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Abstract: Discussions are presented by Morita and Sato in Mathematics 2017; 5, 62: 1–24, on the
problem of obtaining the particular solution of an inhomogeneous ordinary differential equation
with polynomial coefficients in terms of the Green’s function, in the framework of distribution theory.
In the present paper, a compact recipe in nonstandard analysis is presented, which is applicable to
an inhomogeneous ordinary and also fractional differential equation with polynomial coefficients.
The recipe consists of three theorems, each of which provides the particular solution of a differential
equation for an inhomogeneous term, satisfying one of three conditions. The detailed derivation
of the applications of these theorems is given for a simple fractional differential equation and an
ordinary differential equation.
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1. Introduction

We consider a fractional differential equation, which takes the following form:

pn(t, RDt)u(t) :=
n

∑
l=0

al(t)RDρl
t u(t) = f (t), (1)

where n ∈ Z>−1, al(t) for l ∈ Z[0,n] are polynomials of t, ρl ∈ C for l ∈ Z[0,n] satisfy
Re ρ0 > Re ρ1 ≥ · · · ≥ Re ρn and Re ρ0 > 0. We use Heaviside’s step function H(t), which
is equal to 1 if t > 0 and, to 0 if t ≤ 0. Here, RDρl

t are the Riemann–Liouville fractional
integrals and derivatives defined by the following definition; see [1,2].

Remark 1. In solving Equation (1), we assume that f (t) satisfies f (t) = f (t)H(t), and we use
the solution u(t) = 0 for t ≤ 0. As a result, the solution u(t) satisfies u(t) = u(t)H(t). In this
notation, we use the following definition for τ = 0.

Definition 1. Let t ∈ R, τ ∈ R, u(t) satisfy u(t) = u(t)H(t− τ), λ ∈ C+, n ∈ Z>−1 and
ρ = n− λ. Then, RD−λ

t u(t) is the Riemann–Liouville fractional integral defined by the following:

RD−λ
t u(t)=

1
Γ(λ)

∫ t

−∞
(t− ξ)λ−1u(ξ)H(ξ − τ)dξ

=
1

Γ(λ)

∫ t

τ
(t− ξ)λ−1u(ξ)dξ, t > τ, (2)
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and RD−λ
t u(t) = 0 for t ≤ τ, where Γ(λ) is the gamma function, and RDρ

t u(t) = RDn−λ
t u(t) is

the Riemann–Liouville fractional derivative defined by the following:

RDρ
t u(t) = RDn−λ

t u(t) =
dn

dtn [RD−λ
t u(t)] · H(t− τ), (3)

when n ≥ Re λ, and RDn
t u(t) = dn

dtn u(t) · H(t− τ) when ρ = n ∈ Z>−1.

Here, Z, R and C are the sets of all integers, all real numbers and all complex numbers,
respectively, and Z>a = {n ∈ Z|n > a}, Z<b = {n ∈ Z|n < b} and Z[a,b] = {n ∈ Z|a ≤
n ≤ b} for a, b ∈ Z satisfying a < b. We also use R>a = {x ∈ R|x > a} for a ∈ R, and
C+ = {z ∈ C|Re z > 0}.

In accordance with Definition 1, we adopt the following:

RDρ
t

1
Γ(ν)

tν−1H(t) =

{
1

Γ(ν−ρ)
tν−ρ−1H(t), ν− ρ ∈ C\Z<1,

0, ν− ρ ∈ Z<1,
(4)

for ν ∈ C\Z<1. Here RDt is used in place of usually used notation 0DR, in order to show
that the variable is t.

In [3,4], discussions are made of an ordinary differential equation, which is expressed
by (1) for ρl = n − l, in terms of distribution theory, and with the aid of the analytic
continuation of Laplace transform, respectively. In those papers, solutions are given
of differential equations with an inhomogeneous term f (t), which satisfies one of the
following three conditions.

Condition 1. (i) f (t) = f0(t)H(t), where f0(t) multiplied by H(t) is locally integrable on R.

(ii) f (t) = RDβ
t [ fβ(t)H(t)], where β ∈ C\Z>−1, and fβ(t) multiplied by H(t) is locally

integrable on R.
(iii) f (t) = RDβ+1

t H(t) = 1
Γ(−β)

t−β−1H(t), where β ∈ C\Z>−1.

1.1. Recipe of Solution of Differential Equation, in Distribution Theory

In a recent paper [5], the solution of Euler’s differential equation in distribution theory
is compared with the solution in nonstandard analysis. In distribution theory [6–8], we
use distribution H̃(t), which corresponds to function H(t), differential operator D and
distribution δ(t) = DH̃(t), which is called Dirac’s delta function.

Remark 2. In solving (1) in [3], the Green’s function G̃(t, τ) in distribution theory is introduced by

pn(t, D)G̃(t, τ) = δ(t− τ). (5)

Lemma 1. Let uc(t, τ) be a complementary solution of Equation (1) for t > τ, and G0(t, τ), which
is given by the following,

G0(t, τ) = uc(t, τ)H(t− τ), (6)

satisfy

RD−1
t [pn(t, RDt)G0(t, τ)] = H(t− τ) =

{
1, t > τ,
0, t ≤ τ.

(7)

Then, G̃(t, τ) = G0(t, τ)H̃(t− τ) is the Green’s function G̃(t, τ) defined in Remark 2.
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Lemma 2. In [3], it was shown that if f (t) satisfies Condition 1 (i) and G0(t, τ) is the one given
in Lemma 1, u f (t), given by the following,

u f (t) =
∫ t

0
G0(t, τ) f (τ)dτ, (8)

is a particular solution of Equation (1).

A proof of this lemma is given to show that if G0(t, τ) satisfies (7), u f (t) given by (8)
is a particular solution of (1), in Section 1.4.

1.2. Preliminaries on Nonstandard Analysis

In the present paper, we use nonstandard analysis [9], where infinitesimal numbers
are used. We denote the set of all infinitesimal real numbers by R0. We also use R0

>0 =

{ε ∈ R0|ε > 0}, which is such that if ε ∈ R0
>0 and N ∈ Z>0, then ε < 1

N . We use Rns,
which has subsets R and R0. If x ∈ Rns and x /∈ R, x is expressed as x1 + ε by x1 ∈ R and
ε ∈ R0, where x1 may be 0 ∈ R. Equation x ' y for x ∈ Rns and y ∈ Rns, is used, when
x− y ∈ R0. We denote the set of all infinitesimal complex numbers by C0, which is the set
of complex numbers z, which satisfy |Re z|+ |Im z| ∈ R0. We use Cns, which has subsets
C and C0. If z ∈ Cns and z /∈ C, z is expressed as z1 + ε by z1 ∈ C and ε ∈ C0, where z1
may be 0 ∈ C.

Remark 3. In nonstandard analysis [9], in addition to infinitesimal numbers, we use unlimited
numbers, which are often called infinite numbers. In the present paper, we do not use them, but if we
use them, we have to consider sets R∞ and C∞ such that if ω ∈ R∞, there exists ε ∈ R0 satisfying
ω = 1

ε , and if ω ∈ C∞, there exists ε ∈ C0 satisfying ω = 1
ε , and to include these sets as subsets

of Rns and Cns, respectively.

In place of (4), we now use the following:

RDρ
t

1
Γ(ν + ε)

tν−1+εH(t) =
1

Γ(ν− ρ + ε)
tν−ρ−1+εH(t), (9)

for all ρ ∈ C and ν ∈ C.

Remark 4. When ε ∈ R0 or ε ∈ C0, we often ignore terms of O(ε) compared with a term of O(ε0).
For instance, when ν ∈ R>0 and ν− ρ ∈ R>0, we adopt 1

Γ(ν+ε)
tν−1+ε H(t) ' 1

Γ(ν) tν−1+εH(t),
and also

RDρ
t

1
Γ(ν)

tν−1+εH(t) ' 1
Γ(ν− ρ)

tν−ρ−1+ε H(t), (10)

in place of (9). In the following, we often use “=" in place of “'".

In the study in nonstandard analysis, ε ∈ R0
>0 is used, and H(t) and δ(t) = DH̃(t),

respectively, are replaced by Hε(t) := RD−ε
t H(t) = 1

Γ(ε+1) tεH(t) ' tεH(t) which tends to
H(t) in the limit ε→ 0, and by the following:

δε(t) :=
d
dt

Hε(t) = RD1−ε
t H(t) = εt−1Hε(t) =

1
Γ(ε)

tε−1H(t) ' εtε−1H(t). (11)
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Lemma 3. Let f (t− τ), for t ∈ R>0 and τ ∈ R satisfying τ ∈ [0, t], be expressed as f (t− τ) =
f (t)− f ′(t)τ + O(τ2), ε ∈ R0

>0 and ε1 ∈ (0, ε). Then, we have the following:

∫ ∞

−∞
δε1(t− τ) f (τ)H(τ)dτ =

∫ t

0
δε1(τ) f (t− τ)dτ = f (t)tε1 H(t) + O(ε1)

= f (t)H(t), (12)

in the limit ε1 → 0, and∫ ∞

−∞
δε(t− τ) f (τ)H(τ)dτ =

∫ t

0
δε(τ) f (t− τ)dτ = RD−ε

t [ f (t)H(t)]. (13)

Proof. Equation (12) in this lemma is proved by using the following lemma. Since (11)
shows that δε(t− τ) = RD1−ε+ε1−ε1

t H(t− τ) = RD−ε+ε1
t δε1(t− τ), by applying RD−ε+ε1

t
to (12) and then taking the limit ε1 → 0, we obtain (13).

Lemma 4. Let ρ = 0 or ρ ∈ R>0, and ε1 ∈ R0
>0. Then

∫ t

0
τρδε1(τ)dτ =

1
Γ(ε1)

∫ t

0
τρτε1−1dτ =

ε1

Γ(1 + ε1)(ρ + ε1)
tρ+ε1 H(t), (14)

which is 1
Γ(1+ε1)

tε1 = tε1 when ρ = 0, and is O(ε1) when ρ ∈ R>0.

1.3. Summary of Sections 2–6

In Section 2, we give recipe of solution of a differential equation, in nonstandard
analysis, where the differential equation is the following:

pn(t, RDt)u(t) = f̃ (t), (15)

and the inhomogeneous term f̃ (t) satisfies one of the following three conditions.

Condition 2. Let ε ∈ R0
>0.

(i) f̃ (t) = f (t)H(t), where f (t) multiplied by H(t) is locally integrable on R.

(ii) f̃ (t) = RDβ
t f̃β(t), where β ∈ C, f̃β(t) = RD−ε

t [ fβ(t)H(t)], and fβ(t) multiplied by H(t)
is locally integrable on R.

(iii) f̃ (t) = RDβ
t f̃β(t), where β ∈ C, and f̃β(t) = RDtHε(t) = δε(t).

A complementary solution of Equation (1) is also that of Equation (15).

In [10], an ordinary differential equation is expressed in terms of blocks of classified
terms. When the equation is expressed by two blocks of classified terms, the complementary
solutions are obtained by using Frobenius’ method. In the present case, a block of classified
terms Dρu(t) for ρ ∈ C and takes the following form:

Dρu(t) =
kx

∑
k=0

aktkµ
RDρ+kµ

t u(t), (16)

where µ ∈ C+ and kx ∈ Z>−1. An equation which consists of two blocks of classified
terms, is expressed by the following:

Dρu(t) + Dρ−lµu(t) = f (t), (17)

where ρ ∈ C+ and l ∈ Z>0.
In [11,12], discussions are made of fractional differential equations with constant

coefficients, where the differential equation for the Green’s function is solved either by an
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operational calculus giving the Neumann series, or by changing it to an integral equation
which is solved by iterations, following the discussion for the ordinary differential equation
given in the book [13]. Kim and O [14] present the corresponding argument for a fractional
differential equation of the form, where an example of a simple equation for which the
Green’s function was given.

It is the primary purpose of this paper to present the recipe in Section 2 and to give a
derivation of full expressions of the Green’s functions of a fractional differential equation:

RD3/2
t ũ(t)− a(t + b) · RD1/2

t ũ(t) = f̃ (t), (18)

and of an associated ordinary differential equation:

d
dt

y(t)− a(t + b) · y(t) = f̃ (t), (19)

where a ∈ C and b ∈ C are constants. These studies are given in Sections 2.2 and 3–3.4,
respectively. In Section 3.4, the operational calculus or the method of iterations is used.

Equations (18) and (19) for b = 0 are expressed by the following:

pF(t, RDt)u(t) := RD3/2
t ũ(t)− at · RD1/2

t ũ(t) = f̃ (t), (20)

pL(t,
d
dt
)y(t) :=

d
dt

y(t)− at · y(t) = f̃ (t), (21)

which take the form (17) with µ = 1, ρ = 3
2 and l = 2, and with µ = 1, ρ = 1 and l = 2,

respectively. The equation, which Kim and O treated in [14], is Equation (20) for a = −1.
The particular solutions of Equations (20) and (21) with the aid of Theorems 2 and 3, are
presented in Sections 5–5.5 and 5.7.

In Section 4.1, we consider the following differential equation satisfying Condition 2 (iii):

RDρ
t u(t)− atλ · RDλ−α+ρ

t u(t) = RDβ+1
t Hε(t) =

t−β−1+ε

Γ(−β + ε)
H(t), (22)

where ρ ∈ C+, λ ∈ R>0, α ∈ R>0 and β ∈ C. This equation takes the form (17) and its
solution is derived by the operational calculus or the method of iterations.

Equations (20) and (21), satisfying Condition 2 (iii), are (22) for ρ = 3
2 , λ = 1 and α = 2,

and for ρ = 1, λ = 1 and α = 2, respectively. Their solutions, with the aid of iterations, are
obtained from those of Equation (22) in Sections 4.2 and 4.3. Their solutions, with the aid
of Theorems 1 and 3, are given in Sections 3.5 and 5.7, respectively. The solutions, by using
Frobenius’ method, are given in Section 5.6. In Section 5.7, nonstandard solutions, which
involve infinitesimal terms, are presented.

Section 6 presents the conclusions.

1.4. Proof of Lemma 2

We write (7) as
∫ t

τ [pn(x, RDx)G0(x, τ)]dx = H(t− τ), and then by using (8), we have
the following:∫ t

0
[
∫ t

τ
pn(x, RDx)G0(x, τ)dx] f (τ)H(τ)dτ

=
∫ t

0
dx[
∫ x

0
pn(x, RDx)G0(x, τ) f (τ)H(τ)dτ] =

∫ t

0
pn(x, RDx)u f (x)dx

=
∫ t

0
H(t− τ) f (τ)H(τ)dτ =

∫ t

0
f (τ)H(τ)dτ. (23)

By taking the derivatives of the third and the last member in this equation with respect
to t, we confirm that (1) is satisfied by u(t) = u f (t).
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2. Recipe of Solution of Differential Equation, in Nonstandard Analysis
2.1. Solution of Equation (15) When Condition 2 (i) Is Satisfied

In obtaining a particular solution of Equation (15) for f̃ (t) satisfying Condition 2 (i), in
place of the Green’s function defined in Remark 2, we use it as defined in the following definition.

Definition 2. For ε1 ∈ R0
>0, the Green’s function Gε1(t, τ) of Equation (15) satisfies the following:

pn(t, RDt)Gε1(t, τ) = δε1(t− τ), (24)

RD−1
t [pn(t, RDt)Gε1(t, τ)] = Hε1(t− τ). (25)

Lemma 5. Let Gε1(t, τ) be defined as in Definition 2, and G0(t, τ) be the solution of Equation (7).
Then, in the limit ε1 → 0, Gε1(t, τ) tends to G0(t, τ). In this situation, we call G0(t, τ) the
solution of Equation (25) in the limit ε1 → 0.

Proof. We conclude this since in the limit ε1 → 0, δε1(t− τ) and Hε1(t− τ) in Equations (24)
and (25) tend to 0 and 1, respectively, at t > τ.

In Sections 3.2–3.5, we use the following theorem.

Theorem 1. Let Condition 2 (i) be satisfied and Gε1(t, τ) and G0(t, τ) be given as in Lemma 5.
Then u f (t), which is given by the following:

u f (t) =
∫ t

0
Gε1(t, τ) f̃ (τ)dτ =

∫ t

0
G0(t, τ) f̃ (τ)dτ, (26)

in the limit ε1 → 0, is a particular solution of Equation (15) for the term f̃ (t).

Proof. By using Equations (26), (24) and (12), in this order, we obtain the following:

pn(t, RDt)u f (t)= pn(t, RDt)
∫ t

0
Gε1(t, τ) f̃ (τ)dτ =

∫ t

0
δε1(t− τ) f̃ (τ)dτ

= f̃ (t), (27)

in the limit ε1 → 0.

2.2. Solution of Equation (15) When Condition 2 (ii) or (iii) Is Satisfied

Definition 3. When Condition 2 (ii) or (iii) is satisfied, we introduce a transformed differential
equation of Equation (15), by the following:

p̃n,β(t, RDt)w(t) = f̃β(t), (28)

where w(t) = RD−β
t u(t), and

p̃n,β(t, RDt) := RD−β
t pn(t, RDt)RDβ

t . (29)

Lemma 6. Let Condition 2 (ii) or (iii) be satisfied. Then, by Definition 3, when (28) holds,
Equation (15) for u(t) = RDβ

t w(t) holds.

Definition 4. For ε ∈ R0
>0, the Green’s function Gβ,ε(t, τ) of Equation (28) satisfies the following:

p̃n,β(t, RDt)Gβ,ε(t, τ) = δε(t− τ), (30)

RD−1
t [ p̃n,β(t, RDt)Gβ,ε(t, τ)] = Hε(t− τ). (31)
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Lemma 7. Let Gβ,ε(t, τ) be defined by Definition 4. Then, a particular solution of Equation (28)
for the term f̃β(t) is given by the following:

w f (t) =
∫ t

0
Gβ,ε(t, τ) fβ(τ)H(τ)dτ, (32)

if Condition 2 (ii) is satisfied, and by w f (t) = Gβ,ε(t, 0), if Condition 2 (iii) is satisfied.

Proof. When Condition 2 (ii) is satisfied, by using Equations (32), (30) and (13), we obtain
the following:

pn,β(t, RDt)w f (t)= pn,β(t, RDt)
∫ t

0
Gβ,ε(t, τ) fβ(τ)H(τ)dτ

=
∫ t

0
δε(t− τ) fβ(τ)H(τ)dτ = RD−ε

t [ fβ(t)H(t)]. (33)

When Condition 2 (iii) is satisfied, f̃β(t) = δε(t); hence, (30) shows that
w f (t) = Gβ,ε(t, 0) is a particular solution of (28).

Definition 5. When Condition 2 (ii) or (iii) is satisfied, we introduce a transformed differential
equation of Equation (28), by the following:

p̃n,β−ε+ε1(t, RDt)wε,ε1(t) = RD−ε1
t [ fβ(t)H(t)], (34)

where ε1 ∈ (0, ε), and

p̃n,β−ε+ε1(t, RDt) := RDε−ε1
t p̃n,β(t, RDt)RD−ε+ε1

t

= RD−β+ε−ε1
t pn(t, RDt)RDβ−ε+ε1

t . (35)

Lemma 8. Let Condition 2 (ii) or (iii) be satisfied. Then, by Definition 5, when (34) holds,
Equation (28) for w(t) = RD−ε+ε1

t wε,ε1(t) holds.

Lemma 9. Let p̃n,β−ε+ε1(t, RDt) be defined by (35), Gβ,ε(t, τ) be defined in Definition 4, and
Gβ,ε,ε1(t, τ) := RDε−ε1

t Gβ,ε(t, τ). Then Gβ,ε,ε1(t, τ) satisfies the following:

p̃n,β−ε+ε1(t, RDt)Gβ,ε,ε1(t, τ) = δε1(t− τ), (36)

RD−1
t [ p̃n,β−ε+ε1(t, RDt)Gβ,ε,ε1(t, τ)] = Hε1(t− τ). (37)

These equations show that when Gβ,ε,ε1(t, τ) exists, its limit Gβ,ε,0(t, τ) as ε1 → 0 is
expressed by the following:

Gβ,ε,0(t, τ) = wε,c(t)H(t− τ), (38)

in terms of a complementary function wε,c(t) of Equation (34) for ε− ε1 = ε.

Remark 5. Lemma 9 shows that we have the following relations:

Gβ,ε(t, τ) = RD−ε+ε1
t Gβ,ε,ε1(t, τ) = RD−ε

t Gβ,ε,0(t, τ). (39)

By using these relations, we can obtain any one of Gβ,ε(t, τ), Gβ,ε,ε1(t, τ) and Gβ,ε,0(t, τ),
from any other.
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Lemma 10. Let Condition 2 (ii) be satisfied, and Gβ,ε,ε1(t, τ) be defined in Lemma 9. Then a
particular solution of Equation (34) for the term RD−ε1

t [ fβ(t)H(t)] is given by the following:

wε,ε1(t) =
∫ t

0
Gβ,ε,ε1(t, τ) fβ(τ)H(τ)dτ. (40)

Lemma 8 shows that in this case, w f (t) given by w f (t) = RD−ε+ε1
t wε,ε1(t) is a particular solution

of Equation (28) for the term f̃β(t).

Proof. By using Equations (40), (36) and (13), we obtain the following:

p̃n,β−ε+ε1(t, RDt)wε,ε1(t) = p̃n,β−ε+ε1(t, RDt)
∫ t

0
Gβ,ε,ε1(t, τ) fβ(τ)H(τ)dτ

=
∫ t

0
δε1(t− τ) fβ(τ)H(τ)dτ = RD−ε1

t [ fβ(t)H(t)]. (41)

By using Lemmas 6, 7 and 10, we confirm the following theorem.

Theorem 2. Let Condition 2 (ii) be satisfied, Gβ,ε(t, τ) satisfy Equations (30) and (31), Gβ,ε,ε1(t, τ)
satisfy Equations (36) and (37), Gβ,ε,0(t, τ), which is the limit of Gβ,ε,ε1(t, τ) as ε1 → 0, be
expressed by (38), as stated in Lemma 9, and w f (t) and u f (t) be given by the following:

w f (t) :=
∫ t

0
Gβ,ε(t, τ) fβ(τ)dτ = RD−ε+ε1

t

∫ t

0
Gβ,ε,ε1(t, τ) fβ(τ)dτ

= RD−ε
t

∫ t

0
Gβ,ε,0(t, τ) fβ(τ)dτ, (42)

and u f (t) := RDβ
t w f (t). Then, w f (t) and u f (t) are particular solutions of Equations (28) and

(15), respectively.

By using Lemmas 6, 7 and 9, we confirm the following theorem.

Theorem 3. Let Condition 2 (iii) be satisfied, and Gβ,ε(t, 0), Gβ,ε,ε1(t, 0) and Gβ,ε,0(t, 0) be
defined as in Theorem 2, and w f (t) be given by the following:

w f (t) := Gβ,ε(t, 0) = RD−ε+ε1
t Gβ,ε,ε1(t, 0) = RD−ε

t Gβ,ε,0(t, 0), (43)

and u f (t) = RDβ
t w f (t).

Then, Gβ,ε,0(t, 0) has an expression given by (38), and w f (t) and u f (t) are particular solutions
of Equations (28) and (15), respectively.

3. Solution of Equations (18) and (19) by Theorem 1

We give solutions of fractional differential Equation (18) and ordinary differential
Equation (19).

3.1. Complementary Solutions of Equations (18) and (19)

Lemma 11. The complementary solution of Equation (19) is y(t) = Cy1(t), where the following
holds:

y1(t)= e
1
2 a(t2+2bt) =

∞

∑
k=0

ak

2k

k

∑
l=0

2k−lbk−l

(k− l)!l!
tk+l , t > 0, (44)
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and C is a constant. When b = 0, this becomes the corresponding solution of Equation (21) given
by the following:

y1(t) = e
1
2 at2

=
∞

∑
k=0

ak

k!2k t2k, t > 0. (45)

Proof. We see the following holds:

y1(t)= e
1
2 a(t2+2bt) =

∞

∑
k=0

ak

k!2k tk(t + 2b)k =
∞

∑
k=0

ak

k!2k tk
k

∑
l=0

k!2k−lbk−l

(k− l)!l!
tl , (46)

which gives (44).

With the aid of (44) and (45), we obtain the following lemma.

Lemma 12. The complementary solution of (18) is given by u(t) = Cu1(t), where the following
holds:

u1(t) = RD−1/2
t y1(t) =

∞

∑
k=0

ak

2k

k

∑
l=0

2k−lbk−l

(k− l)!l!
· Γ(k + l + 1)

Γ(k + l + 3
2 )

tk+l+1/2, t > 0. (47)

When b = 0, this becomes the corresponding solution of Equation (20) given by the following:

u1(t) = RD−1/2
t y1(t) =

t1/2

Γ( 3
2 )
· 2F2(1,

1
2

;
3
4

,
5
4

;
1
2

at2), t > 0, (48)

where 2F2(α1, α2; β1, β2; z) = ∑∞
k=0

(α1)k(α2)k
k!(β1)k(β2)k

zk, (α)k = ∏k−1
l=0 (α + l) if k ∈ Z>0, and (α)k = 1

if k = 0.

Proof. When b = 0, by using (45), we obtain the following:

u1(t) = RD−1/2
t y1(t) =

∞

∑
k=0

akΓ(2k + 1)
k!2kΓ(2k + 3

2 )
t2k+1/2, t > 0, (49)

from which we obtain (48) by using two of the formulas given in the following lemma.

Lemma 13. Let k ∈ Z>−1 and ν ∈ C. Then if ν /∈ Z<0,

Γ(2k + ν + 1)= Γ(ν + 1)(ν + 1)2k = 4kΓ(ν + 1)(
ν + 1

2
)k(

1
2

ν + 1)k, (50)

and if ν− 1
2 /∈ Z<0,

Γ(2k + ν +
1
2
)= Γ(ν +

1
2
)(ν +

1
2
)2k = 4kΓ(ν +

1
2
)(

2ν + 1
4

)k(
2ν + 3

4
)k. (51)

In particular, we have the following:

Γ(2k + 1)= (2k)! = 4kk!(
1
2
)k, Γ(2k + 2) = (2k + 1)! = 4kk!(

3
2
)k. (52)
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3.2. Green’s Function Gy(t, τ) for Equation (19)

Corresponding to Equations (24) and (25), we define the Green’s function Gy(t, τ) for
Equation (19), so that it satisfies the following:

d
dt

Gy(t, τ)− a(t + b) · Gy(t, τ)= δε1(t− τ), (53)

Gy(t, τ)− a · RD−1
t [(t + b) · Gy(t, τ)]= Hε1(t− τ). (54)

Lemma 14. Let y1(t) be given by (44), and Gy(t, τ) satisfy (53) and (54). Then in the limit
ε1 → 0, Gy(t, τ) tends to Gy,0(t, τ), which is given by the following:

Gy,0(t, τ)=
y1(t)
y1(τ)

H(t− τ) = e
1
2 a(t2+2bt−τ2−2bτ)H(t− τ)

=
∞

∑
k=0

ak
k

∑
l=0

1
2l l!(k− l)!

(τ + b)k−l(t− τ)k+l H(t− τ). (55)

When τ = 0, we have Gy,0(t, 0) = y1(t)H(t) in the limit, with (44) or (45).

Proof. Following Lemma 5, Gy,0(t, τ) is chosen to be the complementary solution of
Gy,0(t, τ) = 1 at t > τ. The third member in Equation (55) is expressed as the follow-
ing:

e
1
2 a(t2+2bt−τ2−2bτ)=

∞

∑
k=0

ak

2kk!
(t− τ)k(t + τ + 2b)k

=
∞

∑
k=0

ak

2kk!
(t− τ)k

k

∑
l=0

k!
l!(k− l)!

(t− τ)l(2τ + 2b)k−l , t > τ. (56)

Lemma 15. Let Condition 2 (i) be satisfied, and Gy,0(t, τ) be given by (55). Then Theorem 1 shows
that a particular solution of Equation (19) is given by y f (t) =

∫ t
0 Gy,0(t, τ) f̃ (τ)dτ.

3.3. Green’s Function Gu(t, τ) for Equation (18)

Corresponding to Equations (24) and (25), we define the Green’s function Gu(t, τ) for
Equation (18), so that it satisfies the following:

RD3/2
t Gu(t, τ)− a(t + b) · RD1/2

t Gu(t, τ)= δε1(t− τ), (57)

RD1/2
t Gu(t, τ)− a · RD−1

t [(t + b) · RD1/2
t Gu(t, τ)]= Hε1(t− τ). (58)

We note that these equations are obtained from Equations (53) and (54), by replacing
Gy(t, τ) by RD1/2

t Gu(t, τ). As a consequence, we obtain the following lemma by using
Lemma 14.

Lemma 16. Let Gy,0(t, τ) be given by (55), and Gu(t, τ) satisfy (57) and (58). Then in the limit
ε1 → 0, Gu(t, τ) tends to Gu,0(t, τ) = RD−1/2

t Gy,0(t, τ), which is given by the following:

Gu,0(t, τ)=
∞

∑
k=0

ak
k

∑
l=0

1
2l l!(k− l)!

(k + l)!
Γ(k + l + 3

2 )
(τ + b)k−l(t− τ)k+l+1/2H(t− τ)

= [
(t− τ)1/2

Γ( 3
2 )

+ aτ1
(t− τ)3/2

Γ( 5
2 )

+ a(1 + aτ2
1 )

(t− τ)5/2

Γ( 7
2 )

+O((t− τ)7/2)]H(t− τ), (59)
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where τ1 = τ + b. When τ = 0, we have Gu,0(t, 0) = u1(t)H(t) in the limit, with (47) or (48).

Remark 6. The Green’s function given by (59) for b = 0 is not in agreement with the first several
terms obtained in [14], except the leading term.

Lemma 17. Let Condition 2 (i) be satisfied, and Gu,0(t, τ) be given by (59). Then, Theorem 1 shows
that a particular solution of Equation (18) is given by the following: u f (t) =

∫ t
0 Gu,0(t, τ) f̃ (τ)dτ.

3.4. Solution of Integral Equations (54) and (58), by Iterations

We put t = τ + x, τ1 = τ + b and ỹ(x) = Gy(τ + x, τ) in Equations (53) and (54), and
then we have the following:

d
dx

ỹ(x)− a(τ1 + x) · ỹ(x)= δε1(x), (60)

ỹ(x)− a · RD−1
x [(τ1 + x) · ỹ(x)]= Hε1(x). (61)

We put t = τ + x, τ1 = τ + b and ũ(x) = Gu(τ + x, τ) in Equations (57) and (58), and
then we have the following:

RD3/2
x ũ(x)− a(τ1 + x) · RD1/2

x ũ(x)= δε1(x), (62)

RD1/2
x ũ(x)− a · RD−1

x [(τ1 + x) · RD1/2
x ũ(x)]= Hε1(x). (63)

We note that these equations are obtained from Equations (60) and (61), by replacing
ỹ(x) by RD1/2

x ũ(x).
In [14], the solution of (62) is obtained by transforming it to an integral equation and

then solving it by iterations. By (63), the integral equation is the following:

ũ(x) = RD−1/2
x Hε1(x) + a · RD−1/2

x · RD−1
x [(τ1 + x) · RD1/2

x ũ(x)]. (64)

In the case of Equation (60), the integral equation is obtained with the aid of (61),
as follows:

ỹ(x) = Hε1(x) + a · RD−1
x [(τ1 + x) · ỹ(x)]. (65)

This integral equation is an example of the type of equation which was discussed in
the book [13].

Remark 7. By the operational calculus described in [11–13], applied to (65), the particular solution
of (60) is given by the following:

ỹ(x) =
1

1− a · RD−1
x (τ1 + x)

Hε1(x) = {1 +
∞

∑
k=1

ak[RD−1
x (τ1 + x)]k}Hε1(x). (66)

We can write this as the following:

ỹ(x) =
∞

∑
k=0

ak ỹk(x), (67)

where

ỹ0(x) = Hε1(x), ỹk+1(x) = RD−1
x [(τ1 + x)ỹk(x)], k ∈ Z>−1. (68)

We can regard the solution given by (67) with (68), as the solution of Equation (65) obtained
by iterations.
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Lemma 18. By using (68), we obtain the following:

ỹk(x) ' 1
k!
(τ1x +

1
2

x2)k Hε1(x). (69)

By using (67) with (69), in the limit ε1 → 0, we obtain the following: ỹ(x) = Gy,0(τ + x, τ)
given in Lemma 14.

Proof. We show that ỹk(t) given by (69) satisfies (68) for k ∈ Z>−1. By using (69), with the
aid of Lemma 4, we obtain the following:

RD−1
x [τ1 + x)ỹk(x)] ' RD−1

x [ f ′1(x) fk(x)Hε1(x)] = RD−1
x { f ′k+1(x)Hε1(x)}

= fk+1(x)Hε1(x)− RD−1
x { fk+1(x)δε1(x)} ' fk+1(x)Hε1(x) = ỹk+1(x), (70)

where fk(x) = 1
k! (τ1x + 1

2 x2)k and f ′1(x) = τ1 + x.

Remark 8. As stated in the proof of Lemma 14, Gy,0(t, τ) given by (55) is the solution of
Equation (54) in the limit ε1 → 0, the corresponding ỹ(x) = Gy,0(τ + x, τ) is obtained by solving
(61) in the limit ε1 → 0. The solution of that equation is obtained by using Equations (67)–(70) in
the limit ε1 → 0, by deleting the fourth member in (70).

In the case of Equation (62), in place of Remark 7, we have the following remark.

Remark 9. By the operational calculus applied to (64), the particular solution of (62) is given by
the following:

ũ(x)=
1

1− a · RD−3/2
x (τ1 + x)RD1/2

x
RD−1/2

x Hε1(x)

= {1 +
∞

∑
k=1

ak[RD−3/2
x (τ1 + x)RD1/2

x ]k}RD−1/2
x Hε1(x). (71)

We can write this as the following:

ũ(x) =
∞

∑
k=0

akũk(x), (72)

where

ũ0(x)= RD−1/2
x Hε1(x), ũk+1(x) = RD−3/2

x [(τ1 + x)RD1/2
x ũk(x)], k ∈ Z>−1. (73)

Since Equation (73) is obtained from Equation (69) by replacing ỹk(x) by RD1/2
x ũk(x), ũk(x)

is related with ỹk(t) given by (69) by ũk(x) = RD−1/2
x ỹk(t).

Lemma 19. By using (72) with ũk(x) = RD−1/2
x ỹk(t) and (69), in the limit ε1 → 0, we obtain

ũ(x) = Gu,0(τ + x, τ) given in Lemma 16.

Remark 10. Corresponding to Remark 8, Gu,0(t, τ) given by (55) is the solution of Equation (58)
in the limit ε1 → 0, and hence the corresponding ũ(x) = Gu,0(τ + x, τ) is obtained by solving
(63) in the limit ε1 → 0. The solution of that equation is obtained by using Equation (72) with
ũk(x) = RD−1/2

x ỹk(t) and ỹk(t) given in (69), in the limit ε1 → 0.

3.5. Solution of Equations (20) and (21) Satisfying Condition 2 (iii), with the Aid of Theorem 1

In Sections 3.1–3.4, we studied the solutions of Equations (18) and (19). In Sections 3.5,
4.2, 4.3 and 5, we study the solutions of these equations for the case of b = 0, so that we are
concerned with Equations (20) and (21).
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When Condition 2 (iii) is satisfied, Equations (20) and (21) are expressed by the
following:

RD3/2
t u(t)− at · RD1/2

t u(t)= RDβ+1
t Hε(t) =

t−β−1+ε

Γ(−β + ε)
H(t), (74)

d
dt

y(t)− at · y(t)= RDβ+1
t Hε(t) =

t−β−1+ε

Γ(−β + ε)
H(t). (75)

Lemma 20. When −β ∈ C+, we put ν = −β + ε. Then the solution of Equation (75), which is
obtained with the aid of Theorem 1, is given by the following:

y f (t)=
1

Γ(ν + 1)

∞

∑
k=0

ak

(1 + ν
2 )k2k t2k+νH(t) =

∞

∑
k=0

(2a)k( 1+ν
2 )k

Γ(2k + ν + 1)
t2k+ν H(t). (76)

Proof. Now, the inhomogeneous term 1
Γ(−β+ε)

t−β−1+εH(t) is expressed by 1
Γ(ν) tν−1H(t).

By using Gy,0(t, τ) given in Lemma 14 for b = 0, and f̃ (t) = 1
Γ(ν) tν−1H(t), in y f (t) given in

Lemma 15, we have the following:

y f (t)=
∫ t

0
Gy,0(t, τ)

τν−1

Γ(ν)
dτ · H(t) =

∫ t

0
e

1
2 a(t2−τ2) τν−1

Γ(ν)
dτ · H(t)

=
∞

∑
k=0

ak

k!2kΓ(ν)

∫ t

0
(t2 − τ2)kτν−1dτ · H(t). (77)

By putting τ2 = t2η, and by using the formula
∫ 1

0 (1− η)α1−1ηβ1−1dη = Γ(α1)Γ(β1)
Γ(α1+β1)

,

y f (t)=
∞

∑
k=0

ak

k!2kΓ(ν)
t2k+ν 1

2

∫ 1

0
(1− η)kη

1
2 ν−1dη · H(t)

=
∞

∑
k=0

ak

k!2kΓ(ν)
t2k+ν k!Γ( 1

2 ν)

2Γ( 1
2 ν + k + 1)

H(t). (78)

By using Γ( 1
2 ν + k + 1) = Γ( 1

2 ν + 1)( 1
2 ν + 1)k =

1
2 νΓ( 1

2 ν)( 1
2 ν + 1)k and Formula (50)

in this equation, we have (76).

Remark 11. Here we give another expression of y f (t), by using (55) for b = 0, in the second
member of (77):

y f (t)=
∞

∑
k=0

ak

k!2k

k

∑
l=0

k!2k−l

(k− l)!l!Γ(ν)

∫ t

0
(t− τ)k+lτk−l+ν−1dτ · H(t)

=
∞

∑
k=0

ak

2k

k

∑
l=0

2k−l

(k− l)!l!Γ(ν)
(k + l)!Γ(k− l + ν)

Γ(2k + ν + 1)
t2k+νH(t). (79)

Since this y f (t) must be equal to y f (t) given by (76), when ν = −β + ε, we have the
following:

k

∑
l=0

(k + l)!Γ(k− l + ν)2k−l

(k− l)!l!Γ(ν)
= 4k(

1 + ν

2
)k. (80)
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Lemma 21. When −β ∈ C+, the solution of Equation (74), which is obtained with the aid of
Theorem 1, is given by the following:

u f (t)=
∞

∑
k=0

(2a)k( 1−β+ε
2 )k

Γ(2k− β + ε + 3
2 )

t2k−β+1/2+ε H(t) =
1

Γ( 3
2 − β + ε)

t−β+1/2+ε

×2F2(1,
1− β + ε

2
;

3− 2β + 2ε

4
,

5− 2β + 2ε

4
;

1
2

at2)H(t). (81)

Proof. By using Gu,0(t, τ) given in Lemma 16 for b = 0, and f̃ (t) = 1
Γ(ν) tν−1H(t), in u f (t)

given in Lemma 17, we have the following:

u f (t)=
∫ t

0
Gu,0(t, τ)

τν−1

Γ(ν)
dτ · H(t)

=
∞

∑
k=0

ak

2k

k

∑
l=0

(k + l)!2k−l

(k− l)!l!Γ(k + l + 3
2 )Γ(ν)

∫ t

0
(t− τ)k+l+1/2τk−l+ν−1dτ · H(t)

=
∞

∑
k=0

ak

2k

k

∑
l=0

(k + l)!2k−l

(k− l)!l!Γ(ν)
Γ(k− l + ν)

Γ(2k + ν + 3
2 )

t2k+ν+1/2H(t). (82)

By using (80) in this equation, when ν = −β + ε, we have (81). The last equality in (81)
is due to Formula (51) for ν = 1− β + ε.

4. Solution of Equations (22), (75) and (74) Satisfying Condition 2 (iii) by Iterations
4.1. Solution of Equation (22) Satisfying Condition 2 (iii) by Iterations

Lemma 22. Let u(t) be a solution of (22) and y(t) = RDλ−α+ρ
t u(t). Then, y(t) satisfies the

following:

RD−λ+α
t y(t)− atλ · y(t)= RDβ+1

t Hε(t), (83)

y(t)− a · RDλ−α
t [tλ · y(t)]= RDλ−α+β+1

t Hε(t). (84)

In order to obtain a solution, we use the method adopted in Remarks 7 and 9.

Remark 12. Let γ = α − β + ε − λ. Then, by the operational calculus applied to (84), the
particular solution of Equation (83) is given by the following:

y(t)=
1

1− a · RDλ−α
t tλ RD−γ+1

t H(t) = {1 +
∞

∑
k=1

ak[RDλ−α
t tλ]k}RD−γ+1

t H(t). (85)

We can write this as the following:

y(t) =
∞

∑
k=0

akyk(t), (86)

where

y0(t) = RD−γ+1
t H(t), yk+1(t) = RDλ−α

t [tλ · yk(t)], k ∈ Z>−1. (87)

Lemma 23. The solution of (83) is given by Equation (86) with the following:

yk(t) =
Cλ,k(γ)

Γ(kα + γ)
tkα+γ−1H(t), (88)
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where Cλ,k(γ) = αk( γ
α )k if λ = 1, and if λ ∈ R>0, Cλ,k(γ) = 1 when k = 0, and

Cλ,k(γ) =
k−1

∏
l=1

Γ(lα + γ + λ)

Γ(lα + γ)
, k ∈ Z>0. (89)

Proof. We show that yk(t) given by (88) satisfies (87). By using (88), we have the following:

RDλ−α
t [tλ · yk(t)]= RDλ−α

t [tλ ·
Cλ,k(γ)

Γ(kα + γ)
tkα+γ−1H(t)]

=
Cλ,k(γ)

Γ(kα + γ)
· Γ(kα + γ + λ)

Γ((k + 1)α + γ)
t(k+1)α+γ−1H(t). (90)

By using (89), we confirm that (90) gives (88) with k replaced by k + 1. In order to
show that when λ = 1, (89) becomes Cλ,k(γ) = αk( γ

α )k, we use the following formula:

Γ(kα + γ + 1)
Γ(kα + γ)

= kα + γ = α(
γ

α
+ k). (91)

By using Lemmas 22 and 23, we obtain the following lemma.

Lemma 24. Let Cλ,k(γ) be given as in Lemma 23. Then the solution of (22) is given by the
following:

u(t) = RDα−ρ−1
t y(t) =

∞

∑
k=0

akCλ,k(α− β + ε− λ)

Γ(kα− β + ρ− λ + ε + 1)
tkα−β+ρ−λ+εH(t). (92)

4.2. Solution of Equation (75) by Iterations

Equation (75) is Equation (22) for ρ = 1, λ = 1 and α = 2. By using Lemma 24, we
obtain the following lemma.

Lemma 25. The solution of Equation (75) is given by the following:

y(t)=
∞

∑
k=0

(2a)k( 1−β+ε
2 )k

Γ(2k− β + ε + 1)
t2k−β+εH(t)

=
1

Γ(1− β + ε)

∞

∑
k=0

ak

(1 + −β+ε
2 )k2k

t2k−β+εH(t). (93)

This agrees with (76), which is derived for the case of −β ∈ C+.

Proof. The second equality of (93) is due to Formula (50) for ν = −β + ε.

Remark 13. When β = 0 and ε = ε1, y(t), satisfying Equation (75), is Gy(t, 0), satisfying (53)
for τ = 0 and b = 0. In this case, Equation (93) gives the following:

y(t)=Gy(t, 0) =
∞

∑
k=0

(2a)k( 1
2 )k

(2k)!
t2k+ε1 H(t) =

∞

∑
k=0

ak

k!2k t2k+ε1 H(t) = e
1
2 at2

tε1 H(t), (94)

which tends to Gy,0(t, 0) in the limit ε1 → 0, as stated in Lemma 14.

4.3. Solution of Equation (74) by Iterations

Equation (74) is Equation (22) for ρ = 3
2 , λ = 1 and α = 2. By using Lemma 24, we

obtain the following lemma.
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Lemma 26. The solution of Equation (74) is given by the following:

u(t)=
∞

∑
k=0

(2a)k( 1−β+ε
2 )k

Γ(2k− β + ε + 3
2 )

t2k−β+1/2+εH(t) =
1

Γ( 3
2 − β + ε)

t−β+1/2+ε

×2F2(1,
1− β + ε

2
;

3− 2β + 2ε

4
,

5− 2β + 2ε

4
;

1
2

at2)H(t). (95)

This agrees with (81), which is derived for the case of −β ∈ C+.

Proof. The last equality in (81) is due to Formula (51) for ν = 1− β + ε.

Remark 14. When β = 0 and ε = ε1, u(t) satisfying Equation (74) is Gu(t, 0), satisfying (57)
for τ = 0 and b = 0. In this case, Equation (95) gives the following:

u(t)=Gu(t, 0) =
1

Γ( 3
2 )

t1/2+ε1 · 2F2(1,
1
2

;
3
4

,
5
4

;
1
2

at2)H(t), (96)

which tends to Gu,0(t, 0) in the limit ε1 → 0, as stated in Lemma 16.

5. Solution of Equations (20) and (21) by Theorems 2 and 3
5.1. Transformed Differential Equations of Equations (20) and (21)

We construct the transformed differential equations of Equations (20) and (21), which
appear in Theorems 2 and 3. For this purpose, we use the following formula.

Lemma 27. Let λ ∈ C+, m ∈ Z>−1 and ρ = m− λ. Then, we have the following:

RDρ
t [tu(t)] = t · RDρ

t u(t) + ρ · RDρ−1
t u(t). (97)

Proof. When m = 0 and ρ = −λ, this is confirmed with the aid of Formula (2) as follows:

RD−λ
t [tu(t)] =

1
Γ(λ)

∫ t

−∞
(t− ξ)λ−1ξu(ξ)dξ

=
1

Γ(λ)

∫ t

−∞
(t− ξ)λ−1(t− (t− ξ))u(ξ)dξ = t · RD−λ

t u(t)− λ · RD−λ−1
t u(t).

We prove (97) by mathematical induction. In fact, when (97) holds for a value of m, we
confirm it to hold, even when ρ = m + λ is replaced by ρ + 1, by applying d

dt to (97).

Remark 15. When u(t) = tν+ε

Γ(ν+ε+1) H(t), by using (9), we confirm (97) as follows:

RDρ
t [tu(t)] = RDρ

t [t
tν+ε

Γ(ν + ε + 1)
H(t)] = (ν + ε + 1)RDρ

t [
tν+ε+1

Γ(ν + ε + 2)
H(t)]

= ((ν + ε + 1− ρ) + ρ)
tν+ε−ρ+1

Γ(ν + ε− ρ + 2)
H(t) = t · RDρ

t u(t) + ρ · RDρ−1
t u(t). (98)

With the aid of Lemma 27, we obtain the transformation of Equation (20) as follows:

p̃F(t, RDt)w(t) := RD−β
t pF(t, RDt)RDβ

t w(t) = RD−β
t [RD3/2

t − at · RD1/2
t ]RDβ

t w(t)

= RD3/2
t w(t)− at · RD1/2

t w(t) + aβ · RD−1/2
t w(t) = f̃β(t). (99)
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When we put d
dt v(t) = RD1/2

t w(t) and hence v(t) = RD−1/2
t w(t) in (99), we have the

following equation for v(t), which is a transformation of (21):

p̃L(t, RDt)
d
dt

v(t) := RD−β
t pL(t, RDt)RDβ

t
d
dt

v(t) = RD−β
t [

d
dt
− at]RDβ

t
d
dt

v(t)

=
d2

dt2 v(t)− at
d
dt

v(t) + aβv(t) = f̃β(t). (100)

Remark 16. This equation for a = 1, β = n ∈ Z>−1 and f̃β(t) = 0, is the differential equation
satisfied by the Hermite function [15] (Chaper V, Section 2).

We put x = t2 and y(x) = v(t) in (100), and then we have

x
d2

dx2 y(x) + (
1
2
− a

2
x)

d
dx

y(x) +
aβ

4
y(x) =

1
4

f̃β(
√

x). (101)

5.2. Complementary Solutions of Equations (99) and (100)

Lemma 28. The complementary solutions of Equation (101) are given by the following:

y1(x)= 1F1(−
β

2
;

1
2

;
1
2

ax), x > 0, (102)

y2(x)= x1/2 · 1F1(
1− β

2
;

3
2

;
1
2

ax), x > 0, (103)

where 1F1(α1; β1; z) = ∑∞
k=0

(α1)k
k!(β1)k

zk [15] (Chaper VI, Section 1).

Lemma 29. The complementary solutions of Equation (100) are given by the following:

v1(t) = y1(t2)= 1F1(−
β

2
;

1
2

;
1
2

at2) =
∞

∑
k=0

(− β
2 )kak

k!( 1
2 )k2k

t2k

=
∞

∑
k=0

(− β
2 )k(2a)k

Γ(2k + 1)
t2k, t > 0, (104)

v2(t) = y2(t2)= t · 1F1(
1− β

2
;

3
2

;
1
2

at2) =
∞

∑
k=0

( 1−β
2 )kak

k!( 3
2 )k2k

t2k+1

=
∞

∑
k=0

( 1−β
2 )k(2a)k

Γ(2k + 2)
t2k+1, t > 0. (105)

Lemma 30. The complementary solutions of Equation (99) are given by the following:

w1(t)= RD1/2
t v1(t) =

∞

∑
k=0

(− β
2 )k(2a)k

Γ(2k + 1
2 )

t2k−1/2 =
∞

∑
k=0

(− β
2 )k(2a)k

Γ( 1
2 )(

1
4 )k(

3
4 )k

t2k−1/2

=
1

Γ( 1
2 )

t−1/2 · 2F2(1,− β

2
;

1
4

,
3
4

;
a
2

t2), t > 0, (106)

w2(t)= RD1/2
t v2(t) =

∞

∑
k=0

( 1−β
2 )k(2a)k

Γ(2k + 3
2 )

t2k+1/2 =
∞

∑
k=0

( 1−β
2 )k(2a)k

Γ( 3
2 )(

3
4 )k(

5
4 )k

t2k+1/2

=
1

Γ( 3
2 )

t1/2 · 2F2(1,
1− β

2
;

3
4

,
5
4

;
a
2

t2), t > 0. (107)

Proof. By using (104) and (105), with the aid of formulas given in Lemma 13, we obtain
(106) and (107), respectively.
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5.3. Green’s Function Gv,ε1(t, τ) for Equation (100)

Corresponding to Equations (36) and (37), the differential equations satisfied by the
Green’s function Gv,ε1(t, τ) for Equation (100) with β replaced by β− ε + ε1, are given by
the following:

d2

dt2 Gv,ε1(t, τ)− at · d
dt

Gv,ε1(t, τ) + a(β− ε + ε1) · Gv,ε1(t, τ) = δε1(t− τ), (108)

d
dt

Gv,ε1(t, τ)− a · RD−1
t [t · d

dt
Gv,ε1(t, τ)] + a(β− ε + ε1) · RD−1

t Gv,ε1(t, τ)

= Hε1(t− τ). (109)

Lemma 31. Let v1,0(t) and v2,0(t), respectively, be given by (104) and (105) with β replaced by
β− ε, so that the following holds:

v1,0(t)=
∞

∑
k=0

(− β−ε
2 )k(2a)k

Γ(2k + 1)
t2k = 1F1(−

β− ε

2
;

1
2

;
1
2

at2), t > 0, (110)

v2,0(t)=
∞

∑
k=0

( 1−β+ε
2 )k(2a)k

Γ(2k + 2)
t2k+1 = t · 1F1(

1− β + ε

2
;

3
2

;
1
2

at2), t > 0. (111)

and let ṽτ(t) be given by the following:

ṽτ(t) =
1

ψ′τ(τ)
ψτ(t) =

1
ψ′τ(τ)

∞

∑
k=1

1
k!

ψ
(k)
τ (τ)(t− τ)k, (112)

where

ψτ(t) = v1,0(τ)v2,0(t)− v2,0(τ)v1,0(t). (113)

Then, ṽτ(t) is a complementary solution of (108) and satisfies (109) for t > τ and ε1 = 0, so
that Gv,0(t, τ) = ṽτ(t)H(t− τ) satisfies (108) and (109) in the limit ε1 → 0. In particular, when
τ = 0, Gv,0(t, 0) = v2,0(t)H(t).

Proof. ṽτ(t) is so chosen such that ṽτ(τ) = 0 and ṽ′τ(τ) = 1. The statement for τ = 0 in
this lemma is due to the fact that when τ = 0, v2,0(τ) = 0, v′2,0(τ) = 1, v1,0(τ) = 1, and
ṽτ(t) = ψτ(t) = v2,0(t).

Lemma 32. Let b = 0, Gv,ε1(t, τ) satisfy (108) and (109), and Gv,0(t, τ) be given in Lemma 31.
Then, if f̃ (t) satisfies Condition 2 (ii), Theorem 2 shows that a particular solution of Equation (19)
is given by the following:

y f (t)= RDβ−ε+1
t

∫ t

0
Gv,0(t, τ) fβ(τ)dτ, (114)

and if f̃ (t) satisfies Condition 2 (iii), Theorem 3 shows that a particular solution of Equation (19) is
given by y f (t) = RDβ−ε+1

t Gv,0(t, 0), and Remark 5 shows that RDε1
t Gv,ε1(t, τ) = Gv,0(t, τ).
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5.4. Green’s Function Gw,ε1(t, τ) for Equation (99)

We put Gw,ε1(t, τ) = RD1/2
t Gv,ε1(t, τ) in (108) and (109), and then we have the follow-

ing:

RD3/2
t Gw,ε1(t, τ)− at · RD1/2

t Gw,ε1(t, τ)

+ a(β− ε + ε1) · RD−1/2
t Gw,ε1(t, τ) = δε1(t− τ), (115)

RD1/2
t Gw,ε1(t, τ)− a · RD−1

t [t · RD1/2
t Gw,ε1(t, τ)]

+ a(β− ε + ε1) · RD−3/2
t Gw,ε1(t, τ) = Hε1(t− τ). (116)

These equations show that Gw,ε1(t, τ) is the Green’s function for Equation (99) with β
replaced by β− ε + ε1.

By this construction, if Gv,ε1(t, τ) satisfies (108) and (109), Gw,ε1(t, τ) = RD1/2
t Gv,ε1(t, τ)

satisfies (115) and (116). As a consequence, by using Lemma 31, we have the following
lemma.

Lemma 33. Let w1,0(t) and w2,0(t), respectively, be given by (106) and (107) with β replaced by
β− ε so that the following holds:

w1,0(t)= RD1/2
t v1,0(t) =

∞

∑
k=0

(− β−ε
2 )k(2a)k

Γ(2k + 1
2 )

t2k−1/2

=
1

Γ( 1
2 )

t−1/2 · 2F2(1,− β− ε

2
;

1
4

,
3
4

;
a
2

t2), t > 0, (117)

w2,0(t)= RD1/2
t v2,0(t) =

∞

∑
k=0

( 1−β+ε
2 )k(2a)k

Γ(2k + 3
2 )

t2k+1/2

=
1

Γ( 3
2 )

t1/2 · 2F2(1,
1− β + ε

2
;

3
4

,
5
4

;
a
2

t2), t > 0, (118)

and ṽτ(t) and ψτ(t) be given by (112) and (113), respectively. Then w̃τ(t) is given by the following:

w̃τ(t) = RD1/2
t ṽτ(t) =

1
ψ′τ(τ)

[v1,0(τ)w2,0(t)− v2,0(τ)w1,0(t)], (119)

and is a complementary solution of (115) and satisfies (116) for t > τ in the limit ε1 → 0, so that
Gw,0(t, τ) = w̃τ(t)H(t− τ) satisfies (115) and (116) in the limit ε1 → 0. In particular, when
τ = 0, Gw,0(t, 0) = RD1/2

t v2,0(t)H(t) = w2,0(t)H(t).

Lemma 34. Let b = 0, Gw,ε1(t, τ) satisfy (115) and (116), and Gw,0(t, τ) be given in Lemma 33.
Then if f̃ (t) satisfy Condition 2 (ii), Theorem 2 shows that a particular solution of Equation (18) is
given by the following:

u f (t)= RDβ−ε
t

∫ t

0
Gw,0(t, τ) fβ(τ)dτ, (120)

and if f̃ (t) satisfies Condition 2 (iii), Theorem 3 shows that a particular solution of Equation (18) is
given by u f (t) = RDβ−ε

t Gw,0(t, 0), and Remark 5 shows that RDε1
t Gw,ε1(t, τ) = Gw,0(t, τ).

5.5. Green’s Functions Gv,ε1(t, 0) and Gw,ε1(t, 0) for Equations (100) and (99) Obtained by
Frobenius’ Method

In Sections 5.3 and 5.4, the Green’s functions Gv,ε1(t, 0) and Gw,ε1(t, 0) are given.
In this section, we derive them by solving Equations (108) and (115) for τ = 0, by
Frobenius’ method.
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In this method, we assume that Gv,ε1(t, 0) is expressed by the following:

Gv,ε1(t, 0) =
∞

∑
k=0

pk
1

Γ(α + 2k + 1)
tα+2k H(t), (121)

where pk are constants, and p0 6= 0. By using this and τ = 0 in Equation (108), we obtain
the following:

∞

∑
k=0

pk[
tα+2k−2

Γ(α + 2k− 1)
− a(α + 2k− β + ε− ε1)

tα+2k

Γ(α + 2k + 1)
]H(t)

= p0
tα−2

Γ(α− 1)
H(t) +

∞

∑
k=1

[pk − apk−1(α + 2k− 2− β + ε− ε1)]
tα+2k−2

Γ(α + 2k− 1)
H(t)

=
tε1−1

Γ(ε1)
H(t). (122)

From this, we have α = 1 + ε1 and the following:

p0 = 1, pk = 2apk−1(k− 1 +
1 + ε− β

2
) = (2a)k(

1 + ε− β

2
)k, k ∈ Z>0. (123)

By using (123), (50) and α = 1 + ε1 in (121), we obtain the following:

Gv,ε1(t, 0)=
∞

∑
k=0

(2a)k( 1−β+ε
2 )k

Γ(2k + ε1 + 2)
t2k+1+ε1 H(t)

=
1

Γ(2 + ε1)

∞

∑
k=0

ak( 1−β+ε
2 )k

2k(1 + ε1
2 )k(

3+ε1
2 )k

t2k+ε1+1H(t). (124)

By using the relation Gv,0(t, τ) = RDε1
t Gv,ε1(t, τ) given in Lemma 32 to (124), or by

replacing ε1 by 0 in (124), we obtain the expression for Gv,0(t, 0) = v2,0(t)H(t) given in
Lemma 31.

In the case of Equation (115), we note that it is obtained from Equation (108) by
replacing RD1/2

t Gv,ε1(t, τ) by Gw,ε1(t, τ). In place of (121), we use the following:

Gw,ε1(t, 0) =
∞

∑
k=0

pk
1

Γ(α + 2k + 1
2 )

tα+2k−1/2H(t), (125)

in Equation (115) for τ = 0; we then obtain α = 1− ε1, and (123). By using these and (51)
in (125), we have the following:

Gw,ε1(t, 0)=
∞

∑
k=0

2kak( 1−β+ε
2 )k

Γ(2k + ε1 +
3
2 )

t2k+ε1+1/2H(t)

=
1

Γ( 3
2 + ε1)

∞

∑
k=0

ak( 1−β+ε
2 )k

2k( 3+2ε1
4 )k(

5+2ε1
4 )k

t2k+ε1+1/2H(t). (126)

By using the relation Gw,0(t, τ) = RDε1
t Gw,ε1(t, τ) given in Lemma 34 to (126), or by

replacing ε1 by 0 in (126), we obtain the expression for Gw,0(t, 0) = w2,0(t)H(t) given in
Lemma 33.
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5.6. Solution of Equations (75) and (74) Satisfying Condition 2 (iii) by Frobenius’ Method

We now give the solutions of (75) and (74) by using Frobenius’ method. We note that
(75) is obtained from Equation (108) by replacing d

dt Gv,ε1(t, τ), ε1 and τ by y(t), −β + ε and
0, respectively. In place of (121), we use the following:

y(t) =
d
dt

Gv,0(t, 0) =
∞

∑
k=0

pk
1

Γ(α + 2k)
tα+2k−1H(t), (127)

in Equation (75). Then we obtain (122), with ε1 replaced by −β + ε. From it, we have
α = 1 + ε1 = 1− β + ε, and pk given by (123). By using these in (127), we obtain the
following:

y(t)=
∞

∑
k=0

(2a)k( 1−β+ε
2 )k

Γ(2k− β + ε + 1)
t2k−β+εH(t). (128)

We note that (74) is obtained from Equation (108) by replacing RD1/2
t Gv,ε1(t, τ), ε1 and

τ by u(t), −β + ε and 0, respectively. In place of (121), we use the following:

u(t) = RD1/2
t Gv,0(t, 0) =

∞

∑
k=0

pk
1

Γ(α + 2k + 1
2 )

tα+2k−1/2H(t), (129)

in Equation (75). Then, we obtain (122), with ε1 replaced by −β + ε. From it, we have
α = 1 + ε1 = 1− β + ε, and pk given by (123). By using these in (129), we obtain the
following:

u(t)=
∞

∑
k=0

(2a)k( 1−β+ε
2 )k

Γ(2k− β + ε + 3
2 )

t2k−β+ε+1/2H(t). (130)

5.7. Solutions of Equations (75) and (74) with the Aid of Theorem 3

When Condition 2 (iii) is satisfied, Equations (21) and (20) are expressed by (75) and
(74), respectively. It is stated in Lemmas 32 and 34 that particular solutions of them are
obtained in terms of the Green’s functions Gv,ε1(t, 0) and Gw,ε1(t, 0), which are given in
Lemmas 31 and 33.

By using Gv,ε1(t, 0) given in (124) and Formulas (52) and (50), we obtain the following:

y f (t)= RDβ−ε+ε1+1
t Gv,ε1(t, 0) = RDβ−ε+ε1+1

t

∞

∑
k=0

( 1−β+ε
2 )k2kak

Γ(2k + 2 + ε1)
t2k+1+ε1 H(t)

=
∞

∑
k=0

( 1−β+ε
2 )k(2a)k

Γ(2k + 1− β + ε)
t2k−β+εH(t)

=
1

Γ(1− β + ε)

∞

∑
k=0

ak

2k(−β+ε
2 + 1)k

t2k−β+εH(t). (131)

This solution agrees with y(t) given by (93) and (128), which are obtained by solving
Equation (75).

Lemma 35. When β = 2n + 1 for n ∈ Z>−1, (131) is expressed by the following:

y f (t) = ε(2n)!
∞

∑
k=0

ak

( 1
2 − n)k2k

t2k−2n−1+εH(t). (132)
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When β = 2n for n ∈ Z>0, (131) is expressed by the following:

y f (t)=−ε
n−1

∑
k=0

(2a)k(
1
2
− n)k(2n− 2k− 1)!t2k−2n+εH(t)

+
∞

∑
k=n

(2a)k( 1
2 − n)k

(2k− 2n)!
t2k−2n+εH(t). (133)

Proof. By putting β = 2n + 1 in the last member of Equation (131) and using the following
formula:

1
Γ(z)

=
sin(πz)Γ(1− z)

π
, (134)

we obtain (132). By putting β = 2n in the fourth member of Equation (131) and using the
formula (134), we obtain (133).

By using Gw,ε1(t, 0) given in (126) and Formula (51), we obtain the following:

u f (t)= RDβ−ε+ε1
t Gw,ε1(t, 0) = RDβ−ε+ε1

t

∞

∑
k=0

( 1−β+ε
2 )k2kak

Γ(2k + ε1 +
3
2 )

t2k+ε1+1/2

=
∞

∑
k=0

( 1−β+ε
2 )k(2a)k

Γ(2k + 3
2 − β + ε)

t2k−β+ε+1/2H(t)

=
1

Γ( 3
2 − β + ε)

∞

∑
k=0

ak( 1−β+ε
2 )k

2k( 3−2β+2ε
4 )k(

5−2β+2ε
4 )k

t2k−β+1/2+εH(t). (135)

This solution agrees with u(t) given by (95), which is obtained by solving Equation (74).

Lemma 36. When β = n + 3
2 for n ∈ Z>−1, (135) is expressed by the following:

u f (t)= ε(−1)n
b n

2 c

∑
k=0

(n− 2k)!(
−2n− 1

4
)k(2a)kt2k−n−1+εH(t)

+
∞

∑
k=b n

2 c+1

(−2n−1
4 )k(2a)k

(2k− n− 1)!
t2k−n−1+εH(t), (136)

where b n
2 c is the greatest integer not exceeding n

2 . When β = 2n + 1 for n ∈ Z>−1, (135) is
expressed by the following:

u f (t)= n!
n

∑
k=0

(−1)k(2a)k

Γ(2k− 2n + 1
2 + ε)(n− k)!

t2k−2n+ε−1/2H(t)

+ε(−1)n n!
2

∞

∑
k=n+1

(k− n− 1)!(2a)k

Γ(2k− 2n + 1
2 + ε)

t2k−2n+ε−1/2H(t). (137)

Proof. By putting β = n+ 3
2 in the fourth member of Equation (135) and using Formula (134),

we obtain (136). By using β = 2n + 1, we obtain (137).
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6. Conclusions

In [3], the problem of obtaining the particular solution of an inhomogeneous ordinary
differential equation with polynomial coefficients is discussed in terms of the Green’s
function, in the framework of distribution theory. In Section 2, a compact recipe is presented,
which is applicable to the case of an inhomogeneous fractional differential equation, which
is expressed by Equation(15). In the recipe, the particular solution is given by Theorems 1,
2 or 3, according as the inhomogeneous part satisfies Condition 2 (i), (ii) or (iii), in the
framework of nonstandard analysis.

In Sections 3–3.4, the complementary solutions and the Green’s functions are given
for Equation (18) and the related ordinary differential equation (19). They are used to give
the particular solutions of Equations (18) and (19), with the aid of Theorem 1 in Sections 3.2
and 3.3, when Condition 2 (i) is satisfied. In Section 3.4, the Green’s functions are obtained
by the operational calculus or the method of iterations.

When b = 0, Equations (18) and (19) are reduced to Equations (20) and (21), respec-
tively. Equation (20) for a = −1 is the equation, which was studied by Kim and O [14].
Sections 5 and 6 are focused on the solution of Equations (20) and (21), which satisfy
Conditions 2 (ii) and 2 (iii).

In Section 4, we consider a fractional differential equation (22) which satisfies
Condition 2 (iii), and is solved by the operational calculus or the method of iterations.
Equations (20) and (21), which satisfy Conditions 2 (iii) are denoted by Equations (74)
and (75). They are special ones of (22), and their solutions by iterations are given in Sec-
tions 4.3 and 4.2, respectively, without using a transformed differential equation. The
solutions with the aid of Theorems 1 and 3, are given in Sections 3.5 and 5.2–5.7, respec-
tively. Based on Theorems 1 and 3, we obtain the same results, although the derivation in
the former is restricted to the case of Condition 2 (i). The solutions by using Frobenius’
method are given in Section 5.6. In Section 5.7, nonstandard solutions of Equations (74)
and (75) are given in the form where infinitesimal terms appear.

The solutions of Equations (20) and (21), which satisfy Condition 2 (ii), are given with
the aid of Theorem 2, in Sections 5–5.4.
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