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Abstract: This paper reports applying Minimax principle and impulsive differential inequality to
derive the existence of multiple stationary solutions and the global stability of a positive stationary
solution for a delayed feedback Gilpin–Ayala competition model with impulsive disturbance. The
conclusion obtained in this paper reduces the conservatism of the algorithm compared with the
known literature, for the impulsive disturbance is not limited to impulsive control.
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1. Introduction

It is well known that Gilpin–Ayala competition model (GACM) has been hotly dis-
cussed (see in [1–7]) due to its importance in simulating two or more competing biological
populations in nature. As diffusion is an essential characteristic of most biological popula-
tions, Ling Bai and Ke Wang began to investigate the global stability of reaction-diffusion
Gilpin–Ayala ecosystem under Neumann zero boundary value in 2005 (see in [8]), and
obtained good results. Actually, Neumann zero boundary value means that the populations
do not migrate beyond the biosphere boundary. However, many animal populations are
at the edge of the biosphere, where the population density is usually zero, which is not
reflected by Neumann zero boundary value. Thus, the Dirichlet zero boundary value was
considered in recent literature [6,7]. In recent years, linear impulsive control and nonlinear
impulsive control technology are widely used in ordinary differential dynamical systems
and infinite dimensional dynamical systems [9–16]. For example, in [14], event-triggered
nonlinear impulsive control to stabilize damped wave equations was designed, and rapid
exponential stabilization was achieved. However, in this paper, linear impulse is relatively
simple and feasible in practical ecological management because ecological management is
a natural system of impulse artificial intervention. Therefore, the linear impulsive control is
considered in this paper. Note that impulse control is employed to make the GACM stable
globally in [6,7], but this paper involves the impulsive disturbance, which is not limited to
impulsive control. Minimax principle will be employed to derive the existence of multiple
stationary solutions, which improve the method of Mountain Pass Lemma in [6]. On the
other hand, impulsive disturbance is considered in this paper, not just impulse control. In
fact, some impulse management measures other than impulsive control sometimes occur
in ecological management due to accidents, such as releasing animals, hunting animals
harmful to the population, and so on. These pulse measures mean that the pulse intensity
is not necessarily less than 1 based on system stability.

2. Preparatory Knowledge

Consider the following reaction-diffusion Gilpin–Ayala competition model (RDGACM)
with delayed feedback under Dirichlet boundary value
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∂u1

∂t
=d1∆u1 + u1(b1 − a11uθ1

1 − a12u2)− k1(u1 − u1(t− τ1, x)), t > 0, x ∈ Ω,

∂u2

∂t
=d2∆u2 + u2(b2 − a21u1 − a22uθ2

2 )− k2(u2 − u2(t− τ2, x)), t > 0, x ∈ Ω,

u1(t, x) =u2(t, x) = 0, t > 0, x ∈ ∂Ω,

(1)

equipped with the initial value

u1(s, x) = ξ1(x), u2(s, x) = ξ2(x), s ∈ [0, τ0], x ∈ Ω, (2)

where Ω is a bounded domain in RN(1 6 N 6 3) with smooth boundary ∂Ω. Time delays
τ1, τ2 ∈ [0, τ0], ui(t, x) represents the population density of the ith population at time t
and the spatial location x, bi > 0 represents the birth rate of the population of the ith
species, and aij > 0 represents the competition parameter between the species i and the
species j. di > 0 represents the diffusion coefficient for the species i. Initial value function
ξ(x) = (ξ1(x), ξ2(x))T is bounded and continuous.

Assume that
(A1) For i = 1, 2, setting −1 < θi < 4, and s2+θi > 0 for all s ∈ R1.
(A2) For i = 1, 2, there exist positive constants Mi > 0 such that

0 6 ui 6 Mi.

(A3) For i = 1, 2, |∇ui(t, x)| is bounded for all x ∈ Ω.
Due to the limited natural resources, it is reasonable to assume in (A2) that each popu-

lation density is limited. Besides, the limited natural resources imply that the boundedness
assumption of (A3) is suitable to the real state of nature.

Remark 1. (A1) expands greatly the allowable range of parameters θi, compared with the previous
related literature (see, e.g., in [6,7]). For example, the harsh condition “0 < θi < 1 with θ̂i being an
even number, and θ̌i being an odd number” is deleted.

Lemma 1 (see, e.g., in [17]). Let J ∈ C1(H1
0(Ω),R1). If there is an upper boundness of J in

H1
0(Ω), and J satisfies the (PS) condition, then c∗ = sup

v∈H1
0 (Ω)

J(v) is a critical value of J.

Here, the (PS)c condition may be found in [18] (Definition 2). Actually, the (PS)
condition is equivalent to the (PS)c condition. For convenience, the author describes the
(PS) condition as follows:

Definition 1 ([17]). Let ψ be a real C1 functional defined on a Banach space X. If any sequence
{un} in X with ‖ψ′(un)‖X∗ → 0 and the bounded sequence {ψ(un)}∞

n=1 has a convergent
subsequence in X, then ψ is called satisfying the (PS) condition.

Lemma 2 ([7], Theorem 3.1). Set u∗(x) = (u∗1(x), u∗2(x))T . Suppose that the condition (A2)
holds, and 0 < θi < 1 for i = 1, 2. Moreover, if there exists a positive constant c∗ > 0 such that

0 6 h(u∗(x)) 6 c∗DH, (3)

then there are at least a positive bounded equilibrium solution u∗(x) for the RDAGCM (1), where
H = (1, 1)T , h(u) = (h1(u1, u2), h2(u1, u2))

T with u = (u1, u2)
T and

h1(u1, u2) = u1(b1 − a11uθ1
1 − a12u2), h2(u1, u2) = u2(b2 − a21u1 − a22uθ2

2 ),

D =

(
d1 0
0 d2

)
> 0.
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The conditions of Lemma 2 guarantee the existence of a positive stationary solution
(u∗1(x), u∗2(x)) for the delayed feedback system (1). Set{

U1 = u1 − u∗1(x)

U2 = u2 − u∗2(x),

and the stationary solution (u∗1(x), u∗2(x)) of the system (1) corresponds to the zero solution
(0, 0)T of the following system:

∂U1
∂t

=d1∆U1 + b1U1 −Φ1(U1, U2)− k1[U1 −U1(t− τ1, x)], t > 0, x ∈ Ω,

∂U2
∂t

=d2∆U2 + b2U2 −Φ2(U1, U2)− k2[U2 −U2(t− τ2, x)], t > 0, x ∈ Ω,

U1(t,x) = U2(t, x) = 0, t > 0, x ∈ ∂Ω,

or 
∂U1

∂t
=d1∆U1 + (b1 − k1)U1 −Φ1(U1, U2) + k1U1(t− τ1, x), t > 0, x ∈ Ω,

∂U2

∂t
=d2∆U2 + (b2 − k2)U2 −Φ2(U1, U2) + k2U2(t− τ2, x), t > 0, x ∈ Ω,

U1(t,x) = U2(t, x) = 0, t > 0, x ∈ ∂Ω,

(4)

where we denote U = (U1, U2)
T , and

Φ1(U) = (U1 + u∗1(x))[a11(U1 + u∗1(x))θ1 + a12(U2 + u∗2(x))]− u∗1(x)(a11u∗1(x)θ1 + a12u∗2(x)),

Φ2(U) = (U2 + u∗2(x))[a21(U1 + u∗1(x)) + a22(U2 + u∗2(x))θ2 ]− u∗2(x)(a21u∗1(x) + a22u∗2(x)θ2).
(5)

The following system is the system (4) in form of vector-matrix:
∂U
∂t

= D∆U + (B− K)U −Φ(U) + KU(t− τ, x), t > 0, x ∈ Ω,

U(t, x) = 0, t > 0, x ∈ ∂Ω,
(6)

where U = (U1, U2)
T , U(t− τ, x) = (U(t− τ1, x), U(t− τ2, x))T, Φ(U) = (Φ1(U), Φ2(U))T

and

D =

(
d1 0
0 d2

)
, B =

(
b1 0
0 b2

)
, K =

(
k1 0
0 k2

)
. (7)

Considering the impulse disturbance on (6), one can get the following system:
∂U
∂t

= D∆U + (B− K)U −Φ(U) + KU(t− τ, x), t > 0, t 6= tk, x ∈ Ω,

U(t+k , x) = AkU(t−k , x), k = 1, 2 · · ·
U(t, x) = 0, t > 0, x ∈ ∂Ω,

(8)

where {tk}∞
k=1 is a sequence of fixed impulsive instants, satisfying 0 < t1 < t2 < · · · <

tk < tk+1 < · · · and lim
k→∞

tk = +∞. Besides, Ui(t+k , x) = Ui(tk, x), Ui(t−k , x) = lim
t→t−k

Ui(t, x)

for all i = 1, 2, k = 1, 2, · · · .

Definition 2. (u∗1(x), u∗2(x))T is said to be globally exponentially stable under impulsive distur-
bances if the zero solution of the system (8) is globally exponentially stable.

Lemma 3 (see [19]). Consider the following differential inequality:{
D+v(t) ≤ −av(t) + b[v(t)]τ , t 6= tk

v(tk) ≤ akv(t−k ) + bk[v(t−k )]τ ,
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where v(t) ≥ 0, [v(tk)]τ = sup
t−τ≤s≤t

v(s), [v(t−k )]τ = sup
t−τ≤s<t

v(s) and v(t) is continuous except

tk, k = 1, 2, · · · , where it has jump discontinuities. The sequence tk satisfies 0 = t0 < t1 < t2 <
· · · < tk < tk+1 < · · · , and lim

k→∞
tk = ∞. Suppose that

(1) a > b ≥ 0;
(2) tk − tk−1 > δτ, where δ > 1, and there exist constants γ > 0, M > 0 such that

ρ1ρ2 · · · ρk+1ekλτ 6 Meγtk , (9)

where ρi = max{1, ai + bieλτ}, λ > 0 is the unique solution of equation λ = a− beλτ ; then

v(t) 6 M[v(0)]τe−(λ−γ)t.

In addition, if θ = sup
k∈Z
{1, ak + bkeλτ}, then

v(t) 6 θ[v(0)]τe−(λ−
ln(θeλτ )

δτ )t, t ≥ 0.

Notation 1. Denote by λ1 the first positive eigenvalue of the operator −∆ in the Sobolev space

H1
0(Ω) equipped with the norm ‖v‖ =

√∫
Ω |∇v|2dx for any v(x) ∈ H1

0(Ω). Denote by E(λ1)

the eigenfunction space of λ1. Denote by ϕ1(x) > 0 the positive eigenfunction corresponding
to E(λ1) with ‖ϕ1(x)‖ = 1. Besides, I represents the identity matrix. Denote by λmax(A)
the maximum eigenvalue of symmetric matrix A, and by λmin(A) the minimum eigenvalue of
symmetric matrix A.

3. Main Results

Theorem 1. Suppose the conditions (A1)–(A3) and (3) hold, and if the following conditions
are satisfied:

b1 < d1λ1 (10)

b2 < d2λ1 (11)

then the system (1) owns multiple stationary solutions, including the positive solution
(u∗1(x), u∗2(x))T .

Proof. To complete the proof of Theorem 1, the author needs to do it step by step.
Step 1. Under the condition (10), there is at least a stationary solution (α∗(x), 0) for the

system (1).
Let (α(x), 0)T be a stationary solution of the system (1), satisfying

d1∆α(x) + α(x)(b1 − a11α(x)θ1 − a12 · 0) = 0, x ∈ Ω; α(x)|∂Ω = 0, (12)

whose functional is

Ψ(α) =
1
2

∫
Ω
|∇α(x)|2dx− b1

2d1

∫
Ω
|α(x)|2dx +

a11

(2 + θ1)d1

∫
Ω

α(x)2+θ1 dx, (13)

It is obvious that Ψ(0) = 0 and Ψ ∈ C1(H1
0(Ω),R1).

In fact, for example, when N = 3, the assumption (A1) yields that there exists a real
number c > 0 big enough that

|α(x)(b1 − a11α(x)θ1 − a12 · 0)| 6 c(1 + |α(x)|1+θ1) 6 c(1 + |α(x)|2∗−1),

where 2∗ = 2N
N−2 is the Sobolev critical exponent in the case of Ω ⊂ RN . This means

Ψ ∈ C1(H1
0(Ω),R1), and then a critical point of the functional Ψ is corresponding to the

solution of the Equation (12).
Next, the author claim that Ψ satisfies the (PS) condition.
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Indeed, if there exists a real number a and {αn} ⊂ H1
0(Ω), satisfying |Ψ(αn)| 6 a ∈ R1

and ‖Ψ′(αn)‖(H1
0 (Ω))∗ → 0, it means that when n is big enough,

Ψ(αn) =
1
2

∫
Ω
|∇αn(x)|2dx− b1

2d1

∫
Ω
|αn(x)|2dx +

a11

(2 + θ1)d1

∫
Ω

αn(x)2+θ1 dx 6 a, (14)

which together with (A1) and the poincare inequality means

1
2
(1− b1

d1λ1
)
∫

Ω
|∇αn(x)|2dx 6 a (15)

Equation (15) implies the boundedness of {αn} in the Sobolev space H1
0(Ω). Moreover,

Hilbert space H1
0(Ω) yields that there exists a subsequence, say {αn}, such that αn(x) ⇀

α(x) in H1
0(Ω). Rellich Theorem means that αn(x) → α(x) in Lp(Ω) with 1 6 p < 2∗.

Therefore, ∫
Ω
|αn − α|2dx → 0,

∫
Ω
|αn − α|2+θ1 dx → 0, n→ ∞.

Thus, as n→ ∞,

‖αn − α‖2 = 〈Ψ′(αn)−Ψ′(α), αn − α〉+ b1

d1

∫
Ω
|αn − α|2dx− a11

d1

∫
Ω
|αn − α|2+θ1 dx → 0,

which verifies that the (PS) condition is satisfied.
Next, the author claims that there is an upper boundedness for Ψ.
In fact, (A1) and (A2) yields

Ψ(α) =
1
2

∫
Ω
|∇α(x)|2dx− b1

2d1

∫
Ω
|α(x)|2dx +

a11

(2 + θ1)d1

∫
Ω

α(x)2+θ1 dx

6
1
2

∫
Ω
|∇α(x)|2dx +

a11

(2 + θ1)d1
M2+θ1

1 mes(Ω),

which together with (A3) means that there exists an upper boundedness for Ψ.
According to Lemma 1, there exists α∗(x) such that

J(α∗(x)) = sup
v∈H1

0 (Ω)

J(v)

and (α∗(x), 0)T is a stationary solution of the system (1).
Step 2. The author claims that the system (1) owns multiple stationary solutions,

including the positive solution.
First, the condition (3) and Lemma 2 guarantee the existence of a positive stationary

solution for the system (1). Second, zero solution (0, 0)T is obviously another stationary
solution for the system (1). Next, (α∗(x), 0)T is the third stationary solution thanks to Step 1.
In fact, the continuity of ϕ1(x) yields

J(α∗(x)) = sup
v∈H1

0 (Ω)

J(v) > J(ϕ1) >
a11

(2 + θ1)d1

∫
Ω

ϕ1(x)2+θ1 dx > 0,

which means that (α∗(x), 0)T is a nontrivial stationary solution for the system (1). Finally,
one can similarly prove that there exists a nontrivial stationary solution (0, β∗(x))T for the
system (1).

Theorem 2. Suppose that all the conditions of Theorem 1 are satisfied. Assume, in addition,
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(B1) there exist three positive constants pm, pM , ε, and a positive definite diagonal matrix
P = diag(p1, p1) > 0 such that the following LMI conditions hold:

2λ1PD− 2P(B− K)− pMΘ− εPK > 0 (16)

P < pM I (17)

pM I < P (18)

where

Θ =

 2
(

a11(1 + θ1)(2M1)
θ1 + a12M2

)
a12M1 + a21M2

∗ 2
(

a22(1 + θ2)(2M2)
θ2 + a21M1

)


(B2) a > b > 0, where a =

λmin

(
2λ1PD−2P(B−K)−pMΘ−εPK

)
pM

, b = λmax(K)
ε

(B3) there exists a constant δ > 1 such that infk∈Z(tk − tk−1) > δτ and λ > ln(ρeλτ)
δτ , where

ρ = sup
j∈Z
{1, aj + bjeλτ} with aj =

λmax(AT
j PAj)

pm
and bj ≡ 0, and λ > 0 is the unique solution of

the equation λ = a− beλτ .
then the zero solution of the system (8) is globally exponentially stable with convergence rate

1
2 (λ−

ln(ρeλτ)
δτ ), and (u∗1(x), u∗2(x))T is said to be globally exponentially stable under impulsive

disturbances with convergence rate 1
2 (λ−

ln(ρeλτ)
δτ ).

Proof. Consider the following Lyapunov function:

V(t) =
∫

Ω
UT(t, x)PU(t, x)dx =

∫
Ω
|U(t, x)|T P|U(t, x)|dx

then for t > 0, t 6= tk, the Poincare inequality yields

D+V =2
∫

Ω
UT P

(
D∆U + (B− K)U −Φ(U) + KU(t− τ, x)

)
dx

6
∫

Ω
UT P

(
− 2λ1D + 2(B− K)

)
Udx +

∫
Ω

(
− 2UT PΦ(U) + 2UT PKU(t− τ, x)

)
dx

6
∫

Ω
|U|T P

(
− 2λ1D + 2(B− K)

)
|U|dx +

∫
Ω

(
2|U|T P|Φ(U)|+ 2|U|T PK|U(t− τ, x)|

)
dx

(19)

On the other hand, it follows from (5) that Φ1(0, 0) = 0 = Φ2(0, 0), and

Φ1(0, U2) = a12u∗1(x)(U2 + u∗2(x))− a12u∗1(x)u∗2(x) = a12u∗1(x)U2 (20)

and thus differential mean value theorem and (A2) yield

|Φ1(U)| = |Φ1(U)−Φ1(0)| 6 |Φ1(U1, U2)−Φ1(0, U2)|+ |Φ1(0, U2)−Φ1(0, 0)|

6
(

a11(1 + θ1)(2M1)
θ1 + a12M2

)
|U1|+ a12M1|U2|.

(21)

Similarly,

|Φ2(U)| 6 a21M2|U1|+
(

a22(1 + θ2)(2M2)
θ2 + a21M1

)
|U2| (22)



Mathematics 2021, 9, 1943 7 of 11

Thus,
2|U|T P|Φ(U)| 6pM(2|U1| · |Φ1(U)|+ 2|U2| · |Φ2(U)|)

6pM|U|TΘ|U|
(23)

2|U|T PK|U(t− τ, x)| 6ε|U|T(PK)|U|) + 1
ε

λmax(K)|U(t− τ, x)|T P|U(t− τ, x)| (24)

Combining (19)–(24) results in

D+V(t) 6
∫

Ω
|U|T P

(
− 2λ1D + 2(B− K)

)
|U|dx +

∫
Ω

(
2|U|T P|Φ(U)|+ 2|U|T PK|U(t− τ, x)|

)
dx

6−
λmin

(
2λ1PD− 2P(B− K)− pMΘ− εPK

)
pM

∫
Ω
|U|T P|U|dx +

λmax(K)
ε

V(t− τ)

6− av(t) + b[v(t)]τ , t 6= tk.

(25)

On the other hand, letting γ = ln(ρeλτ)
δτ , one can conclude from Lemma 3 that

V(t) 6 (ρ2eλτ)[V(0)]τe−(λ−γ)t, t > t0, (26)

or equivalently,

V(t) 6 (ρ2eλτ)[V(0)]τe−(λ−
ln(ρeλτ )

δτ )t, t > t0, (27)

Indeed,
V(tk) =

∫
Ω

UT(tk, x)PU(tk, x)dx

6
λmax(AT

k PAk)

pm

∫
Ω

UT(t−k , x)PU(t−k , x)dx

=akV(t−k ).

According the conditions (B1)–(B3), one can see it from Lemma 3 that (26) and (27) holds if
the condition (9) is verified. In fact, in Lemma 3, let M = ρ2eλτ , then

Meγtk =(ρ2eλτ)eγ(tk−t0)

>(ρ2eλτ)(ρeλτ)k−1

=(ρk+1ekλτ),

which means that the condition (9) is satisfied, and then Lemma 3 makes (26) and (27) hold.
Moreover, (27) yields

pm‖U‖L2(Ω) 6V(t) 6 (ρ2eλτ)[V(0)]τe−(λ−
ln(ρeλτ )

δτ )t

6(ρ2eλτ)pM‖ξ(s, x)− u∗(x)‖2
τe−(λ−

ln(ρeλτ )
δτ )t , t > t0,

(28)

where ‖ξ(s, x)−u∗(x)‖2
τ = sup

s∈[−τ,0]

∫
Ω[ξ(s, x)−u∗(x)]T [ξ(s, x)−u∗(x)]dx with ξ = (ξ1, ξ2)

T

and u∗ = (u∗1 , u∗2)
T . Obviously, (28) completes the proof.

Remark 2. Theorem 2 offers a better stabilization criterion than the previous literature ([6,7]),
which reduces the conservatism of the algorithm. In fact, in Theorem 2, the impulse condition
λmin Ak may not be smaller than 1, which implies that this paper deletes the harsh restrictions on
small impulse of the related literature [6,7].

Remark 3. Compared with the previous related literature [6,7], Theorem 2 expands the range of
the parameters θ1, θ2 from (0, 1) to (−1, 4).
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4. Numerical Examples

First, the following example shows the effectiveness of Theorem 1.

Example 1. Let θ1 = 2
3 , θ2 = 4

5 , bi = 0.13 + 0.0001i, di = 0.1 + 0.0001i, i = 1, 2, and
Ω = (0, 1) × (0, 1). Direct calculation yields that λ1 = 19.7392 ([14] (Remark 14)), and
b1 = 0.1301 < 0.1001 × 19.7392 = d1λ1 and b2 = 0.1302 < 0.1002 × 19.7392 = d2λ1.
Furthermore, set Mi = 2 + 0.1i, i = 1, 2, and a11 = 0.03, a12 = 0.02, a21 = 0.025, a22 = 0.03,
k1 = 0.15, k2 = 0.12. An accurate calculation can verify that the condition (3) is satisfied if letting
c∗ = 100000. Now, one can conclude from Theorem 1 that there is a positive stationary solution
(u∗1(x), u∗2(x))T and other three stationary solutions for the ecosystem (1).

Below, the feasibility of Theorem 2 need be verified, too.

Example 2. All the data of Example 1 are employed in this example, then an accurate calculation
yields that

Θ =

(
0.3483 0.0970
0.0970 0.4583

)
(B2) a > b > 0. Furthermore, using computer Matlab LMI toolbox to solve LMI condition (16)–(18)
yields the following feasible data:

P =

(
0.9998 0

0 1.0013

)
, ε = 0.9996, pM = 1.0015, pm = 0.9973.

Then, a direct calculation obtains a = 3.3046, b = 0.1501, and thus a > b > 0. Let τ = 0.5,
solving the equality λ = a− beλτ reaches λ = 2.7199. Set

Aj ≡
(

1.0603 0
0 1.0783

)
, ∀ j ∈ Z, (29)

which together the above data derives that aj ≡ 1.1674, and thus ρ = 1.1674. Set δ = 2, then an

immediate calculation yields λ− ln(ρeλτ)
δτ = 1.2052 > 0, and 1

2 [λ−
ln(ρeλτ)

δτ ] = 0.6026. According
to Theorem 2, the zero solution of the system (8) is globally exponentially stable with convergence
rate 60.26%.

Remark 4. Example 2 verifies the advantages described in Remarks 2–3.

5. Conclusions and Further Considerations

Compared with the known literature, this paper has double advantages in method
and conclusion. On one hand, employing the Minimax principle and impulsive differential
inequality improves the methods in [6,7]. For example, in deriving the existence of multiple
stationary solutions of RDGACM, the methods involved in Minimax principle is more
simpler than those in applying Mountain Pass Lemma of [6]. Besides, in stabilizing
globally the ecosystem, utilizing the impulsive differential inequality makes the impulse
range wider. Especially, an impulse range means that people can adjust and manage the
ecosystem more flexibly.

For v ∈ H1
0(Ω), the norm

‖v‖ =
√∫

Ω
|∇v|2dx (30)

in this paper is simpler than the norm

‖v‖ =
√∫

Ω
(|∇v|2 + C

D
v2)dx (31)
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in [18] (Statement 2). Now, with the help of such a simple norm (30), some further consid-
erations are presented below.

In fact, in [18] (Statement 2), the following ordinary differential equation and its
corresponding partial differential equation were considered:

dx(t)
dt

= −Cx(t) + A f (x(t)) + B f (x(t− τ(t))) + J, and x ∈ R1, (32)

and its corresponding reaction-diffusion cellular neural networks
∂u(t, x)

∂t
=D∆u(t, x)− Cu(t, x) + A f (u(t, x)) + B f (u(t− τ(t), x)) + J, and t > 0, x ∈ Ω,

u(t, x) =0, x ∈ ∂Ω,
(33)

where Ω is an open bounded domain in R3 with smooth boundary ∂Ω, D ∈ R1 is the
diffusion coefficient with D > 0, and C, A both are positive real numbers, J = 0, B = 0, the
function f is defined as follows:

f (u) =



3D
A

µ1u
1
3 +

2D
A

µ1, u 6 −1;

D
A

µ1u, u ∈ [−1, 1];

3D
A

µ1u
1
3 − 2D

A
µ1, u > 1.

(34)

Here, we denote by µi the ith positive eigenvalue of the following eigenvalue problem:−∆u(x) +
C
D

u(x) =µu(x), x ∈ Ω,

u(x) =0, u ∈ ∂Ω,
(35)

Particularly in the case of C = 0, the norm (31) is just that of (30), and then µ1 = λ1 > 0 is
the first positive eigenvalue of the operator −∆ in H1

0(Ω) with the norm (30). Thus, in the
case of C = 0, the following theorem holds:

Theorem 3. If zero solution is the global stable unique equilibrium point of the following ordinary
differential system

dx(t)
dt

= A f (x(t)) + B f (x(t− τ(t))), and x ∈ R1, (36)

where

f (u) =



3D
A

λ1u
1
3 +

2D
A

λ1, u 6 −1;

D
A

λ1u, u ∈ [−1, 1];

3D
A

λ1u
1
3 − 2D

A
λ1, u > 1,

(37)

then its corresponding reaction-diffusion system:
∂u(t, x)

∂t
=D∆u(t, x) + A f (u(t, x)) + B f (u(t− τ(t), x)), and t > 0, x ∈ Ω,

u(t, x) =0, x ∈ ∂Ω,
(38)

owns zero solution and other stationary solutions which are at least two non-zero functions or
infinitely many positive functions and negative functions.
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Remark 5. It follows from [18](Remark 11) that zero solution is actually the global stable unique
equilibrium point of the ordinary differential system (36). In fact, according to the Introduc-
tion in [20], the function f defined by (37) satisfies the conditions [20] (Equation (7)) and [20]
(Equation (8)), and thus the zero solution is actually the unique equilibrium point of the ordinary
differential system (36). That is, there exists such an example that under the influence of diffusion,
the unique equilibrium point of the ordinary differential system (36) with the Lipschitz activation
function f can become at least three equilibrium points of its corresponding reaction-diffusion
system (38).

Now, in view of Theorem 3 and Remark 5, the author wants to know whether an
example can be designed such that the global stable unique equilibrium point x∗ of the
ordinary differential system can become multiple equilibrium points u∗i (x)(i ∈ Λ) of its
corresponding reaction-diffusion system under the influence of diffusion? Here, Λ is a
finite index set or infinite index set. Furthermore, is the diffusion coefficient related to the
number of the index set Λ? Is the smaller the diffusion coefficient, the fewer the number
of the index set Λ? Moreover, if the diffusion coefficient is small enough, is the norm
‖u∗i (x)− x∗‖∗ is also small? Here, ‖ · ‖∗ may be ‖u∗i (x)− x∗‖∗ = sup

x∈Ω
|u∗i (x)− x∗|. All

these problems are interesting.
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