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Abstract: Discussions are presented by Morita and Sato in Mathematics 2017; 5, 62: 1-24, on the
problem of obtaining the particular solution of an inhomogeneous ordinary differential equation
with polynomial coefficients in terms of the Green’s function, in the framework of distribution theory.
In the present paper, a compact recipe in nonstandard analysis is presented, which is applicable to
an inhomogeneous ordinary and also fractional differential equation with polynomial coefficients.
The recipe consists of three theorems, each of which provides the particular solution of a differential
equation for an inhomogeneous term, satisfying one of three conditions. The detailed derivation
of the applications of these theorems is given for a simple fractional differential equation and an
ordinary differential equation.

Keywords: Green’s function; fractional differential equations with polynomial coefficients; Kim and
O’s differential equation; nonstandard analysis; distribution theory; operational calculus

1. Introduction

We consider a fractional differential equation, which takes the following form:

n

pu(t, RD)u(t) == Y ai(HRD}'u(t) = f(1), @

1=0

where n € Z. 1, a)(t) for I € Z, are polynomials of t, o) € C for | € Zj, satisfy
Re pg > Re p; > --- > Re p, and Re pg > 0. We use Heaviside’s step function H(t), which
isequal to 1if t > 0 and, to 0 if t < 0. Here, RDtp’ are the Riemann-Liouville fractional
integrals and derivatives defined by the following definition; see [1,2].

Remark 1. In solving Equation (1), we assume that f(t) satisfies f(t) = f(t)H(t), and we use
the solution u(t) = 0 for t < 0. As a result, the solution u(t) satisfies u(t) = u(t)H(t). In this
notation, we use the following definition for T = 0.

Definition 1. Let t € R, 7 € R, u(t) satisfy u(t) = u(t)H(t — 1), A € C4, n € Z~_1 and
p=n—A. Then, gD, Mu(t) is the Riemann—Liouville fractional integral defined by the following:

WD) = s [ (=0 @ H(E - T

1

=5 /Tt(t —OMlu(e)de, t>1, 2
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and RD;Mu(t) = 0 for t < T, where T(A) is the gamma function, and RDYu(t) = DI *u(t) is
the Riemann—Liouville fractional derivative defined by the following:

n

RDYu(t) = D u(t) Dy u(t)] - H(t - 1), ®)

= ar kD
when n > Re A, and gD} u(t) = l%u(t) -H(t—T)whenp=n € Z~ _1.

Here, Z, R and C are the sets of all integers, all real numbers and all complex numbers,
respectively, and Z~, = {n € Z|n > a}, Z.y = {n € Z|n < b} and Z, ) = {n € Zla <
n < b} fora,b € Z satisfying a < b. We also use R, = {x € R|x > a} fora € R, and
C4+ ={z € C|Rez > 0}.

In accordance with Definition 1, we adopt the following:

rD

0 1 VﬁlH(t) :{ F(%—p)tV?pilH(t)/ vV—=p 6(C\Z<1/ )

T 0, v—peZa,
for v € C\Z4. Here gDy is used in place of usually used notation oDg, in order to show
that the variable is ¢.

In [3,4], discussions are made of an ordinary differential equation, which is expressed
by (1) for p; = n — [, in terms of distribution theory, and with the aid of the analytic
continuation of Laplace transform, respectively. In those papers, solutions are given
of differential equations with an inhomogeneous term f(t), which satisfies one of the
following three conditions.

Condition 1. (i)  f(t) = fo(t)H(t), where fo(t) multiplied by H(t) is locally integrable on R.
i) f(¢) = RD’?[fﬁ(t)H(t)}, where B € C\Z>_1, and fg(t) multiplied by H(t) is locally
integrable on R.

(i) f(t) = gDP T H(t) = gt PTUH(E), where p € C\Z 1.

1.1. Recipe of Solution of Differential Equation, in Distribution Theory

In a recent paper [5], the solution of Euler’s differential equation in distribution theory
is compared with the solution in nonstandard analysis. In distribution theory [6-8], we
use distribution H(t), which corresponds to function H(t), differential operator D and
distribution &§(t) = DH(t), which is called Dirac’s delta function.

Remark 2. In solving (1) in [3], the Green’s function G(t, T) in distribution theory is introduced by
pn(t,D)G(t,T) = §(t — 7). (5)

Lemma 1. Let u.(t, T) be a complementary solution of Equation (1) for t > 7, and Gy(t, T), which
is given by the following,

Go(t, T) = uc(t, T)H(t — 1), (6)

satisfy

1, t>r,

D [pu(t, RD)Go(t, 7)) = H(t —7) = { 0, t<T @)

Then, G(t,T) = Go(t, T)H(t — T) is the Green’s function G(t,7) defined in Remark 2.
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Lemma 2. In [3], it was shown that if f(t) satisfies Condition 1 (i) and Gy(t,T) is the one given
in Lemma 1, uz(t), given by the following,

t
ug(t) = | Golt,T)f (D), ®)
is a particular solution of Equation (1).

A proof of this lemma is given to show that if Go(t, T) satisfies (7), us(t) given by (8)
is a particular solution of (1), in Section 1.4.

1.2. Preliminaries on Nonstandard Analysis

In the present paper, we use nonstandard analysis [9], where infinitesimal numbers
are used. We denote the set of all infinitesimal real numbers by R°. We also use RO>O =
{e € R%e > 0}, which is such that if e € R and N € Z.¢, then € < . We use R,
which has subsets R and R’. If x € R™ and x ¢ R, x is expressed as x; + € by x; € R and
e € R?, where x; may be 0 € R. Equation x ~ y for x € R™ and y € R, is used, when
x —y € RO We denote the set of all infinitesimal complex numbers by C°, which is the set
of complex numbers z, which satisfy |Re z| + |Im z| € R%. We use C", which has subsets
Cand C% Ifz € C"™ and z ¢ C, z is expressed as z; + € by z; € C and € € C?, where z;

may be 0 € C.

Remark 3. In nonstandard analysis [9], in addition to infinitesimal numbers, we use unlimited
numbers, which are often called infinite numbers. In the present paper, we do not use them, but if we
use them, we have to consider sets R™ and C* such that if w € R, there exists € € R satisfying
w = %, and if w € C*, there exists € € C satisfying w = %, and to include these sets as subsets
of R"™ and C"®, respectively.

In place of (4), we now use the following;:

p 1

1
DS ——
RZtT(w+e)

PH = 5o r e

tvfpflJreH(t)’ (9)

forallpc Candv € C.

Remark 4. When e € RC or e € CO, we often ignore terms of O(e€) compared with a term of O(€V).

For instance, when v € Rg and v — p € R+, we adopt r(v1+e) troITeH () ~ ﬁt”‘HeH(t),

and also

1
0 v—1+€
tr(l/) ( ) -

1
I(v—p)

in place of (9). In the following, we often use “=" in place of “~".

rD VP ITeH(1), (10)

In the study in nonstandard analysis, € € R?, is used, and H(t) and 6(t) = DH(t),
respectively, are replaced by He(t) := rD; “H(t) = =t H(t) ~ t*H(t) which tends to

T(e+1)
H(t) in the limit € — 0, and by the following;:
— 1 _ 1—€ _ g1 _ 1 e—1 ~ ~p€—1
Oe(t) == dtHe(t) = rD; “H(t) = et” "He(t) = —r(e)t H(t) ~ et "H(t). (11)
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Lemma 3. Let f(t — ), for t € Rogand T € R satisfying T € [0,t], be expressed as f(t — T) =
ft) = f'(t)t+0O(1?), e € RYjand ey € (0,€). Then, we have the following:

) t
[ et =D f@HEAT= [ 56, (¥)f(¢ - )T = FOIH(E) + Ofen)
=f(H)H(), (12)
in the limit e1 — 0, and
) t
| _et=n)f@H@dT = [ s(0)f(t =) = xD I (DH(®)] (13)
Proof. Equation (12) in this lemma is proved by using the following lemma. Since (11)
shows that 6. (t — T) = gD} "1 VH(t — T) = gD, “T16,, (t — T), by applying gD; <™

to (12) and then taking the limit e; — 0, we obtain (13). O

Lemma4. Let p = 0orp € Rug, and e; € RY . Then

t 1 t €
Y — pre1—14r — 1 pter
/O T (561 (T)dT 1"(61) /0 v aT F(l +€1)(p+e1)t H<t)’ (14)

which is ﬁtq = t°1 when p = 0, and is O(e1) when p € Rx,.

1.3. Summary of Sections 2—6

In Section 2, we give recipe of solution of a differential equation, in nonstandard
analysis, where the differential equation is the following:

pu(t, RD)u(t) = f(t), (15)

and the inhomogeneous term f(t) satisfies one of the following three conditions.

Condition 2. Let € € R0>0'
()  f(t) = f(t)H(t), where f(t) multiplied by H(t) is locally integrable on R.

(i) f(t) = Rfoﬁ(t), where B € C, flg(t) = rD; €[fp(t)H(t)], and fg(t) multiplied by H(t)
is locally integrable on R.

(iii) f(£) = RDP f3(t), where p € C, and fy(t) = RDiHe(t) = bc(1).
A complementary solution of Equation (1) is also that of Equation (15).

In [10], an ordinary differential equation is expressed in terms of blocks of classified
terms. When the equation is expressed by two blocks of classified terms, the complementary
solutions are obtained by using Frobenius” method. In the present case, a block of classified
terms DPu(t) for p € C and takes the following form:

kx
DPu(t) = Y apt g DY u(), (16)
k=0

where y € C and ky € Z~_1. An equation which consists of two blocks of classified
terms, is expressed by the following:

DPu(t) + DPMu(t) = f(t), (17)

wherep € Cy and | € Z.
In [11,12], discussions are made of fractional differential equations with constant
coefficients, where the differential equation for the Green’s function is solved either by an
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operational calculus giving the Neumann series, or by changing it to an integral equation
which is solved by iterations, following the discussion for the ordinary differential equation
given in the book [13]. Kim and O [14] present the corresponding argument for a fractional
differential equation of the form, where an example of a simple equation for which the
Green’s function was given.

It is the primary purpose of this paper to present the recipe in Section 2 and to give a
derivation of full expressions of the Green’s functions of a fractional differential equation:

rD}/? a(t) —a(t+b) - xD}a(t) = (1), (18

and of an associated ordinary differential equation:

Sy(t) —alt +b) -y (1) = J(0) 19)

where a € C and b € C are constants. These studies are given in Sections 2.2 and 3-3.4,
respectively. In Section 3.4, the operational calculus or the method of iterations is used.
Equations (18) and (19) for b = 0 are expressed by the following:

pe(t,kDyu(t) == D}/2 (1) — at - xD}a(t) = f (1) 20)
pult, Ty(0) = Ty(e) — at (1) = J0) @

which take the form (17) withy =1, p = % and/ =2,andwithy =1, p=1and ! =2,
respectively. The equation, which Kim and O treated in [14], is Equation (20) for a = —1.
The particular solutions of Equations (20) and (21) with the aid of Theorems 2 and 3, are
presented in Sections 5-5.5 and 5.7.

In Section 4.1, we consider the following differential equation satisfying Condition 2 (iii):

—B—1+e
RD{u(t) —at* - gD} " "Pu(t) = gD He(t) = ﬁ
wherep € C4, A € Ry, o« € Rygand B € C. This equation takes the form (17) and its
solution is derived by the operational calculus or the method of iterations.

Equations (20) and (21), satisfying Condition 2 (iii), are (22) for p = %, A=landa =2,
and for p =1, A = 1 and a = 2, respectively. Their solutions, with the aid of iterations, are
obtained from those of Equation (22) in Sections 4.2 and 4.3. Their solutions, with the aid
of Theorems 1 and 3, are given in Sections 3.5 and 5.7, respectively. The solutions, by using
Frobenius’ method, are given in Section 5.6. In Section 5.7, nonstandard solutions, which
involve infinitesimal terms, are presented.

Section 6 presents the conclusions.

H(t), (22)

1.4. Proof of Lemma 2

We write (7) as f;[pn(x, rDx)Go(x, T)]dx = H(t — 7), and then by using (8), we have
the following:

/Ot[/; pn(x, RDx)Go(x, T)dx|f(T)H(T)dT
= ./Ot dx[/ox pu(x, RDx)Go(x, 7) f(T)H(T)dT] = /Ot pn(x, RDx )1t f(x)dx
= /Ot H(t—7)f(t)H(1)dT = '/Otf(T)H(T)dT. (23)

By taking the derivatives of the third and the last member in this equation with respect
to t, we confirm that (1) is satisfied by u(t) = ug(t).
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2. Recipe of Solution of Differential Equation, in Nonstandard Analysis
2.1. Solution of Equation (15) When Condition 2 (i) Is Satisfied

In obtaining a particular solution of Equation (15) for f(t) satisfying Condition 2 (i), in
place of the Green’s function defined in Remark 2, we use it as defined in the following definition.

Definition 2. Fore; € R, the Green's function Ge, (t, T) of Equation (15) satisfies the following:

pn(t, RDt)Ge, (£, T) = ¢, (t — T), (24)
RD; Hpn(t, RDi)Ge, (t,T)] = He, (t — 7). (25)

Lemma 5. Let G, (t, T) be defined as in Definition 2, and Go(t, T) be the solution of Equation (7).
Then, in the limit €, — 0, Ge, (t, T) tends to Go(t,T). In this situation, we call Go(t,T) the
solution of Equation (25) in the limit €; — 0.

Proof. We conclude this since in the limit e; — 0, d¢, (t — T) and He, (t — 7) in Equations (24)
and (25) tend to 0 and 1, respectively, att > 7. O

In Sections 3.2-3.5, we use the following theorem.

Theorem 1. Let Condition 2 (i) be satisfied and Ge, (t, T) and Go(t, T) be given as in Lemma 5.
Then ug(t), which is given by the following:

t B t B
up(t) = /O Ge, (t,7) f(T)dT = /O Go(t, T) f(7)d, 26)
in the limit €, — 0, is a particular solution of Equation (15) for the term f(t).

Proof. By using Equations (26), (24) and (12), in this order, we obtain the following:

pu(t, D)y ()= pult DY) [ Gyt 00 ()T = [ by (¢ = D) (0)ae
=f(®), (27)
in the limite; — 0. O

2.2. Solution of Equation (15) When Condition 2 (ii) or (iii) Is Satisfied

Definition 3. When Condition 2 (ii) or (iii) is satisfied, we introduce a transformed differential
equation of Equation (15), by the following:

Pup(t RDw(t) = fy(t), (28)
where w(t) = RD;ﬁu(t), and

Pup(t,RDr) := rD; Ppu(t, R Dy)R D). (29)

Lemma 6. Let Condition 2 (ii) or (iii) be satisfied. Then, by Definition 3, when (28) holds,
Equation (15) for u(t) = Rwa(t) holds.

Definition 4. Fore € R%,

the Green's function Gg ¢ (t, T) of Equation (28) satisfies the following:
ﬁn,ﬁ(t/ RDt)G/g’e(f, T) = 5e(t — T), (30)

RD; [P p(t, kD) Gpe(t, T)] = He(t — 7). (31)
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Lemma 7. Let Gg(t, T) be defined by Definition 4. Then, a particular solution of Equation (28)
for the term fg(t) is given by the following:
t
wi(t) = [ Gpelt, D fp(DH(T)T, (32)
if Condition 2 (ii) is satisfied, and by w¢(t) = Gg ¢(t,0), if Condition 2 (iii) is satisfied.

Proof. When Condition 2 (ii) is satisfied, by using Equations (32), (30) and (13), we obtain
the following:

Pup(t, RDE)ws(t) = pup(t, RDt) /Ot Gpe(t, T)fp(T)H(T)dT
= [t 0 fp@ B = D UpOHE) 69

When Condition 2 (iii) is satisfied, fﬁ(t) = J¢(t); hence, (30) shows that
ws(t) = Gpe(t,0) is a particular solution of (28). [

Definition 5. When Condition 2 (ii) or (iii) is satisfied, we introduce a transformed differential
equation of Equation (28), by the following:

Prp—ecter (£ RDE)Wee, (1) = Dy [fp(t) H(t))], (34)
where €1 € (0,€), and

P p—cte (t,RD) =D} iy g(t, RDt)rD; <
= rD; P, (1, R Dy)RDE T (35)

Lemma 8. Let Condition 2 (ii) or (iii) be satisfied. Then, by Definition 5, when (34) holds,
Equation (28) for w(t) = rD; " “wep, (t) holds.

Lemma 9. Let fiy gc ¢, (t, RDt) be defined by (35), Gp(t, T) be defined in Definition 4, and
Gpee, (1, T) == RD; Gy e(t, T). Then Gy e e, (t, T) satisfies the following:

ﬁn,‘BfeJrel (t/ RDt)Gﬂ,e,el (t/ T) = 561 (t - T)/ (36)
RDt_l [ﬁn,ﬁfeJrel (t/ RDt)Gﬁ,e,el (t/ T)] - Hel (t - T)- (37)

These equations show that when Gge e, (t,T) exists, its limit Ggeo(t,T) as €g — 0 is
expressed by the following:

Gpeo(t, T) = wec(HH(E— 1), (38)
in terms of a complementary function we (t) of Equation (34) fore —e; = e.
Remark 5. Lemma 9 shows that we have the following relations:
Gpe(t,T) = Dy © ' Gpee, (1, T) = kD; “Gpep(t, 7). (39)

By using these relations, we can obtain any one of Gge(t,T), Ggee, (t,T) and Ggeo(t, T),
from any other.
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Lemma 10. Let Condition 2 (ii) be satisfied, and Gg ., (t, T) be defined in Lemma 9. Then a
particular solution of Equation (34) for the term gD, ' [fg(t)H(t)] is given by the following:

Wee (£) = /0 t Gpee, (t,7) fo(T)H(T)dT. (40)

Lemma 8 shows that in this case, w (t) given by we(t) = rD; e e, () is a particular solution
of Equation (28) for the term fﬁ (1).

Proof. By using Equations (40), (36) and (13), we obtain the following:

t
ﬁﬂ,ﬁ*€+€1 (t/ RDf)w€,€1 (t) = ﬁi’l,ﬁ*E‘i’E] (t/ RDt) /0 G,B,e,el (t/ T)fﬁ(T>H(T)dT
t
- /O 3oy (E— ) fp(T)H(T)dT = Dy ' [f5(t)H(8)]. 41)
O
By using Lemmas 6, 7 and 10, we confirm the following theorem.

Theorem 2. Let Condition 2 (ii) be satisfied, Gp ¢ (t, T) satisfy Equations (30) and (31), Gg ¢, (t, T)
satisfy Equations (36) and (37), Ggeo(t, T), which is the limit of Gge e, (t,T) as € — 0, be
expressed by (38), as stated in Lemma 9, and wy (t) and u s (t) be given by the following:

t t
1= [ Gpelt st = kD™ [ G, (1) ()i
t
= RDFS/O Gﬁ,e,O(t, T)fIB(T)dT, (42)

and ug(t) = Rwaf(t). Then, wy(t) and uz(t) are particular solutions of Equations (28) and
(15), respectively.

By using Lemmas 6, 7 and 9, we confirm the following theorem.

Theorem 3. Let Condition 2 (iii) be satisfied, and Gﬁlg(t,O), Gﬂre,el(t,O) and Gﬁ,e,o(tr()) be
defined as in Theorem 2, and wy (t) be given by the following:

wf(t) = Gﬁ,e(t/ O) = RD;€+€1Gﬁ,€,€] (t/O) = RDt_EG,B,e,O(t/ O)/ (43)

and ug(t) = Rwaf(t).
Then, Gp e,0(t,0) has an expression given by (38), and wy (t) and u ¢ (t) are particular solutions
of Equations (28) and (15), respectively.

3. Solution of Equations (18) and (19) by Theorem 1

We give solutions of fractional differential Equation (18) and ordinary differential
Equation (19).
3.1. Complementary Solutions of Equations (18) and (19)

Lemma 11. The complementary solution of Equation (19) is y(t) = Cy; (t), where the following
holds:

12 = a
y (1) = 2 +200) =Y % Z(k—l mtkﬂ, t>0, (44)
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and C is a constant. When b = 0, this becomes the corresponding solution of Equation (21) given
by the following:

() = ez = i itz" t>0 (45)
P = = Lk '

Proof. We see the following holds:

00 k k k—I3k—1
L & K12kl

_ La(t+2bt) _ - L k a K2t 0T
y1(t) =e2 Z t5(t + 2b)F = Z%)kzzkt T t, (46)

k
K12 &

which gives (44). O

With the aid of (44) and (45), we obtain the following lemma.

Lemma 12. The complementary solution of (18) is given by u(t) = Cuy(t), where the following
holds:

oo _k k k—11,k—1

B 2k=1p T(k+1+1)

ui (B = D12y () — a ) tk+l+1/2,
1(t) = rDy "y (1) ,Eozk,:O(k*mu T(k+1+3)

t>0. (47)

When b = 0, this becomes the corresponding solution of Equation (20) given by the following:

$1/2 135
-1/2 . 29
ul(f) = RDt yl(t> = 71,(%) 21:2(1, 2,4,4,

where 2 F> (a1, a9; B1, B2;2) = Lo k' ((/52) , () H (zx +1)ifk € Zso,and (a) =1
ifk=0.

at?), t>0, (48)

Proof. When b = 0, by using (45), we obtain the following:

0 k
_ a F(2k+1) 2k+1/2
ui(t) = gDy Y2y (1) = ¥ S T k2 s ) (49)
! ,(;0 KI2KT (2k + 3)

from which we obtain (48) by using two of the formulas given in the following lemma. O

Lemma 13. Letk € Z~_1andv € C. Then ifv ¢ Z o,

v+1, /1

T2k +v+1)=T(v+1)(v+ 1)y = 4T(v +1)( > kGv+ 1k (50)
and if v — % & Zo,
M@k +v+ ) =T+ )0+ D = 4T+ DT 6

In particular, we have the following:

T(2k+1)=(2k)! = 4"k!(%)k, T(2k+2) = (2k+1)! = 4"k!(§)k. (52)
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3.2. Green’s Function Gy(t,T) for Equation (19)

Corresponding to Equations (24) and (25), we define the Green’s function Gy (t, T) for
Equation (19), so that it satisfies the following:

%Gy(t, 0 —a(t+b) - Gy(t, 1) =6, ( — 1), (53)
Gy(t, ) —a-grD; M [(t+b) - Gy(t,T)] = He, (t — 7). (54)

Lemma 14. Let y(t) be given by (44), and Gy(t,7) satisfy (53) and (54). Then in the limit
€1 — 0, Gy(t, T) tends to G, o(t, T), which is given by the following:

Gyo(t T) ylgi) H(t _ T) — 62 (t2+2hf T —ZbT)H(t _ T)

Q
[y
~—

k
2 lz| T+b)k "t — )T H(t - 7). (55)

I
I MS

When T = 0, we have Gy 0(t,0) = y1(t)H(t) in the limit, with (44) or (45).

Proof. Following Lemma 5, G, o(t,T) is chosen to be the complementary solution of
Gyo(t,T) = 1att > 7. The third member in Equation (55) is expressed as the follow-

ing:

=) k
eha(P+2ht—r2br) _ y~ ;(—k,(t —O)f(t+ T+ 2b)k
k=04
>k k I k—I
:k_osz, Zl' 71 —17) (2T +2b)", t>1. (56)

O

Lemma 15. Let Condition 2 (i) be satisfied, and Gy (t, T) be given by (55). Then Theorem 1 shows
that a particular solution of Equation (19) is given by y ¢ (¢ fo y0(t, 7)f(7)dT.

3.3. Green's Function Gy (t, ) for Equation (18)

Corresponding to Equations (24) and (25), we define the Green’s function G, (t, T) for
Equation (18), so that it satisfies the following:

RD}’? Gu(t,T) — a(t+b) - RD}/*Gu(t, T) =0, (t — 7), (57)
RD}/? Gu(t,T) —a- gDy Y [(t+b) - RD}/*Gu(t, T)] = He, (t — 7). (58)
We note that these equations are obtained from Equations (53) and (54), by replacing

Gy(t,7) by rD}2Gy(t,T). As a consequence, we obtain the following lemma by using
Lemma 14.

Lemma 16. Let G, o(t, T) be given by (55), and Gy(t, T) satisfy (57) and (58). Then in the limit
€1 — 0, Gy(t,T) tends to G, 0(t, T) = RD;U2 Gy,0(t, T), which is given by the following:

Guo(t, ) Ii)akli TGS F(lik—:_ll—i)— ey (T+ b))t —)HH2H (- 1)
( T) 1/2 ( T)3/2 (t _ T)5/2
=] ) +am ) +a(1+a712)7r<%)

+O((t —7)"/?)]H(t - 1), (59)
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where Ty = T+ b. When T = 0, we have G,,0(t,0) = uq (t)H(t) in the limit, with (47) or (48).

Remark 6. The Green’s function given by (59) for b = 0 is not in agreement with the first several
terms obtained in [14], except the leading term.

Lemma 17. Let Condition 2 (i) be satisfied, and G,, o(t, T) be given by (59). Then, Theorem 1 shows
that a particular solution of Equation (18) is given by the following: us(t) = fot Guo(t,T)f(T)dT.

3.4. Solution of Integral Equations (54) and (58), by Iterations

Weputt=7+x 7 =7+band j(x) = Gy(7 + x, 7) in Equations (53) and (54), and
then we have the following;:

2 gx) — a(m +x) - 9() = b, (v), (60)
§(x) —a- kD3 [(1 + ) - §(x)] = He, (x). 6)

Weputt=7+x, 11 =T+ bandii(x) = G,(T + x, T) in Equations (57) and (58), and
then we have the following;:

rRD32i(x) — a(t + x) - kDY 2 (x) = ¢, (%), (62)

kDY 2i(x) —a- gDyY[(1y + x) - RDY/2i1(x)] = He, (). (63)

We note that these equations are obtained from Equations (60) and (61), by replacing

7(x) by rDx?a(x).
In [14], the solution of (62) is obtained by transforming it to an integral equation and
then solving it by iterations. By (63), the integral equation is the following:

i(x) = gDy Y2He, (x) +a- gDy /2 - gDy Y[(1y + x) - gDY/%40(x)]. (64)

In the case of Equation (60), the integral equation is obtained with the aid of (61),
as follows:

§(x) = He, (x) +a- gDy '[(11 + x) - (x)]. (65)

This integral equation is an example of the type of equation which was discussed in
the book [13].

Remark 7. By the operational calculus described in [11-13], applied to (65), the particular solution
of (60) is given by the following:

1
1—a- gDy +x)

7(x) He(x) = (14 Y D5\ + 0) }He (x). (66)
k=1

We can write this as the following:

g(x) = Y dGi(x), (67)
k=0
where
Jo(x) = He, (x), Trr1(x) = RDM(T1 + x)7k(x)], k€ Zo_y. (68)

We can regard the solution given by (67) with (68), as the solution of Equation (65) obtained
by iterations.
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Lemma 18. By using (68), we obtain the following:

1 1
Fr(x) ~ E(T]X + Exz)kHel(x). (69)

By using (67) with (69), in the limit €1 — 0, we obtain the following: §(x) = Gyo(T + x, T)
given in Lemma 14.

Proof. We show that 7 (f) given by (69) satisfies (68) for k € Z~ ;. By using (69), with the
aid of Lemma 4, we obtain the following:

RDx M1+ %) k(x)] = RD M [f (%) fie(¥) Hey (x)] = RDx { fi 11 (%) Hey (%)}

= fiey1 (¥)He, (%) = RDx { fiey1 (¥)8e, (%)} = fioy1 (¥) He, (%) = Fiya (%), (70)

where fi(x) = (mx+ 1x®)Fand f{(x) =7 +x. O

Remark 8. As stated in the proof of Lemma 14, Gyo(t, T) given by (55) is the solution of
Equation (54) in the limit €; — 0, the corresponding §(x) = Gyo(T + x, T) is obtained by solving
(61) in the limit € — 0. The solution of that equation is obtained by using Equations (67)—(70) in
the limit €1 — 0, by deleting the fourth member in (70).

In the case of Equation (62), in place of Remark 7, we have the following remark.

Remark 9. By the operational calculus applied to (64), the particular solution of (62) is given by
the following:

i(x) = 1—a zDs 3/21(71+x) Dl/zRDx *He, ()
={1+ }: [RDy*/?(11 + x)rDy/*J* } D /2 He, (x). (71)
We can write this as the following:
= Y (), (72)
k=0

where

ig(x) =Dy *He, (x), itgy1(x) = gD ?[(1 + 2)rDy ik (x)], k€ Zoy. (73)
Since Equation (73) is obtained from Equation (69) by replacing i (x) by RDY i1 (x), i (x)
is related with §i(t) given by (69) by i (x) = rDx /25 (¢).

Lemma 19. By using (72) with iy (x) = RD;l/zyk(t) and (69), in the limit €1 — 0, we obtain
i(x) = Guo(T + x,T) given in Lemma 16.

Remark 10. Corresponding to Remark 8, G, o(t, T) given by (55) is the solution of Equation (58)
in the limit €1 — 0, and hence the corresponding 1i(x) = Gy, 0(T + x, T) is obtained by solving
(63) in the limit €1 — 0. The solution of that equation is obtained by using Equation (72) with
I (x) = RDy Y25, (t) and Gy (t) given in (69), in the limit e; — 0.

3.5. Solution of Equations (20) and (21) Satisfying Condition 2 (iii), with the Aid of Theorem 1

In Sections 3.1-3.4, we studied the solutions of Equations (18) and (19). In Sections 3.5,
4.2,4.3 and 5, we study the solutions of these equations for the case of b = 0, so that we are
concerned with Equations (20) and (21).
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When Condition 2 (iii) is satisfied, Equations (20) and (21) are expressed by the
following:

t*ﬂ*1+€

kDY2 u(t) — at - gD} ?u(t) = g DP ' H,(t) = mH(t), (74)
—B—1+e

Y0 = at-y(0) =D HL(Y) = s () @

Lemma 20. When —f € C,, we put v = —p + €. Then the solution of Equation (75), which is
obtained with the aid of Theorem 1, is given by the following:

() = 1 i ak t2k+vH(t) i Mﬂk‘w[—]( t). (76)
I TTw+1) 21+ ) T(2k+v+1)

Proof. Now, the inhomogeneous term — ﬂ ezl P=1+€H(t) is expressed by v )t‘/ LH(t).
By using Gy0(t, 7) given in Lemma 14 for b = 0, and f(t) = mt” 1H(t),in y¢(t) given in

Lemma 15, we have the following:

-1 by o o T
sa(t>—1%) .
/Gyotr )dT H(t) = /Oez F(v)dT H(t)

k;om / (2 — )k =dr  H(b). 77)

By putting 7> = 21, and by using the formula f01(1 —n)a-lybi-ldy = rr(&)i(ﬁﬁll)) ,

[e9)

k 1
a k 1 koLl
yf(t)=k§0k!2kr(y)t2 +V§/() (1 =) n2""1dy - H(t)

. k 2k+v k!r‘(%v)

a
_kgo K12KT (v) r(Iv+k+1)

H(t). (78)

By using T (3v+k+1) =T(v+1)(3v+ 1), = JvT'(3v)(3v + 1) and Formula (50)
in this equation, we have (76). O

Remark 11. Here we give another expression of y(t), by using (55) for b = 0, in the second
member of (77):

_ i Lk i ki2k=1 t(t B T)kJrl.L.kflJrvfldT . H(t)
yp(t) = K12k (k=D1UT ) Jo
k=0 l:O
2, gk K 2 (ke DTk —1+v) o,
_ET; F-DUTw) T(k+v+1) H(®). (79)

Since this ys(t) must be equal to ys(t) given by (76), when v = —B + €, we have the
following:

E(k+D)IT(k—1+v)2K0 14w
1;) (k— DT (v) _4k(T)k'

(80)
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Lemma 21. When —B € C_, the solution of Equation (74), which is obtained with the aid of
Theorem 1, is given by the following:

o0 1-p+

Z (2a) ( g e)k tzk—ﬁ+1/2+eH(t) _ 1 p—B+1/2+e€
~T(2k—B+e+3) I'3-B+e)

xaby(1, LT EEE 372 S22 . (81)

Proof. By using G, o(t, T) given in Lemma 16 for b = 0, and f(t) = ﬁt"_lH(t), inug(t)
given in Lemma 17, we have the following:

t val
ug(t) = A Gu,O(t,T)WdT~H(t)
Xk (k+1)12k-1 Ukttt
_;;)?E(kfl)'l'F(k+l+ ) (v )/o(t ) T dt-H(t)
L& E kD2 TR—141) preiase
= 5ok & (k- D) rk+v13) H(®). (82)

By using (80) in this equation, when v = — B + €, we have (81). The last equality in (81)
is due to Formula (51) forv =1—-8+¢e. O

4. Solution of Equations (22), (75) and (74) Satisfying Condition 2 (iii) by Iterations
4.1. Solution of Equation (22) Satisfying Condition 2 (iii) by Iterations

Lemma 22. Let u(t) be a solution of (22) and y(t) = RD?7“+pu(t). Then, y(t) satisfies the
following:

RD; My () — at* -y (t) = RDF T He (b), (83)
y(t) —a- gD} y(H)] = gD} P H(1). (84)

In order to obtain a solution, we use the method adopted in Remarks 7 and 9.

Remark 12. Let v = a« — B+ € — A. Then, by the operational calculus applied to (84), the
particular solution of Equation (83) is given by the following:

1 _ s _ _
y(t)= WRD TH(E) = {1+ Y a [rD} D T H(E).  (85)
P L

We can write this as the following:
=) dw(), (86)
k=0
where

yo(t) = RD; "H(E), yiia(t) = kD) ye()], k€ 2o, (87)

Lemma 23. The solution of (83) is given by Equation (86) with the following:

C
wlt) = ptt ) 88)
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where Cy 1 (7) = aX (D) if A =1, and if A € Rog, Crx(y) = 1 when k = 0, and
, ke Zso (89)

Proof. We show that y () given by (88) satisfies (87). By using (88), we have the following:

R ()] = D} LTy

Cax(7) . T(ka +9+A) (k+1)as7—1
Tlka+7) T((k+Da+q) TTHH(). (90)

By using (89), we confirm that (90) gives (88) with k replaced by k + 1. In order to
show that when A = 1, (89) becomes C, x(y) = ak(%)k, we use the following formula:

F(ka +y+1)

_ _
Tkt 7) _kzx+'y—zx(z +k). (91)

O
By using Lemmas 22 and 23, we obtain the following lemma.

Lemma 24. Let C, () be given as in Lemma 23. Then the solution of (22) is given by the
following:

a*Crp(a—B+e—A)
F(ka —B+p—A+e+1)

u(t) = gDy P ly(t) = papro=Arep(p), 92)

»
I

4.2. Solution of Equation (75) by Iterations

Equation (75) is Equation (22) for p = 1, A = 1 and a = 2. By using Lemma 24, we
obtain the following lemma.

Lemma 25. The solution of Equation (75) is given by the following:

a)F (Y e e
k:Orzk ,B—i—e+1) PR D)
1 s ak
T(l—IB—i—e)k:ZO(l_i_ —[32+e)k2k

Mg

2R (1). (93)

This agrees with (76), which is derived for the case of —fp € C_.
Proof. The second equality of (93) is due to Formula (50) forv = - +¢€. O

Remark 13. When B = 0 and € = €1, y(t), satisfying Equation (75), is Gy(t,0), satisfying (53)
for T = 0and b = 0. In this case, Equation (93) gives the following:

(6 =Gyl10) = 3= B ) — £ s — e, o

10k
= 0 k12
which tends to Gy o(t,0) in the limit 1 — 0, as stated in Lemma 14.

4.3. Solution of Equation (74) by Iterations

Equation (74) is Equation (22) for p = %, A =1and & = 2. By using Lemma 24, we
obtain the following lemma.
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Lemma 26. The solution of Equation (74) is given by the following:

o 1-p+
u(t) = (2a) (5 ), (2h—pH1/2 e () — 1 f—B+1/2+e
STk —p+e+3) Iz -p+e)
1-p+€ 3-2+2 5-2p+2 1
2 ’ 4 ’ 4 "2

x2F(1, at?>)H(t). (95)
This agrees with (81), which is derived for the case of —p € C_.
Proof. The last equality in (81) is due to Formula (51) forv =1—-+e€. O

Remark 14. When B = 0 and € = €1, u(t) satisfying Equation (74) is G,(t,0), satisfying (57)
for T = 0and b = 0. In this case, Equation (95) gives the following:

1
u(t) = Gu(t,0) = gt/ 2L
2

which tends to G, o(t,0) in the limit e, — 0, as stated in Lemma 16.

at*)H(t), (96)

5. Solution of Equations (20) and (21) by Theorems 2 and 3
5.1. Transformed Differential Equations of Equations (20) and (21)

We construct the transformed differential equations of Equations (20) and (21), which
appear in Theorems 2 and 3. For this purpose, we use the following formula.

Lemma 27. Let A € C, m € Z~_q and p = m — A. Then, we have the following:
RDf (1)) = £ RDfu(t) +p - xDf " u(t). ©7)

Proof. When m = 0 and p = —A, this is confirmed with the aid of Formula (2) as follows:

RDA[tu(t)] = r(l)q /_:o(t_ (@)
- 1’(1/\) /—too(t B g)A_l(t - (t - g))u(g)d(f = t'RDt_)‘u(t) —A- RD;A_lu(t).

We prove (97) by mathematical induction. In fact, when (97) holds for a value of m, we
confirm it to hold, even when p = m + A is replaced by p + 1, by applying % to (97). O

t1/+E
T(v+e+1)

Remark 15. When u(t) = H(t), by using (9), we confirm (97) as follows:

F(Uiz:_l)H(t)] — (vt e+ 1)rDF]

pvte—p+1

tv+€+1

gD [tu(t)] = rDY[t Twtet2)

H(t)]

=((v+et1-p)+p)g H(t) = t-Dfu(t) +p-rD{ " 'u(t).  ©98)

(v+e—p+2)
With the aid of Lemma 27, we obtain the transformation of Equation (20) as follows:

pr(t, RD)w(t) == rD; Ppr(t, D) D w(t) = kD; P[rD}/? = at - kD} /R Dfw(t)
= rD}"? w(t) —at - gD} ?w(t) +ap - gDy V2 w(t) = fy(t). (99)
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When we put %v(t) = RD}/Zw(t) and hence v(t) = RDt_l/zw(t) in (99), we have the
following equation for v(t), which is a transformation of (21):

~ d _ d s d d
pL(t’RDf)Ev(t) =RrD; ﬁPL(t/RDt)RDfEU(t) =RrD; ﬁ[E — ut]RDva(t)
d? d y
= J0(t) —at—o(t) +apo(t) = fp(t). (100)

Remark 16. This equation fora =1, =n € Z~_y and fg(t) = 0, is the differential equation
satisfied by the Hermite function [15] (Chaper V, Section 2).

We put x = t? and y(x) = v(t) in (100), and then we have

2 a a x
@)+ G a0y () + Py = (v, (101)

5.2. Complementary Solutions of Equations (99) and (100)
Lemma 28. The complementary solutions of Equation (101) are given by the following:

_ (B 11
nx)=1h(=5;5;5a%), x>0, (102)
1— 1
) =62 AR (P e, x>0 (103)

where 1 Fy (x1; B1;2) = Loy k'(?/%k 2k [15] (Chaper VI, Section 1).

Lemma 29. The complementary solutions of Equation (100) are given by the following:

2k 1>, (104)

co (1-p k
-y (G5 )(2a) zk(z”’) 2L >0, (105)

o (_B 2 o B 2 k
wl(t):RD}/zvl(t) -y (=5l ’11) $2k=1/2 _ y (1 2)1k< ’1?2 $2k=1/2
k=0 T'(2k+3) k=0 L (3)(3)k(3)k
1o B 13a,
_F(%)t 2F2(1, 2/ 4/ 4/ zt )/ t>0/ (106)
- (#)k(Za) %12 o (#)k(?ﬂ)k 2%k+1/2
wo (t) = gD %0, () = PRAL2 _ y 2 T 2k
f kgo T(2k +3) gr(%)(%m)k
T a2, 1-B35a,
—F(%)t Bl 55 5t t>0. (107)

Proof. By using (104) and (105), with the aid of formulas given in Lemma 13, we obtain
(106) and (107), respectively. [
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5.3. Green’s Function Gy, (t,T) for Equation (100)

Corresponding to Equations (36) and (37), the differential equations satisfied by the
Green's function Gy, (t, T) for Equation (100) with p replaced by g — € + €1, are given by
the following:

d2 d
ﬁcv,ﬁ (t,T)—at- Eleel (t, T)+a(B—e+e1) Gue (t,T) =0 (t—1),  (108)
d _ d _
&Gv,el(t, T)—a-rD, 1[if~ EG%q(t/ )] +a(f—e+e1) rD; 1Gv,e1(f, T)
= He, (t—1). (109)

Lemma 31. Let v1(t) and vy (t), respectively, be given by (104) and (105) with B replaced by
B — €, so that the following holds:

o10(t) _ké Wﬂk _n(-P > < %; %atz), t>0, (110)
= ()20 g 1-p+e 3.1,
vz,o(t)zkgomt + :t~1F1(T;§;§at ), t>0. (111)
and let 3 (t) be given by the following:
lt) = e = g L g -, (112)
where
Pe (1) = 01,0(T)02,0(F) — v2,0(T)010(E). (113)

Then, G- (t) is a complementary solution of (108) and satisfies (109) fort > Tand e = 0, so
that Gy o(t, T) = ¢ (t)H(t — T) satisfies (108) and (109) in the limit e, — 0. In particular, when
T =0, Goo(t,0) = v20(t)H(£).

Proof. 7(t) is so chosen such that -(7) = 0 and ¢, (7) = 1. The statement for T = 0 in
this lemma is due to the fact that when T = 0, v20(7) = 0, v34(7) = 1, v1,0(7) = 1, and
. (t) = l[)r(t) = UZ,O(t)- O

Lemma 32. Let b = 0, Gy, (t, T) satisfy (108) and (109), and G, o(t, T) be given in Lemma 31.

Then, if f(t) satisfies Condition 2 (ii), Theorem 2 shows that a particular solution of Equation (19)
is given by the following:

t
yy(t) = gD /0 G (t, ) f(T)dT, (114)

and if f(t) satisfies Condition 2 (iii), Theorem 3 shows that a particular solution of Equation (19) is
given by ys(t) = RDE_€+1GU,Q(t, 0), and Remark 5 shows that RD{' Gy e, (t, T) = Gyo(t, T).
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5.4. Green’s Function Gy, (t, T) for Equation (99)

We put Gy, (1, 7) = RDtl/ Gy, (t,7) in (108) and (109), and then we have the follow-
ing:

RDY% Gye, (t,T) —at - kD2 G e, (1, 7)

+a(f—e+er) Dy Gue, (1,T) = 0, (t— 1), (115)
RDY? Gy, (t,T) —a- gDyt~ RDY2Gape, (t,7)]
+a(B—e+e1) DY ?Gue, (1, T) = He, (t — 7). (116)

These equations show that Gy ¢, (¢, T) is the Green’s function for Equation (99) with
replaced by f — € + €;.

By this construction, if Gy ¢, (t, T) satisfies (108) and (109), Gu,e, (¢, T) = RD}/ ZGU,E] (t,7T)
satisfies (115) and (116). As a consequence, by using Lemma 31, we have the following
lemma.

Lemma 33. Let wqo(t) and wy(t), respectively, be given by (106) and (107) with B replaced by
B — € so that the following holds:

2 (-5 (2a) o
wi0(t) :RDtl/szl,O(t) =) 27<)t2k 1/2

T o ap
= t ZPZ( ’ P A )/
(1) 2 ‘442

t>0, (117)

1 4,0 1
=5t " b, —5—i
r(3)

and ¢ (t) and P (t) be given by (112) and (113), respectively. Then W+ (t) is given by the following:

t2), t>0, (118)

1
W[Ul,o(ﬂwz,o(f) —v20(T)w10(t)], (119)
and is a complementary solution of (115) and satisfies (116) for t > T in the limit €1 — 0, so that
Gu,o(t, T) = W (t)H(t — ) satisfies (115) and (116) in the limit e, — 0. In particular, when
T =0, Goo(t,0) = RD} 20y (t)H(t) = wao(t)H(t).

@ (t) = RD}/?0:(t) =

Lemma 34. Let b = 0, Gy, (t, T) satisfy (115) and (116), and Gy, 0(t, T) be given in Lemma 33.
Then if f(t) satisfy Condition 2 (ii), Theorem 2 shows that a particular solution of Equation (18) is
given by the following:

pe [*
up(t) = gD} /OGw,Q(t,T)fﬁ(T)dT, (120)

and if f(t) satisfies Condition 2 (iii), Theorem 3 shows that a particular solution of Equation (18) is
given by ug(t) = RDf_er,o(t, 0), and Remark 5 shows that RD{' Gy e, (£, T) = Guo(t, T).

5.5. Green’s Functions Gy, (t,0) and Gy, (t,0) for Equations (100) and (99) Obtained by
Frobenius” Method

In Sections 5.3 and 5.4, the Green'’s functions Gy, (t,0) and Gy, (t,0) are given.
In this section, we derive them by solving Equations (108) and (115) for T = 0, by
Frobenius” method.
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In this method, we assume that G, ¢, (t,0) is expressed by the following:

Gy, (1,0) 2K H (1), (121)

1
Zpkf(a+2k+1)

where py are constants, and py # 0. By using this and T = 0 in Equation (108), we obtain
the following:

0 ta+2k72 t’x+2k
kgopk[m —a(a+2k—B+e —el)m]H(t)
t“72 0 ttx+2k72
= POmH(t) + k;[r’k —apgq(a+2k—2—p+e— el)}mHm
6171
_ %H(t). (122)

From this, we have # = 1 4 €1 and the following:

TP - o EE7R

By using (123), (50) and &« = 1 + € in (121), we obtain the following:

po=1 pr=2ap1(k—1+ ko k€ Zxo. (123)

00 1—
G t 0 Z ( ﬁ+ )k t2k+1+elH( )
‘ el 2k + 61 + 2)

_ 1 i ak (=55,
T(2+e1) 261+ ()i

2Rre (), (124)

By using the relation G,0(t,7) = rD;'Gy,, (t,T) given in Lemma 32 to (124), or by
replacing €; by 0 in (124), we obtain the expression for G, o(t,0) = vo0(t)H(t) given in
Lemma 31.

In the case of Equation (115), we note that it is obtained from Equation (108) by
replacing RDtl/ 2Gue, (t,T) by Gue, (t,T). In place of (121), we use the following:

Guge (£,0) = Zpk +2k T )t““"*“mt), (125)

in Equation (115) for T = 0; we then obtain « = 1 — €1, and (123). By using these and (51)
in (125), we have the following:

oo 1

Gu,e (1,0) = Z —Zk S ) Rretl/2g (f)
1 I'(2k+e1+ 5 )

_ 1 i a (17‘[23+€)k
(3 +e1) (o 28 (20, (29,

2Rrat1/2 g (), (126)

k=0

By using the relation Gy, o(t, T) = rD;'Gu,e, (t, T) given in Lemma 34 to (126), or by
replacing €7 by 0 in (126), we obtain the expression for G, o(t,0) = woo(t)H(t) given in
Lemma 33.



Mathematics 2021, 9, 1944

21 of 24

5.6. Solution of Equations (75) and (74) Satisfying Condition 2 (iii) by Frobenius” Method

We now give the solutions of (75) and (74) by using Frobenius’ method. We note that
(75) is obtained from Equation (108) by replacing % Gy,¢, (t,T), €1 and T by y(t), —B + € and
0, respectively. In place of (121), we use the following:

d 1
y() = = Goo(£,0) Zpkmf 21 (), (127)

in Equation (75). Then we obtain (122), with €; replaced by —p + €. From it, we have
« =1+e€ =1—B+¢€, and py given by (123). By using these in (127), we obtain the
following:

Za)k(lngre)

2k—p+e
T(2k — ,B+e+1)t TH(). (128)

Mz

We note that (74) is obtained from Equation (108) by replacing RD}/ ZGU,e1 (t,7), €1 and
T by u(t), —p + € and 0, respectively. In place of (121), we use the following:

u(t) = RD}2Gyp(t,0) = Zpk T +2k — )t““"*mH(t), (129)

in Equation (75). Then, we obtain (122), with €; replaced by —p + €. From it, we have
x =1+e€ =1—-B+¢€, and pi given by (123). By using these in (129), we obtain the
following:

oo —p+e
Z (2a) ( 2 )k t2k—ﬁ+e+l/2H(t)' (130)
T(2k—B+e+3)

5.7. Solutions of Equations (75) and (74) with the Aid of Theorem 3

When Condition 2 (iii) is satisfied, Equations (21) and (20) are expressed by (75) and
(74), respectively. It is stated in Lemmas 32 and 34 that particular solutions of them are
obtained in terms of the Green'’s functions Gy, (t,0) and Gy, (t,0), which are given in
Lemmas 31 and 33.

By using Gy, (t,0) given in (124) and Formulas (52) and (50), we obtain the following:

l /3+e) 2k k

]/f(t) :RD57€+€]+le,el(t,0) Dﬁ e+e;+1 Z x

2k+1+€1H ¢
(2k +24+ 61) ( )

5 (<5 (2a)k
k:or (2k+1—-B+e)

B 1 i ak
T(1=B+e) =k (=L +1),

t2k—[3+eH(t)

2R (1). (131)

This solution agrees with y(t) given by (93) and (128), which are obtained by solving
Equation (75).

Lemma 35. When B =2n+1 forn € Z- 1, (131) is expressed by the following:

00 k

y(t) = e@n)t Y ——

71‘2](_2”_“_61‘[(0. (132)
20 (5 — )2k
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When B =2n forn € Z~q, (131) is expressed by the following:
=—¢ Z (2a)K (= — n)p(2n — 2k — IR (1)
+ Z 7% Mk ph2nse (133)
(2k — 2n)! '

Proof. By putting f = 21 + 1 in the last member of Equation (131) and using the following
formula:
1 sin(mz)['(1 —z)

I'(2) - s ’ (134)

we obtain (132). By putting B = 2n in the fourth member of Equation (131) and using the
formula (134), we obtain (133). O

By using Gy, (f,0) given in (126) and Formula (51), we obtain the following:

1_
§+€)k2k k

B Beter B—e+e; 2k+e14+1/2
£ = oD Gu,e, (t,0) = rD; —t '
up(t) =RDf G (1,0) = Z T2k te t3)
o (1Bt k
2 4 e) (2a) 2h-pret1/2p(p)
- 2k+ —B+e)
0 k(1=p+e
1 (=5 )k Ph-pr1/2te g (p). (135)

I"(% _ ,B + €) 2k(372‘§+2€)k(572§+26)k
This solution agrees with u(t) given by (95), which is obtained by solving Equation (74).

Lemma 36. When f = n + % forn € Z~ _4, (135) is expressed by the following:

L) _
e V'Y (1 — 2k)! 2’1 L) (2a)kkn-Tre ()
k=0
) ( —2n— l) (Za) .
+ ) ﬁﬂ —nelreH(1), (136)
k=|%]+1 :

where | 5 | is the greatest integer not exceeding 5. When B = 2n+1 forn € Z-_4, (135) is
expressed by the following:

—}’l' Z 1)k(2a>k t2k72n+€71/2H(t)
“ T(2k — 2n+ +e)(n—k)!

& (k—n—1)!(2a)k
+€(_1)n% Z ( n ) 5 a) t2k—2n+€_1/2H(t). (137)
W T(2k—2n+1+6)

Proof. By putting  =n+ % in the fourth member of Equation (135) and using Formula (134),
we obtain (136). By using 8 = 2n + 1, we obtain (137). [
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6. Conclusions

In [3], the problem of obtaining the particular solution of an inhomogeneous ordinary
differential equation with polynomial coefficients is discussed in terms of the Green'’s
function, in the framework of distribution theory. In Section 2, a compact recipe is presented,
which is applicable to the case of an inhomogeneous fractional differential equation, which
is expressed by Equation(15). In the recipe, the particular solution is given by Theorems 1,
2 or 3, according as the inhomogeneous part satisfies Condition 2 (i), (ii) or (iii), in the
framework of nonstandard analysis.

In Sections 3-3.4, the complementary solutions and the Green’s functions are given
for Equation (18) and the related ordinary differential equation (19). They are used to give
the particular solutions of Equations (18) and (19), with the aid of Theorem 1 in Sections 3.2
and 3.3, when Condition 2 (i) is satisfied. In Section 3.4, the Green’s functions are obtained
by the operational calculus or the method of iterations.

When b = 0, Equations (18) and (19) are reduced to Equations (20) and (21), respec-
tively. Equation (20) for a = —1 is the equation, which was studied by Kim and O [14].
Sections 5 and 6 are focused on the solution of Equations (20) and (21), which satisfy
Conditions 2 (ii) and 2 (iii).

In Section 4, we consider a fractional differential equation (22) which satisfies
Condition 2 (iii), and is solved by the operational calculus or the method of iterations.
Equations (20) and (21), which satisfy Conditions 2 (iii) are denoted by Equations (74)
and (75). They are special ones of (22), and their solutions by iterations are given in Sec-
tions 4.3 and 4.2, respectively, without using a transformed differential equation. The
solutions with the aid of Theorems 1 and 3, are given in Sections 3.5 and 5.2-5.7, respec-
tively. Based on Theorems 1 and 3, we obtain the same results, although the derivation in
the former is restricted to the case of Condition 2 (i). The solutions by using Frobenius’
method are given in Section 5.6. In Section 5.7, nonstandard solutions of Equations (74)
and (75) are given in the form where infinitesimal terms appear.

The solutions of Equations (20) and (21), which satisfy Condition 2 (ii), are given with
the aid of Theorem 2, in Sections 5-5.4.
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