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Abstract: We avoid as as much as possible the order reduction of Rosenbrock methods when they
are applied to nonlinear partial differential equations by means of a similar technique to the one
used previously by us for the linear case. For this we use a suitable choice of boundary values for the
internal stages. The main difference from the linear case comes from the difficulty to calculate those
boundary values exactly in terms of data. In any case, the implementation is cheap and simple since,
at each stage, just some additional terms concerning those boundary values and not the whole grid
must be added to what would be the standard method of lines.

Keywords: nonlinear partial differential equations; Rosenbrock method; order reduction

MSC: 65M12; 65M20

1. Introduction

Many physical phenomena are modeled by means of nonlinear time evolutionary
partial differential equations. These mathematical models are usually very complex and the
numerical analysis is essential in order to obtain quantitative and qualitative information
of the solution. A well-known procedure to carry out the numerical approximations is the
so-called method of lines which is based on separating the spatial approximation, carried
out by finite elements or other classical methods, from the time integration which is made
with schemes for ordinary differential schemes [1,2].

In this work we are mainly interested in the time integration taking into account two
basic properties of the ordinary differential system obtained after the spatial discretization:
the stiffness and the nonlinearity. A good choice is given by the Rosenbrock methods which
have been previously considered to time discretize partial differential equations, mainly
when they are semilinear [3–9]. In such a case, the implicitness of the step is given through
linear systems and not nonlinear ones, as would happen with Runge-Kutta methods.

Our main goal is to avoid the order reduction phenomenon which appears when
Rosenbrock methods are used. This order reduction is well-known for all types of time
integrators with internal stages and has been widely studied, although there are few
references where the order reduction is avoided for the nonlinear case [4,8,10,11]. In [11],
the author uses an extrapolation technique for Runge-Kutta methods, converting the usual
scheme into a multistep algorithm. In [10], the authors use, for certain linearly implicit
methods, an extension of the technique developed in [12], based on the abstract theory for
linear initial boundary values problems introduced in [13,14]. The implementation of the
proposed algorithm requires substantial changes of the usual time integration schemes
which are also computationally expensive when the problem is not one dimensional.
Moreover, the problem studied in [10] is not general since the authors assume that the
solution and the source term vanish at the boundary. Finally, in [4], the authors partially
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avoid the order reduction by imposing additional conditions to increase the order observed
in practice for Rosenbrock methods. For this, it is necessary to increase the number of
internal stages and, as a consequence, the computational cost grows. The Rosenbrock
method ROS3P constructed in [4] has been successfully used in [15] for the numerical
approximation of mathematical models in electrocardiology. The same idea has been
considered in [8,16] to obtain other Rosenbrock methods with stiff order three. In any
case, up to our knowledge, up to now no Rosenbrock methods have been constructed
with stiff order greater than 3 for general semilinear initial boundary value problems. Just
order 4 has been obtained with the Scholz4-7B method in [17], but for the particular case of
Prothero-Robinson problem and only when the scalar value is very big.

In this paper we propose to use a technique similar to the one used in [3,18], also
based on the theory developed in [13,14]. The idea is to make the time integration before
the spatial one, and choose carefully the boundary values assigned to the internal stages of
the Rosenbrock method. In the linear case, those boundary values can be calculated exactly
in terms of data independently of the searched order. However, in the nonlinear case,
that is more difficult. In any case, our algorithms are computationally cheaper than the
methods in [10,11] because they just require modification on the boundary values, which
are negligible compared to modifications on the whole domain. On the other hand, our
technique is valid for any Rosenbrock method. We do not need to impose to the Rosenbrock
method any additional order condition. We also remark that we consider more general
problems than the ones in [10,11]; for example, the boundary values of (1) are nonvanishing.
Finally, we consider both reaction-diffusion problems and reaction-convection-diffusion
problems like the Burger’s equation. There are recent results in the literature concerning
the avoidance of order reduction with exponential methods like Lawson methods [19]
or more general Runge-Kutta ones [20]. However, only the case of reaction-diffusion
problems in which the nonlinear part is very smooth is treated there. Moreover, numerical
differentiation is required to calculate the suitable boundary values for the intermediate
problems, even to achieve local order 2 with Robin or Neumann boundary conditions
and to get local order 3 with Dirichlet and Robin or Neumann boundary conditions.
In contrast, in this paper, for those problems and with standard Rosenbrock methods, we
just require numerical differentiation in order to achieve local order greater than or equal
to 4 with Robin or Neumann boundary conditions, but not with Dirichlet ones. With more
stiff equations, like Burger’s equation, we will have to use numerical differentiation to
approximate some values on the boundary, in order to achieve local order greater than or
equal to 4 with both Dirichlet and Robin or Neumann boundary conditions. In any case,
as said before, that has not yet been achieved in the literature with any Rosenbrock method
for these problems and the technique, through a summation-by-parts argument, leads to
global order 4 for any Rosenbrock method of classical order greater than or equal to 4.

2. Abstract Formulation of the Problem

We need an abstract formulation of time evolutionary partial differential equation to
apply our method in order to avoid the order reduction. A crucial factor is that the order
reduction appears when the problem is formulated in a spatially bounded domain and
the solution does not vanish at the boundary. The linear case has been studied in [13,14].
On the other hand, semilinear problems, but with vanishing boundary conditions, have
been studied in [21].

We now state the abstract formulation for a semilinear initial boundary value problem.
This approach is useful to obtain a problem similar to a differential ordinary system.
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Let X and Y be two complex Banach spaces, D(A) be a dense subspace of
X, A : D(A) ⊂ X → X, ∂ : D(A) ⊂ X → Y be a pair of linear operators. Moreover, we take
a nonlinear operator f : R+ × D(A)→ X. We consider the problem

u′(t) = Au(t) + f (t, u)

u(t0) = u0 (1)

∂u(t) = g(t).

We are interested in the case of an unbounded operator A because in the applications
this operator is the spatial differential operator of a partial differential evolutionary problem.
On the other hand, ∂ represents a boundary operator which values are certain traces on the
boundary of the solution of (1).

We assume the following hypotheses on the problem (1) (cf. [3,21]):

(A1) The boundary operator ∂ : D(A) ⊂ X → Y is onto.
(A2) Ker(∂) is dense and A0 : D(A0) = Ker(∂) ⊂ X → X, the restriction of A to Ker(∂),

is the infinitesimal generator of an analytical semigroup {S(t)}t≥0 in X.
(A3) If z is a complex number with <(z) greater than the type ω of {S(t)}t≥0, then the

eigenvalue problem
(z− A)x = 0

∂x = v

possesses, for each v ∈ Y, a unique solution x = K(z)v. Moreover, this solution satisfies

‖K(z)v‖ ≤ L‖v‖,

for some constant L > 0 independent of z, for z in a half-plane of the form<(z) ≥ ω0 > ω.

When f (t, ·) ≡ f (t), the problem (1) is linear and the results in [13,14] prove that,
with the previous hypotheses, it is well-posed and the solution u depends continuously on
regular enough data u0, f , and g. On the other hand, the fact that the semigroup generated
by A0 is analytical implies that (1) is a parabolic problem.

From hypothesis (A2) we deduce that, taking a > ω, we can define the fractional
powers (a− A0)

α : D((a− A0)
α)→ X for each α > 0. Then, we can also define the Banach

spaces Xα = (D((a− A0)
α, ‖ · ‖α) with norm ‖u‖α = ‖(a− A0)

αu‖.
We now state another hypothesis of the nonlinear problem (1).

(A4) For some α ∈ [0, 1), µ ∈ (0, 1] and U ⊂ R× Xα, the nonlinearity

f (t, ·) : U → X,

satisfies the Hölder-Lipschitz condition

‖ f (t, u)− f (s, v)‖ ≤ C(|t− s|µ + ‖u− v‖α),

for all (t, u), (s, v) ∈ R× Xα.

With this new hypothesis, problem (1) is well-posed when the boundary data satisfies
g(t) ≡ 0, see for example [21]. In the general case, we can assume that the boundary function
g : [0,+∞)→ Y satisfies g ∈ C1

Loc([0,+∞), Y) and we can look for a solution of (1) given by:

u(t) = v(t) + K(z)g(t), t ≥ 0,

for some fixed <(z) > ω. Then v is solution of an IBVP with vanishing boundary values
similar to the one studied in [21] and the well-posedness is a direct consequence if we take
the abstract theory for initial boundary value problems in [13,14] into account.

We remark that in [10], a similar problem is used, but it supposes that it is autonomous
and the vanishing boundary conditions ∂u = 0 and ∂ f (u) = 0. We do not need these
assumptions in our work.
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Finally, we remark that in this paper we are interested in solutions of (1) which are
regular enough. Then, we suppose in practice that the coefficients of the spatial differential
operator associated to A and the data u0, f , g are also regular enough and satisfy suitable
conditions of compatibility at the boundary.

2.1. Examples

Several well-known evolutionary problems of Applied Mathematics can be written in
the previous abstract way. For example, we show two examples which have been studied
in [21]. They will be used in our numerical experiments. We remark that other relevant
equations are also included, for example the Navier Stokes equation ([21]).

2.1.1. Reaction-Diffusion Equation

Let Ω ⊂ Rd, d = 1, 2, 3, be open and bounded with a smooth enough boundary
Γ, X = Lr(Ω), 1 < r < ∞. We consider the following equation, along with initial and
Dirichlet boundary data,

ρc
∂

∂t
u =

d

∑
i,j=1

∂

∂xi

(
Kij(x)

∂

∂xj
u

)
+ ρq(t, x, u)− ρc

d

∑
i=1

vi(t, x)
∂

∂xi
u

Here u is the temperature, ρ the density, c the specific heat, Kij the conductivity, q is
the rate of production of heat per unit of mass (depending on temperature) and v is a field
of convection. Since [Kij(x)]di,j=1 is a symmetric and positive definite matrix for all x ∈ Ω,
the operator

A =
d

∑
i,j=1

∂

∂xi

(
Kij(x)

∂

∂xj

)

with D(A) = W2,r(Ω) and D(A0) = W2,r(Ω) ∩W1,r
0 (Ω) satisfies our hypotheses with

α = 1/2.

2.1.2. Generalized Burgers Equation

We consider the equation

ut(t, x) = uxx(t, x) + cu(t, x)ux(t, x) + h(t, x, u(t, x)), x ∈ [−1, 1], (2)

where c is a constant. The solution is completely determined by the initial value and the
Dirichlet boundary conditions. The case of vanishing boundary values (with c = −1) is
considered in page 57 of [21]. We suppose that

h : R+ × [−1, 1]×R→ R,

is measurable in x, locally Hölder continuous in t and Locally Lipschitz continuous in
u, uniformly in x, with |h(t, x, u)| ≤ r(x)s(t, |u|), r ∈ L2(−1, 1), and s a continuous and
increasing in its second argument function.

The abstract version of this problem is as follows. We take X = L2(−1, 1),
D(A) = H2(−1, 1) and Au = d2u/dx2, ∂u = [u(−1), u(1)]T. We also denote A0 = A|Ker∂,
then D(A0) = H2(−1, 1)

⋂
H1

0(−1, 1) and D((−A0)
(1/2)) = X1/2 = H1

0(−1, 1). When the
problem is linear, i.e., when c = 0 and h(t, x, u(t, x)) = h(t, x), the problem is well-posed
under suitable hypotheses of regularity of the data. On the other hand, the nonlinear case
with vanishing boundary values is well-posed with a similar argument to the one used in [21].
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3. The Time Semidiscretization
3.1. Rosenbrock Methods for Abstract Initial Boundary Value Problems

Rosenbrock methods are well-known to be determined by the following matrices of
coefficients [2]

A = [αij]
s
i,j=1 =


0 0 . . . 0

α21 0 . . . 0
...

...
...

αs1 αs2 . . . 0

,G = [γij]
s
i,j=1 =


γ 0 . . . 0

γ21 γ . . . 0
...

...
...

γs1 γs2 . . . γ

.

In this paper, we assume certain usual restrictions on the coefficients of the Rosenbrock
method. We suppose that

αi =
i−1

∑
j=1

αij, γi =
i

∑
j=1

γij,

which simplifies the derivation of the order conditions, and

γii = γ > 0, 1 ≤ i ≤ s,

which implies that only one matrix decomposition is needed per step and permits to obtain
desirable stability properties of the Rosenbrock method. We also use the notation

βij = αij + γij, j ≤ i, βi =
i

∑
j=1

βij,

and B = A+ G = [βij]
s
i,j=1. Finally, we define the vectors b, 1, γ and αl , l ≥ 0, by

b = [b1, . . . , bs]
T , 1 = [1, . . . , 1]T , γ = [γ1, . . . , γs]

T , αl = [αl
1, . . . , αl

s]
T ,

and the s-dimensional identity matrix is denoted by I .
We suppose that the Rosenbrock method has classical order p. The necessary and

sufficient order conditions for that can be found in [2].
If τ > 0 is the time step and tn+1 = tn + τ ∈ [t0, T], for 0 ≤ n ≤ N − 1, u0 ≈ u(t0)

is the initial value and the values un, obtained recursively, are approximations of u(tn).
The Rosenbrock method applied to (1), without taking into account the boundary values,
leads to the following linear equations for the internal stages:

(I ⊗ I −B ⊗ τA)Kn = (1⊗ τAun)

+τF(tn + ατ, 1⊗ un +AKn)

+(G ⊗ τ fu(tn, un))Kn

+γ⊗ τ2 ft(tn, un), (3)

where Kn is the vector of the internal stages and F(tn + ατ, 1 ⊗ un +AKn) denotes the
vector whose i-th component equals

f (tn + αiτ, un +
i−1

∑
j=1

aijK
j
n).

Notice that, for fixed τ, these are stationary problems which need some given bound-
ary to be completely determined. A suitable choice of the boundary for these stages will
lead to avoid order reduction in a similar way as the one used in our previous work [3] for
the linear case.
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Therefore, we denote as Gn to the vector formed by the boundary values assigned to
the stages and we obtain the following equations for the time discretization of (1) by means
of a Rosenbrock method :

(I ⊗ I −B ⊗ τA)Kn = (1⊗ τAun)

+(G ⊗ τ fu(tn, un))Kn

+τF(tn + ατ, 1⊗ un +AKn)

+γ⊗ τ2 ft(tn, un) (4a)

∂Kn = Gn (4b)

un+1 = un + (bT ⊗ I)Kn, (4c)

3.2. The Choice of the Boundary Values for the Stages

Our idea is to use a trick similar to the one in [3],but instead of considering an iterative
procedure to find the appropiate boundary values for the stages, we directly look for a
truncation of a series expansion on the the timestepsize τ which satisfies the stage equation
until a given order. More precisely, we are looking for the s-dimensional vector K∗n

[j]

such that

K∗n
[j] = K∗n,0 + τK∗n,1 + τ2K∗n,2 + · · ·+ τ jK∗n,j (5)

and satisfying

(I ⊗ I −B ⊗ τA)K∗n
[j] = (1⊗ τAu(tn))

+G ⊗ τ fu(tn, u(tn))K∗n
[j]

τF(tn + ατ, 1⊗ u(tn) +AK∗n
[j])

+γ⊗ τ2 ft(tn, u(tn)) + δ
[j]
n (6)

for j ≥ 1, where ‖δ[j]n ‖ = O(τ j+1) . Then we take as boundary values

G[j]
n = ∂K∗n

[j] = ∂(K∗n,0 + τK∗n,1 + τ2K∗n,2 + · · ·+ τ jK∗n,j). (7)

To illustrate this, notice that for 1 ≤ j ≤ 4 and assuming enough regularity, the corre-
sponding values K∗n,j would be given by the following: As all the terms in the right hand side
of (6) have a factor τ, in order to match with the left-hand side, it follows that

K∗n,0 = 0.

Using this, the term on τ on the right-hand side of (6) is 1⊗ Au(tn) + F(tn, 1⊗ u(tn)),
from which the following equality applies

K∗n,1 = 1⊗ Au(tn) + F(tn, 1⊗ u(tn)) = 1⊗ u̇(tn),
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Proceeding inductively, it follows that

K∗n,2 = (B ⊗ A)K∗n,1 + (G ⊗ fu(tn, u(tn))K∗n,1 + α⊗ ft(tn, u(tn))

+(A⊗ fu(tn, u(tn)))K∗n,1 + (γ⊗ ft(tn, u(tn)) = β⊗ ü(tn).

K∗n,3 = (B ⊗ A)K∗n,2 + (G ⊗ fu(tn, u(tn)))K∗n,2 + (Aβ⊗ fu(tn, u(tn))ü(tn))

+
α2

2
⊗ ftt(tn, u(tn)) + α2 ⊗ ftu(tn, u(tn))u̇(tn)

+
α2

2
⊗ fuu(tn, u(tn))[u̇(tn), u̇(tn)]

= Bβ⊗ (Aü(tn) + fu(tn, u(tn))ü(tn)) +
α2

2
⊗ ftt(tn, u(tn))

+α2 ⊗ ftu(tn, u(tn))u̇(tn) +
α2

2
⊗ fuu(tn, u(tn))[u̇(tn), u̇(tn)]

K∗n,4 = B2β⊗
[

A2ü(tn) + A[ fu(tn, u(tn))ü(tn)] + fu(tn, u(tn))Aü(tn)

+ fu(tn, u(tn))
2ü(tn)

]
+B α2

2
⊗
[

A ftt(tn, u(tn)) + 2A[ ftu(tn, u(tn))u̇(tn)]

+A
[

fuu(tn, u(tn))[u̇(tn), u̇(tn)]
]
+ fu(tn, u(tn)) ftt(tn, u(tn))

+2 fu(tn, u(tn)) ftu(tn, u(tn))u̇(tn)

+ fu(tn, u(tn)) fuu(tn, u(tn))[u̇(tn), u̇(tn)]

]
+(α · Aβ)⊗

[
fuu(tn, u(tn))[u̇(tn), ü(tn)] + ftu(tn, u(tn))ü(tn)

]
+

1
6

α3 ⊗
[

fuuu(tn, u(tn))[u̇(tn), u̇(tn), u̇(tn)] + fttt(tn, u(tn)) +

+3 fttu(tn, u(tn))u̇(tn) + 3 ftuu(tn, u(tn))[u̇(tn), u̇(tn)]

]
.

Here β = α + γ = B1 and · is the componentwise product.

3.3. Local Error of the Semidiscretization

In order to study how the local error behaves with this strategy, let us denote by K̄[j]
n

and ū[j]
n+1, n ≥ 0 the stages and values obtained when the Rosenbrock method is used with

un = u(tn) in (4a) and (4c) and the boundary values (7) are used in (4b), i.e.,

(I ⊗ I −B ⊗ τA)K̄[j]
n = (1⊗ τAu(tn))

+(G ⊗ τ fu(tn, u(tn)))K̄
[j]
n

+τF(tn + ατ, 1⊗ u(tn) +AK̄[j]
n )

+γ⊗ τ2 ft(tn, u(tn)) (8a)

∂K̄[j]
n = ∂K∗n

[j] (8b)

ū[j]
n+1 = u(tn) + (bT ⊗ I)K[j]

n . (8c)

Let us study the local error when integrating a reaction-diffusion problem, i.e., when
f is such that fu(t, w) is a bounded operator whenever w is bounded. More precisely,
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Theorem 1. Let us assume that there exists a constant C such that

‖[I − τγ(A0 + fu(t, u(t))]−1‖ ≤ C, for any t ∈ [0, T], (9)

and that, for some j satisfying 1 ≤ j ≤ p,

(i) u ∈ Cj+1([0, T], X) with u(r)(t) ∈ D(Am) for 0 ≤ r + m ≤ j + 1 and every t ∈ [0, T].
(ii) f ∈ Cj([0, T]× X, X) such that, for every t ∈ [0, T],

∂

∂tr∂ul f (t, u(t))[u(m1)(t), . . . , u(ml)(t)] ∈ D(Am),

for m1 + · · ·+ ml ≤ j and l + r + m ≤ j.

Then, the local truncation error corresponding to the method described by (4c) with Gn in (7) satisfies

‖ρ[j]n+1‖ = ‖u(tn+1)− ū[j]
n+1‖ = O(τ j+1).

Proof. Let us first decompose

u(tn+1)− ū[j]
n+1 = (u(tn+1)− u∗[j]n+1) + (u∗[j]n+1 − ū[j]

n+1), (10)

where

u∗[j]n+1 = u(tn) + (bT ⊗ I)K∗[j]n . (11)

By construction of K∗[j]n and considering the assumed regularity (i)–(ii), (6) holds for
several terms K∗n,l (0 ≤ l ≤ j), whose expression coincides with that of the coefficient of the
corresponding power of τ in the stages which would turn up if A were a bounded operator.
Because of that, u(tn+1)− u∗[j]n+1 behaves in those powers of τ as when integrating a non-stiff

problem and, as the classical order of the method is p and j ≤ p, ‖u(tn+1)− u∗[j]n+1‖ = O(τ j+1).
As for the second term in (10), notice that by (11) and (8c),

u∗[j]n+1 − ū[j]
n+1 = (bT ⊗ I)(K∗[j]n − K̄[j]

n ).

Therefore, to end the proof, it suffices to notice that

‖K∗[j]n − K̄[j]
n ‖ = O(τ j+1).

This comes from the fact that, by computing the difference between (6) and (8a) and
taking into account that the boundary values coincide, we have

(I ⊗ I −B ⊗ τA0)(K
∗[j]
n − K̄[j]

n ) = (G ⊗ τ fu(tn, u(tn)))(K
∗[j]
n − K̄[j]

n )

+τ[F(tn + ατ, 1⊗ u(tn) +AK∗[j]n )− F(tn + ατ, 1⊗ u(tn) +AK̄[j]
n )]

+δ
[j+1]
n .

Looking at the first stage and considering the form of A and G, this means that

[I − τγ(A0 + fu(tn, u(tn)))](K
∗[j]
n,1 − K̄[j]

n,1) = δ
[j+1]
n,1 . (12)

Taking then (9) into account,

‖K∗[j]n,1 − K̄[j]
n,1‖ = O(τ j+1). (13)
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Now, for the second stage, it follows that

[I − τγ(A0 + fu(tn, u(tn)))](K
∗[j]
n,2 − K̄[j]

n,2)

= τ(β2,1 A0 + γ2,1 fu(tn, u(tn)))(K
∗[j]
n,1 − K̄[j]

n,1)

+τ( f (tn + α2τ, u(tn) + α2,1K∗[j]n,1 )− f (tn + α2τ, u(tn) + α2,1K̄[j]
n,1)

+δ
[j+1]
n,2 . (14)

Notice that ‖τA0(K
∗[j]
n,1 − K̄[j]

n,1)‖ = O(τ j+1) because of (12) once it has been proved

that ‖K∗[j]n,1 − K̄[j]
n,1‖ = O(τ j+1) because (I − τγ fu(tn, u(tn))) is a bounded operator. On the

other hand,

f (tn + α2τ, u(tn) + α2,1K∗[j]n,1 )− f (tn + α2τ, u(tn) + α2,1K̄[j]
n,1) (15)

= α21

[ ∫ 1

0
fu(tn + α2τ, u(tn) + α21(λK∗[j]n,1 + (1− λ)K̄[j]

n,1))dλ

]
[K∗[j]n,1 − K̄[j]

n,1],

and therefore the norm of this term is O(τ j+1) using that f ∈ C1([0, T]× X, X) and the
fact that K∗[j]n,1 is bounded because of the assumed regularity and that the same happens

with K̄[j]
n,1 due to (13). Because of all this, using again (9), ‖K∗[j]n,2 − K̄[j]

n,2‖ = O(τ j+1) and
proceeding inductively with the rest of stages, the result follows.

Although Theorem 1 holds only when f is a bounded operator, we show in the
numerical experiments that our technique is also useful when f is an unbounded operator.

3.4. How to Calculate the Boundary Values for the Stages

The following aim of our work is to see how the boundary values (7) can be obtained
from the data of problem (1). In some cases, it will possible to calculate them exactly from
the known data. In other cases, in order to achieve a certain order, it will be necessary to
resort to numerical differentiation. Let us thoroughly study the different situations:

1. We can always take

Gn = ∂K∗n
[2] =

(
τ(1⊗ ġ(tn)) + τ2(β⊗ g̈(tn))

)
, (16)

which is easily calculable in terms of the data of the problem. In such a way, we
get local order 3 if the classical order p satisfies p ≥ 2. To compare with what was
suggested in [3] for linear problems, if we consider

Gn = ∂
(
τU′(tn + ατ) + τ2(γ⊗ u′′(tn))

)
= ∂K∗n

[2] + O(τ3),

the result on the order of the local error would be the same as considering boundary
(16). As it was already also studied in [3], the classical method of lines, which
discretizes firstly in space and then in time, leads to local order 2 for time-dependent
boundary value problems, even though the problems are just linear. Therefore, we
are gaining at least one order of accuracy with the technique which is suggested in
this paper, even without resorting to numerical differentiation.

2. In the case that f (t, u) is a bounded operator so that hypotheses (ii) of Theorem 1 are
satisfied for j = 3, the boundary operator is Dirichlet, and more precisely, f and its
derivatives have also sense over [0, T]×Y, so that

[ f�(t, u(t))]|∂Ω = f�(t, u(t)|∂Ω), (17)
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where � denotes any partial derivative, it happens that ∂K∗n
[3] can also be calculated

exactly in terms of data considering that

∂

[
Aü(tn) + fu(tn, u(tn))ü(tn)

]
= ∂

[
...
u (tn)− ftt(tn, u(tn))− 2 ftu(tn, u(tn))u̇(tn)

− fuu(tn, u(tn))[u̇(tn), u̇(tn)]

]
. (18)

Then,

∂K∗[3]n = Bβ⊗
[

...
g (tn)− ftt(tn, g(tn))− 2 ftu(tn, g(tn))ġ(tn)

− fuu(tn, g(tn))[ġ(tn), ġ(tn)]

]
+

α2

2
⊗
[

ftt(tn, g(tn)) + 2 ftu(tn, g(tn))ġ(tn) + fuu(tn, g(tn))[ġ(tn), ġ(tn)]

]
.

Therefore, in such a case, local order 4 can also be achieved without resorting to
numerical differentiation if the classical order p satisfies p ≥ 3.
In the case of hypotheses of Theorem 1 are satisfied for j = 4, in order to calculate K∗n,4
on the boundary so as to achieve local order 5, apart from terms which can be directly
calculated in terms of derivatives of f evaluated at (tn, g(tn)) and ġ(tn), g̈(tn),

...
g (tn),

the following terms turn up:

A2u + A( fuü), Aü, A
[

ftt + 2 ftuu̇ + fuu[u̇, u̇]
]

. (19)

The second of those can be calculated as above using (18). As for the first one, notice
that, using (1),

A2ü + A( fuü) =
d2

dt2 [Au̇− A f ] + A( fuü)

=
d2

dt2 [ü− ft − fuu̇− A f ] + A( fuü),

= u(4) − fttt − 3 fttuu̇− 2 ftuuu̇2 − 3 ftuü− fuuuu̇3

−3 fuuu̇ü− fu
...
u −A( ftt + 2 ftuu̇ + fuuu̇2).

Therefore, all the terms are easily calculable as above (using also g(4)(tn)), except for
the last one, which coincides with the third term in (19). In the case that, for example,
X = C(I) for some real compact interval I, and A = ∂x(a(x)∂x) for a ∈ C1(I),
in order to calculate that term on the boundary, we need ux|∂Ω, uxx|∂Ω, u̇x|∂Ω, u̇xx|∂Ω.
As, again from (1),

uxx|∂Ω(t) = g(t)− f (t, g(t)), u̇xx|∂Ω(t) = ġ(t)− ft(t, g(t))− fu(t, g(t))ġ(t),

everything can be calculated in terms of data except for ux|∂Ω, u̇x|∂Ω. The first term
ux|∂Ω is either given by the space discretization itself of (4a)-(4b)-(4c) or must be
approximated through numerical space differentiation using the exact values g(t)
at the boundary and the approximation of the solution at the interior nodal values.
As for the second term u̇x|∂Ω, it has to be approximated by numerical differentiation
in time from the previous approximation values on the boundary ux(tn−j)|∂Ω (j ≥ 0),
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and for the first value u̇x|∂Ω(t0), it suffices to consider the Equation (1) and that u0(x)
is known. Therefore,

u̇x(x, t0) =
∂2

∂x2 (a(x)u′0(x)) + fx(x, t0, u0(x)) + fu(x, t0, u0(x))u′0(x).

In such a way, local order 5 can be achieved applying numerical differentiation to
approximate first-derivatives if the classical order satisfies p ≥ 4.
In order to obtain higher local orders, the corresponding expressions to consider at
the boundary get more and more complicated. Arguing as before, it is always possible
to approximate them through numerical differentiation if the classical order of the
method is high enough. However, as the order of the derivatives to approximate at the
boundary increases, the numerical differentiation problem can become more unstable.

3. In the case that f (t, u) is a bounded operator so that hypotheses of Theorem 1 are
satisfied for j = 3 and (17) and the boundary operator is Robin/Neumann, i.e., for
some constants η1 and η2 6= 0 and u ∈ X,

∂u = [η1u + η2∂nu]|∂Ω,

where ∂n is the normal derivative on ∂Ω, ∂K∗[3]n can also be calculated using (18), but just
in an approximated way. For u(tn) on the boundary, we will have to take the approxi-
mation which is given by the method after the space discretization of (4a)-(4b)-(4c) and
then, for ∂nu(tn)|∂Ω, we will take into account that

∂nu(tn)|∂Ω =
1
η2

[g(tn)− η1u(tn)|∂Ω]. (20)

On the other hand, u̇(tn)|∂Ω will have to be approximated by numerical differentiation
in time from the previous approximated values on the boundary u(tn−j)|∂Ω (j ≥ 0),
and for the first values u̇(t0)|∂Ω, u̇(t1)|∂Ω, Taylor approximations can be used consid-
ering the equation in (1) and successive derivatives with respect to time at t = t0,
which can be calculated because the initial condition u0 is known. Finally, ∂nu̇(tn)|∂Ω
can be approximated again using the Robin boundary condition, i.e., by

∂nu̇(tn)|∂Ω =
1
η2

[ġ(tn)− η1u̇(tn)|∂Ω]. (21)

Therefore, again local order 4 can be achieved if p ≥ 3, although now resorting to
numerical differentiation to approximate a derivative in time.
As for the calculation of K∗n,4, the same remarks of the previous point 2 apply with the
additional difficulties that more derivatives of f will be required since the boundary
condition includes the normal derivative, not only u̇(tn) (as with K∗n,3) must be
approximated through numerical differentiation in time from the previous values
u(tn−j)|∂Ω(j ≥ 0), but also u(j)(tn)|∂Ω (j = 2, 3, 4). Notice that ux|∂Ω, u̇x|∂Ω and üx|∂Ω
will also be required, but they can be directly calculated from the previous values,
at least in this case, through (20), (21) and differentiating again (21). That is to say, not
only the first time derivative must be approximated numerically but also derivatives
until order 4, with the possible instabilities which are caused because of being a
badly-posed problem.
Considering even higher orders would imply approximating even higher time deriva-
tives of the solution at the boundary, with its possible instability problems.

4. In the case in which f is an unbounded operator which can contain derivatives,
in order to calculate ∂K∗n,3 on the boundary with the aim of obtaining local order 4,
some numerical differentiation will be required, which will depend on the particular
form of f .
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For example, for the Equation (2), with c = 1 and f (t, u) = uux + h(t),

∂K∗n,3 = Bβ⊗
...
g (tn) + (

α2

2
−Bβ)⊗ ∂(2u̇(tn)u̇x(tn) + htt(tn)).

Therefore, when considering Dirichlet boundary conditions, u̇x must be calculated
through numerical differentiation in space from the exact values on the boundary of
u̇ and those which come from numerical differentiation in time of the approximated
values of the solution at the interior nodes.
For Neumann/Robin boundary conditions, what must be calculated is

2
[

η1u̇(tn)|∂Ωu̇x(tn)|∂Ω + η2[u̇x(tn)
2|∂Ω + u̇(tn)|∂Ωu̇xx(tn)|∂Ω]

]
.

knowing that

g(t) = η1u(t)|∂Ω + η2ux(t)|∂Ω. (22)

As, from the equation itself,

u̇xx = ü− u̇ux − uu̇x,

it suffices to approximate ux, u̇ and ü on ∂Ω (u̇x would then be solved by differentiat-
ing (22)). Then, from the numerical approximation of the solution which the method
gives, numerical differentiation in space may have to be applied to approximate ux on
the boundary, and then numerical differentiation in time must be used to approximate
u̇ and ü.
Trying to get even higher local order would imply considering numerical differentia-
tion of an order greater than 2.
In any case, even without resorting to numerical differentiation, ∂K∗n

[2] can always be
calculated in terms of the data for time-dependent boundary conditions, obtaining
local (and by summation by parts global) error of order 3. (Compare with [10] where
order 3 was also obtained for this equation for linearly implicit methods, but assum-
ing nonnatural vanishing boundary conditions and with [4] where order three was
obtained, but assuming additional conditions on the coefficients of the method).

We end with some remarks on other time integration methods. First, the same conclu-
sions than before can be drawn for implicit Runge-Kutta methods, following similar proofs
(cf. [11]). Of course, Rosenbrock methods are more suitable for nonlinear problems.

On the other hand, it is also possible to use W-methods, where the exact Jacobian
of the differential system is substituted by an approximation of it, more easy to calculate.
Many times, this approximation in our semilinear problems is just taken as the operator A
(see [9]). However, in that case, the boundaries for the stages which would lead to order 3
would be

Gn = ∂(τu̇(tn) + τ2(β⊗ ü(tn)− γ⊗ fu(tn, u(tn))u̇(tn))),

and therefore, in the end, to achieve that order, we would need to evaluate the Jacobian
of f . On the one hand, this is not reasonable because W-methods are used precisely to
avoid that. On the other hand, when fu(tn, u(tn)) is an operator which contains spatial
partial derivatives, the above boundary is not calculable in an exact way in terms of the
data. That is the reason why we have preferred to describe our analysis just for Rosenbrock
methods. On the other hand, the boundaries which would lead to a greater order under
the assumptions of Theorem 1 and assuming that the boundary operator is Dirichlet would
be much more difficult to calculate for W-methods because even to achieve local order 4,
∂A fu(tn, u(tn)) would be required.
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4. Numerical Experiments

To show the previous results in the numerical experiments, we have first integrated
the following problem for the nonlinear heat equation

ut(t, x) = uxx(t, x) + u2(t, x) + h(t, x), x ∈ [−1, 1] (23)

u(t,−1) = et−1, u(t, 1) = et+1,

with h such that the exact solution of the above equation is u(t, x) = et+x3
. For the time

integration, we have considered the Rosenbrock method GRK4T [22], which has four
stages and does not satisfy condition (3.11) (or its equivalent (3.11)’) in [6]. Therefore,
the standard method of lines leads to order 2 in time for this method [5]. For the space
discretization, we have considered a Gauss-Lobatto collocation spectral method based on
41 nodes, which leads to negligible errors in space. We have implemented the method
of lines, considering first the time discretization and then the space one. We have also
considered the boundaries ∂K∗n

[2] and ∂K∗n
[3]. We have measured the error committed when

integrating until time T = 1 in the discrete L2-norm which is associated to the Gauss-
Lobatto nodes. Figure 1 shows this error in terms of the chosen timestep. More precisely,
asterisks (’*’) correspond to the standard method of lines, which makes first the space
discretization and then the temporal one, circles (’o’) to the suggested method of lines
with Gn = ∂K∗n

[2] and crosses (’+’) to Gn = ∂K∗n
[3]. As observed in the figure, the slope of

the corresponding lines increases with the last two modifications, in such a way that the
errors also become smaller, and the more the more the stepsize k = 1/n decreases. (Notice
also that the cost of the last modifications is negligible compared with the total cost of the
method because we are just acting on the boundary). In such a way, the classical order 4 of
the method is recovered, as Table 1 shows more precisely.
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order 2
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order 4

Figure 1. Semilinear equation with f (t, u) = u2 + h(t) and GRK4T integrator, with Dirichlet bound-
ary conditions.

Table 1. Orders for global error, GRK4T and f (t, u) = u2 + h(t) with Dirichlet boundary conditions.
SML stands for ‘standard method of lines’ and ∂K∗n

[2], ∂K∗n
[3] for the different variations of the

technique suggested in this paper.

n 5–10 10–20 20–40 40–80

SML 2.04 2.20 2.33 2.52

∂K∗n
[2] 2.81 2.91 2.96 2.99

∂K∗n
[3] 4.37 4.26 4.15 4.08
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On the other hand, we have also considered a differential equation like that in (23),
but with Dirichlet boundary condition just at x = −1, and at x = 1, the Robin one

u(t, 1) + ux(t, 1) = 4et+1, (24)

so that the exact solution of the problem continues to be u(t, x) = et+x3
. The implemen-

tation of the Robin boundary condition leads now to a Galerkin Gauss-Lobatto spectral
discretization for the Lagrange polynomial associated to the last node (x = 1), so that
the numerical value at x = 1 is now an additional unknown for the space discretization.
In order to get now local order 4 with the suggested technique, we have had to resort
to numerical differentiation in time to approximate the time derivative at that last node.
We have done so through a Taylor method of order 2 for the first steps and through a
3-BDF formula for the consecutive ones. As Table 2 shows, the orders of the error with the
different strategies considered in this paper are the same as those with Dirichlet boundary
conditions although, as it can be observed in Figure 2, smaller stepsizes have to be consid-
ered so that the errors are smaller than those committed with the standard method of lines.
This last remark is more obvious for ∂K∗n

[2]. In any case, for stepsizes smaller than 5× 10−2,
the suggested technique with ∂K∗n

[3] is clearly the one which leads to smaller errors.

Table 2. Orders for global error, GRK4T and f (t, u) = u2 + h(t), with Robin boundary condition. SML
stands for ‘standard method of lines’ and ∂K∗n

[2], ∂K∗n
[3] for the different variations of the technique

suggested in this paper.

n 10–20 20–40 40–80 80–160 160–320 320–640

SML 2.36 2.33 2.33 2.32 2.33 2.36

∂K∗n
[2] 2.74 2.88 2.94 2.97 2.99 2.99

∂K∗n
[3] 4.43 4.35 4.24 4.15 4.06 3.78
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Figure 2. Semilinear equation with f (t, u) = u2 + h(t) and GRK4T integrator, with Robin bound-
ary condition.

We have also considered a problem where the differential operator has variable
coefficients, which is a case also included in the abstract formulation (1). More precisely,
we have integrated

ut(t, x) = (x2ux(t, x))x + u2 + h(t, x),
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with Dirichlet boundary conditions so that again the exact solution is u(x, t) = et+x3
.

The results are shown in Figure 3 and Table 3, where it is observed that the technique
suggested with both ∂K∗n

[2] and ∂K∗n
[3] improves the order of the standard method of lines

in the expected way.
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Figure 3. Semilinear equation with f (t, u) = (x2ux)x + h(t) and GRK4T integrator, with Dirichlet
boundary conditions.

Table 3. Orders for global error, GRK4T and f (t, u) = (x2ux)x + h(t) with Dirichlet boundary
conditions. SML stands for ‘standard method of lines’ and ∂K∗n

[2], ∂K∗n
[3] for the different variations

of the technique suggested in this paper.

n 5–10 10–20 20–40 40–80

SML 2.05 2.20 2.33 2.52

∂K∗n
[2] 2.73 2.86 2.93 2.97

∂K∗n
[3] 4.39 4.27 4.15 4.08

Let us now consider the equation,

ut(t, x) = uxx(t, x) + u(t, x)ux(t, x) + h(t, x), x ∈ [−1, 1]

with h such that the exact solution of the above equation is again u(t, x) = et+x3
. We

have integrated it with the same numerical methods than before and also considering
Dirichlet boundary conditions. First, we have used the standard method of lines and then
the suggested method of lines with Gn = ∂K∗n

[2]. Finally, as Gn = ∂K∗n
[3] is not exactly

calculable in terms of data as in problem (23) with Dirichlet boundary conditions, we
have approximated those values through numerical differentiation following item 4 in
Section 3.4. More explicitly, we have considered the 3-BDF formula to differentiate in time
except for the first steps where Taylor series of order 2 is used taking Burger’s equation into
account and the fact that the initial condition is known. Then, we have used differentiation
in space of those values through Gauss-Lobatto collocation space discretization and its
evaluation on the boundary. As expected, we have obtained order near 2 with the standard
method of lines, order near 3 with ∂K∗n

[2] and order near 4 with ∂K∗n
[3]. This can be observed

in Figure 4 and Table 4.
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Figure 4. Semilinear equation with f (t, u) = uux + h(t) and GRK4T integrator, with Dirichlet
boundary conditions.

Table 4. Orders for global error, GRK4T and f (t, u) = uux + h(t). SML stands for ‘standard method
of lines’ and ∂K∗n

[2], ∂K∗n
[3] for the different variations of the technique suggested in this paper.

n 5–10 10–20 20–40 40–80

SML 2.08 2.23 2.34 2.51

∂K∗n
[2] 3.20 3.14 3.09 3.05

∂K∗n
[3] 3.91 3.97 3.99 3.99

5. Conclusions

The paper thus provides a technique to avoid order reduction when integrating
nonlinear problems with Rosenbrock methods, which is the kind of problems for which
these methods were constructed. This technique is cheap when compared with the classic
method of lines because additional terms must be added in the calculation of the stages,
which imply the calculations of certain suitable boundary values for them. As the boundary
grid values are negligible compared with those in the interior of the domain, the cost can
also be considered negligible with respect to that of the whole method. We remark that
numerical differentiation must be used to achieve a high enough order. That threshold
order depends on the problem at hand and it happens that the higher the order to be
pursued, the higher the order of the derivatives to approximate numerically, and therefore,
the more probable that instability issues due to roundoff turn up. In any case, in the
numerical experiments of the previous section, in which we managed to achieve order 4,
we could not observe those instabilities. What’s more, to our knowledge, there is no other
way to achieve that order for those type of problems when using Rosenbrock methods.
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