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Abstract: A numerical model for the two-dimensional nonlinear elastic–plastic problem is proposed
based on the improved interpolating complex variable element free Galerkin (IICVEFG) method
and the incremental tangent stiffness matrix method. The viability of the proposed model is verified
through three elastic–plastic examples. The numerical analyses show that the IICVEFG method has
good convergence. The solutions using the IICVEFG method are consistent with the solutions ob-
tained from the finite element method using the ABAQUS program. Moreover, the IICVEFG method
shows greater computing precision and efficiency than the non-interpolating meshless methods.

Keywords: elastic–plastic problem; complex variable meshless method; interpolating shape function;
singular weight function; complete basis function

1. Introduction

In the science and engineering fields, nonlinear elastic–plastic problems are very
common, and are complicated due to the nonlinearity of the plastic state. In addition, the
corresponding analytical solutions are difficult to be obtain [1–3]. Thus, it is important to
study efficient and accurate computational models for solving nonlinear elastic–plastic
problems, particularly those problems characterised by geometric [4–6] and material non-
linearities [7–9]. In recent years, the meshless method has played a great role in numerical
simulation. Unlike conventional mesh-based numerical methods [10,11], the meshless
method is built on discrete nodes, which does not cause mesh distortion. Therefore, the
meshless method is more suitable for nonlinear large deformation and fracture problems,
as well as complicated porous structures [12–17].

As a popular numerical computing method, the meshless method has developed
various branches, such as the smoothed particle hydrodynamics method [18], the fa-
mous moving least squares (MLS) approximation [11], the reproducing kernel particle
method [19], and so on. In this paper, we mainly study methods that improve upon the
original MLS approximation in order to overcome shortcomings which lead to low effi-
ciency and low accuracy [20–22]. The shortcomings include relying on numerous nodes,
possessing a non-interpolating shape function, and possibly producing an ill-conditioned
final discrete system.

To overcome inefficiency, complex variables were introduced into the MLS approx-
imation, and the complex variable moving least squares (CVMLS) approximation was
proposed [20]. Since the CVMLS approximation can use a complex variable to express
the two directional variables, the CVMLS approximation has a higher computing effi-
ciency [21,22]. However, this approximation lacks specific mathematical implications.
Thus, the improved complex variable moving least squares (ICVMLS) approximation was
proposed, which brings in a conjugated basis function and a new functional [23–25].
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Identically to the MLS approximation, there are no interpolating features for the shape
functions in the CVMLS and ICVMLS approximations [26–29]. Thus, on the foundation of
the ICVMLS approximation, the interpolating property of the shape function was improved
according to the following steps. First, to guarantee computing accuracy, a complete basis
function is applied [30]. Second, the basis function is orthogonalized to obtain a set of new
basis functions with a singular weight function [31]. Finally, based on these novel basis
functions, a new interpolating shape function and interpolating trial function are derived.
This new method was named the improved interpolating complex variable moving least
squares (IICVMLS) method [30].

Combining the IICVMLS method with the integral weak forms of diverse prob-
lems, the corresponding improved interpolating complex variable element free Galerkin
(IICVEFG) methods were presented. By virtue of the interpolating shape function in
the IICVMLS method, the above meshless method is able to directly exert the essential
boundary conditions, similarly to the finite element method. Thus, the derived final dis-
crete system is more concise, which leads to greater computing efficiency and accuracy, in
contrast to other non-interpolating complex variable meshless methods. Because of the
above merits, the IICVEFG method has been widely applied to many potential problems,
including the bending problems of Kirchhoff plates and even the pattern transformation of
hydrogels, in which has displayed great computational advantages [30,32,33].

The intention of this paper is to build a more efficient and accurate numerical model
for the two-dimensional nonlinear elastic–plastic problem based on the IICVEFG method,
and to verify the viability of the proposed model. The detailed modelling process of
the IICVEFG method is described, and the implementation process for solving the final
discrete system is also presented. Through three numerical examples, the computational
advantages of the IICVEFG method are demonstrated, in comparison with the ABAQUS
program and other non-interpolating meshless methods.

2. Implementation of the Elastic–Plastic Problem Based on the IICVEFG Method
2.1. Brief Descriptions of the Two-Dimensional Elastic–Plastic Problem

Within the problem domain Ω, the classic equilibrium equation of a two-dimensional
elastic–plastic problem is [34]

LT .
σ +

.
b = 0. (1)

For an arbitrary point z = x1 + ix2 ∈ Ω,
.
σ

T
= (

.
σ11,

.
σ22,

.
σ12) is the stress rate field,

.
b

T
= (

.
b1,

.
b2) is the body force rate field, and L is the differential operator matrix,

LT( · ) =
[

∂
∂x1

0 ∂
∂x2

0 ∂
∂x2

∂
∂x1

]
( · ). (2)

The relationship between the strain rate field
.
ε

T
= (

.
ε11,

.
ε22,

.
ε12) and the velocity field

.
uT

= (
.
u1,

.
u2) is described as

.
ε = L(

.
u), (3)

and the stress-strain relationship is
.
σ = D

.
ε. (4)

Considering that this problem is a plane stress problem, the constitutive matrices D are
different in the elastic and plastic state, which are shown in the following, respectively [35].

De =
E

1− ν2

 1 v 0
v 1 0
0 0 1−v

2

, (5)
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Dep =
E
Q


σ′222 + 2P −σ′11σ′22 + 2νP − σ′11+νσ′22

1+ν σ12

−σ′11σ′22 + 2νP σ′11 + 2P − σ′22+νσ′11
1+ν σ12

− σ′11+νσ′22
1+ν σ12 − σ′22+νσ′11

1+ν σ12
R

2(1+ν)
+ 2H′

9E (1− ν)σ2

, (6)

where E is the elastic modulus, ν is the Poisson’s ratio, and σ is the equivalent stress

σ =
√

σ2
11 + σ2

22 − σ11σ22 + 3σ2
12, (7)

P =
2H′

9E
σ2 +

σ2
12

1 + ν
, (8)

R = σ′
2
11 + 2νσ′11σ′22 + σ′

2
22, (9)

Q = R + 2(1− ν2)P. (10)

Assume that the stress-strain relationship in the plastic state satisfies the linear hard-
ening model, the plastic modulus for hardening H′ is expressed as

H′ =
EE′

E− E′
, (11)

where E′ is the tangent modulus. In addition, σ′ ij is the stress deviation which can be
written as

σ′ ij = σij −
σ11 + σ22

3
δij, (i, j = 1, 2). (12)

The velocity and natural boundary conditions are

.
u =

.
¯
u, (z ∈ Γu), (13)

n
.
σ =

.
t, (z ∈ Γt), (14)

where
.
¯
u

T

= (
.
u1,

.
u2) is the prescribed velocity vector on the velocity boundary Γu,

.
t

T
=

(
.
t1,

.
t2) is the given traction rate, and n is the unit vector of the outer normal direction on

the natural boundary Γt.

2.2. The IICVEFG Method for the Elastic–Plastic Problem

In this paper, the IICVMLS method is applied to disperse the integral weak form of
the elastic–plastic problem, and then the corresponding IICVEFG method is presented [30].
According to Equations (1) and (14), the integral weak form is expressed as∫

Ω
δ

.
ε

T .
σdΩ−

∫
Ω
δ

.
uT .

bdΩ−
∫

Γt
δ

.
uT

.
tdΓ = 0. (15)

In the IICVMLS method, the trial function of velocity
.
uh
(z) is expressed as

.
uh
(z) =

.
uh

1(z) + i
.
uh

2(z) = Φ(z)
.
u∗ =

n

∑
I=1

ΦI(z)
.
u(zI), (16)

where
Φ(z) = (Φ1(z), Φ2(z), . . . , Φn(z)) = vT(z) + bT(z)A−1

z (z)Bz(z), (17)
.
u∗ = (

.
u(z1),

.
u(z2), . . . ,

.
u(zn))

T, (18)

v(z) = (v(z− z1), v(z− z2), . . . , v(z− zn))
T, (19)

b(z) = (b(2)z (z), b(3)z (z), . . . , b(m)
z (z))

T
, (20)
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Az(z) = CT
z W(z)Cz, (21)

Bz(z) = CT
z W(z), (22)

Cz =


b(2)z (z1) b(3)z (z1) · · · b(m)

z (z1)

b(2)z (z2) b(3)z (z2) · · · b(m)
z (z2)

...
...

. . .
...

b(2)z (zn) b(3)z (zn) · · · b(m)
z (zn)

, (23)

W(z) =


w(z− z1) 0 · · · 0

0 w(z− z2) · · · 0
...

...
. . .

...
0 0 · · · w(z− zn)

, (24)

.
uh

1(z) = Re[Φ(z)
.
u∗] = Re[

n

∑
I=1

ΦI(z)
.
u(zI)], (25)

.
uh

2(z) = Im[Φ(z)
.
u∗] = Im[

n

∑
I=1

ΦI(z)
.
u(zI)]. (26)

Then the velocity matrix
.
u(z) in Equation (15) can be written as

.
u(z) =

[ .
u1(z).
u2(z)

]
=

n
∑

I=1

[
Re[ΦI(z)] −Im[ΦI(z)]
Im[ΦI(z)] Re[ΦI(z)]

][ .
u1(zI).
u2(zI)

]
= Φ̃(z)

.
U(z) =

n
∑

I=1
Φ̃I(z)

.
U(zI),

(27)

where
Φ̃(z) = (Φ̃1(z), Φ̃2(z), . . . , Φ̃n(z)), (28)

Φ̃I(z) =
[

Re[ΦI(z)] −Im[ΦI(z)]
Im[ΦI(z)] Re[ΦI(z)]

]
, (29)

.
U(z) = (

.
U(z1),

.
U(z2), . . . ,

.
U(zn))

T
, (30)

.
U(zI) =

[ .
u1(zI).
u2(zI)

]
. (31)

According to Equation (27), the strain rate of point z in Equation (3) can be rewritten
and simplified as

.
ε(z) = L(

.
u(z)) = L(Φ̃(z)

.
U(z)) = B(z)

.
U(z), (32)

where
B(z) = (B1(z), B2(z), . . . , Bn(z)), (33)

BI(z) =

 Re[ΦI,1(z)] −Im[ΦI,1(z)]
Im[ΦI,2(z)] Re[ΦI,2(z)]

Re[ΦI,2(z)] + Im[ΦI,1(z)] −Im[ΦI,2(z)] + Re[ΦI,1(z)]

. (34)

Then the stress rate of point z in Equation (4) is expressed as

.
σ(z) = D

.
ε(z) = DB(z)

.
U(z). (35)

Substitute Equations (27), (32) and (35) into Equation (15), then consider the arbitrary
of δ

.
U(z)T. Finally, we obtain the discrete matrix equation

K
.

U(z) = F, (36)
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where
K =

∫
Ω

B(z)TDB(z)dΩ, (37)

F =
∫

Ω
Φ̃(z)T .

b(z)dΩ +
∫

Γt
Φ̃(z)T

.
t(z)dΓ. (38)

The shape function of Equation (17) in the IICVMLS method has the interpolating fea-
ture, which results in the fact that Equation (13) can be enforced into Equation (36) directly.
Therefore, the final matrix Equation (36) is more succinct than that in the non-interpolating
complex variable meshless method. Thus, the IICVEFG method can, theoretically, solve
the problem with greater precision and efficiency.

2.3. Incremental Tangent Stiffness Matrix Method

In this part, the incremental tangent stiffness matrix method is applied to solve the
nonlinear Equation (36) in the plastic state, due to the nonlinearity of the constitutive
relationship in Equation (6) [36,37]. In this method, the total load is divided into sufficiently
small loads, which are applied step by step. Then, the nonlinear process is decomposed
into a sequence of approximately linear processes.

In each approximately linear process, the relation between the stress increment tensor
∆σ and strain increment tensor ∆ε is

∆σ = Dep∆ε, (39)

which is linear, and Dep is only connected with the known stress and strain.
To solve this problem, first, we must determine whether the structure produces plastic

deformation when applying the total external force. Under this circumstance, assume
that the structure is completely in the elastic state; then the displacement, strain, stress,
equivalent stress, and the maximum equivalent stress σmax of all nodes and Gauss points
are obtained by using the elastic constitutive relationship in Equation (5). Denote the
material yield stress as σs.

If σmax ≤ σs, the structure is still in the elastic state, and the above solutions are the
final solutions of this problem. If σmax > σs, the structure has produced plastic deformation,
and the external force should be applied using the incremental method. Define the elastic
limit load F0 = σs

σmax
F; then the displacement, stress, and strain in the elastic state can be

obtained. Behind the elastic state, we use the incremental method to apply the rest of the
external force,

∆Fi =
1
N
(1− σs

σmax
)F, (40)

where N is the total number of load steps. In the i− th load step, ∆Fi is the incremental
force. Then, the solving equation is obtained,

K(σi−1)∆Ui = ∆Fi, (41)

where the matrix K is related to the known stress σi−1 in the previous load step, and ∆Ui is
the displacement increment in the i− th load step. Then, depending on ∆Ui, we can obtain
the strain increment ∆εi and the stress increment ∆σi in the current load step.

Then the stress in the i− th load step can be obtained as,

σi = σi−1 + ∆σi. (42)

In each load step, it is still necessary to choose the elastic or plastic constitutive
relationship according to the relation between the stresses σmax and σs. Repeat the above
process until the whole external force is applied. Eventually, the obtained displacement,
stress, and strain are the final solutions of the elastic–plastic problem. The whole computing
procedure is described in Figure 1.
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Yes

If 
No
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Loop

Figure 1. Flow chart of the computing procedure.

To guarantee that the computed solutions are more accurate, in each load step the
Equation (41) is modified to

K(σi−1)∆Ui = Fi −
∫

Ω
BTσi−1dΩ, (43)

where the second term on the right side is the equivalent node load, and Fi is the total
equivalent node load in the i− th load step,

Fi = F0 + ∆F1 + ∆F2 + · · ·+ ∆Fi. (44)
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Based on Equation (40), the above expression can be rewritten as

Fi =
σs

σmax
F +

i
N
(1− σs

σmax
)F, (i = 1, 2, . . . , N). (45)

3. Numerical Examples

Since there are no analytical solutions for nonlinear elastic–plastic problems, the
ABAQUS program is used as a reference in this paper. In this section, to validate the
numerical advantages of the IICVEFG method, three numerical examples under different
constraints and forces are simulated and analysed. The solutions obtained from the
IICVEFG method are compared with the solutions obtained from the ABAQUS program
and the non-interpolating ICVEFG method [38].

For the following examples, the linear basis function and the 4× 4 Gauss points are
used in the IICVEFG and ICVEFG methods. The singular weight function and cubic spline
weight function are used in the IICVEFG and ICVEFG methods, respectively [23,30]. In
the ABAQUS program, the C3D8R element is selected. Additionally, the external load is
applied with N = 100 steps. In this paper, two-dimensional elastic–plastic problems are
regarded as plane stress problems, and the tangent modulus E′ in Equation (11) is given as
E′ = 0.2E.

For error analysis, define the error between the ABAQUS program and other numerical
methods, and the traditional relative error at a specific node, respectively,

eABAQUS
i =

1
n

n

∑
I=1

(uABAQUS
I − ui

I)
2
, (46)

e =

∣∣∣∣∣ui
I − uABAQUS

I

uABAQUS
I

∣∣∣∣∣, (47)

where n is the number of the nodes, and i represents the IICVEFG and ICVEFG methods in
this paper.

For convergence analysis, define the following variance between the different node
distributions,

Eij =
1
n

n

∑
I=1

[(ui
I − uij

I )
2
+ (uj

I − uij
I )

2
], (48)

where uij
I represents the average displacement value of node I under two different kinds of

node distributions i and j.

3.1. A cantilever Beam Constrained with a Concentrated Force

The first example is a cantilever beam; the free end is constrained with a concentrated
force, as displayed in Figure 2. The geometric parameters are: L = 8 m, h = 1 m and the
depth is the unit length. The material parameters are: E = 1.0 × 105 Pa, ν = 0.25, and
σs = 25 Pa. The concentrated load is P = −1 N.
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For this example, we mainly discuss the influence of the parameter scale dmax and
different node distributions (as described in Figure 3) on the presented IICVEFG method.
In the ABAQUS program, 64× 8 square four-node elements are. From Figure 3, it is clear
that, with the decrease in the dmax value and the increase in the total number of nodes, the
numerical solutions obtained from the IICVEFG method at point (8, 0) are closer to the
solutions of the ABAQUS program. From Figure 4 and the error analysis of Figure 5, we
can also see that under dmax = 2 and a 65× 9 node distribution, the numerical deflection
u2 of the nodes on the x1 axis of the IICVEFG method is consistent with the ABAQUS
solutions.
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Figure 5. The error analysis under different node distributions.

Figure 6 shows the convergence of the IICVEFG method between different node
distributions. We can conclude that the greater the number of total nodes is, the smaller the
variance is. Therefore, the IICVEFG method has good numerical convergence. We should
note that the IICVEFG method may spend more CPU computing time as the number of
total nodes increases.
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Figure 6. The convergence analysis and CPU time.

Figure 7 describes the relation between the load and the deflection u2 at the point
(8, 0.5). When loaded to about P = −0.6 N, the structure starts to enter plastic stage. Until
about P = −0.8 N, the whole structure is in the plastic stage.
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3.2. A Cantilever Beam Constrained with a Distributed Load

The second example is a cantilever beam where the upper boundary is constrained
with a distributed load, as described in Figure 8. The geometric and material parameters
are the same as in the first example. The distributed load is p = −1 N/m.
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Figure 8. Cantilever beam constrained with a distributed load.

For this example, we mainly discuss the merits of the IICVEFG method in terms of
computing accuracy and efficiency, as compared to the non-interpolating ICVEFG method.
In the IICVEFG method, 17× 4 nodes are used. The grid distribution in the ABAQUS
program is same as the first example.

Under different parameter scalings dmax, Figure 9 shows the relative errors of the
deflection u2 at point (8, 0) between the IICVEFG method and ABAQUS program. It is
clear that when dmax = 2, the relative error is close to zero. Thus, we choose these data for
the following discussion. It widely known that the greater the value of dmax is, the more
CPU time the IICVEFG method requires.
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Figure 9. The relative errors and CPU time under different dmax.

Taking the ICVEFG method as a comparison method, the suitable node distribution,
dmax, and penalty factor α should be chosen. For this example, 21× 11 nodes and dmax = 3.9
are used. The penalty factor α is chosen according to Figure 10. From the relative error
analysis, there are two observations: (1) The solutions of the IICVEFG method have no
relation with the penalty factor α, because in the IICVEFG method special techniques are
unnecessary when applying the essential boundary conditions; (2) With the increase in
the penalty factor α the relative error is gradually reduced, and when α = 1.0× 1012 the
relative error is sufficiently small and close to the error of the IICVEFG method. It is worth
mentioning that this selection process is time consuming. Therefore, the IICVEFG method
has a greater computing accuracy and efficiency than the ICVEFG method.
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After deciding the values of the relative parameters, the deflection u2 of the nodes on
the x1 axis are acquired from the ABAQUS program, as well as the IICVEFG and ICVEFG
methods. The results are shown in Figure 11. The solutions are in good agreement with
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each other. Moreover, for a single calculation, the CPU time spent in the IICVEFG method
is 30.1 s, which is much less than the 538.0 s spent in the ICVEFG method under similar
accuracy.

Mathematics 2021, 9, x FOR PEER REVIEW 14 of 18 
 

 

After deciding the values of the relative parameters, the deflection 2u  of the nodes 

on the 1x  axis are acquired from the ABAQUS program, as well as the IICVEFG and 
ICVEFG methods. The results are shown in Figure 11. The solutions are in good agreement 
with each other. Moreover, for a single calculation, the CPU time spent in the IICVEFG 
method is s1.30 , which is much less than the s0.538  spent in the ICVEFG method un-
der similar accuracy. 

 

Figure 11. The deflection 2u  of the nodes on the 1x  axis. 

Identically to the first example, the relation between the load and the deflection 2u  

at the point )0,8(  is shown in Figure 12. For this example, the structure begins to pro-

duce the plastic deformation when N/m2.0−=p , and up to N/m4.0−=p the struc-
ture is completely in the plastic stage. 

 
Figure 12. The relation between the load and the deflection. 

0 2 4 6 8
-250

-200

-150

-100

-50

0
u 2 (

m
m

)

x1 (m)

 ABAQUS
 IICVEFG 

         (Node: 17×4  CPU:30.1s)
 ICVEFG

         (Node: 21×11  CPU:538.0s)

0 -50 -100 -150 -200 -250

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

p 
(N

/m
)

u2 (mm)

 Elasticity
 Elastoplasticity

Figure 11. The deflection u2 of the nodes on the x1 axis.

Identically to the first example, the relation between the load and the deflection u2 at
the point (8, 0) is shown in Figure 12. For this example, the structure begins to produce
the plastic deformation when p = −0.2 N/m, and up to p = −0.4 N/m the structure is
completely in the plastic stage.
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Figure 12. The relation between the load and the deflection.

3.3. A Rectangular Plate with a Central Hole under a Distributed Traction

The final example is a rectangular plate with a circular hole in the centre. This structure
bears a distributed traction at the right boundary, as described in Figure 13. The geometric
parameters are: L = 10 m, h = 4 m, r = 1 m, and the depth is the unit length. The
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material parameters are: E = 1.0× 105 Pa, ν = 0.25, and σs = 250 Pa. The traction load is
p = 1000 N/m.
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Figure 13. Rectangular plate with a central hole under a distributed traction.

For this example, we mainly discuss the applicability of the IICVEFG model for
complex structures. First, for the IICVEFG and ICVEFG methods, the numerical solutions
were obtained under the same node distribution 23× 15. In the IICVEFG and ICVEFG
methods dmax = 2. Moreover, in the ICVEFG method α = 1.0× 109. As a reference, 40× 8
grids are distributed in the ABAQUS program.

Figure 14 shows the displacement u1 of the nodes on x2 = −2 m. We can see that the
solutions obtained from the IICVEFG and ICVEFG methods are in good agreement with
the solutions of the ABAQUS program. The relative errors at point (5, −2) acquired from
the IICVEFG and ICVEFG methods are 0.144% and 0.1611%, respectively. Furthermore,
under similar computing accuracy, the IICVEFG method requires 408.84 s to compute,
which is less than the 474.78 s for the ICVEFG method.
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Figure 14. The displacement u1 of the nodes on x2 = −2 m.

Figure 15 describes the grid distribution in the ABAQUS program, node distribution
in the IICVEFG method, and the corresponding distributions of displacement u1. We can
see that the displacement distributions obtained from the ABAQUS program and IICVEFG
method are similar.
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For this example, the relation of the traction and the displacement u1 at point (5, 0) is
also discussed in Figure 16. Around the value p = 100 N/m the plastic deformation occurs;
and around p = 300 N/m the deformation of the whole structure is plastic deformation.
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4. Conclusions

In this paper, a more efficient and accurate numerical model for the two-dimensional
nonlinear elastic–plastic problems is established, based on the IICVEFG method and the
incremental tangent stiffness matrix method. Through numerical analyses we found that,
in the IICVEFG method, the variance is smaller as the number of total nodes increases.
Thus, the IICVEFG method has good convergence. The solutions of the IICVEFG method
are consistent with the solutions of the ABAQUS program. In addition, the error between
the IICVEFG method and ABAQUS program is less than that between the ICVEFG method
and ABAQUS program. Furthermore, under similar accuracy constraints, the CPU time
spent on the IICVEFG method is 30.1 s, which is much less than 538.0 s spent on the
ICVEFG method. Thus, the IICVEFG method has greater numerical accuracy and efficiency
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than the non-interpolating ICVEFG method for different elastic–plastic problems. This
validates that the IICVEFG method is sufficiently adaptable.
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