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Abstract: The execution time that takes to perform numerical simulation of a chaotic oscillator
mainly depends on the time-step h. This paper shows that the optimization of chaotic oscillators
can be enhanced by estimating the highest / in either one-step or multi-step methods. Four chaotic
oscillators are used as a case study, and the optimization of their Kaplan-Yorke dimension (Dy)
is performed by applying three metaheuristics, namely: particle swarm optimization (PSO), many
optimizing liaison (MOL), and differential evolution (DE) algorithms. Three representative one-step
and three multi-step methods are used to solve the four chaotic oscillators, for which the estimation of
the highest & is obtained from their stability analysis. The optimization results show the effectiveness
of using a high h value for the six numerical methods in reducing execution time while maximizing
the positive Lyapunov exponent (LE+) and Dy of the chaotic oscillators by applying PSO, MOL,
and DE algorithms.

Keywords: chaotic oscillator; time-step; one-step method; multi-step method; particle swarm opti-
mization (PSO); many optimizing liaison (MOL); differential evolution (DE); Kaplan-Yorke dimension;
Lyapunov exponent

1. Introduction

Chaotic oscillators are dynamical systems modeled by nonlinear ordinary differential
equations (ODEs), in the form of initial value problems: x = f(x), solved by the initial con-
dition x(tp) = x¢. As already known, the main characteristic of a chaotic system relies on its
high sensitivity to initial conditions, meaning that a very small variation causes significant
differences in the system’s response, thus causing random and disorderly behavior [1].
The term “chaos” is very often associated with disorder and unpredictability, so that chaotic
oscillators are good candidates to develop cryptographic applications [2,3], design random
number generators [4,5], and secure communication systems [6-8], among others.

The biggest challenge when solving nonlinear ODEs that model chaotic behavior
relies on choosing both an appropriate numerical method and the selection of the highest
step-size h that reduces execution time. This matters when optimizing characteristics of
chaotic oscillators because a small 1 increases the execution time exponentially. On the
one hand, choosing the highest / is not a trivial task; in fact, one must analyze the stability
of the numerical method being applied to guarantee convergence to the solution. On the
other hand, among the available one-step and multi-step numerical methods, if they are
explicit or implicit, one must also choose the method executing the lowest execution time to
increase the throughput and operating frequency in a chaotic system. For instance, in linear
dynamical systems, /i can be directly determined from the evaluation of the eigenvalues,
which are related to the natural frequencies of the system. However, in non-linear dynamic
systems, the problem is more complex, and one must analyze both the eigenvalues and the
stability of the numerical method.
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Recently, it has been demonstrated that both stochastic nature-inspired metaheuristics
and deterministic global optimization methods are competitive and surpass one another in
dependence on the available budget of function evaluations [9,10]. For instance, the authors
in [11] applied a DIRECT-type technique [12] to a black-box global optimization problem
with expensive function evaluations, which is challenging for numerical methods due to
the practical limits on computational budgets often required by intelligent systems. Both
DIRECT-type techniques and metaheuristics can be applied to optimize characteristics of
chaotic oscillators, such as maximizing the positive Lyapunov exponent (LE+) or Kaplan-
Yorke dimension (Dgy), where the challenge is solving the mathematical model multiple
times until a minimum error is accomplished or a desired number of generations is executed.
Therefore, the number of calls to the model and the time required to solve it are the main
issues. In this manner, to reduce the execution time, we propose estimating the maximum
h of a numerical method. The case study includes the application of three representative
one-step and three multi-step numerical methods in order to solve four well-known chaotic
oscillators. whose LE+- and Dgy are maximized by applying three metaheuristics, namely,
the particle swarm optimization (PSO), many optimizing liaison (MOL), and differential
evolution (DE) algorithm. These metaheuristics were chosen because they have been
successfully applied to optimize chaotic oscillators, such as in [13], where PSO is applied
to solve the parameter identification problem of a fractional-order discrete chaotic system.
Additionally, in [14], PSO is applied to chaotic systems formulating the problem as a
multi-dimensional one, and in [15], PSO is applied again to optimize the parameters of
the Rossler chaotic system. More recently, PSO has been used to explain a bifurcation
parameter detection strategy, as shown in [16], and MOL and DE algorithms have also been
applied to optimize integer/fractional-order chaotic systems in [17]. In this manner, PSO,
MOL, and DE algorithms are applied herein using the same population and generations,
in which LE+ and Dgy are evaluated by the software time-series analysis (TISEAN) [18].

The rest of the manuscript is organized as follows: Section 2 shows four well-known
chaotic oscillators taken as a case study, namely: Lorenz, Rossler, Lii, and an autonomous
chaotic system introduced in [19]. Section 3 describes the six numerical methods applied to
solve the four chaotic systems. Section 4 details the stability region of the six numerical
methods and the computation of eigenvalues to estimate the highest /. Section 5 describes
PSO, MOL, and DE algorithms. Section 6 describes the maximization of LE+ and Dgy
by applying PSO, MOL, and DE to the four chaotic oscillators. A discussion on the
optimization results is given in Section 7. Finally, the conclusions are summarized in
Section 8.

2. Chaotic Oscillators

Among the huge plethora of chaotic/hyperchaotic oscillators, which are classified
according to their dynamical characteristics as self-excited and hidden attractors, this
section shows four well-known models. The most well-known chaotic oscillator is the one
introduced by Lorenz, whose mathematical model is given in (1) [20]. In this oscillator,
chaotic behavior is observed by setting o = 10, p = 28, and B = 8/3, with initial conditions
xp = Yo = zo = 0.1. Figure 1 shows the phase-space portraits of the Lorenz chaotic system.

£ = oly—x)
y=x(p—z)—y €]
Z=xy— Pz

The second oscillator considered herein is the Rossler one, whose mathematical model
is given in (2) [21]. The chaotic behavior is observed by settinga = b = 0.2 and c = 5.7,
with initial conditions xyp = yp = zp = 1. The phase-space portraits among its state
variables are shown in Figure 2.
X=-y—z
y=x+(ay) @)
z=b+z(x—¢)
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(c) Plane y-z (d) Plane x-y-z

Figure 1. Phase-space portraits of the Lorenz chaotic system given in (1).

25

(c) Plane y-z (d) Plane x-y-z

Figure 2. Phase-space portraits of the Rossler chaotic system given in (2).
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The third case study is the Lii chaotic system given in (3) [22]. In this oscillator,
the nonlinear function is approximated by a piecewise-linear (PWL) one, which is known
as a saturated non-linear function (SNLF), as described in (4). This chaotic system has the
advantage of adding more PWL functions to generate multi-directional and multi-scroll
chaotic attractors [17].

xX=y
j=z 3)
z=—ax —by—cz+df(x)

-k if  x<bp
flx) =< mx if —bp<x<bp 4)
k if  x>bp

The Lii chaotic system generates chaotic behavior when the coefficients are set to
a =b=c=dy = 0.7, and using initial conditions xg = yg = zp = 0.1. In this paper,
the PWL functions has a saturation level of k = 5 and break points of bp = 1, so that the
slope of the SNLF can be evaluated as m = k/bp. The phase-space portraits are shown in
Figure 3.

(b) Plane x-z

(c) Plane y-z (d) Plane x-y-z

Figure 3. Phase-space portraits of the Lii chaotic system given in (3).

The fourth chaotic system is the autonomous chaotic oscillator described in (5) and
introduced in [19]. This oscillator has a quadratic term x2, and the chaotic behavior arises by
settinga =1, b = 1.1, and ¢ = 0.42, and using initial conditions xp = 0.1 and yp = zg = 0.
The phase-space portraits are shown in Figure 4.

xX=y
j=2 5)
z=—ax—by—cz—x?
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Figure 4. Phase-space portraits of the autonomous chaotic oscillator given in (5).

3. Numerical Methods

Solving an initial value problem requires the use of numerical methods, which in
general can be of a one-step or multi-step type [23]. In both cases, the mathematical model
is solved by choosing an appropriate /1 with the aim of reducing execution time. Besides,
as shown in the following section, / is related to the stability of the numerical method [24].

As mentioned in [25], the main objective of a numerical method is to provide an
acceptable approximation of the behavior of a dynamical system in continuous-time.
However, as there exist a huge number of methods, this section shows the application of
three representative one-step and three multi-step methods. Some of them are explicit, and
others implicit. In the former case, the method requires only past values at each iteration n
to update the current value at # + 1, while the implicit method updates the value n + 1 at
the same iteration n + 1, so that they require an explicit method to estimate f; ;.

The simplest one-step explicit method is known as the Forward Euler (FE), named
in honor of Leonhard Euler. The iterative equation is given in Table 1. On the other hand,
the simplest one-step implicit method is known as Backward Euler (BE), whose iterative
equation is given in Table 1, and where the requirement of an additional calculation to
approximate the problem solution at iteration n + 1 can be clearly appreciated. Therefore,
the Forward Euler method can be applied first to evaluate f(x,41,t,+1), and afterwards,
one can obtain x,,1. Among the one-step methods, the Runge-Kutta family is quite
important, and is very often used to simulate chaotic oscillators. The fourth-order Runge-
Kutta (RK4) method is given in Table 1, and it was developed around 1900 by Carl David
Tolm Runge and Martin Wilhelm Kutta [26]. RK4 is the most widely used due to its high
accuracy, but when it is implemented on digital hardware, it requires more resources than
FE and BE methods, as already shown in [23].

The most well-known explicit multi-step methods are called Adams-Bashforth, and the
implicit multi-step ones are called Adams-Moulton algorithms. Similar to the one-step
methods, an implicit multi-step one finds the solution of an initial value problem using
an explicit method from the Adams-Bashforth family to estimate f(x,11). Another type
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of multi-step method is focused on solving stiff problems, and are known as Gears algo-
rithms [24]. Table 2 shows three multi-step methods that are used herein to solve the four
chaotic oscillators given in the previous section.

Table 1. One-step methods.

Method Equation
Forward Euler (FE) Xpi1 = Xn + Hf(xn, )
Backward Euler (BE) Xpi1 = Xn +hf(Xpa1,the1)

h
Xy41 = X + g(kl + 2kp + 2k3 + ky)

ki = f(;lfnrtn) -

Runge-Kutta 4 (RK4) ky = f(xn+ =, ta + 71)
Pk

ks = f(xn + Ertn + 7)

ky = f(xn +h, ty + k3h)

Table 2. Multi-step methods.

Method Equation

h
Xpi1 = Xn + @(4277f(xn,tn) —7923f (xy—1,tn—1)
Adams-Bashforth 6 9982 (X2, ty—2) — 7298 F (X3, tn_3)
+2877f (xp—a,tn—a) — f(Xu—5,tu—5))

h
Adams-Moulton 6 Xnt+1 = Xn 1440 (475f (xp41) + 1427 (xn) — 798 (x—1)
+482f (xy—2) — 173f (xy—3) +27f (x4—4))
4 1 2
Gear 2 (G2) Xp+1 = 3% = 3 ¥n—1 + h(gf(x,,+1,tn+1))

4. Stability Regions and Estimation of h

The stability region of a numerical method can be obtained by solving a first-order
linear equation of the form iy’ = f(x,y), where f(x,y) = —A, for which A is an eigenvalue.
From the stability analysis, a numerical method is said to be numerically stable if the
numerical error is not amplified, but it decreases with the evolution of the iterations. This
behavior can be identified in the one-step methods known as Backward Euler and Trape-
zoidal. The numerical methods that do not have this property are said to be numerically
unstable, and this behavior can be observed in Forward Euler in specific cases.

Let us solve the initial value problem of the form ¥ = —Ax, applying Forward
Euler, Backward Euler, and Trapezoidal methods. Applying Forward Euler, one gets the
iterative formulae given in (6), and applying Backward Euler, one gets (7), and applying
the Trapezoidal method, one gets (8).

Xpp1 = (1 —hA)xy, (6)
X
Xp41 = Hﬁ' (7)
1A
X1 = ——25 ®)
1+ >

To show that Forward Euler is numerically unstable, the iterations beginning with the
initial condition xy become:

x1 = (1—Ah)xg
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Im [hA]

Im [hA]

Xy = (1 — Ah)xl = (1 — /\h)ZXQ

X, = (1 —Ah)"xq

Therefore, if (1 — Ah) > 1, then x, — 00 as 1 — oo; consequently, for the Forward Euler
to be numerically stable, it must be necessary that (1 — Ah) < 1or0 < Ah < 2. In this case,
if A is a real and positive number, then i1 < 2/A.

The Backward Euler and Trapezoidal methods are numerically stable, because from (7)
and (8), one can observe that x, — 0 as 1 — oo, and this ideally occurs regardless of .
The stability regions of FE, BE, and RK4 are shown in Figure 5. A similar analysis is performed
for the multi-step methods, so that the stability regions of Adams-Bashforth 6, Adams-Moulton
6, and Gear 2 are shown in Figure 6. Looking at these figures, one can see that if the eigenvalues
of a function increase, then h must decrease, and vice versa.

4 4

Im [hA]
o
Im [hA]

4 3 2 -1 1

0
Re [hA]

3 4 -4 -3 -2 -1 1 2 3 4 -4 -3 -2 -1 1 2 3 4

0 0
Re [hA] Re [hA]

(a) Forward Euler (b) Backward Euler (c) Runge-Kutta 4

Figure 5. Stability regions of one-step methods listed in Table 1.

0 N -

Im [hA]
o

Im [hA]
o

-6 -4 -2 0
Re [hA]

(a) Gear 2

2

IS
>

"4 08 06 04 02 0 02 04 06 08 1 -4 -3 2 - o 1 2 3 4
Re [hA] Re [hA]

(b) Adams-Bashforth 6 (c) Adams-Moulton 6

Figure 6. Stability regions of multi-step methods listed in Table 2.

Analyzing the stability regions of the numerical methods helps to verify that the
eigenvalues are inversely related to the value of . In this manner, one must compute the
eigenvalues (A) of a dynamical system to estimate an / that guarantees stability. Taking
the Lorenz system given in (1) as an example, it has three equilibrium points: EP; =
(8.4852,8.4852,27), EP, = (—8.4852, —8.4852,27) and EP3 = (0,0,0). The Jacobian matrix
is given in (9), which must be evaluated at the three equilibrium points EP* = (x*, y*,z*)
to obtain the eigenvalues listed in (10). Table 3 shows the Jacobians, equilibrium points,
and eigenvalues of the chaotic oscillators described in Section 2.

—0 o 0
](x*,y*,z*) - p - Z* 71 7x* (9)
y- Xt =B
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EPy:  Aqas) = (—13.8545,0.0939 + —/10.1945)
EPy: Mgz = (—13.8545,0.0939 4 —j10.1945) (10)
EPy:  Aqgs) = (—2.6667, —22.8277,11.8277)

Table 3. Jacobian, Equilibrium points, and Eigenvalues of the chaotic systems given in (1)-(5).

System Jacobian Equilibrium Points Eigenvalues
—0 o 0 (—8.4852,—8.4852, 27) —13.8545,0.0939 + —;10.1945
Lorenz p—z* -1 —x* (8.4852,8.4852,27) —13.8545,0.0939 & —;10.1945
y- o B (0,0,0) —2.6667, —22.8277,11.8277
Réssler (1) _al _01 (0.0070,—0.0351,0.0351) —5.6869,0.0970 £ —j0.9951
0 xf— (5.6929,—28.4648,28.4648) 0.1929,0.0000045 £ —j5.4280
0o 1 o0 .
Lii 0 o0 1 (0,0,0) 1.0743, —0.8872 &+ —j1.3488
4 —b —¢ (1,0,0) —0.8480,0.0740 + —j0.9055
0 1o (0,0,0) 0.7451,0.1625 £ —j1.1471
Autonomous Chaotic System _zx(: . _Ob _1C (=1,0,0) 05897, —0.5048 + —1.2002

After computing the eigenvalues, one can evaluate the stability conditions, so that
FE’s stability is guaranteed when 0 < h < 2/A, where A is the largest eigenvalue of the
system, that is, A = 22.8277. Substituting A in the inequality, one finds that FE is stable for
h < 0.0876. However, in practice, this h value varies due to local and round-off errors of
the methods. For instance, the local error is defined as the error that occurs at t = .1,
assuming that x, is the initial condition; whereas a total error is defined as the current
accumulated error from t = 0 to t = ¢,,, 1, with initial condition xg. In [27], these errors are
described as local and global, where the local error by truncation (LTE) is first calculated,
and then some form of stability is used to show that the global error can be limited in LTE
terms. The global error refers to the approximated solution minus the exact solution error,
and LTE refers to the error produced by the finite difference derivative approximation,
and is therefore something that can be easily estimated using Taylor series expansions.
Obviously, these are not the unique errors in numerical methods: according to [28,29],
there are various sources of errors, and some of them are errors in the input data, rounding
errors during calculations, simplifications in mathematical models, and even human errors.
Besides, the stability analysis helps to estimate the highest & from which one can test lower
values after observing the desired chaotic behavior.

5. PSO, MOL, and DE Algorithms
5.1. Particle Swarm Optimization Algorithm

The particle swarm optimization (PSO) algorithm is a sub-field of computational
intelligence belonging to the field of swarm and collective intelligence. Similar swarm
algorithms are the Ant Colony Optimization [30] and Artificial Bee Colony [31]. PSO is
based on a mathematical model developed by Kennedy and Eberhart in 1995 [32], which
describes the social behavior of birds and/or fish through a model that is based on the
basic principles of self-organization that can be used to describe complex systems, as for
the chaotic oscillators. The population is based on particles forming a search group for the
purpose of finding food, and generally, each individual continues his search according to
his own experience and the experience of the whole group.

The main idea in PSO begins by initializing a set of particles in a search space, given a
favorable initial position, assigning an initial velocity vector, and allowing the particles to
change their position and velocity at each iteration according to some random parameters.
The algorithm updates the position and velocity of the particles that follow the particle with
the best result associated to their social behavior. Each particle remembers its best position
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and recognizes if its current position is the best among the other particles, that is, the global
best. Mathematically, the update equations are given in (11) to describe the velocity and (12)
to describe the position, at iteration ith, respectively. rand() is a function that returns some
random real numeric values between 0 and 1; py,g; is the best position of the particle and gy,
represents the best global position among all the particles. c; and ¢, are two parameters that
represent the confidence of the particle itself, named “cognition” and “swarm”.

vi(t +1) = v;(t) + crrand () (ppest (t) — pi(t)) 4 corand () (gpest (£) — pi(t))  (11)
pi(t+1) = pi(t) +o;(t+1) (12)

5.2. Many Optimizing Liaisons Algorithm

MOL is a simplified version of PSO proposed by Kenedy [33], but according to [34],
after some research, it was named Many Optimizing Liaisons. Basically, MOL is based on
eliminating the best-known position of the particle pbest in (11), which updates to (13):

vi(t+1) = wo;(t) + corand () (gpest (t) — pi(t)). (13)

As shown in [35], MOL is faster and shorter than PSO, so that the selection of parame-
ters is simpler compared to PSO. In addition, MOL is a purely social algorithm tending to
follow the best swarm’s particle (gbest). The w in (13) is the inertia weight that maintains a
balance between global and local search, so that the exploration process of MOL quickly
finds an optimum solution with a lesser number of iterations. In this paper, w and ¢, are
set to —0.31 and 2, respectively.

5.3. Differential Evolution Algorithm

DE is a simple and effective evolutionary algorithm inspired by the theory of the
evolution of species proposed by Darwin. DE is used to solve global optimization problems
in a continuous domain. According to [36], DE works in two phases: initialization and
evolution. In the first phase, the population is randomly generated, and afterwards, it
goes through mutation, crossover, and selection processes, which are repeated until a stop
criterion is met. During the initialization, the population is saved into a D-dimensional
vector x]G = {xfj, xgj,...,xg,j} for j = {1,2,...,Np}, where Np is the population’s
size and G denotes the maximum number of generations. In the evolution phase, new
individuals are generated by performing mutation (14), crossover (15), and selection (16)
operations. In the mutation process, a mutant vector VjG is generated for each target vector

X]G in generation G with the following form:
V& = XG +Fx (X5 —X3), (14)

where F is the scale factor with a value between 0 and 1; and 71,72,73 € {1,2,...,N p} are
three different random scalars. The crossover process is performed using the target vector,
mutant vector, and a crossover probability Cr, whose value is set between 0 and 1 in order
to generate a trial vector U]G = {uf i ug e ug’j}, which is generated as:

v?.  ifrand; < Cr
G __ 1, ] =
Hij = {xlcj otherwise (15)

where i € {1,2,...,D}. Finally, in the selection process, the target and trial vectors are
compared according to their fitness value, and the best of them survives for the next
generation. The selection process is performed by (16).

JGH _ {U;? if £(US) < £(XF)

16
J X]G otherwise (16)
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6. Optimization of LE+ and Kaplan-Yorke Dimension
6.1. Lyapunov Exponents and Kaplan-Yorke dimension

The high sensitivity to initial conditions of a chaotic oscillator is appreciated by
analyzing two orbits produced by two quite close and different initial values. The orbits
separate exponentially over time, causing the orbits to separate exponentially too. This
phenomenon is quantified by evaluating the positive Lyapunov exponent (LE+) [37],
which describes local instability in a chaotic motion. The existence of an LE+ means that
there exists a high probability that the system has chaotic behavior [38].

For a chaotic oscillator that has three ODEs, like the systems described in Section 2, it
has three Lyapunov exponents, where one must be positive, one zero, and one negative.
The ordering of the Lyapunov exponents (LE) makes it possible to evaluate the Kaplan-
Yorke dimension through (17), where k is an integer such that the sum of (LE;) is not
negative. The LE+ and Dgy shown in Table 4 for the four chaotic oscillators were evaluated
using TISEAN [18], whose chaotic time series were generated by applying the six numerical
methods described in Tables 1 and 2, for the state variable x. One can also see the execution
time of the numerical method (TimeNumMet) and the one taken by TISEAN:

Yk LE

DKY =k+
LExt

(17)

6.2. Maximizing LE+4 and Dgy by PSO, MOL and DE Using the Highest h

The optimization of chaotic oscillators takes a long execution time, mainly associated
to the numerical method and TISEAN. In this paper, the six methods described in Section 3
are applied to the four chaotic oscillators presented in Section 2. As already shown in
Section 4, the selection of an appropriate & depends on the method’s stability region. In this
manner, the highest /1 for each method and for each chaotic oscillator is given in Table 5.
As one can see, both TISEAN and the numerical method take less execution time. In all
cases, the highest & is allowed by Runge Kutta 4. However, RK4 requires more additional
calculations compared to the Adams-Moulton method, which allows an acceptable high &
value. In optimizing LE+ and Dyy, the method that better satisfies the trade-off between
the number of calculations and the highest /i is Gear of order 2, while the Backward Euler,
in general, is the method that accepts the smallest . Another issue is that, as & increases,
Dxy decreases, so that we solve this challenge by optimizing Dgy by varying the design
parameters of the four chaotic systems by applying the PSO, MOL, and DE algorithms.
Thus, the pseudo-codes of PSO and DE are given in Algorithms 1 and 2, respectively. In all
cases, the constraint is guaranteeing the highest /.

As one can observe from Tables 4 and 5, the longest execution time is required by
TISEAN. Due to this limitation, some restrictions were established to determine that the
system has unstable behavior. One of the characteristics that determines this instability is
based on analyzing the eigenvalues of the chaotic oscillator. According to [39], if there are i
and j such that Re[Ai] < 0 and Re[Aj] > 0, and if the system has two complex eigenvalues
and one real, then the system is said to be unstable.



Mathematics 2021, 9, 1938 11 of 15

Table 4. LE+ and Dy of (1)—(5) using a small .

One-Step Method Multi-Step Method
FE BE RK4 G2 AB6 AM6
h 0.01 0.001 0.01 0.01 0.001 0.01
LE+ 0.0707 0.0604 0.0503 0.0501 0.0486 0.0460
Lorenz Dky 3 3 3 3 3 3
TimeNumMet(s) 1.16 16.57 3.06 2.69 45.38 4.36
TimeTISEAN(s) 879.68 36.953 789.79 819.92 101.204 788.99
h 0.01 0.01 0.01 0.01 0.01 0.01
LE+ 0.3112 0.2443 0.2405 0.2391 0.1900 0.2409
Rossler Dgy 2.7786 2.7927 2.7588 2.7518 2.7362 2.7374
TimeNumMet(s) 1.17 1.52 3.11 1.96 4.45 4.15
TimeTISEAN(s) 626.17 700.56 658.64 640.1 648.62 646.63
h 0.01 0.01 0.01 0.01 0.01 0.01
LE+ 0.0800 0.0939 0.1062 0.0862 0.1020 0.0738
Lii Dgy 2.8915 2.7568 2.8744 2.9039 2.8879 2.9289
TimeNumMet(s) 1.22 1.59 3.17 2.26 4.73 4.53
TimeTISEAN(s) 596.02 638.57 600.47 614.01 585.01 597.74
h 0.001 0.01 0.01 0.01 0.01 0.01
LE+ 0.2688 0.0145 0.0090 0.0174 0.0122 0.0088
Autonomous Chaotic System Dky 2.9047 2.8336 2.6598 2.7710 2.7374 2.6427
TimeNumMet(s) 11.84 1.57 3.09 1.79 3.92 4.79
TimeTISEAN(s) 26.405 392.06 366.67 360.04 362.61 367.65

Table 5. LE+ and Dy of (1)—(5) using the highest i allowed by each numerical method.

One-Step Method Multi-Step Method
FE BE RK4 G2 AB6 AMe6
hmax 0.0245 0.0020 0.1070 0.0600 0.0046 0.057
LE+ 0.0380 0.1232 0.0687 0.0886 0.0462 0.0727
Lorenz Dgy 2.1009 3.0640 2.0660 2.2256 3.7000 2.3617
TimeTISEAN(s) 670.96 64,901.53 30.33 109.99 14,498.11 153.18
TimeNumMet(s) 0.43 7.69 0.36 0.29 8.79 0.74
hmax 0.0894 0.0800 0.2399 0.0900 0.0101 0.1300
LE+ 0.2346 0.2475 0.0204 0.0215 0.2133 0.0881
Rossler Dgy 2.3909 2.6866 2.0439 2.0903 2.7676 2.3724
TimeTISEAN(s) 138.15 109.95 28.34 95.59 3693.74 53.98
TimeNumMet(s) 0.11 0.18 0.13 0.18 3.72 0.42
hmax 0.1300 0.0850 1.5000 0.9000 0.0770 0.8000
LE+ 0.0177 0.0181 0.1550 0.1621 0.0372 0.1518
Li Dgy 2.1805 2.1839 2.0195 2.2013 2.0276 2.6127
TimeTISEAN(s) 1675.19 3134.73 37.95 79.91 3909.75 96.65
TimeNumMet(s) 0.83 1.97 0.23 0.21 5.55 0.61
hmax 0.0033 0.0260 1 0.1633 0.0981 0.1926
LE+ 0.1683 0.0028 0.0976 0.0104 0.0869 0.0152
Autonomous Chaotic System Dgy 2.9056 2.2115 2.2155 1.7764 1.9543 2.1544
TimeTISEAN(s) 5385 507.13 6.9 32.31 63.41 16.8

TimeNumMet(s) 2.95 0.88 0.05 0.16 0.62 0.24




Mathematics 2021, 9, 1938 12 of 15

Algorithm 1 PSO.

procedure PSO(nPop, MaxIt)
Generate a file including the numerical method and the chaotic oscillator (CO)
fori =1:nPopdo
Randomly initialize the design variables
Randomly replace the design variables into the file to evaluate LE4 and Dgy
Simulate the CO; in TISEAN
Get Dgy of the output file according to TISEAN
Update py,s; and gpes; particles checking the constraints
end for
forit =1: MaxIt do
fori =1:nPopdo
Copy particle i to p
Update the particle p velocity according to (11)
Update the particle p position (design variables) according to (12)
Replace the new design variables into the file
Simulate the CO,, in TISEAN
Compare particles i and p
Update py,s; and gpes; particles checking the constraints.
end for
end for
end procedure

Algorithm 2 DE.

procedure DE(G, Np, Cr, F, D)
Generate a file including the numerical method and the chaotic oscillator (CO)
fori=1:Npdo
Randomly initialize the design variables
Randomly replace the design variables into the file to evaluate LE+ and Dgy
Simulate the CO; in TISEAN
Get Dy of the output file according to TISEAN
Save the evaluation results for each individual

end for
forit=1:Gdo
fori=1:Npdo

Randomly select three different individuals x,, x; and x.
Generate the target vector according to (14)
Perform the crossover process according to (15)
Replace the new design variables into the file
Simulate the CO in TISEAN
Evaluate each individual according to (16)
Update the population by selecting the individuals with the greatest fitness value
end for
end for
end procedure

7. Feasible Solutions Provided by PSO, MOL and DE

To perform the Dyy optimization by applying PSO, MOL and DE, a number of gener-
ations equal to 100 was set for each metaheuristic, with a population equal to the number
of design parameters multiplied by ten. The search spaces for the design parameters of the
four chaotic oscillators were set as follows: 0.01 < ¢ < 30,0.01 < p < 50and 0.01 < <10
for Lorenz; 0.01 < a4,b < 10 and 0.01 < ¢ < 30 for Rossler; 0.01 < a,b,c,d; < 10 for Lii,
and 0.01 < a,b,c < 10 for the Autonomous Chaotic System.

The optimization results are given in Table 6, where it can be appreciated that the
execution time evaluating Dky and the one taken by TISEAN are enhanced, while keeping
the highest h allowed by the numerical method. In this manner, for the Lorenz and L
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oscillators, the Gear of order 2 was used to perform the optimization, while for Rossler and
the Autonomous Chaotic System, the Adams-Moulton of order 6 was applied. Analyzing
the data in Table 5 and comparing them with those given in Figure 7, it can be seen
that after the optimization process, the execution time for optimizing the Rossler and the
Autonomous Chaotic System oscillators is significantly enhanced.

Table 6. Results performed by PSO, MOL and DE for the four chaotic oscillators. Time(s) includes the time of the numerical

method and TISEAN.
PSO MOL DE
Oscillator N " N . A .
Design Parameters LE+ Dgy Time(s) Design Parameters LE+ Dgy Time(s) Design Parameters LE+ Dgy Time(s)

o =2.1146 o =1.8941 o=21144

Lorenz 0 =14.7896 0.0586 3.3108  66.45 0=13.3546 0.0622 3.4161 57.47 0 =12.8497 0.0671 3.4515 69.63
=0.2390 B =0.1357 B =0.2154
0.3233 a = 0.2000 a=0.2615

Rossler 0.6000 0.3191 2.81282 16.83 b =0.3984 0.2359 2.6491 432 b=0.5772 0.2931 2.8818 17.35
55711 ¢ =5.9857 ¢ =7.3303

a=3.2570 a=23.1472 a=291

. 2.6660 b =2.6865 b=2.3913

Lii 11400 03179 55029  79.14 c=1.0686 0.3181 5.8201  80.69 c=10533 0.3118 5.6715 83.53
2.3578 d1=2.6899 dl1=3.1351
a=1.7787 a=15159 a=1.3767

Autonomous Chaotic System b=1.8787 0.0251 2.2543  21.78 b=1.6162 0.0267 22567 21.82 b =1.4767 0.0073 23703 19.94
¢=0.3815 c=0.3916 c=0.3861

Figure 7 shows the evolution of the Dyy for each chaotic oscillator applying the PSO,
MOL and DE algorithms.

35 -
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Figure 7. Best global evolution of the Dy for the four chaotic oscillators applying PSO, MOL and DE.

8. Conclusions

Performing the simulation of a chaotic system is time-consuming, and reducing its
execution time is very challenging because there are many considerations that must be
accomplished in order to guarantee chaotic behavior. This paper showed that the execution
time is enhanced by estimating the highest /1 for each numerical method, which has been
performed by stability analysis of the methods. The case study included four well-known
chaotic oscillators, three presentative one-step methods, and three multi-step methods. We
demonstrated that one can maximize Dgy by applying metaheuristics, such as PSO, MOL
and DE algorithms, while maintaining the highest / for the numerical method. As a result,
the behavior of the three metaheuristics over 100 generations was shown in Figure 7, where
the best global evolution of Dy for the four chaotic oscillators applying PSO, MOL and DE
is appreciated. Finally, the optimization results listed in Table 6 confirmed the suitability
of applying metaheuristics in the optimization of chaotic systems, and the usefulness of
estimating the highest 1 to enhance execution time.
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