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Abstract: The purpose of this article is to initiate the notion of monotone multivalued generalized
(α,β)-nonexpansive mappings and explore the iterative approximation of the fixed points for the map-
ping in an ordered CAT(0) space. In particular, we employ the S-iteration algorithm in CAT(0)
space to prove some convergence results. Moreover, some examples and useful results related to
the proposed mapping are provided. Numerical experiments are also provided to illustrate and
compare the convergence of the iteration scheme. Finally, an application of the iterative scheme has
been presented in finding the solutions of integral differential equation.
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1. Introduction and Preliminaries

Let M a nonempty subset of a metric space Y. A subset M is said to be proximinal if
for each v ∈ Y, there exists an element k ∈ M such that

d(v, k) = d(v, M) = inf{d(v, y) : y ∈ M} (1)

where d(v, M) is the distance from the point v to the set M. Denote the family of nonempty
closed bounded subsets of Y by Ω(Y), the family of nonempty bounded proximinal [1]
subsets of Y by D(Y), and the family of nonempty compact subsets of Y by κ(Y). Define
the Hausdroff distance, H(., .), on Ω(Y) by

H(E, F) = max{sup
e∈E

d(e, F), sup
f∈F

d( f , E)}. (2)

The mapping H is called Pompeiu-Hausdorff metric induced by d.
A multivalued mapping U : Y −→ Ω(Y) is said to have a fixed point if there exists

an element p ∈ Y such that p ∈ Up. The set F(U) denotes the set of all fixed points of U.
This p ∈ Y is said to be a strict fixed point (or end point of U) if Up = {p}. Denote the set
of strict fixed points (end points) of U by SF(U). Clearly, SF(U) is contained in F(U).
A multivalued mapping U : Y −→ Ω(Y),

(1) is nonexpansive if
H(Uv,Uy) ≤ d(v, y), ∀ v, y ∈ Y.
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(2) is quasi-nonexpansive if F(U is nonempty and for any p ∈ F(U)

H(Uv,Up) ≤ d(v, p), ∀ v ∈ Y.

A multivalued mapping U : Y −→ Ω(Y) satisfies the Condition (C) if for any v, y ∈ Y

1
2

d(v,Uv) ≤ d(v, y) implies that H(Uv,Uy) ≤ d(v, y). (3)

A geodesic path is a map, ξ, joining two points v and y in a metric space Y from
a closed interval [0, l] ⊂ R to Y such that ξ(0) = v, ξ(l) = y and d(ξ(q), ξ(q′)) = |q− q′|
for all q, q′ ∈ [0, l]. In particular, l = d(v, y). The image of ξ is called the geodesic or metric
segment joining v and y. If the image is unique then it is indicated by [v, y]. The space (Y, d)
is called the geodesic space if any two points of Y are connected by a geodesic whereas Y
is known to be uniquely geodesic if for each v, y ∈ Y, there is exactly one metric segment
which joins v and y [2]. A subset M of Y containing every geodesic segment joining any two
of its points is said to be convex. A geodesic triangle4(a, b, c) in a geodesic metric space
(Y, d) consists of three points in Y where a, b and c are the vertices of 4 and a geodesic
segments between them are the sides of4. A comparison triangle for4(a, b, c) in (Y, d)
is a triangle 4(a, b, c)=4(a, b, c) in the Euclidean plane R2 such that d(a, b) = dR2(a, b),
d(a, c) = dR2(a, c) and d(b, c) = dR2(b, c) [3,4].

Suppose that ∆ is a geodesic triangle in E and ∆ is a comparison triangle for ∆.
In a geodesic space, if all geodesic triangles of appropriate size satisfy the following
comparison axiom called CAT(0) inequality:

d(u, v) ≤ dR2(u, v), for all u, v ∈ ∆, u, v ∈ ∆,

then such a geodesic space is said to be a CAT(0) space.
Thus, a CAT(0) space is a particular metric space which does not possess any linear

structure. Complete CAT(0) spaces generalize Hilbert spaces to the nonlinear framework.
Some examples of CAT(0) spaces are pre-Hilbert space [5], Hadamard manifold, R-trees [6],
hyperbolic metric spaces [7] and Euclidean building [8]. We refer the readers interested
in detailed study of such spaces to [2] and references therein.

A study of sufficient conditions for the existence of fixed points of multivalued con-
traction and nonexpansive mappings employing the Hausdroff metric was first carried out
by Markin [9] which was later extended by Nadler [10]. A topological structure which relies
on the properties of distance function defined on the domain and induced distance function
on a codomain of multivalued contraction mapping plays vital role in proving the existence
of fixed points of such mappings. Fixed point theory for multivalued contraction mappings
initiated by Nadler [10] has been extended using different generalized distance structures
such as b-metric, rectangular metric, partial metric, and dual metric [11–14].

Existence of fixed points of single valued and multivalued nonexpansive mappings
however requires a rich geometric structure in addition to the topological structure of un-
derlying domain see [15–17] and references therein. Kirk [6] instituted the study of fixed
points in CAT(0) spaces. He established the existence of a fixed point for a nonexpansive
single-valued mapping on bounded closed convex subset of a complete CAT(0) space.
In fact, CAT(0) spaces constitute a suitable framework to obtain fixed points of nonexpan-
sive mappings and its various generalizations [18–20]. Fixed point results of multivalued
mappings in CAT(0) spaces have various applications in differential equations, optimiza-
tion, control theory, graph theory, computer science, robotics [21–25].

The conditions for a mapping to be nonexpansive must hold for all points in the do-
main of the mappings. Therefore, the need for relaxed conditions arose which do not
affect the outcome of the fixed point results. In order to address this problem, Suzuki [26]
introduced a new class of mappings, formally known as the class of mapping satisfying
the Condition (C) in the context of uniform convex Banach spaces. The class of nonex-
pansive mappings is the proper subclass of the class of mapping satisfying the Condition
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(C). This class of mappings need not be continuous. Akbar and Eslamian [27] extended
this class of single valued mappings to the class of multivalued mappings and obtained
fixed points of such mappings in the framework of Banach spaces. These results were then
obtained in the setup of complete CAT(0) spaces [28,29].

The class of α-nonexpansive mappings in Banach spaces were suggested by Aoyama
and Kohshaka [30] who also explored fixed points of such mappings. Recently, Iqbal
et al. [31] proposed the concept of multivalued generalized α-nonexpansive mappings and
obtained existence and approximation results in the setting of a Banach space. In 2018,
Harandi et al. [32] presented the class of (α, β)-nonexpansive mappings which is prop-
erly larger than the class of α-nonexpansive mapping for a fixed point sequence. Many
researchers have presented and studied iterative techniques for approximating the fixed
points and established convergence results in CAT(0) spaces for the general class of multi-
valued mappings including Mann, Ishikawa and S-iterative schemes [20,25,33,34].

Motivated by [26,32], we present the class of monotone multivalued generalized
(α, β)-nonexpansive multivalued mappings and establish the existence of fixed points
for such mappings in the setting of an ordered CAT(0) space. We will approximate the fixed
points of the proposed mapping using the S-iterative scheme. Under suitable condi-
tions M-convergence and strong convergence results will be established. An application
of the convergence results is also presented. Now, we recall some important definitions
and results needed in the sequel. We assume that (Y, d) is a CAT(0) space.

Lemma 1. [35] For v, y ∈ Y and q ∈ [0, 1], there exists a unique h ∈ [v, y] such that

d(v, h) = (1− q)d(v, y) and d(y, h) = qd(v, y).

We denote the unique point h ∈ [v, y] in the above Lemma by (1− q)v⊕ qy.

Lemma 2. [35] For v, y, z ∈ Y and q ∈ [0, 1], we have the following inequalities:

(i) d((1− q)v⊕ qy, z) ≤ (1− q)d(v, z) + qd(y, z).
(ii) d((1− q)v⊕ qy, z)2 ≤ (1− q)d(v, z)2 + qd(y, z)2 − q(1− q)d(v, y)2.

Let M be a bounded subset Y and {vn} a bounded sequence in Y then:

(i) Define a mapping r(., {vn}) : Y → R+ by

r(v, {vn}) = lim sup
n→∞

d(vn, v).

For each v ∈ Y, the value r(v, {vn}) is called asymptotic radius of {vn} at v [1].
(ii) The asymptotic radius of {vn} [1] relative to M is the number r given by

r = inf{r(v, {vn}); v ∈ M}.

Denote asymptotic radius of {vn} relative to M by r(M, {vn}).
(iii) The asymptotic center of {vn} relative to M [1] is the set A({vn}) of points in Y

for which r(M, {vn}) = r(v, {vn}), that is,

A({vn}) = {v ∈ Y : r(v, {vn}) = r}.

Definition 1. [35] A sequence {vn} in a CAT(0) space Y is 4-convergent to v ∈ Y if v
is the unique asymptotic center of every subsequence of {vn}. In such situation, we write
4− limn vn = v and v is the4-limit of {vn}.

Given {vn} ⊂ Y such that {vn} 4-converges to v if we take y ∈ Y such that v 6= y, then
by the uniqueness of the asymptotic center, we have
lim supn→∞ d(vn, v) < lim supn→∞ d(vn, y).
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Lemma 3. [35] In a complete CAT(0) space, every bounded sequence admits
a4-convergent subsequence.

Lemma 4. [35] If {vn} is a bounded sequence in a closed convex subset M of a complete CAT(0)
space, then the asymptotic center of {vn} is in M.

Lemma 5. [36] Let p be an element of a complete CAT(0) space Y. Assuming {tn} is a sequence
in [θ, η] for some θ, η ∈ (0, 1) and that {vn}, {yn} are two sequences in Y satisfying the following
for some r ≥ 0:

lim sup
n→∞

d(vn, p) ≤ r, lim sup
n→∞

d(yn, p) ≤ r and

lim sup
n→∞

d(tnvn + (1− tn)yn, p) = r.

Then
lim

n→∞
d(vn, yn) = 0.

Let M be a nonempty convex subset of Y and U : M −→ Ω(M) with p ∈ F(U). Then,

(1) the Mann iterative process is defined by x1 ∈ M,

xn+1 = (1− αn)xn ⊕ αnyn, (4)

where yn ∈ Uvn satisfies

d(yn+1, yn) ≤ H(Uxn+1,Uxn)

and αn ∈ [0, 1],
(2) the Ishikawa iterative process is defined as x1 ∈ M,

yn = (1− βn)xn ⊕ βnsn, xn+1 = (1− αn)xn ⊕ αns′n, (5)

with sn ∈ Uxn and s′n ∈ Uyn satisfying d(sn, s′n) ≤ H(Uxn,Uyn) and
d(sn+1, s′n) ≤ H(Uxn+1,Uyn), and αn, βn ∈ [0, 1].

The a modification of S-iterative scheme [37] in the frame work of CAT(0) spaces is
given as follows:

Let v1 ∈ M. Define
yn = (1− βn)xn ⊕ βnsn,

xn+1 = (1− αn)sn ⊕ αnz′n,
(6)

with sn ∈ Uxn, s′n ∈ Uyn and d(sn, s′n) ≤ H(Uxn,Uyn) satisfying d(sn+1, s′n) ≤ H(Uxn+1,Uyn)
and αn, βn ∈ (0, 1).

Consider a complete CAT(0) space, Y, endowed with partial order �. Two elements
v, y are comparable if v � y or y � v. For any a ∈ Y, define

[a,→) = {v ∈ Y; a � v} and (←, a] = {v ∈ Y; v � a}.

Let v, y ∈ Y. An order interval [v, y] is the set given by

[v, y] = {w ∈ Y : v � w � y}.

Let M be a nonempty closed convex subset of (Y,�). A mapping U : M −→ Ω(M) is
called monotone if for any uv ∈ Uv there exists uy ∈ Uy such that uv � uy whenever v � y
for all v, y ∈ M. Moreover, the mapping U is:

(i) monotone nonexpansive if U is monotone and such that for any comparable v, y ∈ M,

H(Uv,Uy) ≤ d(v, y), (7)
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(ii) monotone quasi-nonexpansive if U is monotone with p ∈ F(U) 6= ∅ and v ∈ M such
that whenever v, p are comparable,

H(Uv,Up) ≤ d(v, p) (8)

holds.

Throughout this paper, we consider the order intervals to be closed convex subsets
of an ordered CAT(0) space (Y,�).

2. Multivalued Generalized (α, β)-Nonexpansive Mapping

In this section, we introduce a class of multivalued generalized (α,β)-nonexpansive map-
ping in the setting of CAT(0) spaces which is a wider class of nonexpansive type mapping
which properly contains nonexpansive, mappings satisfying the Condition (C) and general-
ized α-nonexpansive mappings. We also discuss some of its properties in CAT(0) space.

Definition 2. Let M be a nonempty subset of a CAT(0) space (Y, d). A multivalued mapping
U : M −→ Ω(Y) satisfies the Condition (C(α,β)) if there exists α, β ∈ (0, 1) such that for any
v, y ∈ M,

1
2

d(v,Uv) ≤ d(v, y) implies that (9)

H(Uv,Uy) 6 αd(y,Uv) + βd(v,Uy) + (1− α− β)d(v, y). (10)

If a multivalued mapping satisfies the Condition (C(α,β)) in a CAT(0) space then we
say U is the multivalued generalized (α,β)-nonexpansive mapping.

Let M be a nonempty closed subset of an ordered CAT(0) space (Y,�). A mapping
U : M −→ Ω(M) is said to be a monotone multivalued generalized (α, β)− nonexpansive
mapping if

(a) U is monotone,
(b) U satisfies (9) for all v, y ∈ M and either v � y or y � v.

Remark 1.

(1) Multivalued generalized (α,β)-nonexpansive mappings extend and generalize the class of map-
pings introduced by [31]. Indeed, if α = β then the mapping is reduced to multivalued
generalized α-nonexpansive mapping.

(2) Multivalued generalized (α,β)-nonexpansive mappings contain the class of mappings satisfy-
ing the Condition (C). Clearly, substituting α = β = 0 we get our desired mapping.

(3) Every nonexpansive mapping is generalized (0, 0)-nonexpansive mapping.

We present an example of a multivalued generalized (α, β)-nonexpansive mappings
in an ordered CAT(0) space which is neither nonexpansive or satisfies the Condition (C).

Example 1. Consider an Example 18 of [38] where

d(v, y) = |v1 − y1|+ |v1v2 − y1y2|.

Define an order on Y as follows: for v = (v1, v2) and y = (y1, y2), v < y if and only
if v1 ≤ y1 and v2 ≤ y2. Thus (Y, d,�) is an ordered Hyperbolic space which is an example
of an ordered CAT(0) space.

Let M = [0, 2]× [0, 2] ⊂ Y and U : M −→ Ω(M) be defined by

U(v1, v2) =

{
{(0, 1

4 ), (
1
2 , 1)}, i f (v1, v2) 6= (2, 2),

{( 3
2 , 3

2 ), (
19
10 , 19

10 )}, i f (v1, v2) = (2, 2).
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(1) The mapping U does not satisfy the Condition (C) on M and therefore is not nonexpansive.
Indeed, for (v1, v2) = (1, 1) and (y1, y2) = (2, 2) we have

1
2

d(v,Uv) =
1
2

min{1
2

,
1
4
} = 1

8

and
d(v, y) = |1− 2|+ |1(1)− 2(2)| = 4.

Thus, 1
2 d(v,Uv) < d(v, y). Note that

dist(z,Uy) = inf{|s1 −
3
2
|+ |s1z2 −

3
2

.
3
2
|, |s1 −

3
2
|+ |s1z2 −

19
10

.
19
10
|}

If z ∈ Uv then we have

sup
z∈Uv

dist(z,Uy) = sup{inf{15
4

,
551
100
}, inf{11

4
,

451
100
}}

= sup{15
4

,
11
4
} = 15

4

Also,

dist(w,Uv) = inf{|w1|+ |w1w2|, |w1 −
1
2
|+ |w1w2 −

1
2
|}

If w ∈ Uy, then we have

sup
w∈Uy

dist(w,Uv) = sup{inf{15
4

,
11
4
}, inf{551

100
,

451
100
}}

= sup{11
4

, 4.51} = 4.51.

Thus

H(Uv,Uy) = max{15
4

,
451
100
} = 4.51

implies that H(Uv,Uy) > d(v, y).
(2) Now, we show that U is multivalued generalized (α, β)-nonexpansive mapping, where α = 7

8
and β = 1

8 . We consider the following cases.

CASE - I If v = (v1, v2) 6= (2, 2) and y = (y1, y2) = (2, 2), Observe that

dist(y,Uv) = inf{d((y1, y2), {(0,
1
4
), (

1
2

, 1)})}

= =
11
2

and

dist(v,Uy) = inf{d((v1, v2), {(
3
2

,
3
2
), (

19
10

,
19
10

)}}

= |v1 −
3
2
|+ |v1v2 −

9
4
|.
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For α = 7
8 and β = 1

8 , we obtain that

αdist(y,Uv) + βdist(v,Uy) + (1− α− β)d(v, y)

=
7
8

.
11
2

+
1
8
(|v1 −

3
2
|+ |v1v2 −

9
4
|) + (1− 7

8
− 1

8
)d(v, y)

≥ 1
8
|v1 −

3
2
− v1v2 +

9
4
|+ 77

16
≥ 4.51 = H(Uv,Uy).

CASE - II If v = (v1, v2) = y = (y1, y2) 6= (2, 2), then

dist(z,Uy) = inf{d((s1, z2), {(0,
1
4
), (

1
2

, 1)})}

= inf{|s1|+ |s1z2|, |s1 −
1
2
|+ |s1z2 −

1
2
|}

Now z ∈ Uv gives that

sup
z∈Uv

dist(z,Uy) = sup{inf{0, 1}, inf{1, 0}} = sup{0, 0} = 0.

Similarly,

dist(w,Uv) = inf{|w1|+ |w1w2|, |w1 −
1
2
|+ |w1w2 −

1
2
|}

Now w ∈ Uy gives

sup
w∈Uy

dist(w,Uv) = sup{inf{0, 1}, inf{1, 0}} = 0

Thus
H(Uv,Uy) = 0.

Also,

dist(v,Uy) = |v1 −
1
2
|+ |v1v2 −

1
2
|

and

dist(y,Uv) = |y1 −
1
2
|+ |y1y2 −

1
2
|.

For α = 7
8 and β = 1

8 , we obtain that

αdist(y,Uv) + βdist(v,Uy) + (1− α− β)d(v, y)|

=
7
8
(|y1 −

1
2
|+ |y1y2 −

1
2
|) + 1

8
(|v1 −

1
2
|+ |v1v2 −

1
2
|) + (1− 7

8
− 1

8
)d(v, y)

≥ 1
8
|v1 − v1v2 − 7y1 − 7y1y2 −

3
4
|

≥ 0 = H(Uv,Uy).

Hence U is ( 7
8 , 1

8 )-nonexpansive multivalued mapping.

Proposition 1. Let U : M −→ Ω(M) be a multivalued mapping then the following hold.

(1) If U satisfies the Condition (C) as defined in (3), then U satisfies the Condition (C(α,β)).
(2) If U satisfies the Condition (C(α,β)) with F(U) 6= ∅, then U is quasi-nonexpansive.
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Proof.

(1) If U satisfies the Condition (C) then it trivial that U satisfies the Condition (C(α,β))
for α = β = 0.

(2) Let p ∈ F(U) 6= ∅ then,

1
2

dist(p,Up) = 0 ≤ d(v, p) for all v ∈ Y.

As U satisfies the Condition (C(α,β)), there exists α, β ∈ [0, 1) such that

H(Uv,Up) ≤ αdist(p,Uv) + βdist(v,Up) + (1− α− β)d(v, p)

holds. Then,

H(Uv,Uy) ≤ αH(Uv,Up) + βdist(p,Up) + βd(v, p) + (1− α− β)d(v, p)

implies
(1− α)H(Uv,Up) ≤ (1− α)d(v, p).

Since 1− α > 0, it follows that H(Uv,Up) ≤ d(v, p). Hence U is quasi-nonexpansive
multivalued mapping.

Remark 2. The converse of (i) in the Proposition 1 is not true in general. Indeed if a multivalued
mapping satisfies the Condition (C(α,β)), it does not necessarily imply that the mapping satisfies
the Condition (C).

Now, we characterize some properties of F(U) of multivalued mapping in CAT(0)
space. For the following result sin this section, assume that M is a nonempty subset
of a CAT(0) space Y and U : M −→ Ω(M) a multivalued mapping satisfying the Condition
(C(α,β)) for some α, β ∈ [0, 1),

Theorem 1. If M is closed then F(U) is closed. Moreover, if M is convex and F(U) 6= ∅ with
SF(U) = F(U), then F(U) is convex.

Proof. Let {pn} be a sequence in F(U) such that limn→∞ d(pn, p) = 0 for some p ∈ M. Since

1
2

dist(pn,Upn) = 0 ≤ d(pn, p) for all p ∈ M

and U satisfies the Condition (C(α,β)), there exists α, β ∈ [0, 1) such that

H(Upn,Up) ≤ αdist(p,Upn) + βdist(pn,Up) + (1− α− β)d(pn, p) ∀ p ∈ M. (11)

Thus
dist(pn,Up) ≤ H(Upn,Up)

and
H(Upn,Up) ≤ αdist(p,Upn) + βdist(pn,Up) + (1− α− β)d(pn, p)

imply that
(1− β)dist(pn,Up) ≤ (1− β)d(pn, p).

As 1− β > 0, on taking the limit on both sides, we obtain that d(p,Up) = 0. Therefore
p ∈ Up and hence F(U) is closed.
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Let v, y ∈ F(U). We need to show that every geodesic segment joining v and y lies
in F(U). Let h ∈ [v, y] with h = tv⊕ (1− t)y for some t ∈ [0, 1]. Since M is convex and
h ∈ [v, y] ⊂ M. Let p ∈ Up. Then by Lemma 2 and 1

2 d(p,Up) = 0, we have

d(h, p)2 = d(tv⊕ (1− t)y, p)2

≤ td(v, p)2 + (1− t)d(y, p)2 − t(1− t)d(v, y)2

= tdist(p,Uv)2 + (1− t)dist(p,Uy)2 − t(1− t)d(v, y)2

≤ tH(Up,Uv)2 + (1− t)H(Up,Uy)2 − t(1− t)d(v, y)2

≤ t(αdist(v,Up) + βdist(p,Uv) + (1− α− β)d(v, p))2

+ (1− t)(αdist(y,Up) + βdist(p,Uy) + (1− α− β)d(y, p))2 − t(1− t)d(v, y)2.

Further, we have

d(h, p)2 ≤ t(αd(v, p) + βd(v, p) + (1− α− β)d(v, p))2+

(1− t)(αd(y, p) + βd(y, p) + (1− α− β)d(y, p))2 − t(1− t)d(v, y)2

≤ td(v, p)2 + (1− t)d(y, p)2 − t(1− t)d(v, y)2.

Now by using Lemma 2, we have

d(h, p)2 ≤ t(1− t)2d(v, y)2 + t2(1− t)d(v, y)2 − t(1− t)d(v, y)2

= 0.

This implies that h = p ∈ Up, that is, p ∈ F(U). Hence F(U) is convex.

Now, we present some results associated with the multivalued mapping satisfying
the Condition (C(α,β)).

Proposition 2. For each v, y ∈ M and p ∈ Uv we have the following:

(1) H(Uv,Up) ≤ d(v, p).
(2) Either 1

2 dist(v,Uv) ≤ d(v, y) or 1
2 dist(p,Up) ≤ d(y, p).

(3) Either H(Uv,Uy) ≤ αdist(y,Uv) + βdist(v,Uy) + (1− α− β)d(v, y) or
H(Uv,Up) ≤ αdist(p,Uv) + βdist(v,Up) + (1− α− β)d(v, p).

Proof.

(1) As, 1
2 dist(v,Uv) ≤ dist(v,Uv) ≤ d(v, p) ∀ p ∈ Uv, we have

H(Uv,Up) ≤ αdist(p,Uv) + βdist(v,Up) + (1− α− β)d(v, p)

which implies that

H(Uv,Up) ≤ αd(v, p) + αH(Uv,Up) + βd(v, p) + (1− α− β)d(v, p)

and hence
H(Uv,Up) ≤ d(v, p).

we have

H(Uv,Up) ≤ αdist(p,Uv) + βdist(v,Up) + (1− α− β)d(v, p)

which implies that

H(Uv,Up) ≤ αd(v, p) + αH(Uv,Up) + βd(v, p) + (1− α− β)d(v, p)
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and hence
H(Uv,Up) ≤ d(v, p).

(2) Suppose that 1
2 dist(v,Uv) > d(v, y) and 1

2 dist(p,Up) > d(y, p). From (i), we get

1
2

dist(p,Up) ≤ dist(p,Up) ≤ d(v, p) and

dist(p,Up) ≤ d(v, y) + (y, p)

<
1
2

dist(v,Uv) +
1
2

dist(p,Up).

Thus,

dist(p,Up)− 1
2

dist(p,Up) <
1
2

dist(v,Uv)

implies that

dist(p,Up) < dist(v,Uv). (12)

Also, we have

dist(v,Uv) ≤ d(v, p)

≤ d(v, y) + d(y, p)

<
1
2

dist(v,Uv) +
1
2

dist(p,Up).

Thus,

dist(v,Uv)− 1
2

dist(v,Uv) <
1
2

dist(p,Up)

implies that dist(v,Uv) < dist(p,Up) (13)

Combining the inequalities (12) and (13), we obtain dist(v,Uv) < dist(v,Uv) a con-
tradiction. Hence (ii) holds.

(3) The condition (iii) directly follow from the condition (ii).

Proposition 3. Let M be closed and convex then

H(Uv,Uy) ≤ (2 + α + β)

(1− β)
dist(v,Uv) + d(v, y), (14)

holds for all v, y ∈ M.

Proof. Let v ∈ M, then there exists p ∈ Uv such that d(v, p) = dist(v,Uv). By using
Proposition 2, we have

H(Uv,Up) ≤ d(v, p). (15)

Now, by proposition 3.2 (iii), we obtain

H(Uv,Uy) ≤ αdist(y,Uv) + βdist(v,Uy) + (1− α− β)d(v, y), (16)

or
H(Up,Uy) ≤ αdist(y,Up) + βdist(p,Uy) + (1− α− β)d(y, p). (17)
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If inequality (16) holds, then we get

H(Uv,Uy) ≤ αdist(y,Uv) + βdist(v,Uy) + (1− α− β)d(v, y)

≤ αd(v, y) + αdist(v,Uv) + βdist(v,Uv) + βdist(Uv,Uy) + (1− α− β)d(v, y)

≤ (α + β)dist(v,Uv) + (1− β)d(v, y) + βH(Uv,Uy)

≤ (α + β)

(1− β)
dist(v,Uv) + d(v, y).

If (17) holds, then we have

H(Uv,Uy) ≤ H(Uv,Up) + H(Up,Uy)

≤ d(v, p) + αdist(y,Up) + βdist(p,Uy) + (1− α− β)d(y, p)

≤ d(v, p) + αd(v, y) + αdist(v,Up) + βd(v, p) + βdist(v,Uy)+

(1− α− β)d(y, p)

≤ (1 + β)d(v, p) + αd(v, y) + αdist(v,Uv) + αdist(Uv,Up) + βdist(v,Uv)

+ βdist(Uv,Uy) + (1− α− β)d(y, p)

≤ (1 + β)d(v, p) + αd(v, y) + (α + β)dist(v,Uv) + αH(Uv,Up)+

βH(Uv,Uy) + (1− α− β)d(y, p)

Thus

(1− β)H(Uv,Uy) ≤ (1 + α + β)d(v, p) + αd(v, y) + (α + β)dist(v,Uv) + (1− α− β)d(y, p)

≤ (1 + α + β)d(v, p) + αd(v, y) + (α + β)dist(v,Uv)+

(1− α− β)(d(v, p) + d(v, y))

implies that

H(Uv,Uy) ≤ (2 + α + β)

(1− β)
dist(v,Uv) + d(v, y).

Hence our desired inequality is proved in both cases.

3. Convergence Results

In this section, we present some existence result of fixed point of a multivalued
generalized (α, β)− nonexpansive multivalued mappings in the frame work of ordered
CAT(0) space (Y,�).

Lemma 6. Let M be a nonempty, closed and convex subset of a complete ordered CAT(0) space
(Y,�) and U : M −→ Ω(M) be a monotone multivalued generalized (α, β)− nonexpansive
mapping. Then 1

2 d(p,Uv) ≤ d(p, v) for all v ∈ M and p ∈ F(U) such that either v � p or p � v.

Lemma 7. Let M and U : M −→ Ω(M) be as in Lemma 6. Fix x1 ∈ M such that x1 � s1
or (s1 � x1). If {xn} is defined by (6), then we have:

(1) xn � sn � xn+1 or xn+1 � sn � xn for any n ≥ 1 and sn ∈ Uxn.
(2) xn � x provided that {xn} 4-converges to a point x ∈ M.

Proof.

(1) If x1 � s1, then by convexity of order interval [x1, s1] and (6) we have,

x1 � (1− β1)x1 ⊕ β1s1 � s1.

Thus, there exists y1 such that
x1 � y1 � s1. (18)
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As, U is monotone there exists s′1 ∈ Uy1 such that s1 � s′1. Again by convexity of order
interval [s1, s′1] and (6) we have

s1 � (1− α1)s1 ⊕ αz′2 � z′2.

Thus,
s1 � x2 � s′1. (19)

From (18) and (19), we have

x1 � y1 � s1 � x2 � z′2

which implies that
x1 � s1 � x2. (20)

Hence the statement is true for n = 1.
Assuming the statement is true for n, that is, for sn ∈ Uxn, we have

xn � sn � xn+1. (21)

Now, we show (21) is true for n + 1.
By the convexity of order interval [xn, sn] and (6), we have

xn � (1− βn)xn ⊕ βnsn � sn.

Thus, we have
xn � yn � sn. (22)

By monotonicity of U, there exists s′n ∈ Uyn such that sn � s′n. Again by convexity
of order interval [sn, s′n] and (6) we have

sn � (1− αn)sn ⊕ αns′n � s′n

which implies that
sn � xn+1 � s′n. (23)

It follows from (22) and (23) that

xn � yn � sn � xn+1 � s′n

and therefore
s′n � sn+1. (24)

From (24), we have
xn+1 � sn+1.

By the convexity of order interval [xn+1, sn+1] and (6), we obtain that

xn+1 � (1− βn+1)xn+1 ⊕ βn+1sn+1 � sn+1

and hence
xn+1 � yn+1 � sn+1. (25)

The monotonicity of U yields that there exists s′n+1 ∈ Uyn+1 such that sn+1 � s′n+1.
Now the convexity of order interval [sn+1, s′n+1] and (6) gives that

sn+1 � (1− αn+1)sn+1 ⊕ αn+1s′n+1 � s′n+1

which implies that
sn+1 � xn+2 � s′n+1. (26)
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So, from (25) and (26), we obtain

xn+1 � sn+1 � xn+2.

Hence, (21) is true for all n.
(2) Suppose that x is 4-limit of {xn}. From (i), we have xn � xn+1 for all n ≥ 1. Since

the order interval [xm,→) is closed and convex and the sequence is {xn} is increasing
we deduce that x ∈ [xm,→) for a fixed m ∈ N, if not, that is, if x /∈ [xm,→), then
a subsequence {xk} of {xn} may be constructed by leaving the first m − 1 terms
of the sequence {xn}, and then the asymptotic center of {xr} would not be x, which
contradicts that x is the4-limit of the sequence {xn}. This completes the proof.

Lemma 8. Let M and U : M −→ Ω(M) be as in Lemma 6 and {xn} be a sequence defined by (6)
where F(U) 6= ∅ such that SF(U) = F(U). Suppose that there exists x1 ∈ M such that x1 � s1,
where s1 ∈ Ux1. Also, assume that either x1 and p are comparable then

(1) limn→∞ d(xn, p) exists for all p ∈ F(U).
(2) limn→∞ d(xn, sn) = 0 where sn ∈ Uxn.

Proof.

(1) Let p ∈ F(U). If p � x1, then Lemma 7 and the transitivity of the order imply p � x2.
Applying mathematical induction, we obtain p � xn for all n ≥ 1. On the other hand,
assume that x1 � p. Since there exists s1 ∈ Ux1 we have s1 � p as F(U) = SF(U).
Further, (21) yields

y1 = (1− β1)x1 ⊕ β1s1 � p.

Again, there exists s′1 ∈ Uy1 which implies that s′1 � p as F(U) = SF(U).
Finally, we have

x2 = (1− α1)s1 ⊕ α1s′1 � p.

Continuing in this manner, we obtain yn � p, s′n � p and xn � p. Therefore, in both
cases xn and p are comparable. Now, from (21) we have

d(xn+1, p) = d((1− αn)sn + αns′n, p)

≤ (1− αn)d(sn, p) + αnd(s′n, p)

≤ (1− αn)dist(sn, p) + αndist(s′n,Up)

≤ (1− αn)H(Uxn,Up) + αn H(Uyn,Up) (27)

As d(p,Up) = 0 ≤ 1
2 d(xn, p),

H(Uxn,Up) ≤ αdist(p,Uxn) + βdist(xn,Up) + (1− α− β)d(xn, p)

≤ α{dist(p,Up) + dist(Up,Uxn)}+ β{d(xn, p) + dist(p,Up)}
+ (1− α− β)d(xn, p)

≤ αH(Uxn,Up) + (1− α)d(xn, p)

≤ d(xn, p). (28)

Also,

H(Uyn,Up) ≤ αdist(p,Uyn) + βdist(yn,Up) + (1− α− β)d(yn, p)

≤ α{dist(p,Up) + dist(Up,Uyn)}+ β{d(yn, p) + dist(p,Up)}+
+ (1− α− β)d(yn, p)

≤ αH(Uyn,Up) + (1− α)d(yn, p)

≤ d(yn, p) (29)
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and

d(yn, p) = d((1− βn)xn ⊕ βnsn, p)

≤ (1− βn)d(xn, p)⊕ βnd(sn, p)

≤ (1− βn)d(xn, p) + βn H(Uxn,Up)

≤ (1− βn)d(xn, p) + βnd(xn, p)

≤ d(xn, p). (30)

From (29) and (30) we obtain that

H(Uyn,Up) ≤ d(xn, p). (31)

Now using (30) and (31) in (27), we have

d(xn+1, p) ≤ d(xn, p).

Thus, for all n ≥ 1, d(xn+1, p) ≤ d(xn, p) that is, {d(xn, p)} is decreasing and conse-
quently, limn→∞ d(xn, p) exists.

(2) We now prove that limn→∞ d(xn, sn) = 0.
From (1), we know that for each p ∈ F(U), limn→∞ d(xn, p) exists. For some r ≥ 0, let

lim
n→∞

d(xn, p) = r. (32)

From (28) and on taking the limit superior as n→ ∞, we have

lim sup
n→∞

d(sn, p) ≤ lim sup
n→∞

H(Uxn,Up) ≤ lim sup
n→∞

d(xn, p) = r, (33)

that is,
lim sup

n→∞
d(sn, p) ≤ r. (34)

Similarly, from (28) and on taking limit superior as n→ ∞, we get

lim sup
n→∞

d(s′n, p) ≤ r (35)

and hence
r = lim

n→∞
d(xn+1, p) = lim

n→∞
d(1− αnsn + αns′n, p). (36)

Now, by applying Lemma 4, we get

lim sup
n→∞

d(sn, s′n) = 0. (37)

From (30), we have
d(yn, p) ≤ d(xn, p).

On taking limit superior as n→ ∞, we obtain that

lim sup
n→∞

d(yn, p) ≤ r. (38)

Note that

d(xn+1, p) ≤ (1− αn)d(sn, p) + αnd(s′n, p)

≤ d(sn, p)− αnd(sn, p) + αnd(sn, p) + αnd(sn, s′n)

≤ d(sn, p) + αnd(sn, s′n).
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r ≤ lim inf
n→∞

d(sn, p). (39)

Combining (34) and (39), we have

lim sup
n→∞

d(sn, p) = r.

Also,

d(sn, p) ≤ d(sn, s′n) + d(s′n, p)

≤ d(sn, s′n) + dist(s′n,Up)

≤ d(sn, s′n) + H(Uyn,Up)

≤ d(sn, s′n) + d(yn, p).

By taking limit inferior as n→ ∞ on both sides, we have

r ≤ lim inf
→∞

d(yn, p). (40)

Employing (34) and (40), yields

lim
n→∞

d(yn, p) = lim
n→∞

d((1− βnxn + βnsn, p) = r. (41)

From (32), (34), (40) and applying Lemma 5, we get

lim
n→∞

d(xn, sn) = 0. (42)

Now, we present the existence result associated with multivalued generalized
(α,β)-nonexpansive mapping.

Theorem 2. Let M and U : M −→ Ω(M) be as in Lemma 6. Fix x1 ∈ M such that x1 � s1.
If {xn} is a sequence given by (6) then the condition4− limnxn = x and limn→∞ d(xn, sn) = 0
are satisfied then x ∈ F(U).

Proof. Since4− limn xn = x, Lemma 7 implies that xn � x for all n ≥ 1.
Utilizing the (α, β)− nonexpansiveness of U and limn→∞ d(xn, sn) = 0, we have

z ∈ Ux. Further,

d(z, xn) ≤ d(z, sn) + d(sn, xn)

lim sup
n→∞

d(z, xn) ≤ lim sup
n→∞

[d(z, sn) + d(sn, xn)]

≤ lim sup
n→∞

d(z, sn)

≤ lim sup
n→∞

dist(z, sn)

≤ lim sup
n→∞

H(Ux,Uxn)

≤ lim sup
n→∞

d(x, xn).

Thus, from the uniqueness of the asymptotic center we have z = x where z ∈ Ux.

Here we discuss the convergence result regarding to our proposed mapping.

Theorem 3. Let M and U : M −→ Ω(M) be as in Lemma 6 with F(U) 6= ∅. Fix x1 � s1 ∈ Ux1.
If {xn} is a sequence defined by (6), then {xn} 4-converges to an element of F(U).
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Proof. It follows from Lemma 7 that limn→∞ d(xn, p) exists for each p ∈ F(U). So, {xn} is
bounded and limn→∞ d(xn, sn) = 0, where sn ∈ Uxn.

Denote $l(xn) =
⋃

Ak({un}) where the union is taken over all subsequence {un}
of {xn}. We now prove that {xn} is 4-convergent to a fixed point of U. First we show
$l(xn) ⊂ F(U) and therefore assert that $l(xn) is singleton. To show $l(xn) ⊂ F(U).
Let y ∈ $l(xn). So there exists a subsequence {yn} of {xn} such that A({yn}) = {y}.
As a consequence of Lemma 3 and Lemma 4, there exists a subsequence {tn} of {yn} so
that4− limntn = t and t ∈ M.

As limn→∞ d(xn, sn) = 0 and {tn} is a subsequence of {xn}, we have that
limn→∞ d(tn,Utn) = 0. By Theorem 2, we have t ∈ Ut and hence t ∈ F(U). Now we assert
that t = y. Indeed, t 6= y leads to a contradiction as

lim sup
n→∞

d(tn, t) < lim sup
n→∞

d(tn, y)

≤ lim sup
n→∞

d(yn, y)

< lim sup
n→∞

d(yn, t)

= lim sup
n→∞

d(xn, t)

= lim sup
n→∞

d(tn, t),

and hence, t = y ∈ F(U). To show that $l(xn) is singleton set, let {yn} be a subse-
quence of {xn}. From Lemma 3 and 4, there exists a subsequence {tn} of {yn} such that
4− limn tn = t. Let A({yn}) = {y} and A({xn}) = {x}. As it is already proved that
t = y thus it is sufficient to demonstrate that t = x.

If t 6= x, then by Lemma 8, {d(xn, p)} converges.
By uniqueness of asymptotic centers, we have

lim sup
n→∞

d(tn, t) < lim sup
n→∞

d(tn, x)

≤ lim sup
n→∞

d(xn, x)

< lim sup
n→∞

d(xn, t)

= lim sup
n→∞

d(tn, t),

a contradiction that t 6= x, consequently t = x ∈ F(U). Hence the conclusion follows.

In the following, we ascertain the strong convergence result which extends Theorem (1)
in [39] for multivalued generalized (α, β)-nonexpansive mapping in the setup of ordered
CAT(0) space.

Theorem 4. Let M and U : M −→ Ω(M) be as in Lemma 6 such that F(U) 6= ∅. Fix x1 ∈ M
such that x1 � s1 ∈ Ux1. If {xn} is a sequence described as (6) with Σ∞

n=1αnβn = ∞, then {xn}
converges to a fixed point of U if and only if lim infn→∞ d(xn, F(U)) = 0.

Proof. If the sequence {xn} converges to a fixed point p ∈ F(U), then it is obvious that
lim infn→∞ d(xn, F(U)) = 0.

Conversely, suppose that lim infn→∞ d(xn, F(U)) = 0. From Lemma 8, we have
dist(xn+1, p) ≤ d(xn, p) for any p ∈ F(U). So, dist(xn+1, F(U)) ≤ d(xn, F(U) and hence
{d(xn, F(U)} forms a decreasing sequence that is bounded below by zero which implies
that limn→∞ d(xn, F(U)) exists.
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To show {xn} is a Cauchy sequence in M, choose an arbitrary number, say, ε > 0.
As lim infn→∞ d(xn, F(U)) = 0 we have lim→∞ d(xn, F(U)) = 0. Thus, there exists n0 such
that for all n ≥ n0, we have

d(xn, F(U)) <
ε

4
.

Specifically,

inf{d(xn0 , p) : p ∈ F(U)} < ε

4
Thus, there must exists p ∈ F(U) such that d(xn0 , p) < ε

2 . Now for m, n ≥ n0, we have

d(xm+n, xn) ≤ d(xm+n, p) + d(p, xn)

< 2d(xn0 , p) < 2
ε

2
= ε.

Since M ⊂ Y is closed, {xn} is a Cauchy sequence and consequently, converges in M.
Let lim infn→∞ xn = g. Note that

dist(g,Ug) ≤ dist(g, xn) + dist(xn,Uxn) + dist(Uxn, g)

≤ d(xn, g) + d(xn, sn) + H(Uxn,Ug)

≤ d(xn, g) + d(xn, sn) + H(Uxn,Ug).

On taking limit as n→ ∞, we have g ∈ Ug. This completes the proof.

Remark 3.

(1) For α = β = 0, our theorems extend the results in [27] to CAT(0) spaces.
(2) For α = β, these results extend the results in [31,40] to CAT(0) spaces.
(3) Our results extend and improve results in [20] for monotone nonexpansive mapping in a

CAT(0) spaces.

4. Numerical Experiments

We start with the following example.

Example 2. Let M = [0, 2] and Y a CAT(0) space equipped with the order ” ≥ ” and the standard
metric given by d(v, y) = |v− y|. Define U : M −→ Ω(M) by

U(v) =
{

[0, v
2 ] i f 0 ≤ v < 1

2
{0} i f 1

2 ≤ v ≤ 1.

Clearly, U is monotone. Indeed, if v ≥ y for v ∈ [ 1
2 , 1] and y ∈ [0, 1

2 ), then for any
uv ∈ Uv = {0}, there exists uy = 0 ∈ Uy such that uv ≥ uy.

Note that U does not satisfy the Condition (C) and hence is not a nonexpansive multivalued
mapping. If we take v = 1

2 and y = 11
20 , then

1
2

dist(v,Uv) ≤ 1
2

d(
1
4

,U(
1
4
)) = 0

and d(v, y) = |1
4
− 11

20
| = 0.05 > 0

implies that
1
2

dist(v,Uv) ≤ d(v, y).

H(Uv,Uy) = H(U(
1
4
),U(

11
20

))

Note that

H(Uv,Uy) = H(U(
1
4
),U(

11
20

)) = H([0,
1
4
], {0}) = 1

4
> 0.05.
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Now, to demonstrate U is a multivalued generalized (α,β)-nonexpansive mapping, the follow-
ing cases are considered:

Case 1: If v, y ∈ [0, 1
2 ), then

H(Uv,Uy) = |v− y
2
| ≤ 1

3
|v− y

2
|+ 1

6
|y− v

2
|+ 1

2
|v− y|.

Case 2: The case v, y ∈ ( 1
2 , 1] is trivial.

Case 3: If v ∈ [0, 1
2 ] and y ∈ ( 1

2 , 1],

αdist(y,Uv) + βdist(v,Uy) + (1− α− β)d(v, y)

=
1
3
|v|+ 1

6
|y− v

2
+ 3v− y|

≥ 1
3
|v|+ 5

12
|v| ≥ 3

4
|v| > 1

2
|v| = H(Uv,Uy).

Hence, U is ( 1
3 , 1

6 )− nonexpansive multivalued mapping.

Now, we conduct some experiments to determine and compare the convergence
behavior of iteration (6). In Table 1 we test the convergence of algorithms for different
initial points. Fix parameters are αn = 1√

2n+1
, βn = 1√

n+1
and choose the stopping criteria

to be ‖xn − x ∗ ‖ < 10−5 where x∗ is the solution of the fixed point problem. It is evident
that S-iteration (6) converges faster to the fixed point of the multivalued generalized
(α, β)-nonexpansive mapping.

Table 1. Convergence comparison of Iteration Processes for different choices of initial points.

Initial Points Iteration Processes

Mann Ishikawa S-iteration
0.1 183 79 13
0.4 239 104 14
0.6 234 108 14
0.7 241 111 14

In the figures, Figures 1 and 2 we test the convergence of different iterative processes
for different choices of parameters. For this, we chose initial point x1 = 0.4. Observe that
for different choices of parameters the modified S-iteration (6) converges faster to the fixed
point of the multivalued generalized (α, β)-nonexpansive mapping.

Iterations
0 5 10 15 20 25 30

V
al

ue
s 

of
 x

n

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Mann iteration
Ishikawa iteration
S-iteration

Iterations
0 5 10 15 20 25 30

V
al

ue
s 

of
 x

n

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Mann iteration
Ishikawa iteration
S-iteration

Figure 1. Comparison of Iteration Processes for different choices of parameters: αn = n
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5. Application to Integral Equations

In this section, we show that our iterative scheme defined as in (6) can be used to
find a solution of an integral equation. Let Y = L2([0, 1],R) be the space of real valued
functions on [0, 1] such that

∫ +∞
−∞ | f (x)|2 < +∞. Since all Hilbert spaces are CAT(0) spaces

then L2([0, 1],R) is CAT(0). Define the order on Y by

y 4 z if and only if y(t) ≤ z(t)

for all t ∈ [0, 1]. Consider the following integral equation:

y(t) = g(t) +
∫ 1

0
F(t, s, y(s))ds (43)

where t ∈ [0, 1], g ∈ L2([0, 1],R) and F : [0, 1]× [0, 1]× L2([0, 1],R)→ R. In addition, F is
measurable and satisfies the inequality:

0 ≤
∣∣F(t, s, y)− F(t, s, z)

∣∣ ≤ ∣∣y− z
∣∣

for t, s ∈ [0, 1] and y, z ∈ L2([0, 1],R) such that y ≤ z.
Suppose that there exists a nonnegative function f (., .) ∈ L2([0, 1] × [0, 1]) and

Q < 1
2 satisfying ∣∣F(t, s, y)

∣∣ ≤ f (t, s) + Q|y|

for t, s ∈ [0, 1] and y ∈ L2([0, 1],R). Consider a closed ball M of L2([0, 1],R) centered at 0
with radius σ, i.e.,

M = {y ∈ L2([0, 1],R) such that ‖y‖L2([0,1],R) ≤ σ},

where σ is sufficiently large.
Define the operator U : L2([0, 1],R)→ L2([0, 1],R) by

U(y(t)) = g(t) +
∫ 1

0
F(t, s, y(s))ds. (44)

Then U(M) ⊂ M. Clearly, U monotone nonexpansive mapping and hence monotone
generalized (α,β)-nonexpansive. Choose Y = L2([0, 1],R) and U as in (44) in Theorem 3,
we get the following result.
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Theorem 5. Assuming the above stated assumptions, the sequence constructed by the iteration
scheme (6) converges to a solution of the integral Equation (43).

6. Conclusions

In this paper, we presented a new type of mappings, monotone multivalued gener-
alized (α,β)-nonexpansive mappings. We have investigated the iterative approximation
of the fixed points for such mappings in an ordered CAT(0) space utilizing the S-iteration
algorithm and some convergence results were established. Through numerical experi-
ments we have shown that the process (6) converges faster than all the leading schemes.
The proposed mapping and results generalize and extend various results in CAT(0) space
including [20,27,31,40]. Furthermore, we have also presented an application of the results
in approximating the solution of integral equations.
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