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Abstract: Cellular neural networks with D operator and time-varying delays are found to be effective
in demonstrating complex dynamic behaviors. The stability analysis of the pseudo-almost periodic
solution for a novel neural network of this kind is considered in this work. A generalized class
neural networks model, combining cellular neural networks and the shunting inhibitory neural
networks with D operator and time-varying delays is constructed. Based on the fixed-point theory
and the exponential dichotomy of linear equations, the existence and uniqueness of pseudo-almost
periodic solutions are investigated. Through a suitable variable transformation, the globally expo-
nentially stable sufficient condition of the cellular neural network is examined. Compared with
previous studies on the stability of periodic solutions, the global exponential stability analysis for
this work avoids constructing the complex Lyapunov functional. Therefore, the stability criteria of
the pseudo-almost periodic solution for cellular neural networks in this paper are more precise and
less conservative. Finally, an example is presented to illustrate the feasibility and effectiveness of our
obtained theoretical results.

Keywords: cellular neural networks; pseudo-almost periodic solution; exponential dichotomy; D
operator; time-varying delays

1. Introduction

In recent years, the cellular neural networks (CNN), first proposed by Chua and
Yang [1,2], have received significant attention because of their wide applications in science
and engineering technology fields. Extensive research has been conducted on CNN in
the past few decades, and one of the primary problems in designing CNN is to deal
with the dynamic curves of existing solutions. Regarding the existence, uniqueness, and
stability of the periodic, almost periodic solutions of neural networks, there have been
many results in the fields of classification, signal processing [3], associative memory [4,5],
optimal control [6], and filter problem [7–9]. The state estimation problem of delayed static
neural networks has been considered by Wang and Xia et al. [10]. Donkers et al. showed
stability analysis results of networked control systems employing a switched linear systems
approach [11]. Liang and Wang et al. [12], mainly examined the robust synchronization
issue for two-dimension discrete-time coupled dynamical neural networks. Due to the
limited bandwidth speed and the constraints of physical property for circuit equipment,
information propagation inevitably give birth to the emergence of time delays, meanwhile
arising other problems of the CNN. The appearance of time lags usually causes turbulence,
instability, and chaos [13,14]. The stability of discrete-time systems with time-varying
delays via a novel summation inequality was discussed in [15,16]. For the reason that
information transmission between neurons has time delays behavior, the neural network
model with delay described by the time delays functional differential equation has been
widely examined and implemented in various fields.
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Due to similarity to the circuit system’s connection, CNN is a practical and feasible
alternative to the circuit system simulation [17]. Many scholars realized the vital of neural
networks and introduced novel research methods to work with their dynamic behavior [18,
19]. Subsequently, some scholars also proposed several different types of CNN models and
discussed the dynamic characteristics of solution curves [20,21]. In 2018, hierarchical type
stability criteria for delayed neural networks via canonical Bessel–Legendre inequalities had
been demonstrated [22]. In particular, shunt suppression of artificial CNN has been widely
used in various research fields such as pattern recognition [23], image processing [24], and
combination optimization [25]. The dynamic characteristics of neural networks, such as the
existence, uniqueness, and global asymptotic stability of the equilibrium point and periodic
solution for time-delay CNN play a crucial role. However, most of the existing results on
the dynamic behavior of CNN focus on stability or periodicity. Fewer have been done on
the existence of periodic solutions or almost periodic solutions for Cohen–Grossberg neural
networks with delays [26,27].

Many motion processes in the present world are approximate to periodic instead
of strictly periodicity. Conventionally, to reduce computing tasks’ burden, the complex
system is usually idealized as a periodic. However, the system may not have periodicity for
various CNN systems, even though all its parameters are periodic due to the uncertainty
of the system’s parameters’ periodicity. Hence, the complex system may have no periodic
solution curves. Danish mathematicians Bohr [28] first proposed the concept of almost
periodicity, which is a significant generalization for practical application. Following the
work proposed by Bohr, some scholars have been put forward many different techniques
to expand the research of almost periodic solutions of complex systems [29,30]. Similarly,
the concept of pseudo-almost periodicity was proposed by Zhang [31] in 1992, and it was
further extended from the natural almost periodic to the pseudo-almost periodic in the
Bohr sense.

Including many commonly used forms that may exist, the dynamic behavior of
pseudo-almost periodicity is more extensive and approximate to the actual [32]. Therefore,
the described neural network characteristic has a high degree of complexity and importance
significance [33]. In CNN systems, the process of information transmission and mutual
reaction between neurons is exceptionally complicated, and various phenomena such as
disturbance, instability, bifurcation, and chaos may occur [34]. Therefore, it is of both
theoretical and practical vital to examine the dynamic behavior of CNN systems pseudo-
almost periodicity. There is relatively tiny related literature on pseudo-almost periodic
research so far. For example, Liu [35] studied the pseudo-almost periodic solutions for
neutral-type CNN with continuously distributed leakage delays; and others investigated
the pseudo-almost periodic solutions for a Lasota–Wazewska model with an oscillating
death rate [36]. As far as we know, there is still a massive gap in the investigation of
the pseudo-almost periodicity, insufficient work was done on the existence and stability
of pseudo-almost periodic solutions on neural networks with proportional delays [37].
Therefore, based on the previous examined, further exploration of the pseudo-almost
periodic solution is one of the targets for this work. The main contributions of this paper are
as follows: (1) This work not only considered the D operator systems but also investigated
the effects of time-delays on dynamical complex network systems. (2) The approach we
utilized was completely different previous. (3) The stability criteria of the pseudo-almost
periodic solution in this paper are more precise and less conservative. (4) Compared with
previous studies on the stability criteria, analyzing the globally exponentially stable avoids
constructing the complex Lyapunov functional.

By employing innovative fixed-point theory and exponential dichotomy methods, we
derived the pseudo-almost periodic solutions stability issue, which is entirely different
from earlier work. The obtained results in this paper are novel, meanwhile promoting and
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supplement some of the previous research work. The r-neighborhood of a cell xij defines
as follows:

N0
r (i, j) =

{
xpq|dij,pq =

√
|p− i|2 + |q− j|2 ≤ r

2
, 1 ≤ p ≤ m, 1 ≤ q ≤ n

}
,

where r ≥ 2 is a positive integer number. Since each cell of CNN is only connected
to its neighboring areas, those cells that are not directly connected may be affected by
continuous-time propagation effects and indirectly affect each other. Furthermore, due to
the neural network’s increasing distance, the influence between different neurons in CNN
is correspondingly weakened.

Several previous works are the motivation for us to propose the new r-neighborhood
N0

r (i, j), we examined the novel types of cellular neural networks with D operator and
time-varying delays as follows:

[xij(t)− pij(t)xij(t− δij(t))]′
= −aij(t)xij(t) +

m
∑

i=1

n
∑

j=1
bij(t) fij(t, xi−1j(t), xij−1(t), xij+1(t), xi+1j(t))

+
m
∑

i=1

n
∑

j=1
cij(t)gij(t, xτ

i−1j(t), xτ
ij−1(t), xτ

ij+1(t), xτ
i+1j(t)) + Lij(t),

(1)

where xτ
ij(t) = xij(t − τij(t)), 1 ≤ i ≤ m, 1 ≤ j ≤ n. xij(t) corresponds to the state of

the ij − th cell (at the (i, j) position of the lattice) at time t, aij(t) > 0 represents the
rates with which the ij − th cell will reset its potential to the resting state in isolation
when disconnected from the networks and external inputs at time t; fij(·), gij(·) denote
the activation functions of signal transmission. pij(t), bij(t), cij(t) denote the connection
weights at time t, δij(t) ≥ 0, τij(t) ≥ 0 corresponding to the transmission delays, and Lij(t)
are the external inputs on the ij− th cell at time t.

The initial conditions of the system (1) are assumed to be

x′
ij
(s) = φij(s), s ∈ [−τ, 0], 1 ≤ i ≤ m, 1 ≤ j ≤ n, (2)

where φij(s) is a continuous function,

τ = max1≤i≤m,1≤j≤nsupt∈R
{
|δij(t)|, |xi−1j(t)|, |xij−1(t)|, |xij+1(t)|, |xi+1j(t)|

}
.

The paper is organized as follows. In Section 2, we will introduce some definitions and
lemmas, which will be used to obtain our results. In Section 3, we state and demonstrate
the existence and global exponential stability of the pseudo-almost periodic solution. In
Section 4, an example illustrates the feasibility and effectiveness of obtained theoretical
results. In Section 5, a brief conclusion is given.

2. Preliminaries

In this section, we recall briefly some basic definitions and properties of pseudo-almost
periodic functions and the exponential dichotomy.

Definition 1. Let u(·) ∈ BC(R,Rn). u(·) is said to be (Bohr) almost periodic on Rn, if for any
ε > 0, the set

T(u, ε) = {δ :‖ u(t + δ)− u(t) ‖∞< ε, ∀t ∈ R},

is relatively dense, i.e., for any ε > 0, it is possible to find a real number l = l(ε) > 0 with the
property that for any interval with length l(ε), there exists a number δ = δ(ε) in this interval such
that

‖ u(t + δ)− u(t) ‖∞< ε, ∀t ∈ R
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Definition 2. A function F ∈ BC(R×Rn,Rn) is called (Bohr) almost periodic in t ∈ R uniformly
in x ∈ K, where K is any bounded compact subset of Rn, that is, if for each ε > 0, there exists
l(ε) > 0 such that every interval of length l(ε) > 0 contains a number τ with the following
property

sup
t∈R
‖ F(t + τ, x)− F(t, x) ‖< ε.

We denote by AP(t ∈ R×Rn,Rn) the set of the almost periodic functions from R×Rn

to Rn. Additionally, we define a class function as follows:

PAP0(R×Rn;Rn) =

{
f ∈ BC(R×Rn;Rn)| lim

T→∞

1
2T

∫ T

−T
‖ f (t, x) ‖ dt = 0, ∀x ∈ R

}
which is a closed subspace of BC(R×Rn;Rn).

Definition 3. A continuous function f ∈ BC(R×Rn;Rn) is called pseudo-almost periodic if it
can be expressed as

f = f1 + f2, (3)

where f1 ∈ AP(R×Rn;Rn) and f2 ∈ PAP0(R×Rn;Rn). The collection of such functions is
denoted PAP(R×Rn;Rn).

Definition 4. Let x ∈ Rl and Q(t) be a l × l continuous matrix defined on R. The linear system

x′(t) = Q(t)x(t) (4)

is said to admit an exponential dichotomy on Rl if exist positive constants k, λ > 0 and projection
P and the fundamental solution matrix X(t) of (4) satisfying

‖ X(t)PX−(s) ‖< ke−λ(t−s), t ≥ s;X(t)(I − P)X−(s) ‖< ke−λ(t−s), t ≤ s.

Lemma 1. Let ci(·) be an almost periodic function on R,

M[ci] = lim
t→∞

1
T

∫ t+T

t
ci(s)ds > 0, i = 1, 2, . . . , l.

then the linear system

x′(t) = diag(−c1(t),−c2(t), . . . , cl(t))x(t)

admits an exponential dichotomy on Rl .

Lemma 2. If the linear system x′(t) = Q(t)x(t) has an exponential dichotomy, then almost
periodic system

x′(t) = Q(t)x(t) + g(t) (5)

has a unique pseudo-almost periodic solution x(t) which can be expressed as followings:

x(t) =
∫ t

−∞
X(t)PX−(s)g(s)ds−

∫ ∞

t
X(t)(I − P)X−(s)g(s)ds, g ∈ PAP(R,R).

Definition 5. Let x(t) = (x11, · · ·, x1n, · · ·, xm1, · · ·, xmn)
T be a continuous differentiable pseudo-

almost periodic solution of system (1) with the initial value ψ(s) = (ψ11, · · ·, ψ1n, · · ·, ψm1, · · ·, ψmn)
T.
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If there exist constants ω > 0 and M ≥ 1 such that for any solution
y(t) = (y11, · · ·, y1n, · · ·, ym1, · · ·, ymn)

T of system (1) with an initial value
ϕ(s) = (ϕ11, · · ·, ϕ1n, · · ·, ϕm1, · · ·, ϕmn)

T ,

‖ y(t)− x(t) ‖= max
1≤i≤m,1≤j≤n

|yij(t)− xij(t)| ≤ M ‖ ϕ− ψ ‖ e−ωt, ∀t > 0,

where
‖ ϕ− ψ ‖:= max

1≤i≤m,1≤j≤n
sup

s∈[−τ,0]

{
|ϕij(s)− ψij(s)|

}
.

Then, x(t) is said to be globally exponentially stable.

Remark 1. Let BC(R,Rmn) denote the set of bounded continuous functions from R to Rmn. Note
that BC(R,Rmn) is a Banach space with

‖ h ‖∞:= supt∈Rmax1≤i≤m,1≤j≤n|hij(t)|.

Thus,

h ∈ BC(R,Rmn), we let h+ = supt∈R|hij(t)|, h− = inft∈R|hij(t)|.

Remark 2. In this paper, the collection of pseudo-almost periodic functions will be denoted by
PAP(R,Rmn), then (PAP(R,Rmn), ‖ · ‖∞) is a Banach space with supremum norm is given by
‖ u ‖∞= supt∈Rmax1≤i≤m,1≤j≤n|uij(t)|.

For the sake of convenience, we introduce the following notions:

Φyx
ij (t) , fij(t, yi−1j(t), yij−1(t), yij+1(t), yi+1j(t))− fij(t, xi−1j(t), xij−1(t), xij+1(t), xi+1j(t))

Φyτ xτ

ij (t) , gij(t, yτ
i−1j(t), yτ

ij−1(t), yτ
ij+1(t), yτ

i+1j(t))− gij(t, xτ
i−1j(t), xτ

ij−1(t), xτ
ij+1(t), xτ

i+1j(t))

Fij(t, x(t)) , −aij(t)pij(t)xij(t− δij(t)) +
m
∑

i=1

n
∑

j=1
bij(t) fij(t, xi−1j(t), xij−1(t), xij+1(t), xi+1j(t))

+
m
∑

i=1

n
∑

j=1
cij(t)gij(t, xτ

i−1j(t), xτ
ij−1(t), xτ

ij+1(t), xτ
i+1j(t)),

where,

x(t) = (x11, · · ·, x1n, · · ·, xm1, · · ·, xmn)
Ty(t) = (y11, · · ·, y1n, · · ·, ym1, · · ·, ymn)

T

3. Main Results

In this section, we present some results on the existence and global exponential
stability of pseudo-almost periodic solutions of the system (1).

We assume that the following conditions are adopted:

Hypothesis 1. For all 1 ≤ i ≤ m, 1 ≤ j ≤ n, pij, bij, cij, Lij ∈ PAP(R,R), aij ∈ AP(R,R), and
inft∈Raij > 0.

Hypothesis 2. For all 1 ≤ i ≤ m, 1 ≤ j ≤ n, fij, gij ∈ C(R5,R), fij(0) = gij(0) = 0, and there
exist positive constant numbers ρ, σ such that for all xij, yij ∈ R,

| fij(t, yi−1j, yij−1, yij+1, yi+1j)− fij(t, xi−1j, xij−1, xij+1, xi+1j)|
< ρij(|yi−1j − xi−1j|+ |yij−1 − xij−1|+ |yij+1 − xij+1|+ |yi+1j − xi+1j|)
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|gij(t, yτ
i−1j, yτ

ij−1, yτ
ij+1, yτ

i+1j)− gij(t, xτ
i−1j, xτ

ij−1, xτ
ij+1, xτ

i+1j)|
< σij(|yτ

i−1j − xτ
i−1j|+ |yτ

ij−1 − xτ
ij−1|+ |yτ

ij+1 − xτ
ij+1|+ |yτ

i+1j − xτ
i+1j|)

Hypothesis 3. For M[aij(t)] > 0, i = 1, 2, · · ·, m, j = 1, 2, · · ·, n, there exist bounded and

continuous functions:
−
aij : R→ (0,+∞) and positive constant Nij such that

e−
∫ t

s [aij(u)−λ]du ≤ Nije
−
∫ t

s [
−
aij−λ]du, ∀t, s ∈ R, t− s ≥ 0.

Hypothesis 4. For all 1 ≤ i ≤ m, 1 ≤ j ≤ n, there exist positive constants χ, such that

Λij = sup
t>−τ

{
χ− −aij(t) +

Nij
1−p+

ij
eχτ [|aij(t)pij(t)|eχτ

+
m
∑

i=1

n
∑

j=1
4ρij|bij(t)|+

m
∑

i=1

n
∑

j=1
4σij|cij(t)|eχτ ]

}
< 0.

Theorem 1. Suppose that Hypothesis 1–2 and

θ = max
1≤i≤m,1≤j≤n

p+ij +
1
−
aij

[a+ij p+ij +
m

∑
i=1

n

∑
j=1

4(ρijb+ij + σijc+ij )]

 < 1

hold. Then, system (1) has only one pseudo-almost periodic solution in the region

Ω =

{
z|z ∈ PAP(R,Rmn), ‖ z− z0 ‖∞≤

θ∆
1− θ

}
, ∆ = max

1≤i≤m,1≤j≤n

 L+
ij
−
aij

,

z0(t) =
∫ t
−∞ e−

∫ t
s a11(u)duL11(s)ds, · · ·,

∫ t
−∞ e−

∫ t
s a1n(u)duL1n(s)ds,∫ t

−∞ e−
∫ t

s am1(u)duLm1(s)ds, · · ·,
∫ t
−∞ e−

∫ t
s amn(u)duLmn(s)ds.

Proof. Let Yij(t) = xij(t)− pij(t)xij(t− δij(t)), i = 1, · · ·, m, j = 1, · · ·, n. Then, we have

Y′
ij
(t) = [xij(t)− pij(t)xij(t− δij(t))]

′ = −aij(t)Yij(t) + Fij(t, x(t)) + Lij(t) (6)

Since M[aij] > 0, then by Lemma 1, the linear system Y′
ij
(t) = −aij(t)Yij(t) admits

an exponential dichotomy in the R. According to Lemma 2, the system (6) has only one
pseudo-almost periodic solution as follows:

Yφ
ij (t) =

∫ t

−∞
e−
∫ t

s aij(u)du[Fij(s, φ(s)) + Lij(s)]ds (7)

where φ = (φ11, · · ·, φ1n, · · ·, φm1, · · ·, φmm)
T , and

[Yφ
ij (t)]

′
= −aij(t)Y

φ
ij (t) + Fij(t, φ(t)) + Lij(t), (8)

In addition, according to the property of pseudo-almost periodic function, we derive

pijφij(· − δij(·)) + Yφ
ij ∈ PAP(R,Rmn), i = 1, · · ·, m, j = 1, · · ·, n.
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Now, we define the nonlinear operator

Γφ = (Γφ
11 , · · ·, Γφ

1n , · · ·, Γφ
m1 , · · ·, Γφ

mm)
T
=: Ω→ Ω

by setting
Γφ

ij (t) = pij(t)φij(t− δij(t)) + Yφ
ij (t), ∀φ ∈ Ω, (9)

where
φ = (φ11, · · ·, φ1n, · · ·, φm1, · · ·, φmm)

T and i = 1, · · ·, m, j = 1, · · ·, n.

For any z ∈ PAP(R,Rmn), set

Ω =

{
z|z ∈ PAP(R,Rmn), ‖ z− z0 ‖∞≤

θ∆
1− θ

}
Obviously, Ω is a closed convex subset of PAP(R,Rmn), and

‖ z0 ‖∞≤ max1≤i≤m,1≤j≤nsupt∈R

{∫ t

−∞
e−
∫ t

s aij(u)du|Lij(s)|ds
}
≤ max

1≤i≤m,1≤j≤n

 L+
ij
−
aij

 = ∆

Therefore, for any z ∈ Ω, we have

‖ z ‖∞≤‖ z− z0 ‖∞ + ‖ z0 ‖∞≤
θ∆

1− θ
+ ∆ =

∆
1− θ

.

Firstly, let us prove that the mapping Γ is a self-mapping from Ω to Ω. In fact, for any
φ = (φ11, · · ·, φ1n, · · ·, φm1, · · ·, φmm)

T ∈ PAP(R,Rmn), we have

‖ Γφ − z0 ‖∞

≤ sup
t∈R

max
1≤i≤m,1≤j≤n

{
|pij(t)φij(t− δij(t))|+

∫ t
−∞ e−

∫ t
s aij(u)du|Fij(s, φ(s))|ds

}
≤ max

1≤i≤m,1≤j≤n

{
p+ij
}
‖ φ ‖∞ +sup

t∈R
max

1≤i≤m,1≤j≤n

{∫ t
−∞ e−

−
aij(t−s)[a+ij p+ij ‖ φ ‖∞

+
m
∑

i=1

n
∑

j=1
b+ij ρij(|φi−1j(s)|+ |φij−1(s)|+ |φij+1(s)|+ |φi+1j(s)|)

+
m
∑

i=1

n
∑

j=1
c+ij σij(|φτ

i−1j(s)|+ |φτ
ij−1(s)|+ |φτ

ij+1(s)|+ |φτ
i+1j(s)|)]ds

}

≤ max
1≤i≤m,1≤j≤n

{
p+ij +

1
−
aij

[a+ij p+ij +
m
∑

i=1

n
∑

j=1
4(ρijb+ij + σijc+ij )]

}
‖ φ ‖∞≤ θ∆

1−θ ,

that is Γφ ∈ Ω ⊂ PAP(R,Rmn), then the mapping Γ is a self-mapping from Ω to Ω.
Next, we will prove that the mapping Γ is a contraction mapping in the Ω. For any

x, y ∈ Ω, where

x(t) = (x11, · · ·, x1n, · · ·, xm1, · · ·, xmn)
T , y(t) = (y11, · · ·, y1n, · · ·, ym1, · · ·, ymn)

T
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We have

‖ Γy − Γx ‖∞

≤ sup
t∈R

max
1≤i≤m,1≤j≤n

{
|pij(t)[yij(t− δij(t))− xij(t− δij(t))] +

∫ t
−∞ e−

∫ t
s aij(u)du[−aij(s)pij(s)

· [yij(s− δij(s))− xij(s− δij(s))] +
m
∑

i=1

n
∑

j=1
bij(s)Φ

yx
ij (s) +

m
∑

i=1

n
∑

j=1
cij(s)Φ

yτ xτ

ij (s)]ds|
}

≤ max
1≤i≤m,1≤j≤n

{
p+ij
}
‖ y− x ‖∞ +sup

t∈R
max

1≤i≤m,1≤j≤n

{∫ t
−∞ e−

∫ t
s aij(u)du[a+ij p+ij ‖ y− x ‖∞

+
m
∑

i=1

n
∑

j=1
b+ij ρij(|yi−1j(s)− xi−1j(s)|+ |yij−1(s)− xij−1(s)|+ |yij+1(s)− xij+1(s)|

+ |yi+1j(s)− xi+1j(s)|) +
m
∑

i=1

n
∑

j=1
c+ij σij(|yτ

i−1j(s)− xτ
i−1j(s)|+ |yτ

ij−1(s)− xτ
ij−1(s)|

+ |yτ
ij+1(s)− xτ

ij+1(s)|+ |yτ
i+1j(s)− xτ

i+1j(s)|)]ds
}

≤ max
1≤i≤m,1≤j≤n

{
p+ij +

1
−
aij

[a+ij p+ij +
m
∑

i=1

n
∑

j=1
4(ρijb+ij + σijc+ij )]

}
‖ y− x ‖∞≤ θ ‖ y− x ‖∞.

It is clear that Γ is a contraction mapping of Ω. Thus, by virtue of the Banach fixed point
theorem, the mapping Γ has a unique fixed point, x(t) = (x11, · · ·, x1n, · · ·, xm1, · · ·, xmn)

T ∈
Ω which corresponds to the solution of the system (6) in Ω ⊂ PAP(R,Rmn), such that
x(t) = Γx(t), that is to say,

xij(t) = pij(t)xij(t− δij(t)) + Yx
ij(t)

Then, combining with Equation (8), we get

[Yx
ij
(t)]′ = [xij(t)− pij(t)xij(t− δij(t))]

′

Hence, the system (1) has only one pseudo-almost periodic solution x(t). The proof is
complete. �

Theorem 2. Suppose that assumption Hypothesis 1–4 and η = 2 + max1≤i≤m,1≤j≤n

{
p+ij
}

hold,
then system (1) has a unique pseudo-almost periodic solution x(t) that is globally exponentially
stable.

Proof. It follows from Theorem 1 that system (1) has only one pseudo-almost peri-
odic solution x(t) = (x11, · · ·, x1n, · · ·, xm1, · · ·, xmn)

T ∈ Ω with the initial value ψ(s) =

(ψ11, · · ·, ψ1n, · · ·, ψm1, · · ·, ψmn)
T and let y(t) = (y11, · · ·, y1n, · · ·, ym1, · · ·, ymn)

T be an arbi-
trary solution of system (1) with the initial value ϕ(s) = (ϕ11, · · ·, ϕ1n, · · ·, ϕm1, · · ·, ϕmn)

T .
Now, let

zij(t) = yij(t)− xij(t), Zij(t) = zij(t)− pij(t)zij(t− δij(t)).

Then, we derive
Z′ij(t) = [zij(t)− pij(t)zij(t− δij(t))]′

= −aij(t)[Zij(t) + pij(t)zij(t− δij(t))] +
m
∑

i=1

n
∑

j=1
bij(t)Φ

yx
ij (t) +

m
∑

i=1

n
∑

j=1
cij(t)Φ

yτ xτ

ij (t).
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Multiplying the above equation by e
∫ s

0 aij(u)du and integrating on [0, t], we have

Zij(t) = Zij(0)e
−
∫ t

0 aij(u)du +
∫ t

0 e−
∫ t

s aij(u)du[−aij(s)pij(s)zij(s− δij(s))]

+
m
∑

i=1

n
∑

j=1
bij(s)Φ

yx
ij (s) +

m
∑

i=1

n
∑

j=1
cij(s)Φ

yτ xτ

ij (s)]ds.

From (H4), for all 1 ≤ i ≤ m, 1 ≤ j ≤ n, we can choose a constant 0 < λ <

min1<i<n
{

aij
}

such that 1− p+ij eλδ+ij > 0. The norm defined by

‖ ϕ− ψ ‖= max
1≤i≤m,1≤j≤n

sup
s∈[−τ,0]

{
|ϕij(s)− ψij(s)|

}
Thus, we have

‖ Z(0) ‖≤ max
1≤i≤m,1≤j≤n

{
|zij(0)|+ |pij(0)||zij(0− δij(0))|

}
< [2 + max1≤i≤m,1≤j≤n

{
p+ij
}
] ‖ ϕ− ψ ‖= η ‖ ϕ− ψ ‖ .

For any t ∈ [−τ, 0], we obtain that

‖ Z(t) ‖≤ max
1≤i≤m,1≤j≤n

{
|zij(t)| − |pij(t)||zij(t− δij(t))|

}
< M1η ‖ ϕ− ψ ‖ e−λt, (10)

where M1 > max
{

Nij
}
+ 1 is a constant.

Next, we will prove that, for all t > 0,

‖ Z(t) ‖= max
1≤i≤m,1≤j≤n

{
|zij(t)| − |pij(t)||zij(t− δij(t))|

}
< M1η ‖ ϕ− ψ ‖ e−λt, (11)

Or else, there must exist i ∈ {1, · · ·, m}, j ∈ {1, · · ·, n} and t1 > t > 0 such that

‖ Z(t1) ‖= max
1≤i≤m,1≤j≤n

{
|zij(t1)| − |pij(t1)||zij(t1 − δij(t1))|

}
= M1η ‖ ϕ− ψ ‖ e−λt1 , (12)

and
‖ Z(t) ‖ = max

1≤i≤m,1≤j≤n

{
|zij(t)|+ |pij(t)||zij(t− δij(t))|

}
< M1η ‖ ϕ− ψ ‖ e−λt, ∀t ∈ [0, t1).

(13)

Hence, we have by (10) and (13) that
eλυ ‖ Z(υ) ‖ ≤ max

1≤i≤m,1≤j≤n

{
eλυ|zij(υ)− pij(υ)zij(υ− δij(υ))|+ eλυ|pij(υ)zij(υ− δij(υ))|

}
≤ max

1≤i≤m,1≤j≤n

{
M1η ‖ ϕ− ψ ‖ +p+ij eλ(υ−δij(υ)+λδij(υ))|zij(υ− δij(υ))|

}
≤ max

1≤i≤m,1≤j≤n

{
M1η ‖ ϕ− ψ ‖ +p+ij eλδ+ij sup

s∈[−τ,t]
eλs|zij(s)|

}
,

for all υ ∈ [−τ, t], t ∈ [0, t1], and 1 ≤ i ≤ m, 1 ≤ j ≤ n, which entail that

eλt|Z(t)| ≤ sup
s∈[−τ,t]

eλs|z(s)| ≤ M1η ‖ ϕ− ψ ‖

1− p+ij eλδ+ij
. (14)
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Thus, combining with (14), Hypothesis 2–4, we derive

Zij(t1) ≤ η ‖ ϕ− ψ ‖ e−
∫ t1

0 [aij(u)−λ]due−λt1 +
∫ t1

0 e−
∫ t1

s [aij(u)−λ]due−λ(t1−s)[|aij(s)pij(s)

· zij(s− δij(s))|+
m
∑

i=1

n
∑

j=1
|bij(s)||Φ

yx
ij (s)|+

m
∑

i=1

n
∑

j=1
|cij(s)||Φ

yτ xτ

ij (s)|]ds

≤ e−λt1

{
η ‖ ϕ− ψ ‖ e−

∫ t1
0 [aij(u)−λ]du +

∫ t1
0 e−

∫ t1
s [aij(u)−λ]du[|aij(s)pij(s)|eλ[s−δij(s)+δij(s)]

· |zij(s− δij(s))|+
m
∑

i=1

n
∑

j=1
|bij(s)|ρij[eλs|zi−1j(s)|+ eλs|zij−1(s)|+ eλs|zij+1(s)|

+ eλs|zi+1j(s)|] +
m
∑

i=1

n
∑

j=1
|cij(s)|σij[e

λ[s−τi−1j(s)+τi−1j(s)]|zτ
i−1j(s)|+ eλτij−1(s)]|zτ

ij−1(s)|

· eλ[s−τij−1(s)] + eλ[s−τij+1(s)+τij+1(s)]|zτ
ij+1(s)|+ eλ[s−τi+1j(s)+τi+1j(s)]|zτ

i+1j(s)|)]]ds
}

≤ M1η ‖ ϕ− ψ ‖ e−λt1

 1
M1

e−
∫ t1

0 [aij(u)−λ]du +
∫ t1

0 e−
∫ t1

s [aij(u)−λ]du[
|aij(s)pij(s)|e

λδ+ij

1−p+ij e
λδ+ij

+
m
∑

i=1

n
∑

j=1
(|bij(s)|

4ρij

1−p+ij e
λδ+ij

+ σij|cij(s)| e
λτ+i−1j+e

λτ+ij−1+e
λτ+ij+1+e

λτ+i+1j

1−p+ij e
λδ+ij

)]ds


≤ M1η ‖ ϕ− ψ ‖ e−λt1

 Nij
M1

e−
∫ t1

0 [
−
aij(u)−λ]du +

∫ t1
0 e−

∫ t1
s [

−
aij(u)−λ]du[

Nij

1−p+ij e
λδ+ij

· [|aij(s)pij(s)|eλτ +
m
∑

i=1

n
∑

j=1
4ρij|bij(s)|+

m
∑

i=1

n
∑

j=1
4σij|cij(s)|eλτ ]ds

}
≤ M1η ‖ ϕ− ψ ‖ e−λt1 [(

Nij
M1
− 1)e−

∫ t1
0 [

−
aij(u)−λ]du + 1] ≤ M1η ‖ ϕ− ψ ‖ e−λt1 .

Hence, for all t > −τ, we derive that

‖ Z(t1) ‖= max
1≤i≤m,1≤j≤n

{
|zij(t1)| − |pij(t1)||zij(t1 − δij(t1))|

}
< M1η ‖ ϕ− ψ ‖ e−λt1 ,

Which are contradicts the equality Equation (12). Then, Equation (11) holds, and for
all t > −τ, we obtain

‖ Z(t) ‖< M1η ‖ ϕ− ψ ‖ e−λt.

By the same way, for all 1 ≤ i ≤ m, 1 ≤ j ≤ n, according to (14), we have

eλt|z(t)| ≤ sup
s∈[−τ,0]

eλs|z(s)| ≤ M1η ‖ ϕ− ψ ‖

max1≤i≤m,1≤j≤n

{
1− p+ij eλδ+ij

} ,

Then

|z(t)| ≤ M ‖ ϕ− ψ ‖ e−λt, ∀t > 0, M =
M1η

max1≤i≤m,1≤j≤n

{
1− p+ij eλδ+ij

} .

Therefore, the unique pseudo-almost periodic solution of the system (1.1.) is globally
exponentially stable. The proof is complete. �
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4. Example

In this section, we give an example to demonstrate the effectiveness and feasibility
of the obtained theoretical results. Consider the following generalized cellular neural
networks with D operator and time-varying delays:

[xij(t)− pij(t)xij(t− δij(t))]′
= −aij(t)xij(t) +

m
∑

i=1

n
∑

j=1
bij(t) fij(t, xi−1j(t), xij−1(t), xij+1(t), xi+1j(t))

+
m
∑

i=1

n
∑

j=1
cij(t)gij(t, xτ

i−1j(t), xτ
ij−1(t), xτ

ij+1(t), xτ
i+1j(t)) + Lij(t),

(15)

where
xτ

ij(t) = xij(t− τij(t)), 1 ≤ i ≤ 3, 1 ≤ j ≤ 3.

We have the follows:

pij(t) =

 1
20 | cos t| 1

20 cos t2 1
10 | cos 2t|

1
30 cos t2 0.02| cos t +

√
3 sin t| 0.025|

√
3 cos t + sin t|

1
25 cos t2 1

30 sin t 1
30 sin 2t



aij(t) =

 1.01 + 0.001 cos π
2 t 1.12 + 0.06 cos π

2 t 1.45 + 0.05 sin π
2 t

1.26 + 0.04 sin π
2 t 1.06 + 0.05 sin π

2 t 1.12 + 0.03 cos π
2 t

1.05 + 0.05 sin π
2 t 1.21 + 0.01 cos π

2 t 1.22 + 0.01 sin π
2 t



bij(t) =

 0.02(sin t + cos
√

2t) 0.01(cost + e− sin t) 0.02(cost + e− cos t)

0.01(cos t + e− cos t) 0.02(cost + cos
√

2t) 0.03(sin t + sin
√

2t)
0.03(cosπt + e− cos t) 0.05 cos

√
2t 0.03(cosπt + e− cos t)



cij(t) =

 0.01(cos t + cos
√

2t) 0.02(cost + e− sin
√

2t) 0.02(sin t + sin
√

2t)
0.01(cos t + e− cos t) 0.02(sin t + sin

√
2t) 0.02(cos t + 0.01)

0.02(sin t + sin
√

2t) 0.02(cos t + e− sin
√

3t) 0.02(cost + e− sin
√

3t)



τij(t) =

 1
5 | cos t| 1

3 | cos2 t| 1
4 | sin t|

1
2 | sin t| 1

3 | cos t| 1
6 | sin t|

1
6 | cos t| 1

4 | sin t| 1
3 | sin 2t|



δij(t) =

 | sin
√

2t| | cos
√

2t| | cos
√

5t|
| sin
√

3t| | sin
√

6t| | sin
√

2t|
| cos
√

2t| | sin
√

2t| | sin
√

3t|



Lij(t) =

 5
2 + sin2 t 1 + cos2

√
3t 3

2 + sin2 t
3
2 + cos2t 1 + cos2t 1 + | sin

√
2t|

1 + sin2
√

2t 3
2 + cos2t 1 + sin2 t


fij(x) = gij(x) = 1

40 [
|xi−1j+1|−|xi−1j−1|

2 +
|xij−1+1|−|xij−1−1|

2

+
|xi+1j+1|−|xi+1j−1|

2 +
|xij+1+1|−|xij+1−1|

2 ].
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Obviously, ρij = σij =
1

10 , a+ij = 1.5, a−ij = 1.0, p+ij = 1
10 , and

θ = max
1≤i≤m,1≤j≤n

p+ij +
1
−
aij

[a+ij p+ij +
m

∑
i=1

n

∑
j=1

4(ρijb+ij + σijc+ij )]

 = 0.702 < 1.

This example is simulated through MATLAB according to the given parameters.
Figure 1, Figure 2, and Figure 3 display the state trajectories x11(t), x22(t), and x33(t) of the
pseudo-almost periodic solution for the neural network system (15) with three different
initial values (2.5, 3.0, 3.5), (1.0, 1.5, 2.0), (1.0, 1.5, 1.8), respectively. Even with the change of
initial points, the shapes of the trajectories are not changed. As can be seen that simulated
the solution tends to be the pseudo-almost periodic solution of the neural network system
(4.1). Figure 4 shows the dynamic behavior of the pseudo-almost solution x11(t) and
x22(t) of the neural network system (15) with the same initial values x11(0) = x22(0) = 4.
Similarly, Figure 5 exhibits the dynamic behavior of the pseudo-almost solution x11(t) and
x33(t), and Figure 6 x22(t) and x33(t). The validity of the conclusions can be judged by
comparing the two-state trajectories with each other.
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Figure 1. The state trajectory of x11, and initial values are 2.5, 3.0, 3.5, respectively.
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Figure 2. The state trajectory of x22, and initial values are 1.0, 1.5, 2.0, respectively.
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Figure 3. The state trajectory of x33, and initial values are 1.0, 1.5, 1.8, respectively.
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Figure 4. The state trajectory of x11 and x22, and initial values are x11(0) = x22(0) = 4.0.
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Figure 5. The state trajectory of x11 and x33, and initial values are x11(0) = x33(0) = 4.0.
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Figure 6. The state trajectory of x22 and x33, and initial values are x22(0) = x33(0) = 2.0.

Figure 7a,b demonstrates the phase responses of state variables x11(t) and x22(t) for
the neural network system (15) with different initial values (4.0, 2.5), (1.0, 0.5). Figure 7c
describes the space behavior of the state variables x11(t), x22(t) for the neural network
system (15). Similarly, Figure 8a,b shows the phase responses of state variables x11(t) and
x33(t) for the neural network system (15) with different initial values (3.5, 1.0), (0.5, 1.5).
Figure 8c space behavior of the state variables x11(t), x33(t) for the neural network sys-
tem (15); and Figure 9a,b depict phase diagram x22(t) and x33(t) with (2.0, 1.5), (0.5, 1.0),
Figure 9c reveals the space behavior of the state variables x22(t) and x33(t). Figure
7d, Figure 8d, and Figure 9d exhibitions the 3D space behavior of the state variables
x11(t), x22(t) and x33(t) for the neural network system (15) with three different initial
values (0.5, 1.0, 0.5), (0.5, 1.5, 1.5), (0.5, 2.5, 1.5). The time response confirms that our
theoretical results’ sufficient conditions are effective for the neural network system (15).
Moreover, the phase response represents a bunch of pseudo-almost periodic trajecto-
ries, which gives an idea of pseudo-almost periodic solutions for our described neural
network system (15). Considered the above relative parameters, all the conditions of
Theorems 1 and 2 are satisfied. Therefore, the neural network system (15) has precisely
one continuously differential pseudo-almost periodic solution, which is also globally
exponentially stable.
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Figure 7. The state trajectory of 11 22x x− , 3D graphs and initial values are (a) (4.0, 2.5),  (b)

(1.0,0.5),  (c) (0.0, 2.5,0.5), and (d) (0.5,1.0,0.5),  respectively. 

Figure 7. The state trajectory of x11 − x22, 3D graphs and initial values are (a) (4.0, 2.5), (b) (1.0, 0.5),
(c) (0.0, 2.5, 0.5), and (d) (0.5, 1.0, 0.5), respectively.
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5. Conclusions

In this paper, the existence and stability criteria of the pseudo-almost periodic solution
for the novel type complex networks are examined. Based on the Banach fixed-point
theorem and the exponential dichotomy of linear equations, the existence and uniqueness
of pseudo-almost periodic solutions are investigated. Through an integral variable trans-
formation, the global exponential stability condition of the CNN is evaluated. Compared
with the previous work on the stability analysis of periodic solutions, the derived pseudo-
almost periodic results are more precise and less conservative. The proposed variable
substitution can induce stability flexibility, overcome the bottleneck problem of construct-
ing the complicated Lyapunov functional, and ensure the convergence results from more
validity. The approach has a fast convergence speed, which is suitable for applications of
complex systems. The obtained results in this work are valuable in the design of neural
network systems, which are used to solve efficiency and optimal control problems arising
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in practical engineering applications. The existence and stability conditions are expressed
in simple algebraic form, and their verification is done.

In future work, the analysis method can also be applied to more complicated neural
network systems such as fuzzy systems and fractional-order neural networks that arise in
the various disciplines of engineering and scientific fields. Such as, Mittag-Leffer stability
of the fractional-order neural networks with discontinuous activation functions and time-
varying delays will also be explored. Moreover, synchronization and state estimation of
the fractional-order memristor-based neural networks and stochastic delayed systems will
also be examined in the future.
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