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Abstract: We present an asymptotic solution for call options on zero-coupon bonds, assuming a
stochastic process for the price of the bond, rather than for interest rates in general. The stochastic
process for the bond price incorporates dampening of the price return volatility based on the maturity
of the bond. We derive the PDE in a similar way to Black and Scholes. Using a perturbation approach,
we derive an asymptotic solution for the value of a call option. The result is interesting, as the leading
order terms are equivalent to the Black–Scholes model and the additional next order terms provide
an adjustment to Black–Scholes that results from the stochastic process for the price of the bond. In
addition, based on the asymptotic solution, we derive delta, gamma, vega and theta solutions. We
present some comparison values for the solution and the Greeks.

Keywords: derivative securities; differential equations; derivatives pricing; derivative pricing models

1. Introduction

Black and Scholes’ [1] solution for European style options assumes a geometric Brow-
nian motion process for the underlying stock price. Many additional asset classes were also
assumed to follow this process, and so the Black-Scholes model was used to price options
on a variety of asset classes. Since many asset classes have no maturity (stocks, commodity
prices, foreign exchange rates), this process seems reasonable. However, it was clear from
the outset that this process would not work for most bond prices. To price bonds, and
other interest rate securities, researchers turned to modeling interest rates and using the
resulting rates to price interest rate securities and their related derivative securities.

In this paper, we propose a process for a zero-coupon bond price directly, and using
that process, we derive a partial differential equation (PDE) and an asymptotic solution
for a call option on the bond. Our approach of modeling bond price dynamics rather than
interest rate dynamics offers several important advantages. First, we are not restricted to
assumptions regarding the relationship of interest rates in a term structure, that is, we do
not need to assume rates fit a model, such as “Preferred Habitat.” Second, modeling the
bond dynamics is computationally simpler than many spot and term structure models with
multiple factors. In order for spot and term structure models to provide for reasonable rep-
resentation of interest rate dynamics, the models often require multiple uncertainty terms
with non-constant volatility. This results in computationally complex formulations, which
normally require numerical solutions. Finally, the resulting solution to our formulation is
similar to the familiar Black–Scholes model for European style call options on stocks. While
there are advantages and disadvantages to every approach, modeling bond dynamics
directly is more closely aligned with the nature of trading in the asset itself; bonds, like
stocks, trade in denominated currencies (models that focus on interest rate dynamics are
one-step removed, in the sense that they are inputs into a pricing process for an underlying
asset. If we were examining stocks, for instance, one possible way to price options on
stocks would be to model dynamics for factors that affect stock price—perhaps a stochastic
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process for the market risk premium, as an example—then derive a stock price and then
price the option. Black and Scholes decided to model the stock price directly. In that vein,
we are returning to directly modeling the bond’s price). In this fashion, our approach adds
to the literature on option pricing where the underlying asset price is modeled directly.

In what follows, we provide a short review of extant interest rate models. We discuss
a stochastic process for the bond price and derive the PDE. We then present the asymptotic
solution for a European style call option. Finally, we discuss the properties of our model,
including the commonly used Greeks.

2. Previous Literature: Interest Rate Models

Vasicek [2], Rendleman and Bartter [3], Black, Derman and Toy [4], Black and Karasin-
ski [5], are examples of short rate models, where parameters are generally chosen to make
the evolution of the spot rate fit the current term structure. In Vasicek [2], the bond’s price
follows from an evolution of a spot rate that follows a Markov process. Vasicek [2] uses
the specific example of an Ornstein–Uhlenbeck process to derive the representation of the
bond price. Rendleman and Bartter [3] discuss the pricing of bond options where interest
rates follow a binomial process with parameters chosen so that the price relative (ratio of)
interest rates approximate a lognormal distribution. In the study of Black, Derman, and
Toy [4], all security prices and rates depend on only one factor, the short rate. The current
structure of long rates and their estimated volatilities are used to construct a tree of possible
future short rates, which may then be used to value interest-rate-sensitive securities. Black
and Karasinski [5] present a short-term interest rate one-factor model for bond and option
pricing that allows the target rate, mean reversion and local volatility to vary determinis-
tically through time. The distribution of possible short rates is lognormal in their model,
so the rate will not fall below zero. Jamshidian [6] derives a closed-form solution for an
option on a zero-coupon bond assuming the process developed by Vasicek [2].

The studies of Ho and Lee [7], Heath, Jarrow and Morton [8,9], Duffie and Kan [10],
Brace, Gatarek, and Muiela [11], and Musiela and Rutkowski [12] are examples of term
structure models. These models take a given term structure and model its behavior.
Ho and Lee [7] derive an arbitrage free discrete trading economy, where bond prices
fluctuate according to a single factor path independent binomial process. Securities are
priced relative to a term structure of interest rates (spot rate and forward rates). The path
independence condition is equivalent to constant volatility in the forward rate process.
Heath, Jarrow, and Morton [8,9] develop a framework for pricing interest rate claims based
on the term structure of forward rates. The model (HJM for convenience) treats the entire
forward rate curve at a point in time as an input, and evolves the curve according to
a stochastic process. The stochastic process for the forward rate is the sum of a simple
diffusion and a deterministic drift, and is more general than Ho and Lee [7]; the forward
rate process may have non-constant volatilities for instance. Duffie and Kan [10] analyze a
multifactor model of the term structure, where the yield factors form a Markov process.
In Brace, Gatarek, and Muiela [11], a class of term structure models with a volatility
of the lognormal type is analyzed in the general HJM framework. The corresponding
market forward rates do not explode and are positive and mean reverting. Musiela and
Rutkowski [12] describe the properties and problems associated with continuous-time
presentations of term-structure models and specify the general properties for wide classes
of models.

Two highly recommended, and excellent discussions of interest rate models, and their
associated problems, are provided by Björk and Gaspar [13] and Rebonato [14]. Björk
and Gaspar present a collection of important topics and conditions for arbitrage free
pricing of interest rate claims, including a discussion of the market price of risk, short-rate
models, and term structure models. For those just starting to study interest rate models,
Sections 1 and 2 provide a host of useful theorems and definitions. In addition, there is
an excellent discussion on the difficulties of operationalizing these models, and how to
approach the realization of essentially infinite-dimensional models in finite dimensional
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space. Rebonato discusses the evolution of interest-rate models from the early short-rate
models to more recent developments in term-structure models and provides a far more
comprehensive discussion than what can be provided here. In fact, two quotes from
Rebonato provide the inspiration for this work:

Therefore, while today’s models are indubitably more effective (at least in cer-
tain respects) than the early ones, and, therefore, one can certainly speak of an
‘evolution’ of interest-rate models, this does not necessary imply that certain
choices, abandoned in the past, might not have ultimately led a more fruitful
description of interest-rate derivatives products if they had been pursued more
actively. [14] (p. 672)

As well as the following:

As for the log-normal assumption for the bond price, this was partly satisfactory,
because it did not constrain the price to be smaller than face value, thereby
assigning a non-zero probability to negative interest rates . . . What gave greater
discomfort, however, was the so-called pull-to-par problem. [14] (p. 683)

The pull-to-par issue is an important facet of bond returns, as noted in such works as
that of Esquível, Gaspar, and Beleza Sousa [15]. Esquível et al. use pull-to-par returns to
analyze implicit default propensities from observed bond prices. While their paper does
not explicitly put forth a stochastic process to create bond prices, and instead is based on
market data, they do note that one could imagine a stochastic process that might create
price realizations:

Although this is not necessary for what follows, we may suppose that it is
a stochastic process–defined on a complete probability space (Ω, A,P)—from
which some realization is observed. [15] (p. 82)

The valuation of simple contingent claims under simple continuous time models is no
longer novel; however, we believe that there is value in the return to the “pull-to-par” issue
and the pursuit of a path “abandoned in the past.” We propose an approach based on the
bond’s price, rather than a set of interest rates/forward rates, that better captures the pull-
to-par dynamics of a bond than the traditional geometric Brownian motion (we do note that
the pull-to-par problem can be handled in the classical short-rate and term-structure models
of interest rates, and so when we are referring to addressing the pull-to-par problem, it
is with respect to a model of bond price dynamics. We thank an anonymous referee for
pointing out our need to clarify this point).

By going back to the bond’s price, we are not limited to processes for interest rates
that, due to computational complexities, are typically limited to three factors (or less) to
characterize a yield curve (partly to avoid overfitting problems and to allow for some
tractability). There is no need to fit a curve or restrict the evolution of rates so that the
resulting term structure fits with observable bond prices. By starting with a process for
the bond, we can, in a fashion similar to Black and Scholes develop a solution that does
not require assumptions about the term structure or the relation of rates across maturities.
Our model would also be an example of a stochastic process that could characterize zero
coupon bond prices as described by Esquível, Gaspar, and Beleza Sousa [15].

3. Derivation of Bond Options on Zero-Coupon Bonds
3.1. A Process for Zero-Coupon Bonds

To begin, we assume that the zero-coupon bond’s price before maturity can be any
positive value, including values higher than par (nominally negative interest rates). We
make very few assumptions on the implied interest rates other than rates are made up of
two components: a risk-free rate (time value of money) and a risk premium (if the bond
is risky). We assume that interest rates in a term structure may or may not be related to
such frameworks as those of the “expectations hypothesis,” “preferred habitat theory,”
“liquidity preference,” or “market segmentation,” though we are not specifying any specific
structure (an excellent discussion of these can be found in the study of Cox, Ingersoll, and
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Ross [16] in the introduction). As such, the rate implied by our zero-coupon bond price (the
process of which is given later) can be expressed as an average of a current short rate and
future short rates, if so chosen, that is, the bond’s current price reflects the term structure to
its maturity at the current time.

3.2. Model Definition

We start with dynamics for the zero-coupon bond price.

dB = B

 ln
(

F
B

)
TB − t

dt + σB
(

TB − t
TB

)
dz (1)

where B is the price of a zero-coupon bond that is worth F at maturity. TB is the maturity
time for the bond, t is the current time, z is a Brownian motion, and σ is the volatility of
the bond’s return at full duration (initial duration, which for the zero-coupon bond equals
the bonds maturity). The dz and σ are unique for each bond maturity, and are not to be
seen as common terms across all maturities (as noted by an anonymous referee, there is
empirical research indicating that only three or four independent stochastic components
are needed to describe the market. Our assumption of different Brownian motions across
the maturities is made to ensure no arbitrage). The first term (drift term) represents the
pull-to-par effect that takes place if the implied interest rate on the bond does not change as
time changes. The second term (shock term) represents the riskiness of the bond, which is
a function of its duration (in this case, the remaining percent of initial duration). Therefore,
the volatility constant, σ, is scaled down over time as the bond’s remaining time to maturity
becomes shorter. For simplicity of discussion, we refer to the model as the pull-to-par
model (or PTP). Of course, there are many different ways in which the dynamics could
be proposed. We chose to try and capture two important characteristics in the bond price
dynamics (pull-to-par and duration), while adopting a form that would adjust for the
problems of the Black and Scholes geometric Brownian motion described in Rebonato. Yet,
the dynamics we chose are still suggestive of that in Black and Scholes, so the derivation
and solution will be familiar to many.

While our focus is on characterizing risky bonds, we do note that our process could
conceptually represent a risk-free bond (a somewhat trivial result but important in the
resulting model, which, like Black and Scholes, has a constant risk-free rate as part of the
solution). In the case of a conceptually true risk-free bond, Br f , the volatility for it would
be σr f = 0, (there would be no uncertainty of any type—no risk premiums) and the term
in (1) would result in the bond earning a constant continuously compounded risk-free

rate, r (note, the ODE dB = B
ln( F

B )
(TB−t)dt has the general solution B = FeK(t−TB) where K is an

arbitrary constant).
In our model, in order for there to be no arbitrage, we need only assume that a risky

bond, B(0, T), with volatility σ, has the following properties:

B(0, T)< Br f (0, T), and σ >0

The resulting initial (expected) rate of return on the risky bond, rB, could therefore be
expressed as follows:

rB = r + λ

where λ is the risk-premium(s) for bond B. The process in (1) therefore can represent
both risk-free and risky bonds. Since our formulation is general, one could imagine the
risk-premium representing such concepts as inflation risk, liquidity risk, default risk,
etc. (or some combination of these and others). There are some limits to our model in
conceptualizing the default risk since we do not specifically cover the recovery rates for
bonds in default but, as noted later, our model would work in situations where the recovery
rate is below the strike on the option.
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The following exposition on the derivation of the governing PDE is for those interested
in seeing the steps in comparison to the well-known Black–Scholes solution to a European
option on stocks. Those familiar with the derivation might prefer to move directly to the
solution in Section 4.

Suppose that there is a European style call option on this bond (a function of the bond
price and time), denoted as follows:

C = C(B, t) (2)

By Ito’s Lemma, with Equation (1), we have the following:

dC =

Ct + CBB

 ln
(

F
B

)
TB − t

+
1
2

CBBσ2B2
(

TB − t
TB

)2
dt + CBσB

(
TB − t

TB

)
dz (3)

where Ct and CB are partial derivatives of C with respect to t and B, respectively, and CBB
is the second partial derivative of C with respect to B.

We can form a hedge portfolio by combining NB shares of the bond and NC call options.
The value of the hedge portfolio (VH) is given by the following:

VH = NBB + NCC (4)

Differentiating (4) and substituting for dB from (1) and dC from (3) and rearranging,
we obtain the following:

dVH = NCCtdt + {NB + NCCB}B

 ln
(

F
B

)
TB − t

dt +
1
2

NCCBBσ2B2
(

TB − t
TB

)2
dt + {NB + NCCB} σB

(
TB − t

TB

)
dz (5)

A perfectly hedged portfolio should be risk-free and earn the risk-free rate, r; therefore,
the following holds:

dVH = rVHdt (6)

To hedge, we need to set the following condition:

NB + NCCB = 0 (7)

Substituting (4), (6) and (7) into (5), and dividing through by dt and NC, we obtain the
following:

rC− rBCB −
1
2

σ2B2
(

TB − t
TB

)2
CBB − Ct = 0, (8)

for 0 ≤ B < ∞, and 0 ≤ t ≤ TC.
In addition, we have the following initial and boundary conditions for (8):

C(B, TC) = Max(B− E, 0) (8a)

C(0, t) = 0 (8b)

where E is the exercise price of the call option (Condition 8b could also be written as
C(γ,t) = 0 for recovery value γ, where 0 ≤ γ < E < 1. Note, our model would not be
appropriate in the case of default where the recovery value γ has the following property
0 ≤ E < γ < 1).
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4. Solution

Under the assumption that TB is much larger than TC (i.e., TC
TB
� 1), we use a regular

perturbation method to find an asymptotic solution for (8). For the mathematical definition
of TC

TB
� 1 and the asymptotic solution procedure, see Kevorkian and Cole [17]. We further

assume that TC = O(1) and look for an asymptotic solution of the following form:

C(B, t; TB) = C0(B, t) +
1

TB
C1(B, t) + O

(
1

TB2

)
(9)

Which, for our PDE and its initial and boundary conditions, is equal to the following:

BN(d1)− e−r(TC−t)EN(d2) +
1

TB
Ee((

1−α
2 )ln( B

E )−
(1+α)2

4 (TC−t) σ2
2 )(M) + O

(
1

TB2

)
The derivation of this solution is rather involved. We detail it in the Appendix A

and omit it here for brevity. If we let τ = TC − t (time moves forward), this becomes the
following:

BN(d1)− e−r(τ)EN(d2) +
1

TB
Ee((

1−α
2 )ln( B

E )−
(1+α)2σ2τ

8 )(M) + O
(

1
TB2

)
(10)

where M is defined as follows:

M =


(τ

2
− TC

)√σ2τ

2π
e−

(ln( B
E ))

2

2σ2τ +

(
ln
(

B
E

))2

8σ2

(∣∣∣∣ln(B
E

)∣∣∣∣− 1
)

er f c


∣∣∣ln( B

E

)∣∣∣
2
√

σ2

2 τ




Additionally, N(z) is defined as follows:

N(z) =
1√
2π

∫ z

−∞
e−

w2
2 dw

and d1 and d2 are defined as follows:

d1 =

{
ln
(

B
E

)
+
(

r + 1
2 σ2
)

τ
}

σ
√

τ

d2 = d1 − σ
√

τ =

{
ln
(B

E
)
+
(
r− 1

2 σ2)τ}
σ
√

τ

We also have α defined as:
α =

2r
σ2

and erfc(z) as:

er f c(z) =
2√
π

∫ ∞

z
e−y2

dy

Discussion of Results

The first two terms in the solution, (Equation (10)) is equivalent to the Black–Scholes
model. The additional terms provide an adjustment to Black–Scholes that results from the
pull-to-par effect and dampening effect on volatility that are present in the original stochas-
tic Equation (1). In particular, the third term represents the leading order approximation
to that adjustment under the assumption that TB is much larger than TC. Mathematically,
the solution in (10) decomposes the PTP model into a descending order of components
with the leading order O(1), a Black–Scholes model. This is given by the first two terms
in (10) and it is governed by the homogeneous Black–Scholes Equation (A1a), subject to
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the initial and boundary conditions (8a, b). The next order O
(

1
TB

)
in (10), which is the

leading adjustment to the Black–Scholes model, is governed by a forced Black–Scholes
Equation (A1b), subject to zero initial and boundary conditions. The forcing term here is
given by the gamma of the Black–Scholes model, multiplied by σ2B2t. Given these effects,
the PTP model results in a solution that is less than that of a pure Black–Scholes geometric
Brownian motion solution.

To illustrate the differences, we have included a few computations, which are not
meant to be exhaustive (see Table 1). Using the daily 20-year constant maturity treasury
yields for the year 2020 (Treasury.Gov, 1 April 2021), we created daily zero-coupon bond
prices, from which we then derived the estimated daily price returns. The choice of treasury
data was two-fold: (1) the data are easily accessed by all interested, and (2) since our paper
is not focused on any particular set of risk premiums, treasury bonds, while generally
considered default free, are nonetheless risky (it is generally commonly held that treasury
debt has at least inflation risk). The data were largely used to give us a set of inputs for
illustrative purposes. The annualized standard deviation of the returns serves as a basis
for the volatility input in the tables that follow. The annualized standard deviation of the
hypothetical 20-year zero-coupon bond (assuming 256 trading days) was 20.20%. Given
this, table computations have volatilities of 15%, 20%, and 25% for the option values and
the Greeks. For the year 2020, short-term treasury rates (3 months, 6 months, and 1 year)
ranged from near zero to just over 1.5%, with an average of slightly below 0.5%. Based on
this, an input of 0.5% for the short-term risk-free rate was used as an input to the model.

Table 1. Comparison of PTP values to Black–Scholes: strike price 80, risk-free rate 0.5%, bond maturity 20 years.

Volatility 15%

Option Maturity 0.25 Years Option Maturity 0.5 Years Option Maturity 1 Year

Bond Price PTP Black–Scholes PTP Black–Scholes PTP Black–Scholes

72 0.1635 0.2140 0.6151 0.7087 1.6037 1.7065
76 0.8201 0.8820 1.6655 1.7368 3.0303 3.0701
80 2.3971 2.4419 3.4379 3.4801 4.9730 4.9730
84 4.9643 5.0273 5.8893 5.9606 7.3626 7.4004
88 8.3351 8.3938 8.9581 9.0560 10.1888 10.2867

Volatility 20%

72 0.5158 0.5835 1.3647 1.4599 2.9080 2.9788
76 1.4694 1.5393 2.6761 2.7496 4.5372 4.5614
80 3.1787 3.2384 4.5485 4.6047 6.5580 6.5580
84 5.6463 5.7183 6.9416 7.0165 8.9257 8.9488
88 8.7695 8.8449 9.8153 9.9148 11.6266 11.6935

Volatility 25%

72 0.9935 1.0738 2.2248 2.3227 4.2850 4.3357
76 2.1610 2.2414 3.7128 3.7936 6.0542 6.0704
80 3.9599 4.0345 5.6578 5.7280 8.1394 8.1394
84 6.3730 6.4564 8.0254 8.1087 10.5079 10.5233
88 9.3322 9.4207 10.7848 10.8881 13.1461 13.1937

In addition to the hypothetical values, an analysis of the contribution of the terms
O(1) and O

(
1

TB

)
are provided in Table 2. As noted earlier, our approximation solution

assumes that the maturity of the bond is considerably larger than that of the option.

Treasury.Gov
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We illustrate the contribution for a range of bond maturities against option maturities
of 3 months, 6 months and 1 year. As the bond maturity increases, the contribution of the
O
(

1
TB

)
generally decreases.

Table 2. Contribution of terms to PTP values: strike price 80, risk free rate 0.5%.

Bond Maturity

B
on

d
Pr

ic
e

V
ol

at
il

it
y

O
pt

io
n

M
at

ur
it

y 5 Years 5 Years 10 Years 10 Years 20 Years 20 Years 30 Years 30 Years

O(1) O(1/T_B) O(1) O(1/T_B) O(1) O(1/T_B) O(1) O(1/T_B)

72 15% 0.25 57.42% 42.58% 72.95% 27.05% 84.36% 15.64% 89.00% 11.00%
72 20% 0.50 79.32% 20.68% 88.47% 11.53% 93.88% 6.12% 95.84% 4.16%
72 25% 1.0 82.91% 17.09% 90.66% 9.34% 95.10% 4.90% 96.68% 3.32%
80 15% 0.25 97.61% 2.39% 98.79% 1.21% 99.39% 0.61% 99.59% 0.41%
80 20% 0.50 95.35% 4.65% 97.62% 2.38% 98.79% 1.21% 99.19% 0.81%
80 25% 1.00 91.16% 8.84% 95.37% 4.63% 97.63% 2.37% 98.41% 1.59%
88 15% 0.25 97.90% 2.10% 98.94% 1.06% 99.47% 0.53% 99.64% 0.36%
88 20% 0.50 96.14% 3.86% 98.03% 1.97% 99.01% 0.99% 99.34% 0.66%
88 25% 1.00 93.25% 6.75% 96.51% 3.49% 98.22% 1.78% 98.81% 1.19%

5. Properties of Greeks

Based on the solution in Equation (10), we derived the standard “Greeks” associated
with the call option. The solutions are presented below:

The call option’s delta is equal to the following:

∂C
∂B = N(d1) + 1

σ
√

2πτ

(
e(−

d1
2

2 ) − e−rτ E
B e(−

d2
2

2 )

)

+ E
TBB e((

1
2−

r
σ2 )ln(

B
E )−

(σ+ 2r
σ )

2

8 τ)

Q1
e

(
−(ln( B

E ))
2
/

2σ2τ

)
4
√

2π
+ Q2

er f c

(
|ln( B

E )|
σ
√

2τ

)
8σ2

+ O
(

1
T2

B

)

where

Q1 =

(2r
σ
− σ

)
(2TC − τ)

√
τ +

2ln
(

B
E

)
(2TC − τ)

σ
√

τ
−

ln
(

B
E

)((
ln
(

B
E

))2
−
∣∣∣ln( B

E

)∣∣∣)
σ3
√

τ


and

Q2 =

[(
1
2
− r

σ2

)(
ln
(

B
E

))2(∣∣∣∣ln(B
E

)∣∣∣∣− 1
)
+ ln

(
B
E

)(
3
∣∣∣∣ln(B

E

)∣∣∣∣− 2
)]

As with the options value, we also calculated values for the call’s delta. Table 3
illustrates these for the same strike, short rate, and set of volatilities and option maturities.

As with the value, the delta is generally a bit lower than that of an equivalent Black–
Scholes model. Graphically, Figures 1 and 2 present the deltas for differing option maturities
and volatilities, respectively.
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Table 3. Comparison of PTP deltas to Black–Scholes: strike price 80, risk-free rate 0.5%, bond maturity 20 years.

Volatility 15%

Option Maturity 0.25 Years Option Maturity 0.5 Years Option Maturity 1 Year

Bond Price PTP Black–Scholes PTP Black–Scholes PTP Black–Scholes

72 0.0807 0.0884 0.1794 0.1796 0.2890 0.2762
76 0.2674 0.2644 0.3518 0.3420 0.4238 0.4076
80 0.5214 0.5216 0.5304 0.5305 0.5431 0.5431
84 0.7558 0.7595 0.6945 0.7042 0.6527 0.6677
88 0.9127 0.9074 0.8328 0.8353 0.7583 0.7715

Volatility 20%

72 0.1567 0.1608 0.2586 0.2557 0.3554 0.3439
76 0.3288 0.3262 0.3986 0.3919 0.4581 0.4477
80 0.5246 0.5249 0.5350 0.5352 0.5497 0.5497
84 0.7057 0.7090 0.6607 0.6676 0.6342 0.6439
88 0.8470 0.8451 0.7726 0.7771 0.7151 0.7263

Volatility 25%

72 0.2182 0.2205 0.3140 0.3108 0.4003 0.3911
76 0.3695 0.3677 0.4301 0.4256 0.4832 0.4760
80 0.5285 0.5289 0.5405 0.5408 0.5576 0.5576
84 0.6757 0.6783 0.6425 0.6475 0.6264 0.6331
88 0.7986 0.7981 0.7351 0.7395 0.6919 0.7006Mathematics 2021, 9, 1940 10 of 23 
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Table 4 presents the gamma values with the same underlying data used for the values
and deltas.

Table 4. Comparison of PTP gammas to Black–Scholes: strike price 80, risk-free rate 0.5%, bond maturity 20 years.

Volatility 15%

Option Maturity 0.25 Years Option Maturity 0.5 Years Option Maturity 1 Year

Bond Price PTP Black–Scholes PTP Black–Scholes PTP Black–Scholes

72 0.0311 0.0297 0.0375 0.0343 0.0335 0.0310
76 0.0601 0.0574 0.0464 0.0456 0.0328 0.0341
80 0.0607 0.0664 0.0405 0.0469 0.0261 0.0331
84 0.0516 0.0494 0.0394 0.0388 0.0277 0.0288
88 0.0266 0.0251 0.0289 0.0266 0.0245 0.0229

Volatility 20%

72 0.0356 0.0339 0.0333 0.0316 0.0263 0.0256
76 0.0485 0.0474 0.0356 0.0357 0.0247 0.0260
80 0.0468 0.0498 0.0317 0.0351 0.0209 0.0247
84 0.0417 0.0408 0.0304 0.0306 0.0210 0.0222
88 0.0284 0.0271 0.0251 0.0240 0.0193 0.0189

Volatility 25%

72 0.0342 0.0329 0.0286 0.0278 0.0214 0.0213
76 0.0402 0.0397 0.0288 0.0292 0.0198 0.0210
80 0.0380 0.0398 0.0259 0.0281 0.0173 0.0197
84 0.0345 0.0341 0.0247 0.0250 0.0169 0.0179
88 0.0265 0.0256 0.0214 0.0209 0.0157 0.0158

As with the delta, the gamma is also somewhat lower than that of an equivalent
Black–Scholes model. Graphically, Figures 3 and 4 present the gammas for differing option
maturities and volatilities, respectively.
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Figure 3. PTP gammas at different option maturities.
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The gamma results present a “corner” for the at-the-money options. This is likely
due to the method of derivation, i.e., the approximate solution. In solving the differential
equation at order O

(
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TB

)
, the Laplace transform method was used, and the solutions for

intervals x > 0 and x < 0 were obtained first, then matched at x = 0 (i.e., B = 80).
In reality, there probably should be no “corner”; this will likely disappear with the ad-

dition of higher order terms (though computationally, these terms are quite time-consuming
to derive).
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Table 5 presents the theta values for our set of inputs. Similar to the delta and gamma

results, the theta results are lower in magnitude than their Black–Scholes counterparts.
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Figures 5 and 6 illustrate the thetas for different option maturities and volatilities,
respectively.

Table 5. Comparison of PTP thetas to Black–Scholes: strike price 80, risk-free rate 0.5%, bond maturity 20 years.

Volatility 15%

Option Maturity 0.25 Years Option Maturity 0.5 Years Option Maturity 1 Year

Bond Price PTP Black–Scholes PTP Black–Scholes PTP Black–Scholes

72 −1.5080 −1.7614 −1.9599 −2.0625 −1.9409 −1.8967
76 −3.7232 −3.8260 −3.0916 −3.0815 −2.4562 −2.3523
80 −4.9471 −4.9767 −3.6125 −3.5700 −2.6910 −2.5720
84 −4.1172 −4.2153 −3.3577 −3.3438 −2.6396 −2.5313
88 −2.2974 −2.5464 −2.5534 −2.6368 −2.3466 −2.2848

Volatility 20%

72 −3.3608 −3.5703 −3.3246 −3.3592 −2.8699 −2.7585
76 −5.5126 −5.5952 −4.3018 −4.2647 −3.3007 −3.1532
80 −6.5250 −6.5644 −4.7436 −4.6870 −3.5121 −3.3538
84 −5.9483 −6.0294 −4.6004 −4.5597 −3.5103 −3.3563
88 −4.3202 −4.5199 −3.9859 −4.0052 −3.3198 −3.1907

Volatility 25%

72 −5.2361 −5.4112 −4.6030 −4.5959 −3.7367 −3.5750
76 −7.2097 −7.2880 −5.4659 −5.4090 −4.1214 −3.9336
80 −8.1003 −8.1493 −5.8709 −5.8000 −4.3274 −4.1301
84 −7.7012 −7.7795 −5.8065 −5.7458 −4.3632 −4.1667
88 −6.3302 −6.4976 −5.3428 −5.3222 −4.2452 −4.0632
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The call option’s vega is:
∂C
∂σ = B√

2π
e(−

d1
2

2 )

[(
1
2 −

r
σ2

)√
τ − ln( B

E )
σ2√τ

]
+ e(−rτ) E√

2π
e(−

d2
2

2 )

[(
1
2 + r

σ2

)√
τ +

ln( B
E )

σ2√τ

]
+ E

TB
e((

1
2−

r
σ2 )ln(

B
E )−

(σ+ 2r
σ )

2

8 τ)
{[
− (2TC−τ)

√
τ

2
√

2π

(
1 + (ln( B

E ))
2

σ2τ
+

2rln( B
E )

σ2

−
(

σ2 −
( 2r

σ

)2
)

τ
4

)
+
(ln( B

E ))
4−(ln( B

E ))
2|ln( B

E )|
4σ4
√

2πτ

]
e
(
−(ln( B

E ))
2/

2σ2τ
)

+
(ln( B

E ))
2
(|ln( B

E )|−1)
4σ3

[
rln( B

E )
σ2 −

(
σ2 −

( 2r
σ

)2
)

τ
8 − 1

]
er f c

(
|ln( B

E )|
σ
√

2τ

)}
+O

(
1

T2
B

)
Finally, Table 6 presents the vega values for our set of inputs. Not surprisingly, the

results mirror those of the other Greeks, with the PTP model values being lower than their
Black–Scholes counterparts.

Figures 7 and 8 illustrate the thetas for different option maturities and volatilities,
respectively.
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Table 6. Comparison of PTP vegas to Black–Scholes: strike price 80, risk-free rate 0.5%, bond maturity 20 years.

Volatility 15%

Option Maturity 0.25 Years Option Maturity 0.5 Years Option Maturity 1 Year

Bond Price PTP Black–Scholes PTP Black–Scholes PTP Black–Scholes

72 5.3239 5.7688 13.2655 13.3423 24.8610 24.0773
76 12.3032 12.4331 19.7749 19.7351 29.9482 29.5034
80 15.6359 15.9343 22.2208 22.5015 31.7286 31.7286
84 12.9213 13.0714 20.5244 20.5186 30.9206 30.5045
88 6.8675 7.2971 15.3781 15.4301 27.3902 26.6244

Volatility 20%

72 8.5109 8.7884 16.3433 16.3721 27.0008 26.4963
76 13.5092 13.6974 20.5392 20.6476 30.2736 30.0587
80 15.6286 15.9266 22.1999 22.4796 31.6670 31.6670
84 14.1929 14.4005 21.4398 21.5719 31.5097 31.3062
88 10.2028 10.4806 18.5209 18.5645 29.7817 29.2965

Volatility 25%

72 10.4378 10.6743 17.9003 17.9824 27.9662 27.6470
76 14.0918 14.3189 20.8875 21.0651 30.3834 30.2648
80 15.6185 15.9158 22.1708 22.4493 31.5816 31.5816
84 14.8086 15.0538 21.8605 22.0577 31.7404 31.6274
88 12.1349 12.3871 20.0960 20.2053 30.8716 30.5674
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6. Conclusions

We derive an asymptotic solution for call options on zero-coupon bonds, assuming a
stochastic process for the price of the bond, rather than for interest rates in general. Our
approach of modeling bond price dynamics has several important advantages: (1) we are
not restricted to assumptions regarding the relationship of interest rates in a term structure;
(2) modeling the bond dynamics is computationally simpler than many spot and term
structure models with multiple factors; and (3) the resulting solution to our formulation
is similar to the familiar Black–Scholes model for European-styled call options on stocks.
In our model, we constrain the stochastic process to have a pull-to-par effect and price
volatility scales by the remaining original duration of the bond. In this manner, our process
more realistically represents the price path of a bond than otherwise given by the geometric
Brownian motion proposed in Black and Scholes. The pull-to-par and dampening effect on
the volatility results in prices and Greeks that are below those of the Black–Scholes model,
in general.
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Appendix A. Derivation of Asymptotic Solution

Here, we derive the asymptotic solution to the PDE (8), subject to the initial and
boundary conditions (8a) and (8b).

The assumption is as follows: TB is much larger than TC (for example TB is 60 months
and TC is one month). We consider the solution as C(B, t; TB), and we look for a solution in
the following form (regular perturbation):

C(B, t; TB) = C0(B, t) +
1

TB
C1(B, t) +

1
T2

B
C2(B, t) + · · ·

So,
Ct = C0t +

1
TB

C1t +
1

T2
B

C2t + · · ·
CB = C0B + 1

TB
C1B + 1

T2
B

C2B + · · ·
CBB = C0BB + 1

TB
C1BB + 1

T2
B

C2BB + · · ·

Substituting in Equation (8), we have the following:

C0t +
1

TB
C1t +

1
T2

B
C2t + · · · = r

(
C0 +

1
TB

C1 +
1

T2
B

C2 + · · ·
)

−rB
(

C0B + 1
TB

C1B + 1
T2

B
C2B + · · ·

)
− 1

2 σ2B2
(

1− t
TB

)2
(

C0BB +
1

TB
C1BB +

1
T2

B
C2BB + · · ·

)
All of the terms independent of TB can be collected as follows:

C0t = rC0 − rBC0B −
1
2

σ2B2C0BB . . . (A1a)

All of the terms multiplied by 1
TB

can be collected as follows:

C1t = rC1 − rBC1B −
1
2

σ2B2C1BB + σ2B2tC0BB . . . (A1b)

All of the terms multiplied by 1
T2

B
can be collected as follows:

C2t = rC2 − rBC2B −
1
2

σ2B2C2BB + σ2B2tC1BB −
1
2

σ2B2t2C0BB . . . (A1c)

The two conditions (8a) and (8b) therefore become the following:

C0(B, TC) = Max(B− E, 0), C1(B, TC) = 0, C2(B, TC) = 0, . . .
C0(0, t) = 0, C1(0, t) = 0, C2(0, t) = 0, . . .

(A2)

The solution to Equation (A1a) with the conditions C0(B, TC) = Max(B− E, 0) and
C0(0, t) = 0 is the same as that for Black–Scholes, as follows:

BN(d1)− e−r(TC−t)EN(d2)

Treasury.Gov
https://www.treasury.gov/resource-center/data-chart-center/interest-rates/pages/textview.aspx?data=yield
https://www.treasury.gov/resource-center/data-chart-center/interest-rates/pages/textview.aspx?data=yield
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where N(z) is defined as follows:

N(z) =
1√
2π

∫ z

−∞
e−

w2
2 dw (A3)

d1 is defined as follows:

d1 =

{
ln
(

B
E

)
+
(

r + 1
2 σ2
)
(TC − t)

}
σ
√

TC − t
(A4)

and d2 is defined as follows:
d2 = d1 − σ

√
TC − t (A5)

Next, we turn to Equation (A1b) with the conditions C1(B, TC) = 0 and C1(0, t) = 0:
First, we make the following change of variables in Equation (A1b):

t = TC −
τ

1
2 σ2

, B = Eex, C1 = Ev1(x, τ), and C0 = Ev0 (A6)

The PDE for v1(x, τ) is (after letting α = 2r
σ2 ) as follows:

v1τ = v1xx + (α− 1)v1x − αv1 − 2
(

TC −
2τ

σ2

)
(v0xx − v0x ) (A7)

In order to eliminate the v1 and v1x terms in Equation (A7), we let the following hold:

v1 = e(
1−α

2 x− 1
4 (1+α)2τ)u1(x, τ) (A8a)

v0 = e(
1−α

2 x− 1
4 (1+α)2τ)u0(x, τ) (A8b)

The PDE for u1(x, τ) is:

u1τ = u1xx − 2
(

TC −
2τ

σ2

)(
u0xx − αu0x +

α2 − 1
4

u0

)
(A9)

where u0(x, τ) is the Black–Scholes solution presented earlier after all the substitutions
above, i.e., the following:

u0(x, τ) = e(
(α+1)

2 x+ (α+1)2
4 τ)N(d1

∗)− e(
(α−1)

2 x+ (α−1)2
4 τ)N(d2

∗)

where

d1
∗ =

x√
2τ

+

√
τ

2
(α + 1)d2

∗ = d1
∗ −
√

2τ

Taking the derivatives of u0(x, τ) with respect to x in the term
(

u0xx − αu0x +
α2−1

4 u0

)
in Equation (A9) and simplifying, we find the following:

u0xx − αu0x +
α2 − 1

4
u0 =

1
2
√

πτ
e(
−x2
4τ )

Therefore, Equation (A9) becomes the following:

u1τ = u1xx −
TC

2
√

πτ
e(
−x2
4τ ) +

2
σ2

√
τ

π
e(
−x2
4τ ) (A10)

From the initial condition, C1(B, TC) = 0, in (A2) we find the initial condition for
u1(x, τ) as u1(x, 0) = 0.

Now, we take the Laplace transform U1(x, s) = L{u1(x, τ)}.
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We note that the following formulas and properties will be useful:

Ls[τu(x, τ)] = − ∂

∂s
L[u(x, τ)] (A11a)

L
[

erfc
(

k
2
√

τ

)]
=

1
s

e−k
√

s for k ≥ 0 (A11b)

L
[

1√
πτ

e(−
k2
4τ )

]
=

1√
s

e−k
√

s f or k ≥ 0 (A11c)

L
[

2
√

τ

π
e(−

k2
4τ ) − k er f c

(
k

2
√

τ

)]
= s(

−3
2 )e−k

√
s f or k ≥ 0 (A11d)

Taking the Laplace transform of Equation (A10), using (A11b)–(A11d) and simplifying,
we obtain the following:

U1xx − sU1 =

(
− |x|

σ2s
+

TC√
s
− 1

σ2s(
3
2 )

√
τ

π

)
e−|x|

√
s (A12)

For x > 0, we have the following solution form for (A12):

U1 = A1ex
√

s + B1e−x
√

s + U1p

where U1p is a particular solution to (A12).
In this case U1p is the following:

U1p =

[
x2

4σ2s(
3
2 )

+

(
3

4σ2s2 −
TC
2s

)
x
]

e−x
√

s

The boundedness of U1(x, s) as x → ∞ requires A1 = 0. So, we have the following:

U1 = B1e−x
√

s +

[
x2

4σ2s(
3
2 )

+

(
3

4σ2s2 −
TC
2s

)
x
]

e−x
√

s

Similarly, for x < 0 we have the following solution form for (A12):

U1 = A2ex
√

s +

[
x2

4σ2s(
3
2 )

+

(
3

4σ2s2 −
TC
2s

)
x
]

ex
√

s

The continuity of U1(x, s) at x = 0 gives B1 = A2.
The continuity of U1x at x = 0 gives B1 = 3

4σ2s(5/2) −
TC

2s(3/2) .
Therefore, we have the following:

U1(x, s) =
(

3
4σ2s(5/2)

− TC

2s(3/2)

)
e(−|x|

√
s) +

[
x2

4σ2s(3/2)
+

(
3

4σ2s2 −
TC
2s

)
|x|
]

e(−|x|
√

s) (A13)

Since

− d
ds

(
1
s

)
e(−|x|

√
s) =

1
s2 e(−|x|

√
s) − 1

s
e(−|x|

√
s)
(
−|x| 1

2
√

s

)
we can solve for the inverse Laplace transform of 1

s2 e(−|x|
√

s), using (A11a), (A11b) and
(A11d) listed earlier, to obtain the following:
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L−1
[

1
s2 e(−|x|

√
s)
]
= τ er f c

(
|x|

2
√

τ

)
− |x|

√
τ

π
e(−

x2
4τ ) +

x2

2
er f c

(
|x|

2
√

τ

)
(A14)

Similarly, since

− d
ds

(
1

s(3/2)
e(−|x|

√
s)
)
=

3
2

1
s(5/2)

e(−|x|
√

s) − 1
s(3/2)

e(−|x|
√

s)
(
−|x| 1

2
√

s

)
we use (A11a), (A11d) and (A14), and then simplify to obtain the following:

L−1
[

1

s(
5
2 )

e(−|x|
√

s)
]
=

4τ + x2

3

√
τ

π
e(−

x2
4τ ) − 6|x|τ + x2

6
er f c

(
|x|

2
√

π

)
(A15)

Applying (A11b), (A11d), (A14), and (A15) to the inverse Laplace transform of Equa-
tion (A13) and then simplifying we find the following:

u1(x, τ) =
( τ

σ2 − TC

)√ τ

π
e(−

x2
4τ ) +

x2

8σ2 (|x| − 1) er f c
(
|x|

2
√

π

)
(A16)

Now, the function values of C1(B, t) can be computed as follows:
Given B and t, we compute τ and x using (A6), i.e., the following:

τ =
σ2

2
(TC − t), and x = ln

(
B
E

)
then u1(x, τ) can be calculated using (A16), and v1(x, τ) from (A8a). Finally, C1(B, t) is
available using (A6), i.e., C1(B, t) = Ev1(x, τ).

Therefore, our final perturbation solution,

C(B, t; TB) = C0(B, t) +
1

TB
C1(B, t) + O

(
1

TB2

)
becomes the following:

BN(d1)− e−r(TC−t)EN(d2) +
1

TB
Ee((

1−α
2 )ln( B

E )−
(1+α)2σ2

8 (TC−t))(M) + O
(

1
TB2

)
(A17)

where M is defined as follows:

M =

−
(

TC + t
2

)√
σ2(TC − t)

2π
e
− (ln( B

E ))
2

2σ2(TC−t) +

(
ln
(

B
E

))2

8σ2

(∣∣∣∣ln(B
E

)∣∣∣∣− 1
)

er f c


∣∣∣ln( B

E

)∣∣∣√
2σ2(TC − t)




and N(z), d1, and d2 are defined in (A3)–(A5), respectively.
α is defined as follows:

α =
2r
σ2

and erfc(z) is defined as follows:

er f c(z) =
2√
π

∫ ∞

z
e−y2

dy
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