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Abstract: This research study presents a closed form solution of responses of laterally loaded long
piles embedded on cohesive soils with a constant subgrade modulus. The surrounding soil medium
is modelled as elastic-perfectly plastic. The closed form solution is derived by solving the governing
differential equation of the pile–soil system. The most popular numerical computation software
package MATLAB is utilized for the implementation of solutions. The provided analytical method
reliably calculates the pile head deflection and bending moment required for engineering design
purposes. Results are discussed and verified with solutions of an equivalent three-dimensional finite
element (FE) model developed using ANSYS software. It was concluded that the proposed analytical
model could efficiently provide the exact solution of embedded piles in elasto-plastic cohesive soil
under lateral loads.

Keywords: analytical solution; laterally loaded long piles; cohesive soil; elasto-plastic soil;
ANSYS software

1. Introduction

When a shallow soil stratum is highly compressible and of low bearing capacity to
support the load transmitted by the superstructure, piles are principally used to trans-
mit the loads to the underlying stiffer soil strata of a higher bearing capacity. Various
precious approaches have been proposed to analyze the laterally loaded piles, including
the subgrade reaction approach [1,2] and p-y approach [3,4]. In the subgrade reaction
approach, the supporting soil is idealized as a series of lateral elastic springs and the
relationship between lateral applied force and lateral deflection pattern of a pile is treated
as linear- elastic over the depth of the pile. Moreover, the subgrade reaction modulus
is obtained through fitting with relevant numerical solutions [5,6]. In the p-y approach
the soil is conveniently simulated by a series of independent non-linear springs varying
with the depth, and the soil–pile interface responses are captured by representing the soil
nonlinear springs with p-y curves along the pile length. Several researchers on the piles
subjected to lateral loads continued to be unabated in which the soil is considered as a
continuum-based model. In these studies, different approaches such as the finite element
approach [7], boundary element approach [8], and finite difference approach [9], have been
introduced to predict the response of laterally loaded piles. A large number of studies have
examined the behaviour of the soil–pile interaction of laterally loaded piles considering
that the relationship between soil lateral reaction and pile deflection is linear [10], and
the lateral load behaviour of soil is non-linear. Therefore, the development of algebraic
expressions via a closed form solution is proposed in this study to predict the non-linear
responses of laterally loaded piles in clay strata. The proposed analytical solution in the
current study provides a better approach for structural designers to simply solve for the
lateral soil reaction, displacement, shear force, and bending moment responses of laterally
loaded free-head long piles embedded in homogeneous cohesive soils with a constant
lateral subgrade reaction with depth. Consequently, the techniques can be easily applied in
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practice as an alternative approach to analyse and design laterally loaded long piles. In
addition, the proposed solution incorporates the contribution of the Winkler foundation
model with the linear elastic-perfect-plastic p-y soil response. The proposed analytical
solution is verified by comparing the results obtained for the pile’s deflection and induced
bending moment with numerical results using the finite element software ANSYS. The
accuracy of the location at which the maximum bending moment occurs, and the magni-
tude of that maximum bending moment along the pile are further verified analytically by
comparing them to those obtained from the FE analysis. In addition, a numerical example is
introduced to investigate the effect of the horizontal loads on the depth of the plastic zone.

2. Problem Definition and Formulation

A free-head cylindrical pile of length L, diameter D, and Young’s modulus Ep em-
bedded in a homogeneous clay soil and subjected to lateral load H0 at an eccentricity,
e above ground surface is schematically shown in Figure 1a. In order to simulate the
pile–soil interaction, the pile shaft is assumed to be perfectly glued to the surrounding soils
suggesting that there is no relative movement along the pile–soil interface. Furthermore, a
series of springs distributed along the pile shaft are used to characterize that interaction
for the pile subjected to the lateral load H0 and bending moment, M0 = H0e at the ground
surface, as shown in Figure 1b.
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Figure 1. (a) Schematic diagram of pile under lateral load, (b) illustration of lateral soil reaction distribution along the
pile shaft.

Free-head and fixed-tip boundary conditions are assumed. Therefore, the pile head is
unrestrained to rotate and move laterally while the pile base is fully fixed against translation
and rotation. Unquestionably, the soil behaves non-linearly under higher lateral load. This
nonlinearity is described by the well-known ideal elasto-plastic p-y relationship at any
depth. This model is shown in Figure 2a in which k is the gradient of the p-y curve that
offers the soil modulus at any point z below the surface along the pile, pu is the limiting soil
horizontal resistance per unit depth, and y_y is the threshold of soil displacement above
which the soil is initiated to yield. On the other hand, the soil near the ground surface
presumably yields firstly and propagates downward to a depth called plastic depth, zp [11].
Below plastic depth, the soil reaction is linear and still in the elastic state. Accordingly, the
lateral soil reaction along the pile shaft may be characterized by two zones: the plastic zone
above which extends to a depth zp depending on both the applied lateral force and its point
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of application, and the bottom elastic zone below this depth (see Figures 1b and 2b) [12]. It
is worth noting that the limiting lateral force for clay soils increases with depth from 2cuD
to 3cuD at ground surface up to 8cuD to 12cuD at a depth of about 3D, and beyond this
depth it keeps constant [13]. Where cu is the undrained shear strength of the soil, D is the
pile diameter. Consequently, the limiting lateral force is proposed to equal 9cuD to the end
of the plastic zone (see Figure 2b) [14].

Mathematics 2021, 9, x FOR PEER REVIEW 3 of 13 
 

 

that offers the soil modulus at any point z below the surface along the pile, 𝑝௨ is the limit-
ing soil horizontal resistance per unit depth, and y_y is the threshold of soil displacement 
above which the soil is initiated to yield. On the other hand, the soil near the ground sur-
face presumably yields firstly and propagates downward to a depth called plastic depth, 𝑧௣ [11]. Below plastic depth, the soil reaction is linear and still in the elastic state. Accord-
ingly, the lateral soil reaction along the pile shaft may be characterized by two zones: the 
plastic zone above which extends to a depth 𝑧௣ depending on both the applied lateral 
force and its point of application, and the bottom elastic zone below this depth (see Figures 
1b and 2b) [12]. It is worth noting that the limiting lateral force for clay soils increases with 
depth from 2𝑐௨𝐷 to 3𝑐௨𝐷 at ground surface up to 8𝑐௨𝐷 to 12𝑐௨𝐷 at a depth of about 3D, 
and beyond this depth it keeps constant [13]. Where 𝑐௨ is the undrained shear strength of 
the soil, D is the pile diameter. Consequently, the limiting lateral force is proposed to equal 9𝑐௨𝐷 to the end of the plastic zone (see Figure 2b) [14]. 

 
(a) (b) 

Figure 2. (a) Elasto-plastic behavior of the soil, (b) lateral soil reaction distribution [14]. 

3. Mathematical Formulation 
In the case of the pile subjected to lateral forces, it tries to push the surrounding soil 

horizontally in the loading direction to its limit state. Subsequently, the surface soils tend 
to yield, and the cracks tend to be very shallow. The lateral soil reaction along the pile 
shaft may be characterized by two zones: the top plastic zone which extends downward 
to depth 𝑧௣ depending on both applied lateral force and its point of application, and the 
bottom elastic zone below this depth (see Figure 2). 

The governing flexural equation for the response of the soil–pile system according to 
Winkler’s foundation concept can be written as: 𝐸𝐼 ௗర௬ௗ௭ర + 𝑃(𝑧) = 0, (1) 

In the above, E is the modulus of elasticity of concrete, I is the effective moment of 
inertia, y is the lateral deflection of the pile, and p(z) is the soil reaction at any point at a 
depth z along the axis of the pile which may be described for the elasto-plastic model as: 𝑃(𝑧) = ൜ 𝑘 × 𝑦   →  𝑧 ≥ 𝑧௣  𝑝௨        →  𝑧 ≤  𝑧௣, (2) 

Figure 2. (a) Elasto-plastic behavior of the soil, (b) lateral soil reaction distribution [14].

3. Mathematical Formulation

In the case of the pile subjected to lateral forces, it tries to push the surrounding soil
horizontally in the loading direction to its limit state. Subsequently, the surface soils tend
to yield, and the cracks tend to be very shallow. The lateral soil reaction along the pile
shaft may be characterized by two zones: the top plastic zone which extends downward
to depth zp depending on both applied lateral force and its point of application, and the
bottom elastic zone below this depth (see Figure 2).

The governing flexural equation for the response of the soil–pile system according to
Winkler’s foundation concept can be written as:

EI
d4y
dz4 + P(z) = 0, (1)

In the above, E is the modulus of elasticity of concrete, I is the effective moment of
inertia, y is the lateral deflection of the pile, and p(z) is the soil reaction at any point at a
depth z along the axis of the pile which may be described for the elasto-plastic model as:

P(z) =
{

k× y → z ≥ zp
pu → z ≤ zp

, (2)

where k is the subgrade reaction modulus of the soil, zp is the depth of the plastic zone,
and pu is the lateral limit force below which the soil reaction has a linear relationship with
lateral pile deflection.

The integration of Equation (1) considering the boundary and continuity conditions
presented in Tables 1 and 2 leads to the analytical solution for piles subjected to lateral
loads and embedded in linear-plastic soil.
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Table 1. Boundary conditions used for elastic solution.

Boundary Condition Equations

Shear force V = H0 at z = 0 EIY′′′ (0) = H0
Bending moment M = M0 at z = 0 EIY′′ (0) = M0

Table 2. Boundary conditions used for elasto-plastic solution.

Boundary Condition Equations

Shear force V = H0 at z = 0 EIY′′′ (0) = H0
Bending moment M = M0 at z = 0 EIY′′ (0) = M0

Slope from plastic zone equal slope from elastic zone
at z = zp (compatibility for slope) Y′

(
zp
)

plastic = y′
(
zp
)

elastic

Deflection from plastic zone equal deflection from
elastic zone at z = zp (compatibility for deflection) Y

(
zp
)

plastic = y
(
zp
)

elastic

Bending moment from plastic zone equal bending
moment from elastic zone at z = zp

y′′
(
zp
)
=

M(zp)
EI

Shear force from plastic zone equal shear force from
elastic zone at z = zp

y′′′
(
zp
)
=

V(zp)
EI

For infinitely long piles, the pile is fixed at the bottom

y(L) = 0
y′(L) = 0
y′′ (L) = 0
y′′′ (L) = 0

3.1. Elastic Soil Behaviour

Based on the assumption that the applied lateral force does not exceed the ultimate
load pu, the relationship between lateral soil resistance per unit pile length and pile lateral
deflection under working loads is linear–elastic. Consequently, under this assumption the
governing equation of motion can be expressed as:

EI
d4y
dz4 + k× y = 0, (3)

If one assumes that the modulus of subgrade reaction k in clay soil is independent of
depth [15], thereby the general solution of Equation (3) is of the form:

y(z) = e−βz{g1 sin(βz) + g2 cos(βz)}+ eβz{g3 sin(βz) + g4 cos(βz)}, (4)

where β is the reciprocal of the characteristic length and gi, i = 1, 2, 3, 4 are four indepen-
dent constant parameters.

Assuming that the pile is infinite and the deflection at the tip of the long piles is
negligible, then the lateral deflections at working loads can be simplified as

y(z) = e−βz{g1 sin(βz) + g2 cos(βz)}, (5)

Further higher derivatives for Equation (5) yields

y′(z) = βe−βz{(g1 − g2) cos(βz) + (g1 + g2) sin(βz)}, (6)

y′′ (z) = −2β2e−βz{g1 cos(βz)− g2 sin(βz)}, (7)

y′′′ (z) = 2β3e−βz{(g1 + g2) cos(βz) + (g1 − g2) sin(βz)}, (8)

y””(z) = −4β4e−βz{g1 sin(βz) + g2 cos(βz)}, (9)

By substituting Equations (5) and (9) into Equation (3), β for the free-load pile can be
assigned as:

β = 1/L = 4
√

kD/4EI, (10)
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where EI is stiffness of pile section and D is width or diameter of pile.
Two constant parameters g1 and g2 are obtained for piles subjected to applied hori-

zontal load H0 and applied bending moment M0 by imposing the equilibrium conditions
for both the bending moment and shear force at pile top using Table 1. Thereupon, by
substituting the boundary conditions into Equations (7) and (8), two integration coefficients
g1 and g2 can be determined as:

g1 =
1

2β2EI
{−M0}, (11)

g2 =
1

2β2EI

{
M0 +

H0

β

}
, (12)

The deflection along the laterally loaded pile can be obtained by substituting
Equations (11) and (12) into Equation (5) as

y(z) =
e−βz

2β2EI

{
−M0 sin(βz) +

(
M0 +

H0

β

)
cos(βz)

}
, (13)

Consequently, the bending moment M, and the shear force V are found by successive
differentiation of Equation (13) as:

M(z) = e−βz
{

M0 cos(βz) +
(

M0 +
H0

β

)
sin(βz)

}
, (14)

V(z) = e−βz{H0 cos(βz)− (2βM0 + H0) sin(βz)}, (15)

By setting V(z) = 0, the point of zero shear z0 can be written as:

z0 =
1
β

tan−1 H0

2βM0 + H0
, (16)

Therefore, the maximum bending moment can be obtained as follows:

Mmax = e−βz0

{
M0 cos(βz0) +

(
M0 +

H0

β

)
sin(βz0)

}
, (17)

3.2. Elasto-Plastic Soil Behaviour

Admittedly, the soil behavior under higher lateral load levels is predominantly non-
linear. A simple approach proposed by Madhav et al. [16] reasonably captures this nonlin-
earity through considering the elastic-plastic subgrade model. Consequently, the non-linear
responses for long piles under lateral loading may be obtained through two zones as follows.

3.2.1. Plastic Zone z ≤ zp

p(z) = −EI
d4Y
dz4 = −pu, (18)

Through several integrations for Equation (18), the key responses of the pile in the
plastic zone can be expressed as follows:

V(z) = EI
d3Y
dz3 = −puz + C1, (19)

M(z) = EI
d2Y
dz2 = −pu

z2

2
+ C1z + C2, (20)

ϕ(z) =
dY
dz

=
1

EI

[
−pu

z3

6
+ C1

z2

2
+ C2z + C3

]
, (21)
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Y(z) =
1

EI

[
−pu

z4

24
+ C1

z3

6
+ C2

z2

2
+ C3z + C4

]
, (22)

3.2.2. Elastic Zone z ≥ zp

y(z) = e−βz{C5 sin(βz) + C6 cos(βz)}, (23)

y′(z) = βe−βz {(C5 − C6) cos(βz)− (C5 + C6) sin(βz)}, (24)

y′′ (z) = −2β2e−βz{C5 cos(βz)− C6 sin(βz)}, (25)

y′′′ (z) = 2β3e−βz{(C5 + C6) cos(βz) + (C5 − C6) sin(βz)}, (26)

y””(z) = −4β4e−βz{C5 sin(βz) + C6 cos(βz)}, (27)

The solution of the above equations requires boundary conditions to obtain the un-
known parameters Ci, i = 1, 2, 3, 4, 5, 6 and z = zp. All boundary conditions associated
with the above equations must be determined by recourse to the boundary conditions in
Table 2. The equilibrium for the bending moment and shear force at z = 0 and compatibility
for displacement and slope at z = zp is considered.

By considering equilibrium for shear at the pile head, the undetermined constants C1
can be determined as:

C1 = H0, (28)

Subsequently, by imposing the equilibrium for the bending moment at the pile head,
the undetermined constants C2 can be expressed as:

C2 = M0, (29)

Then, the plastic zone develops at a depth zp of the form:

zp =

(
H2

0
p2

u
+ 2

M0

pu

)
0.5 +

H0

pu
− 1

β
, (30)

Applying the compatibility for slope at z = zp by equating Equation (21) with
Equation (24) yields

C3 = −EIβ

{
y
(
zp
)
+

M
(
zp
)

2β2EI

}
+ pu

z3
p

6
− H0

z2
p

2
−M0zp, (31)

where
y
(
zp
)
=

pu

k
, (32)

and

M
(
zp
)
= −pu

z2
p

2
+ H0zp + M0, (33)

Similarly, applying the compatibility for deflection at z = zp by equating
Equation (22) with Equation (23) yields,

C4 = EIy
(
zp
)
+pu

z4
p

24
− H0

z3
p

6
−M0

z2
p

2
− C3zp, (34)

Based on Equations (21) and (22), the rotation ϕtop and horizontal deflection Ytop of
the pile at z = 0 can be expressed as
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ϕtop = −β

{
y
(
zp
)
+

M
(
zp
)

2β2EI

}
+ pu

z3
p

6
− H0

z2
p

2
−M0zp, (35)

Ytop = y
(
zp
)
+

1
EI

{
pu

z4
p

24
− H0

z3
p

6
−M0

z2
p

2
− C3zp

}
, (36)

Furthermore, Equation (26) can be re-expressed as:

y′′′ (z) = 2β3e−βz{C5 cos(βz)− C6 sin(βz) + C5 sin(βz) + C6 cos(βz)},

y′′′ (z) =

(−β)y′′ (z)︷ ︸︸ ︷
(−β)

(
−2β2e−βz

)
{C5 cos(βz)− C6 sin(βz)}

−
(

1
2β

)(
−4β4e−βz

)
{C5 sin(βz) + C6 cos(βz)}︸ ︷︷ ︸

( 1
2β ) y””(z)

(37)

y′′′ (z) = −βy′′ (z) + 2β3y(z), (38)

Applying equilibrium principles at z = zp yields

C5 = eβzp

{
y
(
zp
)

sin
(

βzp
)
−

M
(
zp
)

2β2EI
cos
(

βzp
)}

, (39)

and C6 is given by

C6 = eβzp

{
y
(
zp
)

cos
(

βzp
)
+

M
(
zp
)

2β2EI
sin
(

βzp
)}

, (40)

There are two cases that may arise to obtain the maximum value of the bending
moment and the corresponding position.

Case 1: the bending moment occurs in the elastic region.

In this case, the largest bending moment value is assumed to occur in the elastic region.
Substituting into Equation (26) with z = z0 and equating with zero yields

y′′′ (z0) = 2β3EIe−βz0
{

eβzp y
(
zp
)[

sin
(

βzp
)
cos(βz0) + cos

(
βzp
)
cos(βz0)+

eβzp M(zp)
2β2EI

[
sin
(

βzp
)
cos(βz0)− cos

(
βzp
)
cos(βz0)

]
+

eβzp y
(
zp
)[

sin
(

βzp
)
sin(βz0)− cos

(
βzp
)
sin(βz0)

]
−

eβzp M(zp)
2β2EI

[
sin
(

βzp
)
sin(βz0) + cos

(
βzp
)
sin(βz0)

]}
= 0,

The depth of maximum bending moment which occurs in elastic zone can be ex-
pressed as

z0 =
1
β

tan−1


sin
(

βzp
)[

y
(
zp
)
+

M(zp)
2β2EI

]
+ cos

(
βzp
)[

y
(
zp
)
− M(zp)

2β2EI

]
cos
(

βzp
)[

y
(
zp
)
+

M(zp)
2β2EI

]
− sin

(
βzp
)[

y
(
zp
)
− M(zp)

2β2EI

]
, (41)

Furthermore,

Mmax = −2β2EIe−βz0{C5 cos(βz0)− C6 sin(βz0)}, (42)

Case 2: the bending moment occurs in the plastic region.
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This case assumes the occurrence of largest bending moment value is in the plastic
region. Proceeding similarly as Case 1, the depth of maximum bending moment which
occurs in elastic zone can be expressed as

z0 =
H0

pu
, (43)

and its value is

Mmax =
H2

0
2pu

+ M0, (44)

4. Validation of the Proposed Methods

The capability of the proposed analytical solutions presented in this research to predict
the lateral behaviour of single piles embedded in a cohesive soil and the corresponding
pile responses have been demonstrated and compared with the FE results carried out using
ANSYS software.

For this purpose, a concrete pile with length L = 15 m, diameter D = 0.4 m, Poisson’s
ratio ν = 0.2, and Young’s modulus of elasticity Ep = 35,000 MPa is embedded in a clay
layer with lateral reaction modulus ks = 50,000 kpa and shear strength Cu = 14.4 kpa. The
pile head is unrestrained to rotate and move laterally while the pile tip is completely fixed.

Figure 3 presents the computed pile head deflections versus applied lateral forces for
both the analytical solution and FE solution with ANSYS software. The figure indicates that
the results of the proposed analytical solution are closer to the results from the FE method.
The lateral deflection obtained by the ANSYS workbench 18.2 for different lateral loads,
2, 75.5, and 82 kN are shown in Figure 4. The captured results obtained from Figure 3 are
compared with those obtained by proposed analytical method as shown in Table 3. The
presented results clearly indicate excellent agreement with the FE solution.
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Figure 3. Comparison between the analytical and numerical lateral deflections of pile head versus applied lateral forces.
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Table 3. Pile head deflections obtained from the analytical and FE methods.

Applied Lateral Load (kN)
Pile Head Deflections (mm)

%
Analytical Method FE, ANSYS Method

2 0.54 0.43 19
75.5 14.38 16.34 13.7
82 18.3 17.75 3

Additionally, to ensure that the proposed solution produces a reliable pile deflection
and bending moment not only at the pile head but also for the entire pile length, the
lateral deflection and bending moment distribution along the pile shaft are presented and
compared with the results of the FE analysis as shown in Figure 5.

The captured peak lateral deflection and bending moment obtained from the analytical
solution are 16.710 mm and 140.459 kN·m, respectively, while the corresponding values
obtained from the FE analysis are 17.809 mm and 141.053 kN·m, respectively. The results
clearly indicate the agreement between the analytical and FE solutions in calculating peak
value for design purposes.

Additionally, it is observed that the lateral deflection and bending moment profiles ob-
tained using the proposed analytical method reach a good agreement with the FE solution.
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Figure 5. Comparison of the results with the FE results. (a) The distribution of lateral deflection along the pile. (b) The
distribution of the bending moment along the pile.

5. Conclusions

An analytical solution of the lateral response of an infinite pile embedded in homoge-
neous elasto-plastic soil deposits has been proposed in the current study. The solution is
based on conceptual assumptions of the Winkler model which treat the pile as a flexible
beam and soil restraint surrounding the pile as a series of non-linear independent springs.
The flexural differential equation describing the response of the soil–pile system was solved
analytically. Additionally, the location at which the maximum bending moment occurs,
and the magnitude of that maximum bending moment along the pile were obtained from
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the analysis. For verification of the proposed analytical procedure, the obtained results
are compared with the FE results, carried out using ANSYS software, showing excellent
agreements. The proposed exact solution could efficiently provide a better approach for
structural designers to predict the non-linear responses of laterally loaded free-head long
piles embedded in clay soil deposits with a uniform subgrade reaction modulus. Addi-
tionally, the proposed analytical solution has the advantage that it can provide a better
approach for engineers to analyse and design the piles subjected to lateral loads without
resorting to a 3D FE analysis, which is time consuming. Consequently, the mathemati-
cal forms of the theoretical solutions can be easily applied in practice as an alternative
approach to analyse and design laterally loaded long piles.

It is emphasized that the simplified analytical solution obtained in this study is limited
by the linearity of the soil–pile system, which often significantly affects the overall responses
of the pile and the soil. Therefore, the proposed solution must be modified before applied
to a non-linear case. Moreover, further investigation and analyses are needed to analyse
the laterally loaded long piles in soil with variable subgrade reactions with depth, or for
piles embedded in multilayered soil.
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Nomenclature

D Pile diameter or width H0 Applied lateral load
L Pile length M0 Applied moment
I Moment of inertia of pile shaft y(z) Lateral deflection of pile
E Young’s modulus of pile shaft ϕ(z) Pile rotation
k Coefficient of the subgrade reaction M(z) Pile bending moment
cu Undrained shear strength V(z) Pile shear force
pu Limit lateral force p(z) Load per unit length
β Reciprocal of the characteristic length Mma Maximum moment
e Distance of pile above ground surface Ytop Top horizontal deflection
gi Integration coefficients ϕtop Top pile rotation
Ci Unknown parameters z0 Point of zero shear
v Soil Poisson’s ratio zp Depth of the plastic zone
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