P23 _ C<> - (2-)
- - n

~3p _
coln® at3p-2<0
T \n @, a438-2>0;

. For Mesh 3:

212 \AHB=2 0 1N 284
yh< Ctf- f‘tktﬁ 2 C(k3y) <(k+41)k ) <l;+1>

k IX+41372
< IR H+B2) b < P25 _ C() 4—(2-)
- - n

—4p —
<cln x+48-2<0
T \n Y, a44p-2>0;

. For Mesh 4:

2 a+p—2
yh< cr2 2 — c(k4;4) <(k+1)(2k+;())(3k + 3k — )u)
(k—1)(2k —1)(3(k — 1) + 3k — 4)\ P2
X( (k+1)(2k+1)(3k2 + 3k — 1) )

1562
< CHAC-0)+5(@+p-2) 8 < Cpa+5B—2,-5F _ C(’C)'X - (2-)

n

56 _
s wesp-2<0
T\ n Y, at58-2>0.

We may then conclude that:

*ul(t;, -
5f‘u(tj, = % < Ctj*“nfg, 6 = min{ap, 2 —a},

where a = 2 for Mesh 1, a = 3 for Mesh 2, a = 4 for Mesh 3, and 2 = 5 for Mesh 4. [

In order to proceed to the error analysis, let us first note that taking into account the
error committed in the discretization of the integral term in (1) and in the approximations
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of the fractional time derivatives and the second-order space derivative, the solution of (1)
at (t,x) = (#, x;) satisfies:

By el (klrmlaiz,Au(th,xi) ~(ta, ) = (07t ) - a;j”)) + L H )
= m—
_] ul(tkr Xip1) — 2u(ty, x;) + u(ty, xi—1) b f(tey) — (Ax)* *u(t, éi), 7
(Ax)2 i 12 ot
where we assume that:
H(@) = e P8 ¢ 2(j0,1]), v € (01) and & € (xio1,7is1).
Then, from (37), it follows:
Ly(u(t, x:)) = Lo(u(ty, %)) + f(box;)) + R, i=1,...,K—1, k=1,...,n,
where:
R =1 ic(lxj) <5f/u(tk, %) — a“jua(;"k]" xi)) B gH”(v) B (Alﬁé)2 842(;;@') (38)

j=1
We easily see that defining:

K =ult,x)-Uk, i=1,...,K-1,k=1,...,n

1 1

we have:

) =0, i=1..,K-1
Li(ef) = Lo(ef ") +RE =1 K1, k=1,..m

We start with some auxiliary lemmas.

Lemma 1. If the solution of (1) is such that the derivative in order to the time variable t satisfies (4)

44
is of class C* with respect to the variable x and the function H(«) = c(zx)Li’x) € C%([0,1)),
then there exists a positive constant C independent of n, N, and K such that:
N w
IR oo < C[n™FRh Y c(aj)t, " +h* + (Ax)* ), (39)
j=1

where y = min{ap, 1+ h/2} and a is defined as in Proposition 2.

Proof. Under the regularity assumptions on the solution (with respect to x and «), the result
is straightforward since:

N ) Sty x;
by c(aj) <Jf’u(tk, xi) — aa(gj'l)> ‘
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where C is a positive constant. Attending to the definition of Rf (see (38)) follows (39). O

Finally, we present the main result concerning the convergence of the numerical
scheme (21)-(23).

Theorem 2. Assume that the solution of (1) is such that the derivative in order to the time variable

o
t satisfies (4), is of class C* with respect to the variable x and the function H(&) = c(«) %
([0, 1]).
Then, there exists a positive constant C not depending on n, N, and K such that:
Hek||oo§C(n_”—|—(Ax)2+h2), k=1,2,...,n, (40)

where y = min{ap, 1+ h/2} with a = r for the graded mesh (5), a = 2 for the mesh (10), a = 3
for the mesh (11), a = 4 for the mesh (12), and a = 5 for the mesh (13).

Proof. We prove this result by induction in k.

Fork =1:
Aho)lle'|l, < |Li(el)| = [L2(eS) + R}
10 co 1\"p 2\"p P
< |L2(ep) |+ IRl
N o; N —u;
< |h c(uc]-)r(;lao,’leg +C|nFh ) clajt T+ 1+ (Ax)?
j=1 j=1
N L
=C(n"n Y clajt, '+ 1+ (Ax)?
j=1
Then:
N . N .
ClnthY_c(aj)t; ' +h*+ (Ax)? ClnthY_c(aj)t; ' +h*+ (Ax)?
1 j=1 _ j=1
o< v E T ) TR
h Zc(zx')ro_lag’l hY c(aj) b
j , N1
j=1 =1 / F(Z—oc])
Since: N
ty ! o
————>T % >min{T"",T "} >
e - EmME T =G
and:

s 1
h Z c(aj)t; Y'>cn Z c(aj) = C(/O c(w)da + O(h2)> > C,

with C positive constants, the result follows for k = 1.
Now, suppose that:

el < C(w7# + (Ax2+12), €=1,2,.. k-1,
and let p € N be such that ||ef||e = e’;.

Similar to the case k = 1, using the induction argument and taking into account
Proposition 2 and Lemma 1, it follows:
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i), < (8| ) o

<[]+ ¥

o)

N k=2
, ~1 8 —1.% '\ m+l
< |h ZC(”‘J) ZO(TmH”mH,k ~ T “m,k)ep
]:] m=l

N .
+C <n_}‘h Y c(vcj)t;“] + 1 + (Ax)2>
=

5=

_ _ [ _ o
< C(n Ph4+ W% + (Ax)z)h c(oc]-) (Tk—llakj—l,k - T 1”0fk>

j=1

N .
+C(n PR c(aj)t, T+ (Ax)2> )
Since Tk_—ll aZl 1k~ T 1agjk < Tk:ll aZl 1 - then from the inequality above, we obtain:

N .
(nﬂh Y. c(aj)t;a/ + 1+ (Ax)2>
=1

[ < c(nmn+m+ ax?) +c _ @)
] B o
h Z C((X]')kallakjfl,k
j=1
Note that:
18 L (=)' T Y
Te—1%—1k = T 1"(2 _“j) - r(z _ “j) > b
for which, from (41), we obtain:
k - 2 2 - W + (Ax)?
He H gc(n 4 h +(Ax))+Cn Hp e (42)
[e9) —;
ny. clajt, ’
j=1
Similar to the case k = 1, we prove that:
N —a 1
hY claj)t, ' > C</ c(a)da +O(h2)> > C.
j=1 0
Thus, from (42), we have:
k —u 2 2
He H < C(n +h* + (Ax) )
Thus, the proof is complete. [
4. Numerical Results and Discussion
, , : I(p—a+1)
We consider the numerical solution of a DODE of type (1) where c(a) = W’

u(t,x) = tPsin(x), t>0, x€[0,7],and B € (0, 1).

In Tables 1-3, we list the maximum of the absolute errors (||¢||«) and experimental
orders of convergence (EOCs) obtained with the numerical method (21)—(23) on uniform,
graded, and nonuniform meshes defined by (10)-(13) and with different stepsizes (with no
restrictions because the numerical scheme is unconditionally stable (see Theorem 1)).
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Table 1. B = 1/3: maximum of the errors and experimental convergence orders for a uniform mesh, a graded mesh, and Meshes 1, 2, 3, and 4.
Uniform Mesh Graded Mesh—r = 4 Mesh 1 Mesh 2 Mesh 3 Mesh 4
N=K n lle]leo EOC; EOCy Ile]| o EOC; EOCy lle]leo EOC; EOCy Ile]| oo EOC; EOCy lle]leo EOC; EOC, Ile] oo EOC; EOCy
2 4 1.67 x1071 — — 6.67 x 1072 — - 1.46 x 1071 — — 1.07 x 1071 — - 7.13 x 1072 - — 6.00 x 1072 —
4 16 166 x10"1  0.00 001 279x1072 0.3 126 928x1072 033 065 4.69x1072  0.60 119 287x107%2 0.6 131 230x1072  0.69 1.38
8 64 125x1071 020 040 913x107% 081 161 457x10"2 051 1.02  1.82x103 0.68 136 930x10~%  0.81 163  638x107% 092 1.85
16 256  860x1072 027 055 2.66x1073  0.89 1.78  210x1072 056 112 639x103 076 151  269x107%  0.89 179 154x103 1.03 2.05
32 1024 5.66x1073  0.30 060 716x107%* 095 189 925x10°%  0.59 119 207x107% 081 162  720x107* 095 190 350x107* 1.07 2.14
Table 2. B = 1/2: maximum of the errors and experimental convergence orders for a uniform mesh, a graded mesh, and Meshes 1, 2, 3, and 4.
Uniform Mesh Graded Mesh—r = 3 Mesh 1 Mesh 2 Mesh 3 Mesh 4
N=K " lle]leo EOC; EOC, Ile] oo EOC; EOCy lle]leo EOC; EOC, Ile] oo EOC: EOCy lle]leo EOC; EOC, Ile] oo EOC; EOCy
2 4 7.87 x 1072 - - 2.81 x 1072 - - 6.13 x 1072 - - 3.63 x 1072 - - 2.46 x 1072 - - 1.94 x 1072 - -
4 16 715x1072  0.07 014 117x1072  0.63 126 285x1072 055 111 1.23x1072 078 156 843x10°% 077 154 820x107% 062 1.24
8 64  446x1072 034 0.68 3.80x107% 081 162 1.05x1072 072 143 381x10% 085 170 337x107% 0.6 132 283x107% 077 1.53
16 256 247x1072 043 085 1.07x1073 091 1.83 351x107% 079 158 1.07x107% 092 1.83 9.99x107* 0.88 176  9.02x10"* 0.83 1.65
32 1024 135x1072 044 0.88 284x107* 096 191  1.09x107% 084 169 284x107* 096 191 272x107%* 094 188 252x107* 092 1.84
Table 3. 8 = 2/3: maximum of the errors and experimental convergence orders for a uniform mesh, a graded mesh, and Meshes 1, 2, 3, and 4.
p & g
Uniform Mesh Graded Mesh—r = 2 Mesh 1 Mesh 2 Mesh 3 Mesh 4
N=K = lle]loo EOC; EOCy le]leo EOC; EOCy Ile]]oo EOC; EOCy |le]| oo EOC; EOCy |le]] oo EOC; EOCy Ile]| oo EOC; EOCy
2 4 449 x 1072 — — 3.05 x 1072 — — 342 %1072 — - 217 x 1072 — — 1.10 x 1072 — - 449 x 1072 — —
4 16 2.68x1072 037 074 168x1072 043 08 1.69x1072 051 .02 147x1072 028 057 121x107% (%) (*) 950x1073 444 888
8 64 140x1072 047 094 495x10° 0.88 1.76  495x107%  0.89 177  467x107% 083 166 428x107% 075 150 385x107% 0.65 1.30
16 256 657 x107% 055 110  131x107% 096 192 131x10% 096 192 126x107% 094 1.88 120x107% 092 184 112x107% 0.89 1.78
32 1024 291x107% 059 117  335x107* 098 196 335x10—4 098 196 328x107* 097 195 3.15x107* 096 193 3.01x107* 095 1.90
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To test the robustness of the numerical method and to assess the theoretical conver-
gence orders derived in the previous section, we considered three different B values of
1/3,1/2, 2/3 (B = 1/3 leads to a strong singularity and = 2/3 to a weaker singularity).

A more careful analysis of Tables 1-3 reveals that the time convergence order is quite
low for the uniform mesh (for all 8 values considered). As expected, decreasing the strength
of the singularity (increasing f8), the convergence order also increases, being 0.3 for § = 1/3
and 0.6 for § =2/3.

Regarding graded meshes, we considered a grading that resulted in the optimal order,
for each of the f values. For f = 1/3, the convergence order was slightly smaller when
compared to the other two cases, but within the expected optimal order of convergence
(=1). The disadvantage of the graded mesh is that in order to obtain the optimal order of
convergence, one must know, a priori, the analytical solution (more precisely, the order of
the singularity). This makes no sense since the objective is to obtain a numerical solution,
because the analytical solution is not known. A possible solution is to perform a large
number of simulations considering different r values, until the optimal (or near-optimal)
convergence is obtained. This method is time consuming, especially for distributed-
order derivatives.

This being said, we propose a new methodology to solve this problem, based on the
use of nonuniform meshes. These meshes allow one to obtain the optimal (or near-optimal)
convergence order without knowing the analytical solution, a priori. We analyzed the
numerical results obtained for the four nonuniform meshes presented in the Introduction,
and the results are now compared with the theoretical expected order of convergence for
each mesh and § value.

Note that, in the previous section, we concluded that,

”ekHoo < C(n*}l + (Ax)2_|_h2>/k =0,12,...,n—1 (43)

where a = 2 for the mesh (10) (Mesh 1), a = 3 for the mesh (11) (Mesh 2), a = 4 for the
mesh (12) (Mesh 3), and a = 5 for the mesh (13) (Mesh 4). Furthermore, we have that
# =min{aB,1+h/2}:

e ForMesh1and g =1/3, we have that y = min{2/3,1+h/2} =2/3;

e ForMesh2and g =1/3, we have that y = min{1,1+ h/2} =1;

e For Mesh 3 and B = 1/3, we have that = min{4/3,1+ h/2} ~ 1 (since h — 0);
e  ForMesh3and = 1/3, we have that y = min{5/3,1+ h/2} ~ 1 (since h — 0).

Therefore, we were expecting a better convergence order (in time) for Meshes 3 and 4,
which is the case (see Table 1). We obtained a time convergence order of 0.95 and 1.07 for
Meshes 3 and 4. For Mesh 1, we obtained a time convergence order of 0.59, which is in
accordance with the expected theoretical convergence rate of 2/3:

e ForMesh1land  =1/2, wehave that y = min{1,1+h/2} =1;

e ForMesh2and f =1/2, we have that y = min{3/2,1+ h/2} ~ 1 (since h — 0);
e ForMesh 3 and B = 1/2, we have that = min{2,1+ h/2} ~ 1 (since h — 0);

e ForMesh3and f = 1/2, we have that y = min{5/2,1+ h/2} ~ 1 (since h — 0).

In this case, we were expecting a good convergence order (in time) for all meshes,
which is the case (see Table 2). The convergence orders were slightly higher for Meshes 2,
3, and 4, because in these meshes, there is room for a convergence order higher than one.
The best convergence order was obtained for Mesh 2:

e ForMesh1and f =2/3, we have that y = min{4/3,1+ h/2} ~ 1 (since h — 0);
e ForMesh2and § =2/3, we have that y = min{2,1 + h/2} ~ 1 (since h — 0);

e For Mesh 3 and B = 2/3, we have that y = min{8/3,1+ h/2} ~ 1 (since h — 0);
e  ForMesh3and § = 2/3, we have that y = min{10/3,1+ h/2} ~ 1 (since h — 0).
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In this case, we have a weaker singularity, and we were expecting a good convergence
order (in time) for all meshes, which is the case (see Table 3). Furthermore, as expected, we
obtained the best convergence order for Mesh 1.

By looking at the global results presented in Tables 1-3, we concluded that Meshes
3 and 4 provide an excellent convergence order in time, for all B values considered, thus
being a good alternative to graded meshes.

5. Conclusions

A similar analysis as the one carried out in [20] allowed us to conclude that the
numerical scheme presented in this work is unconditionally stable and convergent with
accuracy O(N 2 + K~2 + n~1) for sufficiently smooth solutions.

For nonsmooth solutions, we showed that finite difference schemes on uniform grids
provide results with the loss of the convergence order. To overcome this problem, we
proposed an alternative numerical method based on time nonuniform meshes. We proved
the stability and convergence of the numerical method, resulting in a convergence order
O(n™" + (Ax)? + h?) (with a = r for graded meshes with grading exponent r > 1,a = 2
for Mesh 1, 2 = 3 for Mesh 2, a = 4 for Mesh 3, and a = 5 for Mesh 4, being y =
min{ap, 1+ h/2}).

The use of nonuniform meshes improved the results (as illustrated in the numerical
results above), allowing us to recover the optimal convergence order (in time) for different
singularities, and moreover, nonuniform meshes of the type (9) can be a good alternative
to graded meshes.

A topic for further investigation is the smoothness properties of typical solutions of
this kind of problems, at least for some particular choices of the weighting function ¢(+).
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