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Abstract: Cellular neural networks with D operator and time-varying delays are found to be effec-
tive in demonstrating complex dynamic behaviors. The stability analysis of the pseudo-almost pe-
riodic solution for a novel neural network of this kind is considered in this work. A generalized 
class neural networks model, combining cellular neural networks and the shunting inhibitory 
neural networks with D operator and time-varying delays is constructed. Based on the fixed-point 
theory and the exponential dichotomy of linear equations, the existence and uniqueness of pseu-
do-almost periodic solutions are investigated. Through a suitable variable transformation, the 
globally exponentially stable sufficient condition of the cellular neural network is examined. 
Compared with previous studies on the stability of periodic solutions, the global exponential sta-
bility analysis for this work avoids constructing the complex Lyapunov functional. Therefore, the 
stability criteria of the pseudo-almost periodic solution for cellular neural networks in this paper 
are more precise and less conservative. Finally, an example is presented to illustrate the feasibility 
and effectiveness of our obtained theoretical results. 

Keywords: cellular neural networks; pseudo-almost periodic solution; exponential dichotomy; d 
operator; time-varying delays 
 

1. Introduction 
In recent years, the cellular neural networks (CNN), first proposed by Chua and 

Yang [1,2], have received significant attention because of their wide applications in sci-
ence and engineering technology fields. Extensive research has been conducted on CNN 
in the past few decades, and one of the primary problems in designing CNN is to deal 
with the dynamic curves of existing solutions. Regarding the existence, uniqueness, and 
stability of the periodic, almost periodic solutions of neural networks, there have been 
many results in the fields of classification, signal processing [3], associative memory [4,5], 
optimal control [6], and filter problem [7–9]. The state estimation problem of delayed 
static neural networks has been considered by Wang and Xia et al. [10]. Donkers et al. 
showed stability analysis results of networked control systems employing a switched 
linear systems approach [11]. Liang and Wang et al. [12], mainly examined the robust 
synchronization issue for two-dimension discrete-time coupled dynamical neural net-
works. Due to the limited bandwidth speed and the constraints of physical property for 
circuit equipment, information propagation inevitably give birth to the emergence of 
time delays, meanwhile arising other problems of the CNN. The appearance of time lags 
usually causes turbulence, instability, and chaos [13,14]. The stability of discrete-time 
systems with time-varying delays via a novel summation inequality was discussed in 
[15,16]. For the reason that information transmission between neurons has time delays 
behavior, the neural network model with delay described by the time delays functional 

Citation: Liu, W.; Huang, J.; Yao, Q. 

Stability Analysis of Pseudo-Almost 

Periodic Solution for a Class of  

Cellular Neural Network with D 

Operator and Time-Varying Delays. 

Mathematics 2021, 9, 1951. https:// 

doi.org/10.3390/math9161951 

Academic Editor: Jan Awrejcewicz 

Received: 23 July 2021 

Accepted: 13 August 2021 

Published: 15 August 2021 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and insti-

tutional affiliations. 

 

Copyright: © 2021 by the authors. 

Licensee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and 

conditions of the Creative Commons 

Attribution (CC BY) license 

(http://creativecommons.org/licenses

/by/4.0/). 



Mathematics 2021, 9, 1951 2 of 24 
 

 

differential equation has been widely examined and implemented in various fields. 
Due to similarity to the circuit system’s connection, CNN is a practical and feasible 

alternative to the circuit system simulation [17]. Many scholars realized the vital of neural 
networks and introduced novel research methods to work with their dynamic behavior 
[18,19]. Subsequently, some scholars also proposed several different types of CNN mod-
els and discussed the dynamic characteristics of solution curves [20,21]. In 2018, hierar-
chical type stability criteria for delayed neural networks via canonical Bessel–Legendre 
inequalities had been demonstrated [22]. In particular, shunt suppression of artificial 
CNN has been widely used in various research fields such as pattern recognition [23], 
image processing [24], and combination optimization [25]. The dynamic characteristics of 
neural networks, such as the existence, uniqueness, and global asymptotic stability of the 
equilibrium point and periodic solution for time-delay CNN play a crucial role. Howev-
er, most of the existing results on the dynamic behavior of CNN focus on stability or pe-
riodicity. Fewer have been done on the existence of periodic solutions or almost periodic 
solutions for Cohen–Grossberg neural networks with delays [26,27].  

Many motion processes in the present world are approximate to periodic instead of 
strictly periodicity. Conventionally, to reduce computing tasks’ burden, the complex 
system is usually idealized as a periodic. However, the system may not have periodicity 
for various CNN systems, even though all its parameters are periodic due to the uncer-
tainty of the system’s parameters’ periodicity. Hence, the complex system may have no 
periodic solution curves. Danish mathematicians Bohr [28] first proposed the concept of 
almost periodicity, which is a significant generalization for practical application. Fol-
lowing the work proposed by Bohr, some scholars have been put forward many different 
techniques to expand the research of almost periodic solutions of complex systems 
[29,30]. Similarly, the concept of pseudo-almost periodicity was proposed by Zhang [31] 
in 1992, and it was further extended from the natural almost periodic to the pseu-
do-almost periodic in the Bohr sense. 

Including many commonly used forms that may exist, the dynamic behavior of 
pseudo-almost periodicity is more extensive and approximate to the actual [32]. There-
fore, the described neural network characteristic has a high degree of complexity and 
importance significance [33]. In CNN systems, the process of information transmission 
and mutual reaction between neurons is exceptionally complicated, and various phe-
nomena such as disturbance, instability, bifurcation, and chaos may occur [34]. Therefore, 
it is of both theoretical and practical vital to examine the dynamic behavior of CNN sys-
tems pseudo-almost periodicity. There is relatively tiny related literature on pseu-
do-almost periodic research so far. For example, Liu [35] studied the pseudo-almost pe-
riodic solutions for neutral-type CNN with continuously distributed leakage delays; and 
others investigated the pseudo-almost periodic solutions for a Lasota–Wazewska model 
with an oscillating death rate [36]. As far as we know, there is still a massive gap in the 
investigation of the pseudo-almost periodicity, insufficient work was done on the exist-
ence and stability of pseudo-almost periodic solutions on neural networks with propor-
tional delays [37]. Therefore, based on the previous examined, further exploration of the 
pseudo-almost periodic solution is one of the targets for this work. The main contribu-
tions of this paper are as follows: (1) This work not only considered the D operator sys-
tems but also investigated the effects of time-delays on dynamical complex network 
systems. (2) The approach we utilized was completely different previous. (3) The stabil-
ity criteria of the pseudo-almost periodic solution in this paper are more precise and less 
conservative. (4) Compared with previous studies on the stability criteria, analyzing the 
globally exponentially stable avoids constructing the complex Lyapunov functional. 

By employing innovative fixed-point theory and exponential dichotomy methods, 
we derived the pseudo-almost periodic solutions stability issue, which is entirely differ-
ent from earlier work. The obtained results in this paper are novel, meanwhile promoting 
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and supplement some of the previous research work. The r-neighborhood of a cell ijx  
defines as follows: 

0 2 2
,( , ) { | | | | | ,1 ,1 },

2r pq ij pq
rN i j x d p i q j p m q n= = − + − ≤ ≤ ≤ ≤ ≤  

where 2r ≥  is a positive integer number. Since each cell of CNN is only connected to its 
neighboring areas, those cells that are not directly connected may be affected by contin-
uous-time propagation effects and indirectly affect each other. Furthermore, due to the 
neural network’s increasing distance, the influence between different neurons in CNN is 
correspondingly weakened. 

Several previous works are the motivation for us to propose the new 
r-neighborhood 0( , )rN i j , we examined the novel types of cellular neural networks with 
D operator and time-varying delays as follows: 

'

1 1 1 1
1 1

1 1 1 1
1 1

[ ( ) ( ) ( ( ))]

( ) ( ) ( ) ( , ( ), ( ), ( ), ( ))

( ) ( , ( ), ( ), ( ), ( )) ( ),

ij ij ij ij

m n

ij ij ij ij i j ij ij i j
i j

m n

ij ij i j ij ij i j ij
i j

x t p t x t t

a t x t b t f t x t x t x t x t

c t g t x t x t x t x t L tτ τ τ τ

δ

− − + +
= =

− − + +
= =

− −

= − +

+ +

 

 

  
(1) 

where ( ) ( ( )),1 ,1 .ij ij ijx t x t t i m j nτ τ= − ≤ ≤ ≤ ≤  ( )ijx t  corresponds to the state of the 

ij th−  cell (at the (i, j) position of the lattice) at time t, ( ) 0ija t >  represents the rates 

with which the ij th−  cell will reset its potential to the resting state in isolation when 
disconnected from the networks and external inputs at time t; ( )ijf ⋅ , ( )ijg ⋅  denote the 

activation functions of signal transmission. ( )ijp t , ( )ijb t , ( )ijc t  denote the connection 

weights at time t, ( ) 0, ( ) 0ij ijt tδ τ≥ ≥  corresponding to the transmission delays, and 

( )ijL t  are the external inputs on the ij th−  cell at time t. 
The initial conditions of the system (1) are assumed to be 

' ( ) ( ), [ ,0],1 ,1 ,
ij ijx s s s i m j nφ τ= ∈ − ≤ ≤ ≤ ≤  (2) 

where ( )ij sφ  is a continuous function, 

1 ,1 1 1 1 1max sup {| ( ) |,| ( ) |,| ( ) |,| ( ) |,| ( ) |}.i m j n t ij i j ij ij i jt x t x t x t x tτ δ≤ ≤ ≤ ≤ ∈ − − + +=   

The paper is organized as follows. In Section 2, we will introduce some definitions 
and lemmas, which will be used to obtain our results. In Section 3, we state and demon-
strate the existence and global exponential stability of the pseudo-almost periodic solu-
tion. In Section 4, an example illustrates the feasibility and effectiveness of obtained the-
oretical results. In Section 5, a brief conclusion is given. 

2. Preliminaries 
In this section, we recall briefly some basic definitions and properties of pseu-

do-almost periodic functions and the exponential dichotomy. 

Definition 1. Let ( ) ( , ).nu BC⋅ ∈    ( )u ⋅  is said to be (Bohr) almost periodic on n , if for 
any 0ε > , the set 
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( , ) { : ( ) ( ) , },T u u t u t tε δ δ ε∞= + − < ∀ ∈    

is relatively dense, i.e., for any 0ε > , it is possible to find a real number ( ) 0l l ε= >  
with the property that for any interval with length ( )l ε , there exists a number 

( )δ δ ε=  in this interval such that 

( ) ( ) ,u t u t tδ ε∞+ − < ∀ ∈    

Definition 2. A function ( , )n nF BC∈ ×    is called (Bohr) almost periodic in t∈
uniformly in x K∈ , where K  is any bounded compact subset of n , that is, if for each 

0ε > , there exists ( ) 0l ε >  such that every interval of length ( ) 0l ε >  contains a number 
τ  with the following property 

 sup ( , ) ( , ) .
t

F t x F t xτ ε
∈

+ − <

   

We denote by ( , )n nAP t∈ ×    the set of the almost periodic functions from 
n×   to n . Additionally, we define a class function as follows: 

0
1( ; ) { ( ; ) | lim ( , ) 0, }
2

Tn n n n

TT
PAP f BC f t x dt x

T −→∞
× = ∈ × = ∀ ∈            

which is a closed subspace of ( ; )n nBC ×   . 

Definition 3. A continuous function ( ; )n nf BC∈ ×    is called pseudo-almost periodic 
if it can be expressed as 

1 2,f f f= +  (3)

Where 1 ( ; )n nf AP∈ ×    and 2 0 ( ; )n nf PAP∈ ×   . The collection of such 

functions is denoted ( ; )n nPAP ×   . 

Definition 4. Let lx∈  and ( )Q t  be a l l×  continuous matrix defined on  . The linear 
system 

' ( ) ( ) ( )x t Q t x t=   (4)

is said to admit an exponential dichotomy on l  if exist positive constants , 0k λ >  
and projection P  and the fundamental solution matrix ( )X t  of (4) satisfying 

( )( ) ( ) , ;t sX t PX s ke t sλ− − −< ≥   ( )( )( ) ( ) , .t sX t I P X s ke t sλ− − −− < ≤  

Lemma 1. Let ( )ic ⋅  be an almost periodic function on  , 

1[ ] lim ( ) 0, 1,2,..., .
t T

i itt
M c c s ds i l

T
+

→∞
= > =   

then the linear system 
'

1 2( ) ( ( ), ( ),..., ( )) ( )lx t diag c t c t c t x t= − −   

admits an exponential dichotomy on l . 
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Lemma 2. If the linear system ' ( ) ( ) ( )x t Q t x t=  has an exponential dichotomy, then almost 
periodic system 

' ( ) ( ) ( ) ( )x t Q t x t g t= +  (5)

has a unique pseudo-almost periodic solution ( )x t  which can be expressed as follow-
ings: 

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) , ( , ).
t

t
x t X t PX s g s ds X t I P X s g s ds g PAP

∞− −

−∞
= − − ∈     

Definition 5. Let 11 1 1( ) ( , , , , , , )Tn m mnx t x x x x= ⋅⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅  be a continuous differentiable pseu-
do-almost periodic solution of system (1) with the initial value 

11 1 1( ) ( , , , , , , )Tn m mnsψ ψ ψ ψ ψ= ⋅⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅   
If there exist constants 0ω >  and 1M ≥ such that for any solution 

11 1 1( ) ( , , , , , , )Tn m mny t y y y y= ⋅⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅  of system (1) with an initial value 

11 1 1( ) ( , , , , , , )Tn m mnsϕ ϕ ϕ ϕ ϕ= ⋅⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ , 

1 ,1
( ) ( ) max | ( ) ( ) | , 0,t

ij iji m j n
y t x t y t x t M e tωϕ ψ −

≤ ≤ ≤ ≤
− = − ≤ − ∀ >      

where 

1 ,1 [ ,0]
: max sup {| ( ) ( ) |}.ij iji m j n s

s s
τ

ϕ ψ ϕ ψ
≤ ≤ ≤ ≤ ∈ −

− = −    

Then, ( )x t  is said to be globally exponentially stable. 

Remark 1. Let ( , )mnBC    denote the set of bounded continuous functions from  to mn . 

Note that ( , )mnBC    is a Banach space with 

1 ,1: sup max | ( ) | .t i m j n ijh h t∞ ∈ ≤ ≤ ≤ ≤=     

Thus, 

( , )mnh BC∈   , we let sup | ( ) |, inf | ( ) | .t ij t ijh h t h h t+ −
∈ ∈= =    

Remark 2. In this paper, the collection of pseudo-almost periodic functions will be denoted by 
( , )mnPAP   , then ( ( , ), )mnPAP ∞⋅     is a Banach space with supremum norm is giv-

en by 1 ,1sup max | ( ) | .t i m j n iju u t∞ ∈ ≤ ≤ ≤ ≤=    
For the sake of convenience, we introduce the following notions: 

1 1 1 1 1 1 1 1( ) ( , ( ), ( ), ( ), ( )) ( , ( ), ( ), ( ), ( ))yx
ij ij i j ij ij i j ij i j ij ij i jt f t y t y t y t y t f t x t x t x t x t− − + + − − + +Φ −    

1 1 1 1 1 1 1 1( ) ( , ( ), ( ), ( ), ( )) ( , ( ), ( ), ( ), ( ))y x
ij ij i j ij ij i j ij i j ij ij i jt g t y t y t y t y t g t x t x t x t x t

τ τ τ τ τ τ τ τ τ τ
− − + + − − + +Φ −    

1 1 1 1
1 1

1 1 1 1
1 1

( , ( )) ( ) ( ) ( ( )) ( ) ( , ( ), ( ), ( ), ( ))

( ) ( , ( ), ( ), ( ), ( )),

m n

ij ij ij ij ij ij ij i j ij ij i j
i j

m n

ij ij i j ij ij i j
i j

F t x t a t p t x t t b t f t x t x t x t x t

c t g t x t x t x t x tτ τ τ τ

δ − − + +
= =

− − + +
= =

− − +

+

 

 


   

where, 
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11 1 1( ) ( , , , , , , )Tn m mnx t x x x x= ⋅⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅  11 1 1( ) ( , , , , , , )Tn m mny t y y y y= ⋅⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅  

3. Main Results 
In this section, we present some results on the existence and global exponential sta-

bility of pseudo-almost periodic solutions of the system (1). 
We assume that the following conditions are adopted: 

1( )H  For all 1 ,1i m j n≤ ≤ ≤ ≤ , 
, , , ( , ), ( , ),ij ij ij ij ijp b c L PAP a AP∈ ∈   

and 
inf 0t ija∈ > . 

2( )H  For all 1 ,1i m j n≤ ≤ ≤ ≤ , 5, ( , ), (0) (0) 0,ij ij ij ijf g C f g∈ = =   and 

there exist positive constant numbers ,ρ σ  such that for all ,ij ijx y ∈ , 

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

| ( , , , , ) ( , , , , ) |
(| | | | | | | |)

ij i j ij ij i j ij i j ij ij i j

ij i j i j ij ij ij ij i j i j

f t y y y y f t x x x x
y x y x y x y xρ

− − + + − − + +

− − − − + + + +

−

< − + − + − + −
  

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

| ( , , , , ) ( , , , , ) |

(| | | | | | | |)
ij i j ij ij i j ij i j ij ij i j

ij i j i j ij ij ij ij i j i j

g t y y y y g t x x x x

y x y x y x y x

τ τ τ τ τ τ τ τ

τ τ τ τ τ τ τ τσ
− − + + − − + +

− − − − + + + +

−

< − + − + − + −
  

3( )H  For [ ( )] 0, 1,2, , , 1,2, ,ijM a t i m j n> = ⋅⋅⋅ = ⋅⋅ ⋅ , there exist bounded and con-

tinuous functions: : (0, )ija
−

→ +∞  and positive constant ijN  such that 

[ ( ) ] [ ]
, , , 0.

t t
ij ijs s
a u du a du

ije N e t s t s
λ λ

−
− − − − ≤ ∀ ∈ − ≥   

4( )H For all 1 ,1i m j n≤ ≤ ≤ ≤ , there exist positive constants χ , such that 

1 1 1 1

sup{ ( ) [| ( ) ( ) |
1

4 | ( ) | 4 | ( ) | ]} 0.

ij

ij
ij ij ij ij

t

m n m n

ij ij ij ij
i j i j

N
a t a t p t e

p e

b t c t e

χτ
χτ

τ

χτ

χ

ρ σ

−

+
>−

= = = =

Λ = − +
−

+ + < 
  

Theorem 1. Suppose that 1( )H - 2( )H  and 

1 ,1 1 1

1max { [ 4( )]} 1
ij

m n

ij ij ij ij ij iji m j n i j
ij

p a p b c
a

θ ρ σ+ + + + +
−≤ ≤ ≤ ≤ = =

= + + + <   

hold. Then, system (1) has only one pseudo-almost periodic solution in the region 

0 1 ,1
{ | ( , ), }, max { },

1
ijmn

i m j n
ij

L
z z PAP z z

a

θ
θ

+

∞ −≤ ≤ ≤ ≤

ΔΩ = ∈ − ≤ Δ =
−

      

11 1

1

( ) ( )
0 11 1

( ) ( )
1

( ) ( ) , , ( ) ,

( ) , , ( ) .

t t
ns s

t t
m mns s

t ta u du a u du

n

t ta u du a u du

m mn

z t e L s ds e L s ds

e L s ds e L s ds

− −

−∞ −∞

− −

−∞ −∞

 = ⋅⋅⋅

 ⋅ ⋅ ⋅

 

 
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Proof. Let ( ) ( ) ( ) ( ( )), 1, , , 1, , .ij ij ij ij ijY t x t p t x t t i m j nδ= − − = ⋅⋅⋅ = ⋅⋅ ⋅  Then, we have 

' '( ) [ ( ) ( ) ( ( ))] ( ) ( ) ( , ( )) ( )
ij ij ij ij ij ij ij ij ijY t x t p t x t t a t Y t F t x t L tδ= − − = − + +   (6)

Since [ ] 0ijM a > , then by Lemma 1, the linear system ' ( ) ( ) ( )
ij ij ijY t a t Y t= −  ad-

mits an exponential dichotomy in the  . According to Lemma 2, the system (6) has 
only one pseudo-almost periodic solution as follows: 

( )
( ) [ ( , ( )) ( )]

t
ijs

t a u du

ij ij ijY t e F s s L s dsφ φ
−

−∞

= +   (7)

where 11 1 1( , , , , , , )Tn m mmφ φ φ φ φ= ⋅⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ , and 
'[ ( )] ( ) ( ) ( , ( )) ( ),ij ij ij ij ijY t a t Y t F t t L tφ φ φ= − + +  (8)

In addition, according to the property of pseudo-almost periodic function, we de-
rive 

( ( )) ( , ), 1, , , 1, , .mn
ij ij ij ijp Y PAP i m j nφφ δ⋅ − ⋅ + ∈ = ⋅⋅⋅ = ⋅⋅ ⋅    

Now, we define the nonlinear operator  

11 1 1( , , , , , , ) :n m mm
Tφ φ φ φ φΓ = Γ ⋅⋅⋅ Γ ⋅⋅⋅ Γ ⋅⋅⋅ Γ = Ω → Ω   

by setting 

( ) ( ) ( ( )) ( ), ,ij ij ij ij ijt p t t t Y tφ φφ δ φΓ = − + ∀ ∈ Ω  (9)

where 

11 1 1( , , , , , , )Tn m mmφ φ φ φ φ= ⋅⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅  and 1, , , 1, , .i m j n= ⋅⋅⋅ = ⋅⋅⋅   

For any ( , ),mnz PAP∈    set 

0{ | ( , ), }
1

mnz z PAP z z θ
θ∞

ΔΩ = ∈ − ≤
−

      

Obviously, Ω  is a closed convex subset of ( , )mnPAP   , and 

1 ,1

( )

0 1 ,1max sup { | ( ) | } max { }
t
ijs

i m j n

t a u du ij
i m j n t ij

ij

L
z e L s ds

a≤ ≤ ≤ ≤

+
−

∞ ≤ ≤ ≤ ≤ ∈ −−∞

≤ ≤ = Δ   

Therefore, for any z∈Ω , we have 

 0 0 .
1 1

z z z z θ
θ θ∞ ∞ ∞

Δ Δ≤ − + ≤ + Δ =
− −

       

Firstly, let us prove that the mapping Γ is a self-mapping from Ω  to Ω . In fact, 
for any 11 1 1( , , , , , , ) ( , )T mn

n m mm PAPφ φ φ φ φ= ⋅⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ∈   , we have 
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1 ,1

1 ,1 1 ,1

0

( )

( )

1 1
1 1

sup max {| ( ) ( ( )) | | ( , ( )) | }

max { } sup max { [

(| ( ) | | ( ) |

t
ijs

i m j nt

ij

i m j n i m j nt

t a u du

ij ij ij ij

t a t s
ij ij ij

m n

ij ij i j ij
i j

z

p t t t e F s s ds

p e a p

b s s

φ

φ δ φ

φ φ

ρ φ φ

≤ ≤ ≤ ≤∈

−

≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤∈

∞

−

−∞

− −+ + +
∞ ∞−∞

+
− −

= =

Γ −

≤ − +

≤ +

+ +











 

   

1 1

1 1 1 1
1 1

1 ,1 1 1

| ( ) | | ( ) |)

(| ( ) | | ( ) | | ( ) | | ( ) |)] }

1max { [ 4( )]} ,
1ij

ij i j

m n

ij ij i j ij ij i j
i j

m n

ij ij ij ij ij iji m j n i j
ij

s s

c s s s s ds

p a p b c
a

τ τ τ τ

φ φ

σ φ φ φ φ

θρ σ φ
θ

+ +

+
− − + +

= =

+ + + + +
∞−≤ ≤ ≤ ≤ = =

+ +

+ + + +

Δ≤ + + + ≤
−



  

  

that is ( , )mnPAPφΓ ∈Ω ⊂   , then the mapping Γ  is a self-mapping from Ω  to 

Ω . 
Next, we will prove that the mapping Γ  is a contraction mapping in the Ω . For 

any ,x y∈Ω , where 

11 1 1 11 1 1( ) ( , , , , , , ) , ( ) ( , , , , , , )T T
n m mn n m mnx t x x x x y t y y y y= ⋅⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ = ⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅   

We have 

1 ,1

1 ,1

( )

1 1 1 1

sup max {| ( )[ ( ( )) ( ( ))] [ ( )

[ ( ( )) ( ( ))] ( ) ( ) ( ) (

max

t
ijs

i m j nt

i m j n

y x

t a u du

ij ij ij ij ij ij ij

m n m n
yx y x

ij ij ij ij ij ij ij ij
i j i j

p t y t t x t t e a s p

y s s x s s b s s c s
τ τ

δ δ

δ δ

≤ ≤ ≤ ≤∈

≤ ≤ ≤ ≤

∞

−

−∞

= = = =

Γ − Γ

≤ − − − + −

⋅ − − − + Φ + Φ

≤



 


 

1 ,1

( )

1 1 1 1 1 1
1 1

1 1 1 1
1 1

{ } sup max { [

(| ( ) ( ) | | ( ) ( ) | | ( ) (

| ( ) ( ) |) (| ( )

t
ijs

i m j nt

t a u du

ij ij ij

m n

ij ij i j i j ij ij ij ij
i j

m n

i j i j ij ij i j i j
i j

p y x e a p y x

b y s x s y s x s y s x s

y s x s c y s xτ

ρ

σ

≤ ≤ ≤ ≤∈

−+ + +
∞ ∞−∞

+
− − − − + +

= =

+
+ + − −

= =

− + −

+ − + − + −

+ − + −









   

1 1

1 1 1 1

1 ,1 1 1

( ) | | ( )

| ( ) ( ) | | ( ) ( ) |)] }

1max { [ 4( )]}
ij

ij ij

ij ij i j i j

m n

ij ij ij ij ij iji m j n i j
ij

s y s x

y s x s y s x s ds

p a p b c y x y x
a

τ τ τ

τ τ τ τ

ρ σ θ

− −

+ + + +

+ + + + +
∞−≤ ≤ ≤ ≤ = =

+ −

+ − + −

≤ + + + − ≤ −    

  

It is clear that Γ is a contraction mapping of Ω . Thus, by virtue of the Banach 
fixed point theorem, the mapping Γ has a unique fixed point, 

11 1 1( ) ( , , , , , , )Tn m mnx t x x x x= ⋅⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ∈Ω  which corresponds to the solution of the sys-

tem (6) in ( , )mnPAPΩ ⊂   , such that ( ) ( )xx t t= Γ , that is to say, 
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( ) ( ) ( ( )) ( )x
ij ij ij ij ijx t p t x t t Y tδ= − +   

Then, combining with Equation (8), we get 
' '[ ( )] [ ( ) ( ) ( ( ))]

ij

x
ij ij ij ijY t x t p t x t tδ= − −   

Hence, the system (1) has only one pseudo-almost periodic solution ( )x t . The 
proof is complete. □ 

Theorem 2. Suppose that assumption 1( )H - 4( )H  and 1 ,12 max { }i m j n ijpη +
≤ ≤ ≤ ≤= +  hold, 

then system (1) has a unique pseudo-almost periodic solution ( )x t  that is globally exponentially 
stable. 

Proof. It follows from Theorem 1 that system (1) has only one pseudo-almost periodic 
solution 11 1 1( ) ( , , , , , , )Tn m mnx t x x x x= ⋅⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ∈Ω  with the initial value 

11 1 1( ) ( , , , , , , )Tn m mnsψ ψ ψ ψ ψ= ⋅⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅  and let 11 1 1( ) ( , , , , , , )Tn m mny t y y y y= ⋅⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅  be 
an arbitrary solution of system (1) with the initial value 

11 1 1( ) ( , , , , , , ) .Tn m mnsϕ ϕ ϕ ϕ ϕ= ⋅⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅  
Now, let 

( ) ( ) ( ), ( ) ( ) ( ) ( ( )).ij ij ij ij ij ij ij ijz t y t x t Z t z t p t z t tδ= − = − −   

Then, we derive 
' '

1 1 1 1

( ) [ ( ) ( ) ( ( ))]

( )[ ( ) ( ) ( ( ))] ( ) ( ) ( ) ( ).

ij ij ij ij ij

m n m n
yx y x

ij ij ij ij ij ij ij ij ij
i j i j

Z t z t p t z t t

a t Z t p t z t t b t t c t t
τ τ

δ

δ
= = = =

= − −

= − + − + Φ + Φ 
   

Multiplying the above equation by 0
( )

s
ija u du

e  and integrating on [0, t], we have 

0
( ) ( )

0

1 1 1 1

( ) (0) [ ( ) ( ) ( ( ))]

( ) ( ) ( ) ( )] .

t t
ij ijs

ta u du a u du

ij ij ij ij ij ij

m n m n
yx y x

ij ij ij ij
i j i j

Z t Z e e a s p s z s s

b s s c s s ds
τ τ

δ
− −

= = = =

 = + − −

+ Φ + Φ



 
  

From 4( )H , for all 1 ,1i m j n≤ ≤ ≤ ≤ , we can choose a constant 

10 min { }i n ijaλ < << < such that 1 0ij
ijp e

λδ ++− > . The norm defined by 

1 ,1 [ ,0]

max sup{| ( ) ( ) |}
i m j n s

ij ijs s
τ

ϕ ψ ϕ ψ
≤ ≤ ≤ ≤ ∈ −

− = −    

Thus, we have 

1 ,1

1 ,1

(0) max {| (0) | | (0) || (0 (0)) |}

[2 max { }] .

i m j n
ij ij ij ij

i m j n ij

Z z p z

p

δ

ϕ ψ η ϕ ψ

≤ ≤ ≤ ≤

+
≤ ≤ ≤ ≤

≤ + −

< + − = −

 

   
  

For any [ ,0]t τ∈ − , we obtain that 

1 ,1
1( ) max {| ( ) | | ( ) || ( ( )) |} ,

i m j n

t
ij ij ij ijZ t z t p t z t t M e λδ η ϕ ψ

≤ ≤ ≤ ≤

−≤ − − < −     (10)
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where 1 max{ } 1ijM N> +  is a constant. 
Next, we will prove that, for all 0t > , 

1 ,1
1( ) max {| ( ) | | ( ) || ( ( )) |} ,

i m j n

t
ij ij ij ijZ t z t p t z t t M e λδ η ϕ ψ

≤ ≤ ≤ ≤

−= − − < −     (11)

Or else, there must exist {1, , }, {1, , }i m j n∈ ⋅⋅⋅ ∈ ⋅⋅⋅  and 1 0t t> >  such that 

1

1 ,1
1 1 1 1 1 1( ) max {| ( ) | | ( ) || ( ( )) |} ,

i m j n

t
ij ij ij ijZ t z t p t z t t M e λδ η ϕ ψ

≤ ≤ ≤ ≤

−= − − = −     (12)

and 

1 ,1

1 1

( ) max {| ( ) | | ( ) || ( ( )) |}

, [0, ).

i m j n
ij ij ij ij

t

Z t z t p t z t t

M e t tλ

δ

η ϕ ψ

≤ ≤ ≤ ≤

−

= + −

< − ∀ ∈

 

 
  (13)

Hence, we have by (10) and (13) that 

1 ,1

1 ,1

1 ,1

( ( ) ( ))
1

1
[ , ]

( ) max { | ( ) ( ) ( ( )) | | ( ) ( ( )) |}

max { | ( ( )) |}

max { sup |

i m j n

ij ij

i m j n

ij

i m j n

ij ij ij ij ij ij ij

ij ij ij

s
ij ij

s t

e Z e z p z e p z

M p e z

M p e e z

λυ λυ λυ

λ υ δ υ λδ υ

λδ λ

τ

υ υ υ υ δ υ υ υ δ υ

η ϕ ψ υ δ υ

η ϕ ψ

≤ ≤ ≤ ≤

≤ ≤ ≤ ≤

+

≤ ≤ ≤ ≤

− ++

+

∈ −

≤ − − + −

≤ − + −

≤ − +

 

 

  ( ) |},s

   

for all 1[ , ], [0, ]t t tυ τ∈ − ∈ , and 1 ,1 ,i m j n≤ ≤ ≤ ≤  which entail that 

1

[ , ]
| ( ) | sup | ( ) | .

1 ij

t s

s t
ij

Me Z t e z s
p e

λ λ
λδτ

η ϕ ψ
++∈ −

−≤ ≤
−
 

  (14)

Thus, combining with (14), 2 3( ), ( )H H  and 4( )H , we derive 
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1 1
1

0 1 1

1

01

[ ( ) ] [ ( ) ] ( )
1 0

1 1 1 1

[ ( ) ] [ (

( ) [| ( ) ( )

( ( )) | | ( ) | | ( ) | | ( ) || ( ) |]

{

t t
ij ijs

t
ij ij

ta u du a u dut t s
ij ij ij

m n m n
yx y x

ij ij ij ij ij ij
i j i j

a u du at

Z t e e e e a s p s

z s s b s s c s s ds

e e e

τ τ

λ λλ λ

λλ

η ϕ ψ

δ

η ϕ ψ

− − − −− − −

= = = =

− − −−

 ≤ − +

⋅ − + Φ + Φ

≤ − +



 

 

 
1

1

1 1

) ] [ ( ) ( )]

0

1 1 1
1 1

[ ( ) ( )]
1 1

1 1

[| ( ) ( ) |

| ( ( )) | | ( ) | [ | ( ) | | ( ) | | ( ) |

| ( ) |] | ( ) | [ | ( )

t

ij ijs

i j i j

t u du s s s
ij ij

m n
s s s

ij ij ij ij i j ij ij
i j

m n
s s ss

i j ij ij i j
i j

a s p s e

z s s b s e z s e z s e z s

e z s c s e z s

λ λ δ δ

λ λ λ

λ τ τλ τ

δ ρ

σ − −

− − +

− − +
= =

− +
+ −

= =



⋅ − + + +

+ +





 1

1 1 1 1 1

1 1
1

01

( )]
1

[ ( )] [ ( ) ( )] [ ( ) ( )]
1 1

[ ( ) ] [ ( ) ]
1 0

1

| | ( ) |

| ( ) | | ( ) |)]] }

| ( ) ( ) |1{ [
1

ij

ij ij ij i j i j

t t ij
ij ijs

s
ij

s s s s s s s s
ij i j

ta u du a u du ij ijt

ij

e z s

e e z s e z s ds

a s p s e
M e e e

M p

λτ τ

λ τ λ τ τ λ τ ττ τ

λδ
λ λλη ϕ ψ

−

− + + + +

+

−

− − + − +
+ +

− − − −−

+

⋅ + +

 ≤ − +
− 

1 1 1 1

1 1
1

01

1 1

[ ( ) ] [ ( ) ]
1 0

1

4
(| ( ) | | ( ) | )] }

1 1

{ [
1

[| ( ) (

ij

i j ij ij i j

ij ij

t t
ij ijs

ij

m n
ij

ij ij ij
i j ij ij

ta u du a u duij ijt

ij

ij ij

e

e e e eb s c s ds
p e p e

N N
M e e e

M p e

a s p s

λδ

λτ λτ λτ λτ

λδ λδ

λ λλ
λδ

ρ
σ

η ϕ ψ

+

+ + + +
− − + +

+ +

− −

+

+

+ +
= =

− − − −−

+

+ + ++ +
− −

 ≤ − +
−

⋅



 

1

01 1

1 1 1 1

[ ( ) ]
1 1

1

) | 4 | ( ) | 4 | ( ) | ] }

[( 1) 1] .
t

ij

m n m n

ij ij ij ij
i j i j

a u duijt t

e b s c s e ds

N
M e e M e

M

λτ λτ

λλ λ

ρ σ

η ϕ ψ η ϕ ψ
−

= = = =

− −− −

+ +

≤ − − + ≤ −

 

   

 

Hence, for all t τ> − , we derive that 

1

1 ,1
1 1 1 1 1 1( ) max {| ( ) | | ( ) || ( ( )) |} ,

i m j n

t
ij ij ij ijZ t z t p t z t t M e λδ η ϕ ψ

≤ ≤ ≤ ≤

−= − − < −       

Which are contradicts the equality Equation (12). Then, Equation (11) holds, and for 
all t τ> − , we obtain 

1( ) .tZ t M e λη ϕ ψ −< −      

By the same way, for all 1 ,1i m j n≤ ≤ ≤ ≤ , according to (14), we have 

1

[ ,0]
1 ,1

| z( ) | sup | z( ) | ,
max {1 }ij

t s

s
i m j n ij

Me t e s
p e

λ λ
λδτ

η ϕ ψ
++∈ −

≤ ≤ ≤ ≤

−≤ ≤
−

 
  

Then 

1

1 ,1

| z( ) | , 0, .
max {1 }ij

t

i m j n ij

Mt M e t M
p e

λ
λδ

ηϕ ψ +
−

+
≤ ≤ ≤ ≤

≤ − ∀ > =
−

    

Therefore, the unique pseudo-almost periodic solution of the system (1.1.) is glob-
ally exponentially stable. The proof is complete. 
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4. Example 
In this section, we give an example to demonstrate the effectiveness and feasibility 

of the obtained theoretical results. Consider the following generalized cellular neural 
networks with D operator and time-varying delays: 

'

1 1 1 1
1 1

1 1 1 1
1 1

[ ( ) ( ) ( ( ))]

( ) ( ) ( ) ( , ( ), ( ), ( ), ( ))

( ) ( , ( ), ( ), ( ), ( )) ( ),

ij ij ij ij

m n

ij ij ij ij i j ij ij i j
i j

m n

ij ij i j ij ij i j ij
i j

x t p t x t t

a t x t b t f t x t x t x t x t

c t g t x t x t x t x t L tτ τ τ τ

δ

− − + +
= =

− − + +
= =

− −

= − +

+ +

 

 

  
(15)

where 

( ) ( ( )), 1 3, 1 3.ij ij ijx t x t t i jτ τ= − ≤ ≤ ≤ ≤   

We have the follows: 

2

2

2

1 1 1| cos | cos | cos2 |
20 20 10
1( ) cos 0.02 | cos 3 sin | 0.025 | 3 cos sin |
30
1 1 1cos sin sin 2
25 30 30

ij

t t t

p t t t t t t

t t t

 
 
 
 = + + 
 
 
  

  

1.01 0.001cos 1.12 0.06cos 1.45 0.05sin
2 2 2

( ) 1.26 0.04sin 1.06 0.05sin 1.12 0.03cos
2 2 2

1.05 0.05sin 1.21 0.01cos 1.22 0.01sin
2 2 2

ij

t t t

a t t t t

t t t

π π π

π π π

π π π

 + + + 
 
 = + + + 
 
 + + +
  

  

sin cos

cos

cos cos

0.02(sin cos 2 ) 0.01( s ) 0.02( s )

( ) 0.01(cos ) 0.02( s cos 2 ) 0.03(sin sin 2 )

0.03( s ) 0.05cos 2 0.03( s )

t t

t
ij

t t

t t co t e co t e

b t t e co t t t t

co t e t co t eπ π

− −

−

− −

 + + +
 

= + + + 
 

+ +  

  

sin 2

cos

sin 3 sin 3

0.01(cos cos 2 ) 0.02( s ) 0.02(sin sin 2 )

( ) 0.01(cos ) 0.02(sin sin 2 ) 0.02(cos 0.01)

0.02(sin sin 2 ) 0.02(cos ) 0.02( s )

t

t
ij

t t

t t co t e t t

c t t e t t t

t t t e co t e

−

−

− −

 + + +
 

= + + + 
 

+ + +  
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21 1 1| cos | | cos | | sin |
5 3 4
1 1 1( ) | sin | | cos | | sin |
2 3 6
1 1 1| cos | | sin | | sin 2 |
6 4 3

ij

t t t

t t t t

t t t

τ

 
 
 
 =  
 
 
  

  

| sin 2 | | cos 2 | | cos 5 |

( ) | sin 3 | | sin 6 | | sin 2 |

| cos 2 | | sin 2 | | sin 3 |
ij

t t t

t t t t

t t t

δ

 
 

=  
 
  

  

2 2 2

2 2

2 2 2

5 3sin 1 s 3 sin
2 2
3( ) s 1 s 1 | sin 2 |
2

31 sin 2 s 1 sin
2

ij

t co t t

L t co t co t t

t co t t

 + + + 
 
 = + + + 
 
 + + +
  

 

1 1 1 1

1 1 1 1

| 1| | 1| | 1| | 1|1( ) ( ) [
40 2 2
| 1| | 1| | 1| | 1|

].
2 2

i j i j ij ij
ij ij

i j i j ij ij

x x x x
f x g x

x x x x

− − − −

+ + + +

+ − − + − −
= = +

+ − − + − −
+ +

 

Obviously, 
1 1, =1.5 =1.0, ,
10 10ij ij ij ij ija a pρ σ + − += = =,  and 

1 ,1 1 1

1max { [ 4( )]} 0.702 1.
ij

m n

ij ij ij ij ij iji m j n i j
ij

p a p b c
a

θ ρ σ+ + + + +
−≤ ≤ ≤ ≤ = =

= + + + = <   

This example is simulated through MATLAB according to the given parameters. 
Figures 1, 2, and 3 display the state trajectories 11 22( ), ( )x t x t , and 33( )x t  of the pseu-
do-almost periodic solution for the neural network system (15) with three different ini-
tial values (2.5,3.0,3.5), (1.0,1.5, 2.0), (1.0,1.5,1.8) , respectively. Even with the 
change of initial points, the shapes of the trajectories are not changed. As can be seen 
that simulated the solution tends to be the pseudo-almost periodic solution of the neural 
network system (4.1). Figure 4 shows the dynamic behavior of the pseudo-almost solu-
tion 11( )x t  and 22 ( )x t  of the neural network system (15) with the same initial values 

11 22(0) (0) 4x x= = . Similarly, Figure 5 exhibits the dynamic behavior of the pseu-

do-almost solution 11( )x t  and 33( )x t , and Figure 6 22 ( )x t  and 33( )x t . The validity 
of the conclusions can be judged by comparing the two-state trajectories with each other. 

Figure 7a,b demonstrates the phase responses of state variables 11( )x t  and 22 ( )x t  
for the neural network system (15) with different initial values (4.0, 2.5), (1.0,0.5) . 
Figure 7c describes the space behavior of the state variables 11 22( ), ( )x t x t  for the neural 
network system (15). Similarly, Figure 8a,b shows the phase responses of state variables 

11( )x t  and 33( )x t  for the neural network system (15) with different initial values 
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(3.5,1.0), (0.5,1.5) . Figure 8c space behavior of the state variables 11( )x t , 33( )x t  for 

the neural network system (15); and Figure 9a,b depict phase diagram 22 ( )x t  and 

33( )x t  with (2.0,1.5), (0.5,1.0) , Figure 9c reveals the space behavior of the state vari-

ables 22 ( )x t  and 33( )x t . Figures 7d, 8d, and 9d exhibitions the 3D space behavior of 

the state variables 11 22( ), ( )x t x t  and 33( )x t  for the neural network system (15) with 
three different initial values (0.5,1.0,0.5), (0.5,1.5,1.5), (0.5, 2.5,1.5) . The time re-
sponse confirms that our theoretical results’ sufficient conditions are effective for the 
neural network system (15). Moreover, the phase response represents a bunch of pseu-
do-almost periodic trajectories, which gives an idea of pseudo-almost periodic solutions 
for our described neural network system (15). Considered the above relative parameters, 
all the conditions of Theorems 1 and 2 are satisfied. Therefore, the neural network sys-
tem (15) has precisely one continuously differential pseudo-almost periodic solution, 
which is also globally exponentially stable. 

 

Figure 1. The state trajectory of 11x , and initial values are 2.5,3.0,3.5,  respectively. 
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Figure 7. The state trajectory of 11 22x x− , 3D graphs and initial values are (a) (4.0, 2.5),  (b)

(1.0,0.5), (c) (0.0, 2.5,0.5), and (d) (0.5,1.0,0.5),  respectively. 
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Figure 8. The state trajectory of 11 33x x− , 3D graphs and initial values are (a) (3.5,1.0)  (b) (0.5,1.5)， (c)

(0.0,1.5, 2.5), and (d) (0.5,1.5,1.5),  respectively. 
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(c) 

 
(d) 

Figure 9. The state trajectory of 22 33x x− , 3D graphs and initial values are (a) (2.0,1.5),  (b) 

(0.5,1.0), (c) (0.0,6.0,1.0), and (d) (0.5,2.5,1.5),  respectively. 

5. Conclusions 
In this paper, the existence and stability criteria of the pseudo-almost periodic solu-

tion for the novel type complex networks are examined. Based on the Banach fixed-point 
theorem and the exponential dichotomy of linear equations, the existence and unique-
ness of pseudo-almost periodic solutions are investigated. Through an integral variable 
transformation, the global exponential stability condition of the CNN is evaluated. 
Compared with the previous work on the stability analysis of periodic solutions, the de-
rived pseudo-almost periodic results are more precise and less conservative. The pro-
posed variable substitution can induce stability flexibility, overcome the bottleneck 
problem of constructing the complicated Lyapunov functional, and ensure the conver-
gence results from more validity. The approach has a fast convergence speed, which is 
suitable for applications of complex systems. The obtained results in this work are valu-
able in the design of neural network systems, which are used to solve efficiency and op-
timal control problems arising in practical engineering applications. The existence and 
stability conditions are expressed in simple algebraic form, and their verification is done. 
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In future work, the analysis method can also be applied to more complicated neural 
network systems such as fuzzy systems and fractional-order neural networks that arise in 
the various disciplines of engineering and scientific fields. Such as, Mittag-Leffer stability 
of the fractional-order neural networks with discontinuous activation functions and 
time-varying delays will also be explored. Moreover, synchronization and state estima-
tion of the fractional-order memristor-based neural networks and stochastic delayed 
systems will also be examined in the future. 
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