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Abstract: This research study presents a closed form solution of responses of laterally loaded long 
piles embedded on cohesive soils with a constant subgrade modulus. The surrounding soil medium 
is modelled as elastic-perfectly plastic. The closed form solution is derived by solving the governing 
differential equation of the pile–soil system. The most popular numerical computation software 
package MATLAB is utilized for the implementation of solutions. The provided analytical method 
reliably calculates the pile head deflection and bending moment required for engineering design 
purposes. Results are discussed and verified with solutions of an equivalent three-dimensional fi-
nite element (FE) model developed using ANSYS software. It was concluded that the proposed an-
alytical model could efficiently provide the exact solution of embedded piles in elasto-plastic cohe-
sive soil under lateral loads. 
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1. Introduction 
When a shallow soil stratum is highly compressible and of low bearing capacity to 

support the load transmitted by the superstructure, piles are principally used to transmit 
the loads to the underlying stiffer soil strata of a higher bearing capacity. Various precious 
approaches have been proposed to analyze the laterally loaded piles, including the sub-
grade reaction approach [1,2] and p-y approach [3,4]. In the subgrade reaction approach, 
the supporting soil is idealized as a series of lateral elastic springs and the relationship 
between lateral applied force and lateral deflection pattern of a pile is treated as linear- 
elastic over the depth of the pile. Moreover, the subgrade reaction modulus is obtained 
through fitting with relevant numerical solutions [5,6]. In the p-y approach the soil is con-
veniently simulated by a series of independent non-linear springs varying with the depth, 
and the soil–pile interface responses are captured by representing the soil nonlinear 
springs with p-y curves along the pile length. Several researchers on the piles subjected 
to lateral loads continued to be unabated in which the soil is considered as a continuum-
based model. In these studies, different approaches such as the finite element approach 
[7], boundary element approach [8], and finite difference approach [9], have been intro-
duced to predict the response of laterally loaded piles. A large number of studies have 
examined the behaviour of the soil–pile interaction of laterally loaded piles considering 
that the relationship between soil lateral reaction and pile deflection is linear [10], and the 
lateral load behaviour of soil is non-linear. Therefore, the development of algebraic ex-
pressions via a closed form solution is proposed in this study to predict the non-linear 
responses of laterally loaded piles in clay strata. The proposed analytical solution in the 
current study provides a better approach for structural designers to simply solve for the 
lateral soil reaction, displacement, shear force, and bending moment responses of laterally 
loaded free-head long piles embedded in homogeneous cohesive soils with a constant 
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lateral subgrade reaction with depth. Consequently, the techniques can be easily applied 
in practice as an alternative approach to analyse and design laterally loaded long piles. In 
addition, the proposed solution incorporates the contribution of the Winkler foundation 
model with the linear elastic-perfect-plastic p-y soil response. The proposed analytical so-
lution is verified by comparing the results obtained for the pile’s deflection and induced 
bending moment with numerical results using the finite element software ANSYS. The 
accuracy of the location at which the maximum bending moment occurs, and the magni-
tude of that maximum bending moment along the pile are further verified analytically by 
comparing them to those obtained from the FE analysis. In addition, a numerical example 
is introduced to investigate the effect of the horizontal loads on the depth of the plastic 
zone. 

2. Problem Definition and Formulation 
A free-head cylindrical pile of length L, diameter D, and Young’s modulus 𝐸𝐸𝑝𝑝 em-

bedded in a homogeneous clay soil and subjected to lateral load 𝐻𝐻0 at an eccentricity, e 
above ground surface is schematically shown in Figure 1a. In order to simulate the pile–
soil interaction, the pile shaft is assumed to be perfectly glued to the surrounding soils 
suggesting that there is no relative movement along the pile–soil interface. Furthermore, 
a series of springs distributed along the pile shaft are used to characterize that interaction 
for the pile subjected to the lateral load 𝐻𝐻0 and bending moment, 𝑀𝑀0 = 𝐻𝐻0𝑒𝑒 at the ground 
surface, as shown in Figure 1b. 

 
(a) (b) 

Figure 1. (a) Schematic diagram of pile under lateral load, (b) illustration of lateral soil reaction distribution along the pile 
shaft. 

Free-head and fixed-tip boundary conditions are assumed. Therefore, the pile head 
is unrestrained to rotate and move laterally while the pile base is fully fixed against trans-
lation and rotation. Unquestionably, the soil behaves non-linearly under higher lateral 
load. This nonlinearity is described by the well-known ideal elasto-plastic p-y relationship 
at any depth. This model is shown in Figure 2a in which k is the gradient of the p-y curve 
that offers the soil modulus at any point z below the surface along the pile, 𝑝𝑝𝑢𝑢 is the limit-
ing soil horizontal resistance per unit depth, and y_y is the threshold of soil displacement 
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above which the soil is initiated to yield. On the other hand, the soil near the ground sur-
face presumably yields firstly and propagates downward to a depth called plastic depth, 
𝑧𝑧𝑝𝑝 [11]. Below plastic depth, the soil reaction is linear and still in the elastic state. Accord-
ingly, the lateral soil reaction along the pile shaft may be characterized by two zones: the 
plastic zone above which extends to a depth 𝑧𝑧𝑝𝑝  depending on both the applied lateral 
force and its point of application, and the bottom elastic zone below this depth (see Figures 
1b and 2b) [12]. It is worth noting that the limiting lateral force for clay soils increases with 
depth from 2𝑐𝑐𝑢𝑢𝐷𝐷 to 3𝑐𝑐𝑢𝑢𝐷𝐷 at ground surface up to 8𝑐𝑐𝑢𝑢𝐷𝐷 to 12𝑐𝑐𝑢𝑢𝐷𝐷 at a depth of about 3D, 
and beyond this depth it keeps constant [13]. Where 𝑐𝑐𝑢𝑢 is the undrained shear strength of 
the soil, D is the pile diameter. Consequently, the limiting lateral force is proposed to equal 
9𝑐𝑐𝑢𝑢𝐷𝐷 to the end of the plastic zone (see Figure 2b) [14]. 

 
(a) (b) 

Figure 2. (a) Elasto-plastic behavior of the soil, (b) lateral soil reaction distribution [14]. 

3. Mathematical Formulation 
In the case of the pile subjected to lateral forces, it tries to push the surrounding soil 

horizontally in the loading direction to its limit state. Subsequently, the surface soils tend 
to yield, and the cracks tend to be very shallow. The lateral soil reaction along the pile 
shaft may be characterized by two zones: the top plastic zone which extends downward 
to depth 𝑧𝑧𝑝𝑝 depending on both applied lateral force and its point of application, and the 
bottom elastic zone below this depth (see Figure 2). 

The governing flexural equation for the response of the soil–pile system according to 
Winkler’s foundation concept can be written as: 

𝐸𝐸𝐸𝐸 𝑑𝑑
4𝑦𝑦

𝑑𝑑𝑧𝑧4
+ 𝑃𝑃(𝑧𝑧) = 0, (1) 

In the above, E is the modulus of elasticity of concrete, I is the effective moment of 
inertia, y is the lateral deflection of the pile, and p(z) is the soil reaction at any point at a 
depth z along the axis of the pile which may be described for the elasto-plastic model as: 

𝑃𝑃(𝑧𝑧) = � 
𝑘𝑘 × 𝑦𝑦   →  𝑧𝑧 ≥ 𝑧𝑧𝑝𝑝
  𝑝𝑝𝑢𝑢        →  𝑧𝑧 ≤  𝑧𝑧𝑝𝑝

, (2) 

where k is the subgrade reaction modulus of the soil, 𝑧𝑧𝑝𝑝 is the depth of the plastic zone, 
and 𝑝𝑝𝑢𝑢 is the lateral limit force below which the soil reaction has a linear relationship with 
lateral pile deflection. 
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The integration of Equation (1) considering the boundary and continuity conditions 
presented in Tables 1 and 2 leads to the analytical solution for piles subjected to lateral 
loads and embedded in linear-plastic soil. 

3.1. Elastic Soil Behaviour 
Based on the assumption that the applied lateral force does not exceed the ultimate 

load 𝑝𝑝𝑢𝑢, the relationship between lateral soil resistance per unit pile length and pile lateral 
deflection under working loads is linear–elastic. Consequently, under this assumption the 
governing equation of motion can be expressed as: 

𝐸𝐸𝐸𝐸 𝑑𝑑
4𝑦𝑦

𝑑𝑑𝑧𝑧4
+ 𝑘𝑘 × 𝑦𝑦  = 0, (3) 

If one assumes that the modulus of subgrade reaction k in clay soil is independent of 
depth [15], thereby the general solution of Equation (3) is of the form: 

𝑦𝑦(𝑧𝑧) = 𝑒𝑒−𝛽𝛽𝑧𝑧{𝑔𝑔1sin(𝛽𝛽𝑧𝑧) + 𝑔𝑔2cos(𝛽𝛽𝑧𝑧)} + 𝑒𝑒𝛽𝛽𝑧𝑧{𝑔𝑔3sin(𝛽𝛽𝑧𝑧) + 𝑔𝑔4cos(𝛽𝛽𝑧𝑧)}, (4) 

where β is the reciprocal of the characteristic length and 𝑔𝑔𝑖𝑖 , 𝑖𝑖 = 1,2,3,4 are four independ-
ent constant parameters. 

Assuming that the pile is infinite and the deflection at the tip of the long piles is neg-
ligible, then the lateral deflections at working loads can be simplified as 

𝑦𝑦(𝑧𝑧) = 𝑒𝑒−𝛽𝛽𝑧𝑧{𝑔𝑔1sin(𝛽𝛽𝑧𝑧) + 𝑔𝑔2cos(𝛽𝛽𝑧𝑧)}, (5) 

Further higher derivatives for Equation (5) yields 

𝑦𝑦′(𝑧𝑧) = 𝛽𝛽𝑒𝑒−𝛽𝛽𝑧𝑧 {(𝑔𝑔1 − 𝑔𝑔2)cos(𝛽𝛽𝑧𝑧) − (𝑔𝑔1 + 𝑔𝑔2)sin(𝛽𝛽𝑧𝑧)}, (6) 

𝑦𝑦′′(𝑧𝑧) = −2𝛽𝛽2𝑒𝑒−𝛽𝛽𝑧𝑧{𝑔𝑔1 cos(𝛽𝛽𝑧𝑧) − 𝑔𝑔2 sin(𝛽𝛽𝑧𝑧)}, (7) 

𝑦𝑦′′′(𝑧𝑧) = 2𝛽𝛽3𝑒𝑒−𝛽𝛽𝑧𝑧{(𝑔𝑔1 + 𝑔𝑔2)cos(𝛽𝛽𝑧𝑧) + (𝑔𝑔1 − 𝑔𝑔2)sin(𝛽𝛽𝑧𝑧)}, (8) 

𝑦𝑦′′′′(𝑧𝑧) = −4𝛽𝛽4𝑒𝑒−𝛽𝛽𝑧𝑧{𝑔𝑔1 sin(𝛽𝛽𝑧𝑧) + 𝑔𝑔2 cos(𝛽𝛽𝑧𝑧)}, (9) 

By substituting Equations (5) and (9) into Equation (3), 𝛽𝛽 for the free-load pile can be as-
signed as: 

𝛽𝛽 = 1/𝐿𝐿 = �𝑘𝑘𝐷𝐷/4𝐸𝐸𝐸𝐸4 , (10) 

where EI is stiffness of pile section and D is width or diameter of pile. 
Two constant parameters 𝑔𝑔1 and 𝑔𝑔2 are obtained for piles subjected to applied hori-

zontal load 𝐻𝐻0 and applied bending moment 𝑀𝑀0 by imposing the equilibrium conditions 
for both the bending moment and shear force at pile top using Table 1. Thereupon, by 
substituting the boundary conditions into Equations (7) and (8), two integration coeffi-
cients 𝑔𝑔1 and 𝑔𝑔2 can be determined as: 

𝑔𝑔1 = 1
2𝛽𝛽2𝐸𝐸𝐸𝐸

{‒𝑀𝑀0}, (11) 

𝑔𝑔2 = 1
2𝛽𝛽2𝐸𝐸𝐸𝐸

�𝑀𝑀0 + 𝐻𝐻0
𝛽𝛽
�, (12) 

Table 1. Boundary conditions used for elastic solution. 

Boundary Condition Equations 
Shear force 𝑉𝑉 = 𝐻𝐻0 at 𝑧𝑧 = 0 𝐸𝐸𝐸𝐸𝑌𝑌′′′(0) = 𝐻𝐻0 
Bending moment 𝑀𝑀 = 𝑀𝑀0 at 𝑧𝑧 = 0 𝐸𝐸𝐸𝐸𝑌𝑌′′(0) = 𝑀𝑀0 

The deflection along the laterally loaded pile can be obtained by substituting Equations 
(11) and (12) into Equation (5) as 



Mathematics 2021, 9, 1961 5 of 13 
 

 

𝑦𝑦(𝑧𝑧) = 𝑒𝑒−𝛽𝛽𝛽𝛽

2𝛽𝛽2𝐸𝐸𝐸𝐸
 �‒𝑀𝑀0sin(𝛽𝛽𝑧𝑧) + �𝑀𝑀0 + 𝐻𝐻0

𝛽𝛽
� cos(𝛽𝛽𝑧𝑧)�, (13) 

Consequently, the bending moment M, and the shear force V are found by successive dif-
ferentiation of Equation (13) as: 

𝑀𝑀(𝑧𝑧) = 𝑒𝑒−𝛽𝛽𝑧𝑧 �𝑀𝑀0cos(𝛽𝛽𝑧𝑧) + �𝑀𝑀0 + 𝐻𝐻0
𝛽𝛽
� sin(𝛽𝛽𝑧𝑧)�,  (14) 

𝑉𝑉(𝑧𝑧) = 𝑒𝑒−𝛽𝛽𝑧𝑧{𝐻𝐻0cos(𝛽𝛽𝑧𝑧) − (2𝛽𝛽𝑀𝑀0 + 𝐻𝐻0)sin(𝛽𝛽𝑧𝑧)}, (15) 

By setting 𝑉𝑉(𝑧𝑧) = 0, the point of zero shear 𝑧𝑧0 can be written as: 

𝑧𝑧0 = 1
𝛽𝛽

tan−1 𝐻𝐻0
2𝛽𝛽𝑀𝑀0+𝐻𝐻0

, (16) 

Therefore, the maximum bending moment can be obtained as follows: 

𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑒𝑒−𝛽𝛽𝑧𝑧0 �𝑀𝑀0cos(𝛽𝛽𝑧𝑧0) + �𝑀𝑀0 + 𝐻𝐻0
𝛽𝛽
� sin(𝛽𝛽𝑧𝑧0)�, (17) 

3.2. Elasto-Plastic Soil Behaviour 
Admittedly, the soil behavior under higher lateral load levels is predominantly non-

linear. A simple approach proposed by Madhav et al. [16] reasonably captures this non-
linearity through considering the elastic-plastic subgrade model. Consequently, the non-
linear responses for long piles under lateral loading may be obtained through two zones 
as follows. 

3.2.1. Plastic Zone 𝑧𝑧 ≤ 𝑧𝑧𝑝𝑝 

𝑝𝑝(𝑧𝑧) = −𝐸𝐸𝐸𝐸 𝑑𝑑
4𝑌𝑌

𝑑𝑑𝑧𝑧4
= −𝑝𝑝𝑢𝑢, (18) 

Through several integrations for Equation (18), the key responses of the pile in the plastic 
zone can be expressed as follows: 

𝑉𝑉(𝑧𝑧) = 𝐸𝐸𝐸𝐸
𝑑𝑑3𝑌𝑌
𝑑𝑑𝑧𝑧3

= −𝑝𝑝𝑢𝑢𝑧𝑧 + 𝐶𝐶1, (19) 

𝑀𝑀(𝑧𝑧) = 𝐸𝐸𝐸𝐸
𝑑𝑑2𝑌𝑌
𝑑𝑑𝑧𝑧2

= −𝑝𝑝𝑢𝑢
𝑧𝑧2

2
+ 𝐶𝐶1𝑧𝑧 + 𝐶𝐶2, (20) 

𝜑𝜑(𝑧𝑧) =
𝑑𝑑𝑌𝑌
𝑑𝑑𝑧𝑧

=
1
𝐸𝐸𝐸𝐸

[−𝑝𝑝𝑢𝑢
𝑧𝑧3

6
+ 𝐶𝐶1

𝑧𝑧2

2
+ 𝐶𝐶2𝑧𝑧 + 𝐶𝐶3], (21) 

𝑌𝑌(𝑧𝑧) =
1
𝐸𝐸𝐸𝐸

[−𝑝𝑝𝑢𝑢
𝑧𝑧4

24
+ 𝐶𝐶1

𝑧𝑧3

6
+ 𝐶𝐶2

𝑧𝑧2

2
+ 𝐶𝐶3𝑧𝑧 + 𝐶𝐶4], (22) 

3.2.2. Elastic Zone 𝑧𝑧 ≥ 𝑧𝑧𝑝𝑝 

𝑦𝑦(𝑧𝑧) = 𝑒𝑒−𝛽𝛽𝑧𝑧{𝐶𝐶5sin(𝛽𝛽𝑧𝑧) + 𝐶𝐶6cos(𝛽𝛽𝑧𝑧)}, (23) 

𝑦𝑦′(𝑧𝑧) = 𝛽𝛽𝑒𝑒−𝛽𝛽𝑧𝑧 {(𝐶𝐶5 − 𝐶𝐶6)cos(𝛽𝛽𝑧𝑧) − (𝐶𝐶5 + 𝐶𝐶6)sin(𝛽𝛽𝑧𝑧)}, (24) 

𝑦𝑦′′(𝑧𝑧) = −2𝛽𝛽2𝑒𝑒−𝛽𝛽𝑧𝑧{𝐶𝐶5 cos(𝛽𝛽𝑧𝑧) − 𝐶𝐶6 sin(𝛽𝛽𝑧𝑧)}, (25) 

𝑦𝑦′′′(𝑧𝑧) = 2𝛽𝛽3𝑒𝑒−𝛽𝛽𝑧𝑧{(𝐶𝐶5 + 𝐶𝐶6)cos(𝛽𝛽𝑧𝑧) + (𝐶𝐶5 − 𝐶𝐶6)sin(𝛽𝛽𝑧𝑧)}, (26) 

𝑦𝑦′′′′(𝑧𝑧) = −4𝛽𝛽4𝑒𝑒−𝛽𝛽𝑧𝑧{𝐶𝐶5 sin(𝛽𝛽𝑧𝑧) + 𝐶𝐶6 cos(𝛽𝛽𝑧𝑧)}, (27) 
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The solution of the above equations requires boundary conditions to obtain the un-
known parameters 𝐶𝐶𝑖𝑖 , 𝑖𝑖 = 1,2,3,4,5,6 and 𝑧𝑧 = 𝑧𝑧𝑝𝑝. All boundary conditions associated with 
the above equations must be determined by recourse to the boundary conditions in Table 
2. The equilibrium for the bending moment and shear force at 𝑧𝑧 = 0 and compatibility for 
displacement and slope at 𝑧𝑧 = 𝑧𝑧𝑝𝑝 is considered. 

Table 2. Boundary conditions used for elasto-plastic solution. 

Boundary Condition Equations 
Shear force 𝑉𝑉 = 𝐻𝐻0 at 𝑧𝑧 = 0 𝐸𝐸𝐸𝐸𝑌𝑌′′′(0) = 𝐻𝐻0 

Bending moment 𝑀𝑀 = 𝑀𝑀0 at 𝑧𝑧 = 0 𝐸𝐸𝐸𝐸𝑌𝑌′′(0) = 𝑀𝑀0 

Slope from plastic zone equal slope from elastic zone at 𝑧𝑧 = 𝑧𝑧𝑝𝑝 
(compatibility for slope) 

𝑌𝑌′�𝑧𝑧𝑝𝑝�𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝
= 𝑦𝑦′�𝑧𝑧𝑝𝑝�𝑒𝑒𝑝𝑝𝑚𝑚𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝  

Deflection from plastic zone equal deflection from elastic zone at 
𝑧𝑧 = 𝑧𝑧𝑝𝑝 (compatibility for deflection) 

𝑌𝑌�𝑧𝑧𝑝𝑝�𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝
= 𝑦𝑦�𝑧𝑧𝑝𝑝�𝑒𝑒𝑝𝑝𝑚𝑚𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝 

Bending moment from plastic zone equal bending moment from 
elastic zone at 𝑧𝑧 = 𝑧𝑧𝑝𝑝  𝑦𝑦′′�𝑧𝑧𝑝𝑝� =

𝑀𝑀�𝑧𝑧𝑝𝑝�
𝐸𝐸𝐸𝐸

 

Shear force from plastic zone equal shear force from elastic zone 
at 𝑧𝑧 = 𝑧𝑧𝑝𝑝 𝑦𝑦′′′�𝑧𝑧𝑝𝑝� =

𝑉𝑉�𝑧𝑧𝑝𝑝�
𝐸𝐸𝐸𝐸

 

For infinitely long piles, the pile is fixed at the bottom 

𝑦𝑦(𝐿𝐿)   = 0  
𝑦𝑦′(𝐿𝐿) = 0  
𝑦𝑦′′(𝐿𝐿) = 0  
𝑦𝑦′′′(𝐿𝐿) = 0 

By considering equilibrium for shear at the pile head, the undetermined constants 𝐶𝐶1 can 
be determined as: 

𝐶𝐶1 = 𝐻𝐻0, (28) 

Subsequently, by imposing the equilibrium for the bending moment at the pile head, the 
undetermined constants 𝐶𝐶2 can be expressed as: 

𝐶𝐶2 = 𝑀𝑀0, (29) 

Then, the plastic zone develops at a depth 𝑧𝑧𝑝𝑝 of the form: 

𝑧𝑧𝑝𝑝 = �
𝐻𝐻02

𝑝𝑝𝑢𝑢2
+ 2

𝑀𝑀0

𝑝𝑝𝑢𝑢
�
0.5

+
𝐻𝐻0
𝑝𝑝𝑢𝑢

−
1
𝛽𝛽

 (30) 

Applying the compatibility for slope at 𝑧𝑧 = 𝑧𝑧𝑝𝑝 by equating Equation (21) with Equation 
(24) yields 

𝐶𝐶3 = −𝐸𝐸𝐸𝐸𝛽𝛽 �𝑦𝑦(𝑧𝑧𝑝𝑝) + 𝑀𝑀�𝑧𝑧𝑝𝑝�
2𝛽𝛽2𝐸𝐸𝐸𝐸

� + 𝑝𝑝𝑢𝑢
𝑧𝑧𝑝𝑝3

6
− 𝐻𝐻0

𝑧𝑧𝑝𝑝2

2
− 𝑀𝑀0𝑧𝑧𝑝𝑝, (31) 

where 

𝑦𝑦�𝑧𝑧𝑝𝑝� = 𝑝𝑝𝑢𝑢
𝑘𝑘

, (32) 

and 

𝑀𝑀�𝑧𝑧𝑝𝑝� = −𝑝𝑝𝑢𝑢
𝑧𝑧𝑝𝑝2

2
+ 𝐻𝐻0𝑧𝑧𝑝𝑝 + 𝑀𝑀0, (33) 

Similarly, applying the compatibility for deflection at 𝑧𝑧 = 𝑧𝑧𝑝𝑝 by equating Equation (22) 
with Equation (23) yields, 

𝐶𝐶4 = 𝐸𝐸𝐸𝐸𝑦𝑦�𝑧𝑧𝑝𝑝� + 𝑝𝑝𝑢𝑢
𝑧𝑧𝑝𝑝4

24
− 𝐻𝐻0

𝑧𝑧𝑝𝑝3

6
− 𝑀𝑀0

𝑧𝑧𝑝𝑝2

2
− 𝐶𝐶3𝑧𝑧𝑝𝑝, (34) 
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Based on Equations (21) and (22), the rotation φtop and horizontal deflection 𝑌𝑌𝑝𝑝𝑡𝑡𝑝𝑝 of the 
pile at 𝑧𝑧 = 0 can be expressed as 

𝜑𝜑𝑝𝑝𝑡𝑡𝑝𝑝 = −𝛽𝛽 �𝑦𝑦(𝑧𝑧𝑝𝑝) + 𝑀𝑀�𝑧𝑧𝑝𝑝�
2𝛽𝛽2𝐸𝐸𝐸𝐸

� + 𝑝𝑝𝑢𝑢
𝑧𝑧𝑝𝑝3

6
− 𝐻𝐻0

𝑧𝑧𝑝𝑝2

2
− 𝑀𝑀0𝑧𝑧𝑝𝑝, (35) 

𝑌𝑌𝑝𝑝𝑡𝑡𝑝𝑝 = 𝑦𝑦�𝑧𝑧𝑝𝑝� + 1
𝐸𝐸𝐸𝐸
�𝑝𝑝𝑢𝑢

𝑧𝑧𝑝𝑝4

24
− 𝐻𝐻0

𝑧𝑧𝑝𝑝3

6
− 𝑀𝑀0

𝑧𝑧𝑝𝑝2

2
− 𝐶𝐶3𝑧𝑧𝑝𝑝�, (36) 

Furthermore, Equation (26) can be re-expressed as: 

𝑦𝑦′′′(𝑧𝑧) = 2𝛽𝛽3𝑒𝑒−𝛽𝛽𝑧𝑧{𝐶𝐶5cos(𝛽𝛽𝑧𝑧) − 𝐶𝐶6sin(𝛽𝛽𝑧𝑧) + 𝐶𝐶5sin(𝛽𝛽𝑧𝑧) + 𝐶𝐶6cos(𝛽𝛽𝑧𝑧)} , 

𝑦𝑦′′′(𝑧𝑧) = (−𝛽𝛽)(−2𝛽𝛽2𝑒𝑒−𝛽𝛽𝑧𝑧){𝐶𝐶5cos(𝛽𝛽𝑧𝑧) − 𝐶𝐶6sin(𝛽𝛽𝑧𝑧)}�����������������������������
(−𝛽𝛽)𝑦𝑦′′(𝑧𝑧)

−                     (
1

2𝛽𝛽
)�−4𝛽𝛽4𝑒𝑒−𝛽𝛽𝑧𝑧�{𝐶𝐶5sin(𝛽𝛽𝑧𝑧) + 𝐶𝐶6cos(𝛽𝛽𝑧𝑧)}

�����������������������������
( 12𝛽𝛽) 𝑦𝑦′′′′(𝑧𝑧)

 
(37) 

𝑦𝑦′′′(𝑧𝑧) = −𝛽𝛽𝑦𝑦′′(𝑧𝑧) + 2𝛽𝛽3𝑦𝑦(𝑧𝑧), (38) 

Applying equilibrium principles at 𝒛𝒛 = 𝒛𝒛𝒑𝒑 yields 

𝐶𝐶5 = 𝑒𝑒𝛽𝛽𝑧𝑧𝑝𝑝 �𝑦𝑦�𝑧𝑧𝑝𝑝� sin�𝛽𝛽𝑧𝑧𝑝𝑝� −
𝑀𝑀�𝑧𝑧𝑝𝑝�
2𝛽𝛽2𝐸𝐸𝐸𝐸

cos�𝛽𝛽𝑧𝑧𝑝𝑝��, (39) 

and 𝐶𝐶6 is given by 

𝐶𝐶6 = 𝑒𝑒𝛽𝛽𝑧𝑧𝑝𝑝 �𝑦𝑦�𝑧𝑧𝑝𝑝� cos�𝛽𝛽𝑧𝑧𝑝𝑝� + 𝑀𝑀�𝑧𝑧𝑝𝑝�
2𝛽𝛽2𝐸𝐸𝐸𝐸

sin�𝛽𝛽𝑧𝑧𝑝𝑝��, (40) 

There are two cases that may arise to obtain the maximum value of the bending moment 
and the corresponding position. 
Case 1: the bending moment occurs in the elastic region. 

In this case, the largest bending moment value is assumed to occur in the elastic re-
gion. Substituting into Equation (26) with 𝑧𝑧 = 𝑧𝑧0 and equating with zero yields 

𝑦𝑦′′′(𝑧𝑧0) = 2𝛽𝛽3𝐸𝐸𝐸𝐸𝑒𝑒−𝛽𝛽𝑧𝑧0 �𝑒𝑒𝛽𝛽𝑧𝑧𝑝𝑝𝑦𝑦�𝑧𝑧𝑝𝑝��sin�𝛽𝛽𝑧𝑧𝑝𝑝� cos(𝛽𝛽𝑧𝑧0) + cos�𝛽𝛽𝑧𝑧𝑝𝑝� cos(𝛽𝛽𝑧𝑧0)� +

𝑒𝑒𝛽𝛽𝑧𝑧𝑝𝑝 𝑀𝑀�𝑧𝑧𝑝𝑝�
2𝛽𝛽2𝐸𝐸𝐸𝐸

�sin�𝛽𝛽𝑧𝑧𝑝𝑝� cos(𝛽𝛽𝑧𝑧0) − cos�𝛽𝛽𝑧𝑧𝑝𝑝� cos(𝛽𝛽𝑧𝑧0)� +

𝑒𝑒𝛽𝛽𝑧𝑧𝑝𝑝𝑦𝑦�𝑧𝑧𝑝𝑝��sin�𝛽𝛽𝑧𝑧𝑝𝑝� sin(𝛽𝛽𝑧𝑧0) − cos�𝛽𝛽𝑧𝑧𝑝𝑝� sin(𝛽𝛽𝑧𝑧0)� −

𝑒𝑒𝛽𝛽𝑧𝑧𝑝𝑝 𝑀𝑀�𝑧𝑧𝑝𝑝�
2𝛽𝛽2𝐸𝐸𝐸𝐸

�sin�𝛽𝛽𝑧𝑧𝑝𝑝� sin(𝛽𝛽𝑧𝑧0) + cos�𝛽𝛽𝑧𝑧𝑝𝑝� sin(𝛽𝛽𝑧𝑧0)�� = 0, 

 

The depth of maximum bending moment which occurs in elastic zone can be expressed 
as 

𝑧𝑧0 =
1
𝛽𝛽

tan−1

⎩
⎪
⎨

⎪
⎧sin�𝛽𝛽𝑧𝑧𝑝𝑝� �𝑦𝑦�𝑧𝑧𝑝𝑝� +

𝑀𝑀�𝑧𝑧𝑝𝑝�
2𝛽𝛽2𝐸𝐸𝐸𝐸� + cos�𝛽𝛽𝑧𝑧𝑝𝑝� �𝑦𝑦�𝑧𝑧𝑝𝑝� −

𝑀𝑀�𝑧𝑧𝑝𝑝�
2𝛽𝛽2𝐸𝐸𝐸𝐸�

cos�𝛽𝛽𝑧𝑧𝑝𝑝� �𝑦𝑦�𝑧𝑧𝑝𝑝� +
𝑀𝑀�𝑧𝑧𝑝𝑝�
2𝛽𝛽2𝐸𝐸𝐸𝐸� − sin�𝛽𝛽𝑧𝑧𝑝𝑝� �𝑦𝑦�𝑧𝑧𝑝𝑝� −

𝑀𝑀�𝑧𝑧𝑝𝑝�
2𝛽𝛽2𝐸𝐸𝐸𝐸�⎭

⎪
⎬

⎪
⎫

, (41) 

Furthermore, 

𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚 = −2𝛽𝛽2𝐸𝐸𝐸𝐸𝑒𝑒−𝛽𝛽𝑧𝑧0{𝐶𝐶5cos(𝛽𝛽𝑧𝑧0) − 𝐶𝐶6sin(𝛽𝛽𝑧𝑧0)}, (42) 

Case 2: the bending moment occurs in the plastic region. 
This case assumes the occurrence of largest bending moment value is in the plastic region. 
Proceeding similarly as Case 1, the depth of maximum bending moment which occurs in 
elastic zone can be expressed as 
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𝑧𝑧0 = 𝐻𝐻0
𝑝𝑝𝑢𝑢

, (43) 

and its value is 

𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐻𝐻0
2

2𝑝𝑝𝑢𝑢
+ 𝑀𝑀0, (44) 

4. Validation of the Proposed Methods 
The capability of the proposed analytical solutions presented in this research to pre-

dict the lateral behaviour of single piles embedded in a cohesive soil and the correspond-
ing pile responses have been demonstrated and compared with the FE results carried out 
using ANSYS software. 

For this purpose, a concrete pile with length L = 15 m, diameter D = 0.4 m, Poisson’s 
ratio ν = 0.2, and Young’s modulus of elasticity Ep = 35,000 MPa is embedded in a clay 
layer with lateral reaction modulus ks = 50,000 kpa and shear strength Cu = 14.4 kpa. The 
pile head is unrestrained to rotate and move laterally while the pile tip is completely fixed. 

Figure 3 presents the computed pile head deflections versus applied lateral forces for 
both the analytical solution and FE solution with ANSYS software. The figure indicates 
that the results of the proposed analytical solution are closer to the results from the FE 
method. The lateral deflection obtained by the ANSYS workbench 18.2 for different lateral 
loads, 2, 75.5, and 82 kN are shown in Figure 4. The captured results obtained from Figure 
3 are compared with those obtained by proposed analytical method as shown in Table 3. 
The presented results clearly indicate excellent agreement with the FE solution. 

 
Figure 3. Comparison between the analytical and numerical lateral deflections of pile head versus applied lateral forces. 
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(c) 

Figure 4. The lateral deflection profiles of piles for different lateral loads (a) 2 kN, (b) 75.5 kN, and (c) 80 kN applied at a 
distance of 1 m above ground surface. 

Table 3. Pile head deflections obtained from the analytical and FE methods. 

Applied Lateral Load (kN) 
Pile Head Deflections (mm) 

% 
Analytical Method FE, ANSYS Method 

2 0.54 0.43 19 
75.5 14.38 16.34 13.7 
82 18.3 17.75 3 

Additionally, to ensure that the proposed solution produces a reliable pile deflection 
and bending moment not only at the pile head but also for the entire pile length, the lateral 
deflection and bending moment distribution along the pile shaft are presented and com-
pared with the results of the FE analysis as shown in Figure 5. 

The captured peak lateral deflection and bending moment obtained from the analyt-
ical solution are 16.710 mm and 140.459 kN·m, respectively, while the corresponding val-
ues obtained from the FE analysis are 17.809 mm and 141.053 kN·m, respectively. The 
results clearly indicate the agreement between the analytical and FE solutions in calculat-
ing peak value for design purposes. 

Additionally, it is observed that the lateral deflection and bending moment profiles 
obtained using the proposed analytical method reach a good agreement with the FE solu-
tion. 
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(a) 

 
(b) 

Figure 5. Comparison of the results with the FE results. (a) The distribution of lateral deflection along the pile. (b) The 
distribution of the bending moment along the pile. 

5. Conclusions 
An analytical solution of the lateral response of an infinite pile embedded in homo-

geneous elasto-plastic soil deposits has been proposed in the current study. The solution 
is based on conceptual assumptions of the Winkler model which treat the pile as a flexible 
beam and soil restraint surrounding the pile as a series of non-linear independent springs. 
The flexural differential equation describing the response of the soil–pile system was 
solved analytically. Additionally, the location at which the maximum bending moment 
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occurs, and the magnitude of that maximum bending moment along the pile were ob-
tained from the analysis. For verification of the proposed analytical procedure, the ob-
tained results are compared with the FE results, carried out using ANSYS software, show-
ing excellent agreements. The proposed exact solution could efficiently provide a better 
approach for structural designers to predict the non-linear responses of laterally loaded 
free-head long piles embedded in clay soil deposits with a uniform subgrade reaction 
modulus. Additionally, the proposed analytical solution has the advantage that it can pro-
vide a better approach for engineers to analyse and design the piles subjected to lateral 
loads without resorting to a 3D FE analysis, which is time consuming. Consequently, the 
mathematical forms of the theoretical solutions can be easily applied in practice as an al-
ternative approach to analyse and design laterally loaded long piles. 

It is emphasized that the simplified analytical solution obtained in this study is lim-
ited by the linearity of the soil–pile system, which often significantly affects the overall 
responses of the pile and the soil. Therefore, the proposed solution must be modified be-
fore applied to a non-linear case. Moreover, further investigation and analyses are needed 
to analyse the laterally loaded long piles in soil with variable subgrade reactions with 
depth, or for piles embedded in multilayered soil. 

Funding: This research received no external funding. 

Data Availability Statement: Not applicable. 

Conflicts of Interest: The author declares no conflict of interest. 

Nomenclature 
D Pile diameter or width  𝐻𝐻0 Applied lateral load 
L Pile length 𝑀𝑀0 Applied moment  
I Moment of inertia of pile shaft 𝑦𝑦(𝑧𝑧) Lateral deflection of pile 
E Young’s modulus of pile shaft 𝜑𝜑(𝑧𝑧) Pile rotation 
k Coefficient of the subgrade reaction  𝑀𝑀(𝑧𝑧) Pile bending moment 
cu Undrained shear strength 𝑉𝑉(𝑧𝑧) Pile shear force 
pu Limit lateral force 𝑝𝑝(𝑧𝑧) Load per unit length 
𝛽𝛽 Reciprocal of the characteristic length 𝑀𝑀𝑚𝑚𝑚𝑚 Maximum moment 
e Distance of pile above ground surface 𝑌𝑌𝑝𝑝𝑡𝑡𝑝𝑝 Top horizontal deflection 
𝑔𝑔𝑖𝑖 Integration coefficients 𝜑𝜑𝑝𝑝𝑡𝑡𝑝𝑝 Top pile rotation   
𝐶𝐶𝑖𝑖  Unknown parameters  𝑧𝑧0 Point of zero shear 
𝑣𝑣 Soil Poisson’s ratio 𝑧𝑧𝑝𝑝 Depth of the plastic zone  
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