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Abstract: In this review paper, we discuss the relation between recent advances in the theory of
partial differential equations and their applications to quantum field theory on curved spacetimes. In
particular, we focus on hyperbolic propagators and the role they play in the construction of physically
admissible quantum states—the so-called Hadamard states—on globally hyperbolic spacetimes. We
will review the notion of a propagator and discuss how it can be constructed in an explicit and
invariant fashion, first on a Riemannian manifold and then on a Lorentzian spacetime. Finally,
we will recall the notion of Hadamard state and relate the latter to hyperbolic propagators via the
wavefront set, a subset of the cotangent bundle capturing the information about the singularities of
a distribution.
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1. Introduction

Partial differential equations or PDEs pervade both mathematics and physics so
exhaustively that it is hard to tell which of these two disciplines they more naturally pertain
to. It is thus only natural that PDEs serve as a channel of intensive transfer of knowledge
and innovation between mathematics and physics. However, the growing specialization of
research communities results in a divergence of terminology and perspectives, which begins
to impede the free exchange of ideas and methods. The mathematical physics community
therefore has the crucial role of catalyzing and managing the effective communication
between various mathematical and physical subjects, including those relying on partial
differential equations. The present expository paper is a modest contribution to these
efforts, and addresses an interplay between microlocal analysis of PDEs on manifolds on
one side and mathematically rigorous quantum field theory or QFT on the other side.

In general terms, the problem at hand is as follows. Solutions of PDEs on manifolds
play an important role in QFT by representing the quantum states of a physical system.
One of the remarkable difficulties of QFT is the fact that these solutions may not be
differentiable or even continuous, but are only assumed to be distributions (generalized
functions). The precise way in which these solutions fail to be infinitely differentiable—their
singularity structure—becomes an important criterion of how physically relevant a given
mathematical solution is. Constructing solutions with the desired singularity structure
in a more or less explicit manner, e.g., as certain integrals over the phase space, is a very
challenging mathematical task. Until recently, such constructions existed only locally, that
is, the integral representations of these solutions were valid only in small portions of the
entire space and time. There are, however, new developments in microlocal analysis that
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allow integral representations that are global, i.e., valid on the entire spacetime, and in the
present exposition we will describe the procedure of constructing the desired solutions as
global oscillatory integrals. This will be done step-by-step, beginning with propagators in
pure mathematics and ending with the construction of physically relevant quantum states
in QFT.

While PDEs come in all kinds and flavors, here we will be concerned only with very
special linear elliptic and hyperbolic PDEs with variable coefficients on compact curved
manifolds. More precisely, our subject of study will be Laplacian and wave-type second
order partial differential operators associated with Riemannian metrics on closed manifolds.
We will discuss the construction of approximate solutions to the Cauchy problem for these
wave-type operators as a single Fourier integral operator global both in space and time,
which is a rather new development in the subject, while the classical approaches to this
problem were guaranteed to work only locally. Then, we will switch the perspective from
integral operators to their kernels, viewed as distributions, and discuss the structure of
their singularities. Finally, we will touch upon the problem of the choice of an appropriate
vacuum state in quantum field theory in the presence of gravity and will show that it is
related to the singularity structure of certain distributions on the spacetime. Our global
construction of approximate solutions to the wave-type equation will conveniently yield
physically reasonable quantum states. All terms and constructions mentioned above that
go beyond the undergraduate mathematical curriculum will be duly defined or given
references in the sequel.

The mathematical language used in this paper will mostly come from spectral theory
and microlocal analysis, with elements of basic Riemannian and Lorentzian geometry
necessary to introduce the geometrical setting. In the discussion of quantum field theory,
reference to physics terminology will be inevitable, but we will do our best to remain rea-
sonably self-contained. The paper is intended for the professional mathematician, whether
a specialist in PDEs or mathematical QFT or neither, who is interested in a first acquaintance
with some of the most recent interactions between the two subjects. The reader is thus
assumed to be familiar with the standard upper-division undergraduate mathematical
curriculum, such as the basics of functional analysis and differential geometry.

The structure of the paper is as follows. In Section 2, we introduce propagators for
wave-type hyperbolic operators ∂2

t + D where D is an elliptic operator on a closed Rieman-
nian manifold. We first provide motivation through very basic examples in Section 2.1,
and then describe the construction of propagators with all details in Section 2.2. In Section 3,
the notion of a wavefront set is explained together with some of the crucial properties
and relevant facts. Finally, Section 4 introduces the basics of QFT in curved spacetimes.
Section 4.1 gives the generalities of Hadamard states, while their construction is accom-
plished in Section 4.2.

2. Hyperbolic Propagators

Let us begin with discussing wave-type hyperbolic equations and their solutions.
Here, we will be concerned with equations of the kind (∂2

t + D) f = 0, where D is a
time-independent second order positive elliptic operator (e.g., Laplacian, Schrödinger).
The methods we discuss will work for all such equations under mild conditions, but for
definiteness we will concentrate on the case D = −∆g + m2, where ∆g is the Laplace–
Beltrami operator associated to a Riemannian metric g, and m2 ≥ 0 is a constant. This
equation is referred to as the Klein–Gordon equation on ultrastatic spacetimes in physics,
and the parameter m is interpreted as the mass of rest of the quantum particle this equation
describes. The reader interested in more general wave-type equations may consult [1–4].

2.1. Motivation

The simplest hyperbolic equation commonly used for a first introduction to the subject
is the wave equation

∂2 f
∂t2 (t, x)− ∂2 f

∂x2 (t, x) = 0 (1)
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on the real line R, with initial conditions

f (0, x) = f0(x),
∂ f
∂t

(0, x) = f1(x), ∀x ∈ R,

which admits the d’Alembert solution

f (t, x) =
1
2
( f0(x + t) + f0(x− t)) +

1
2

x+t∫
x−t

f1(y) dy. (2)

Unfortunately, the above explicit formula does not have analogues in higher dimen-
sions, and the solution to the initial value (Cauchy) problem has to be found in less explicit
ways using the Euclidean Fourier transform.

Consider the wave equation on Rd

∂2 f
∂t2 (t, x)− ∆ f (t, x) = 0, (3)

with initial conditions

f (0, x) = f0(x),
∂ f
∂t

(0, x) = f1(x),

where

∆ :=
d

∑
α=1

∂2

∂(xα)2 .

Here xα, α = 1, . . . , d, are Euclidean coordinates in Rd.
The second order partial differential Equation (3) can be factorized as the product of

two first order pseudo-differential equations

∂2

∂t2 − ∆ =

(
−i

∂

∂t
+
√
−∆
)(

i
∂

∂t
+
√
−∆
)

, (4)

where
√
−∆ is defined via

√
−∆ f (x) :=

1
(2π)d

∫
Rd

eix·ξ |ξ| f̂ (ξ) dξ .

Using Fourier transform methods, it is easy to see that one can represent the solution
operators of the two equations corresponding to the factors on the RHS of (4) by means of
oscillatory integrals as

e±it
√
−∆ =

1
(2π)d

∫
Rd

ei(x−y)·ξ e±it|ξ| ( · ) dy dξ. (5)

On account of the symmetry under time reflection, in order to solve the wave equation,
it is sufficient to know the operator U(t) := e−it

√
−∆. The general solution to (3) can then

be written as

f (t, x) =
1
2
(U(t) + U(−t)) f0(x) +

i
2
(−∆)−1/2(U(t)−U(−t)) f1(x).

Of course, the above formula reduces to the d’Alembert solution (2) when d = 1.
This connection helps to see that U(t) can be viewed as a propagator, which in d = 1

simply shifts the argument by t, but acts in a more complicated way for d > 1.
When working on a Riemannian manifold, the wave equation becomes a partial

differential equation with variable coefficients, and the Fourier transform does no longer
work. However, the spirit of the above argument still stands: solving the wave equation
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can be reduced to constructing the propagator U(t), and the latter can be expressed as an
oscillatory integral that appropriately generalizes (5).

2.2. The Wave Propagator on a Riemannian Manifold

The appropriate generalization of (5) to a Riemannian manifold (M, g) warrants a
moment of thought. The natural generalization of the Laplacian operator ∆ is the Laplace–
Beltrami operator ∆g, but what can substitute Fourier transform? If in Rd one interprets the
Fourier transform as the spectral resolution of the self-adjoint operator ∆, then the spectral
resolution of ∆g should be the analogue of Fourier transform in the Riemannian setting.
For a non-compact M, the spectrum of ∆g will not be discrete, bearing many technical
difficulties when dealing with eigenfunction expansions. Further sophistication will arise
if we also allow M to have a boundary, on which appropriate boundary conditions should
be set in order for ∆g to be self-adjoint. For the sake of simplicity and completeness of
arguments, in what follows, we will assume that M is compact (so that the spectrum of ∆g
is discrete) and without boundary (so as to avoid dealing with boundary conditions).

Let (M, g) be a closed (i.e., compact and without boundary) connected Riemannian
manifold of dimension d ≥ 2. Let us denote by x = (x1, . . . , xd) local coordinates on
M and by (x, ξ) = (x1, . . . , xd, ξ1, . . . , ξd) local coordinates on the cotangent bundle T∗M.
By T′M := T∗M \ {0}, we denote the cotangent bundle with the zero section removed.

Let ∆g be the Laplace–Beltrami operator on scalar functions over M corresponding to
the metric g. The operator −∆g is elliptic, self-adjoint and non-negative. Its spectrum is
discrete and accumulates to +∞. We adopt the notation

−∆gvk = λ2
kvk

for eigenvalues and corresponding orthonormalized eigenfunctions of −∆g, where eigen-
values are enumerated with account of their multiplicity as

0 = λ1 < λ2 ≤ λ3 ≤ . . . ≤ λk ≤ . . .→ +∞ .

The operator

U(t) := e−it
√
−∆g (6)

is called the wave propagator(Note that in the literature the operator U(t) is sometimes
referred to as a half -wave propagator). The propagator (6) is a one-parameter family of
unitary operators that solves, in a distributional sense, the operator-valued hyperbolic
Cauchy problem 

(
−i

∂

∂t
+
√
−∆g

)
U(t) = 0

U(0) = Id
,

where Id is the identity operator on scalar functions. Arguing as in the previous section,
the operator (6) can be used to write down the solution for the full wave equation(

∂2

∂t2 − ∆
)

u(t, x) = 0,

supplemented with two initial conditions.
In order to construct the propagator (6) precisely, one needs to know all eigenvalues

and eigenfunctions of −∆g. Indeed, the functional calculus gives us

e−it
√
−∆g( · ) =

+∞

∑
k=0

e−itλk vk(x)
∫

M
vk(y) ( · ) ρg(y) dy,

where ρg(x) =
√

det gαβ(x) is the Riemannian density. For a general Riemannian manifold,
eigenvalues and eigenfunctions of the Laplace–Beltrami are not known.
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However, one can still construct the propagator approximately, modulo an integral
operator with smooth integral kernel, using techniques from microlocal analysis.

The subject of microlocal analysis is another wonderful confluence of mathematics
and physics, where the basic idea is that in order to fully understand a PDE, one has to look
not only at coordinates, but also at momenta, that is, work in the phase space (cotangent
bundle). The structure of singularities of solutions to PDEs in terms of microlocal analysis
provides a connection with Hamiltonian mechanics and symplectic geometry, which can be
seen as the materialization of the rather blurry correspondence between particle mechanics
and field theory.

The microlocal construction of U(t), now classical, has been the subject of intense research
since the middle of the twentieth century, see for example [5–9] (Volumes 3 & 4), [10–12]. The
operator U(t) is written locally, in time and space, as the composition of oscillatory integrals
whose phase functions and amplitudes are obtained by solving a hierarchy of ordinary
differential equations. The classical construction is explicit, but presents a number of
shortcomings: it is not invariant under change of local coordinates, it is local in space and it
is local in time.

We will present here an alternative, geometric version of the classical construction,
developed in [13] building upon the earlier results [14–16], which overcomes the above-
mentioned issues. The main idea is to use a distinguished complex-valued phase function with
a non-negative imaginary part. The complexity allows one to achieve a global construction
and circumvent topological obstructions, whereas prescribing the phase function makes
the oscillatory integral invariantly defined.

Put
h(x, ξ) :=

√
gαβ(x)ξαξβ . (7)

The function (7) is a nowhere vanishing smooth function on T′M positively homoge-
neous in momentum ξ of degree 1. It can be viewed as a Hamiltonian on T′M. The corre-
sponding Hamilton’s equations{

ẋ∗(t; y, η) = hξ(x∗, ξ∗)

ξ̇∗(t; y, η) = −hx(x∗, ξ∗)
(8)

admit a unique solution defined for all times t ∈ R for each choice of initial condition

(x∗(0; y, η), ξ∗(0; y, η)) = (y, η) ∈ T′M.

The function (7) will play a crucial role in our construction, because it coincides with
the principal symbol of

√
−∆g,

(
√
−∆g)prin = h(x, ξ).

This implies that singularities of solutions of the half-wave equation propagate along
the flow defined by (8), see Section 3. It is not hard to see that the curves t 7→ x∗(t; y, η)
are geodesics.

Definition 1 (Levi-Civita phase function). We define the Levi-Civita phase function to be
the infinitely smooth function

ϕ : R×M× T′M→ C

defined by the expression

ϕ(t, x; y, η) := −1
2
〈ξ∗, gradz[dist2(x, z)]

∣∣∣
z=x∗
〉+ i

2
h(y, η)dist(x, x∗) (9)
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for x in a geodesic neighborhood of x∗ and continued smoothly elsewhere, in such a way that
Im ϕ ≥ 0. Here, gradz stands for the gradient in the variable z and dist denotes the geodesic
distance. Note that, equipped with a Riemannian metric, a manifold becomes a metric space.

The Levi–Civita phase function encodes information about the geometry of M and
about the Hamiltonian flow of (7). This is formalized by the following lemma [13,15].

Lemma 1. The Levi–Civita phase functions (9) satisfies the following properties:

(i) ϕ|x=x∗ = 0,
(ii) ∂xα ϕ|x=x∗ = ξα,

(iii) det ∂2
xαηβ

ϕ
∣∣∣
x=x∗

6= 0,
(iv) Im ϕ ≥ 0.

This allows us to represent the propagator (6) explicitly as a single oscillatory integral,
global in space and time, with phase function ϕ. Namely,

U(t) mod C∞
=

1
(2π)d

∫
T′y M

eiϕ(t,x;y,η) a(t; y, η) χ(t, x; t, η)w(t, x; y, η) dη (10)

where

• ϕ is the Levi–Civita phase function;
• χ is a cut-off function that serves the purpose of localizing the integration in a neigh-

borhood of the orbit with initial condition (y, η) and away from the zero section,
see [13] (Section 5);

• the weight w is defined by

w(t, x; y, η) :=
1

[ρg(x)ρg(y)]1/2

[
det2(∂2

xαηβ
ϕ(t, x; y, η)

)]1/4
,

where the branch of the complex root is chosen in such a way that[
det2(∂2

xαηβ
ϕ(t, x; y, η)

)]1/4
∣∣∣∣
t=0

= 1 .

The scalar function a(t; y, η) is called the amplitude of the oscillatory integral (10). We
can represent a as an asymptotic expansion

a(t; y, η) ∼
+∞

∑
k=0

a−k(t; y, η)

in components a−k positively homogeneous in momentum η of degree −k:

a−k(t; y, λη) = λ−k a−k(t; y, η), ∀λ > 0.

Individual homogeneous components can be determined iteratively by solving a
hierarchy of ordinary differential equations, as detailed in the algorithm below.

Step one. Set χ(t, x; y, η) = 1 and apply the wave operator

� := ∂2
t − ∆g

to (10), where the Laplacian acts in the variable x. The result is an oscillatory integral of the
same form but with a different amplitude

a(t, x; y, η) := e−iϕ(t,x;y,η) [w(t, x; y, η)]−1 �
(

eiϕ(t,x;y,η) a(t; y, η)w(t, x; y, η)
)

. (11)
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Step two. Construct a new oscillatory integral with x-independent amplitude
b = b(t; y, η), coinciding with (10) up to an integral operator with infinitely smooth integral
kernel. Such a procedure is called reduction of the amplitude. This can be done by means of
special operators, as described below.

Put
Lα :=

[
(ϕxη)

−1
]

α

β ∂

∂xβ

and define

S0 := ( · )|x=x∗ , (12a)

S−k := S0

i w−1 ∂

∂ηβ
w

1 + ∑
1≤|α|≤2k−1

(−ϕη)α

α! (|α|+ 1)
Lα

Lβ

k

. (12b)

Bold Greek letters in (12b) denote multi-indices in Nd
0, α = (α1, . . . , αd), |α| = ∑d

j=1 αj

and (−ϕη)α := (−1)|α| (ϕη1)
α1 . . . (ϕηd)

αd . All differentiations are applied to the whole
expression to the right of them. The operator (12b) is well defined because the differential
operators Lα commute [13] (Lemma A.2). When applied to a function positively homo-
geneous in momentumn η, the operator S−k decreases the degree of homogeneity by k.
Hence, denoting by a ∼ ∑∞

j=0 a2−j the asymptotic expansion of the function a defined by
(11), the homogeneous components of the symbol b are

bl := ∑
2−j−k=l

S−k a2−j, l = 2, 1, 0,−1, . . . .

The operator S ∼ ∑∞
k=0 S−k is called the amplitude-to-symbol operator. It maps the

x-dependent amplitude a to the x-independent symbol b.
Step three. Impose the condition that our oscillatory integral (10) satisfies the wave

equation, modulo an integral operator with infinitely smooth kernel. This is achieved by
solving transport equations obtained by equating to zero the homogeneous components of
the reduced amplitude b,

bl = 0, l = 2, 1, 0,−1, . . . , (13)

supplemented with initial conditions a−k(0; y, η; ε) determined by imposing that at t = 0
our oscillatory integral (10) is, modulo C∞, the integral kernel of the identity operator.
Formula (13) describes a hierarchy of ordinary differential equations in the variable t whose
unknowns are the homogeneous components of the original amplitude a.

Remark 1. Formula (10) is to be interpreted in a distributional sense: if one multiplies the RHS of
(10) by f (y) and integrates the result over M with respect to the variable y, one obtains [U(t) f ](x)
modulo an infinitely smooth function of x and t.

Remark 2. The construction presented above can be adapted to cover the case of more general
scalar operator, as well as of systems of partial differential equations, under suitable assumptions,
see [17–22]. We should mention that propagators are an important tool in abstract spectral theory,
as they encode asymptotic information on the spectrum of the elliptic operator that generates them,
cf. [14,23,24].

3. The Notion of Wavefont Set and Propagation of Singularities

In theoretical physics, field theory (classical and quantum) deals with solutions to
hyperbolic wave-type equations, and the singularity structure of these solutions has pro-
found ramifications on the consistency of the theory itself. Microlocal analysis provides
the necessary tools for studying solutions of PDEs, and the object in the phase space that
encodes the information about the singularities of a given solution is the wavefront set.
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In this section, we will briefly review the notion of a wavefront set of a distribution.
Recall that a distribution u ∈ D′(M) is a continuous linear functional

u : C∞
0 (M)→ C,

and that a compactly supported distribution v ∈ E ′(M) is a continuous linear functional

v : C∞(M)→ C,

where C∞
0 (M) and C∞(M) are equipped with the standard Fréchet topology, see [25].

Let us now temporarily work in Euclidean space Rd. Given a compactly supported
distribution u ∈ E ′(Rd), we define its Fourier transform as

û := u(e−i〈ξ, ·〉).

We have the following standard result, relating the smoothness of a distribution and
the decay of its Fourier transform [9] (Volume 1 Lemma 7.1.3).

Theorem 1. Let u ∈ E ′(Rd). Then, u ∈ C∞
0 (Rd) if and only if, for every N ∈ N, there exists a

constant CN , such that
|û(ξ)| ≤ CN(1 + |ξ|)−N , ∀ξ ∈ Rd. (14)

This result allows one to identify directions in the Fourier space responsible for the
non-smoothness of a distribution. Recall that a subset Γ ⊂ (Rd \ {0}) is conic if and only if

ξ ∈ Γ ⇒ λξ ∈ Γ ∀λ ∈ R+.

Definition 2 (Set of singular directions). Let u ∈ E ′(Rd). We define the set of singular
directions of u to be

Σ(u) := {η ∈ Rd | @Vconic open neighborhood of η such that (14) holds ∀ξ ∈ V}.

One can show that multiplying a compactly supported distribution by a smooth
compactly supported function does not increase its set of singular directions, namely that

Σ(ϕu) ⊆ Σ(u) ∀ϕ ∈ C∞
0 (Rd).

By making the support of ϕ smaller and smaller, one can single out the set of singular
directions accounting for the non-smoothness of u “at x”. In this spirit, one defines the set
of singular directions of u at x as

Σx(u) :=
⋂

ϕ∈C∞
0 (Rd)

ϕ(x) 6=0

Σ(ϕu) .

We are now in a position to introduce the notion of a wavefront set.

Definition 3 (Wavefront set). Let u ∈ D′(Rd). We define the wavefront set of u to be the closed
subset WF(u) of Rd × (Rd \ 0) defined by

WF(u) :=
⊔

x∈Rd

Σx(u) = {(x, ξ) ∈ T∗Rd \ {0} | ξ ∈ Σx(u)} .

The wavefront set captures the full structure of the singularities of a distribution,
and it is the basic object upon which microlocal analysis is built. The adjective ‘microlocal’
refers to the fact that one localizes singularities of a distribution not only in the position
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variable x, but also in the dual variable (momentum) ξ. The latter effectively shows how
the singularity looks in different directions.

The notion of a wavefront set can be suitably extended to manifolds as follows.

Theorem 2. Let ψ : Rd → Rd be a diffeomorphism. Then, the wavefront sets of u and ψ∗u—the
pull-back of u along ψ—are related as

WF(ψ∗u) = ψ∗WF(u),

where
ψ∗WF(u) := {(x, (Jψ)Tξ) | (ψ(x), ξ) ∈WF(u)}

and (Jψ)α
β = ∂ψα/∂xβ.

Let us choose an atlas {(Uα, ψα)}α for M and let {χα}α, ∑α χα = 1, be a partition
of unity subordinated to our atlas. Let u ∈ D′(M) be a distribution on M. Then,
χαu is a compactly supported distribution on M, which can be viewed as a distribu-
tion uα := (ψ−1

α )∗(χαu) on Rd via the chart map ψα, for which the wavefront set was
defined above.

Then, one defines the wavefront set of u by

WF(u) :=
⋃
α

ψ∗αWF(uα). (15)

The set (15) is a subset of the punctured cotangent bundle,

WF(u) ⊂ T′M := T∗M \ {0},

independent of the choice of atlas and partition of unity.
The connection between the wavefront set and the propagators from the previous

sections is given by the following classical theorem.

Theorem 3 (Schwartz Kernel Theorem [9] (Volume 1 Theorem 5.2.1)). Let M, N be smooth
manifolds. Then, for every continuous linear map

V : C∞
0 (M)→ D′(N)

there exists v ∈ D′(M× N) such that

[V( f )](g) = u( f ⊗ g), ∀ f ∈ C∞
0 (M), g ∈ C∞

0 (N).

The distribution v is called the Schwartz (integral) kernel of V.

The operator (6) can be viewed as a linear map

U(t) : C∞
0 (M)→ D′(R×M)

whose integral kernel u(t, x, y) ∈ D′(R×M×M) is given by the RHS of (10). One can
show that the wavefront set of u(t, x, y) is bounded above by the stationary points of ϕ,
namely, the set

Cϕ := {(t, x; y, η) | ϕη(t, x; y, η) = 0} .

Direct inspection of (9) shows us that, for the Levi–Civita phase function,

Cϕ = {(t, x; y, η) | x = x∗(t; y, η)}.

This agrees with the fact, guaranteed by the theorem of propagation of singularities [9]
(Volume 1 Section 8.3), that the wavefront set of u(t, x, y) is the union of lifts of geodesics
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to the cotangent bundle. This piece of information was encoded within the Levi–Civita
phase function, in that the latter was built so as to satisfy properties (i)–(iv) from Lemma 1,
see also [15] (Section 1).

4. Quantum Field Theory on Curved Spacetimes: Hadamard States

While a consistent theory of quantum gravity is still far from our reach, the interaction
of classical gravity with the rest of quantum matter can be studied relatively reliably.
Quantum field theory in curved spacetimes is a mathematically rigorous framework that
describes the propagation of quantum fields on a curved spacetime governed by what are
called the semiclassical Einstein’s equations. Following the principles of General Relativity,
the spacetime is described by a smooth four-dimensional (orientable and time-orientable,
globally hyperbolic) Lorentzian manifold. Classical fields are described by smooth sections
in vector bundles over the spacetime, while quantum fields are given by operator-valued
distributional sections in the same bundles. The dynamics or equations of motion are
described by hyperbolic (at least in some sense) PDEs that the fields must satisfy. The most
widely studied hyperbolic equations are either of wave-type or Dirac-type, corresponding
to integer-spin and half-integer-spin particles, respectively. Below, we will concentrate on
the Klein–Gordon equation (�+ m2) f = 0, where f is a section in the line bundle (function
or distribution) over the spacetime, and � is the d’Alembert operator associated with the
Lorentzian metric (the analogue of the Laplace–Beltrami operator in the Lorentzian setting).
This equation describes the field associated with scalar (spin zero) particles. Much of what
follows works for general wave-type and Dirac-type operators [1,26].

4.1. Hadamard States

Hadamard states play a distinguished role in the algebraic formulation of quantum
field theory, see, e.g., [26–28] for a recent review.

Much of the theory behind Hadamard states, including our constructions below,
depend on an important property of the spacetime (M, g) called global hyperbolicty.
Going back to the archetypical wave Equation (1), a well-posed Cauchy problem can be set
up if the initial data are given on a curve that intersects every inextendible causal curve
(x(τ), t(τ)) exactly once (the curve is causal if |ẋ(τ)| ≤ |ṫ(τ)|). Such an initial curve will be
called a Cauchy curve. If the initial curve on which initial data are given fails to be Cauchy,
then either of the following two problems arise:

(i) Some causal curves will intersect the initial curve more than once, in which case, for
generic initial data, a single-valued solution will not exist.

(ii) Some causal curves will not intersect the initial curve at all, in which case a portion of
the plane will not be in the domain of dependence of the initial curve, and the values
of the solution in that region will not depend on the initial conditions, resulting in
non-uniqueness.

The situation in more general Lorentzian manifolds with wave-type equations is quali-
tatively the same. In order for the Cauchy problem to be well-posed, the spacetime needs to
possess a codimension one hypersurface that intersects every inextendible (i.e., with maxi-
mal interval of existence) causal curve exactly once. Such a hypersurface is called a Cauchy
hypersurface, and a spacetime admitting a Cauchy hypersurface is called globally hyper-
bolic. There are several other equivalent definitions of global hyperbolicity, such as the
compactness of causal diamonds, which we will not discuss here [1,29]. It was recognized
early on that a globally hyperbolic manifoldM is topologically homeomorphic to R×M,
where M is the Cauchy surface. However, that M can always be chosen to be an embedded
submanifold, and that (M, g) is isometrically diffeomorphic to (R×M,−β2(t, x)dt2 + ht),
where β is a positive smooth function and ht is a smoothly time-dependent family of
Riemannian metrics, is a relatively new development [30]. The converse problem of es-
tablishing which β and ht yield a globally hyperbolic spacetime in this manner has been
settled in [31].
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The algebraic (i.e., by means of operator algebras, which is a branch of analysis)
approach to quantum field theory on curved spacetime can be succinctly formulated for the
Klein–Gordon field as follows. Consider a globally hyperbolic spacetime (M∼= R×M, g)
and let C∞

0 (M) be the space of test functions (smooth, compactly supported) on M.
The hyperbolic operator �+ m2 is symmetric with respect to the natural inner product

〈 f1, f2〉 =
∫
M

f1(x) f2(x)
√

det g(x)dx,

and possesses unique advanced and retarded Green’s functions E± : C∞
0 (M) → D′

which satisfy

E±((�+ m2) f1, f2) = E±( f1, (�+ m2) f2) = 〈 f1, f2〉, supp E±( f1, .) ⊂ J±(supp f1),

for all f1, f2 ∈ C∞
0 (M), where J±(N) is the causal future/past of the spacetime region

N ⊂ M [1] (Section 3.4). Let A be a complex unital ∗-algebra generated by the images
of a continuous linear map C∞

0 (M) 3 f 7→ φ( f ) ∈ A with the the algebraic relation
[φ( f1), φ( f2)] = iE( f1, f2)1, where E = E+ − E− : C∞

0 (M)→ D′ is the causal propagator
of the Klein–Gordon operator � + m2. The operator valued distribution f 7→ φ( f ) is
interpreted as a quantum field and is assumed to satisfy (weakly) the Klein–Gordon
equation as φ((� + m2) f ) = 0 and be Hermitian, φ( f̄ ) = φ( f )∗, for all f ∈ C∞

0 (M).
A quantum state ω : A → C is a normalized positive continuous linear functional on the
algebra A,

ω(a∗a) ≥ 0, ω(1) = 1, ∀a ∈ A.

The 2-point function ω2 ∈ (C∞
0 (M) ⊗ C∞

0 (M))′ of a quantum state ω is the bi-
distribution defined by ω2( f1, f2) = ω(φ( f1)φ( f2)) for all f1, f2 ∈ C∞

0 (M). It is clear that
ω2 is a weak bi-solution of the Klein–Gordon equation,

ω2((�+ m2) f1, f2) = ω2( f1, (�+ m2) f2) = 0, ∀ f1, f2 ∈ C∞
0 (M). (16)

It is customary in physics literature to use function notation φ(x) for the operator
valued distribution φ by formally requiring φ( f ) = 〈φ, f 〉 for all f ∈ C∞

0 (M). In these
notations, one writes ω2(x, y) = ω(φ(x)φ(y)).

We will work here with a particular class of quantum states for which the 2-point
function fully determines the state.

Definition 4 (Quasifree state). A state ω : A → C is called quasifree (or Gaussian) if its
n-point functions

ωn( f1, . . . , fn) := ω(φ( f1) . . . φ( fn))

satisfy {
ωn( f1, . . . , fn) = 0 for n odd,
ωn( f1, . . . , fn) = ∑Π ω2( fi1 , fi2) · · ·ω2( fin−1 , fin) for n even,

where Π denotes all possible partitions of the set {1, 2, . . . , n} into pairs

{i1, i2}, . . . , {in−1, in}

with i2j−1 < i2j, j = 1, . . . , n/2.

While all quantum states defined as above make perfect sense from a mathematical
viewpoint, an arbitrary state is, in general, too singular to be a ‘good physical states’.
When manipulating states to describe the physics of the system, the type of operations that
one can perform is constrained by the singular structure of the states themselves. Now,
the singular structure of a generic state can be pretty wild, and this quickly becomes a
serious technical limitation. It is worth stressing that the singular structure of a state cannot
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be just anything, in that the wavefront set of its 2-point function is constrained (from above)
by condition (16). The latter, however, still leaves quite some freedom in the choice of ω2.

For this reason, it was proposed to identify a distinguished class of ‘physically rea-
sonable’ states to work with, the Hadamard states, by a priori prescribing the singularity
structure of their 2-point function. Hadamard states mimic the ultraviolet behavior of the
Poincaré vacuum. Amongst numerous other nice properties, they ensure that quantum
fluctuations of observables are bounded and allow for an extension of the algebra of fields
to encompass Wick polynomials [32–39]. Over the years, the notion of Hadamard states
has proved successful in a wide range of different settings, see, e.g., [40–53], to name a few.

Let M denote the Minkowski space (the space R4 equipped with the Lorentzian metric
−dt2 + dr2

1 + dr2
2 + dr2

3) and let us adopt the notation x = (t, r) ∈ M, t ∈ R, r ∈ R3. It is
well known [54] (Equation (4)) that the 2-point function of the Minkowski vacuum is

ω0
2(x) =

1
4π2

∫
R4

θ(k0)δ(k · k + m2)eik·x dk

= lim
ε→0+

1
4π2

[
1

|r|2 − (t− iε)2 +
m2

2m
√
|r|2 − t2

J1(m
√
|r|2 − t2) log(|r|2 − (t− iε)2) + w

] (17)

where · denotes the Minkowski product, J1 is the Bessel function of first kind, and

w(x) = −m2π
∞

∑
k=0

ψ(k + 1) + ψ(k + 2)
k!(k + 1)!

(
m2x · x

4

)k

,

with ψ(z) := d
dz ln(Γ(z)) being the digamma function.

The key idea underpinning the definition of Hadamard states is to prescribe that their
2-point functions possess the same singularity structure as (17). In order to turn this into a
mathematically precise statement, we need to introduce further definitions and notation.

A subset O ⊂ M is said to be geodesically convex if for every x, y ∈ O there exists a
unique geodesic connecting x to y, which lies entirely in O. Let O ⊂ M be geodesically
convex. For every x, y ∈ O, let

γ : [a, b]→M, γ(a) = x, γ(b) = y,

be the unique geodesic connecting x to y. The (unsigned) distance x and y is, by definition,

s(x, y) :=
∫ b

a

√∣∣gαβ(γ(τ))γ̇α(τ)γ̇β(τ)
∣∣ dτ .

It is known [55] (Chapter 5 Lemma 10) that there exists an open neighborhood U of
the diagonal inM×M with the following property: U can be represented as

U =
⋃
α

Oα ×Oα,

where

(i) Oα ⊂M is geodesically convex for every α and
(ii) Oα ∩Oα′ is either empty or geodesically convex.

Then, the function s is well defined in U , and jointly smooth in x and y there.
The signed distance ‘squared’ between x and y, (x, y) ∈ U , is defined as

σ(x, y) :=


+ 1

2 [s(x, y)]2 for x and y spacelike,
0 for x and y lightlike,
− 1

2 [s(x, y)]2 for x and y timelike.
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Definition 5. We say that a quasifree state ω is locally of Hadamard form (or locally Hadamard)
if for any geodesically convex neighborhood O ⊂M and for any x, y ∈ O we have

ω2(x, y) = lim
ε→0+

(
1

4π2
u(x, y)
σε(x, y)

+

(
+∞

∑
n=0

vn(x, y)σ(x, y)n

)
ln(σε(x, y)/`2) + w(x, y)

)
(18)

where
σε(x, y) = σ(x, y) + 2iε(T(x)− T(y)) + ε2,

T is any local time coordinate increasing towards the future, ` is a reference length scale making
the argument of the logarithm dimensionless, u, vn ∈ C∞(O ×O) are uniquely determined by the
geometry and the equation of motion (independently of ω) and w ∈ C∞(O×O) is determined by
the state ω.

Definition 5 warrants a number of remarks.

Remark 3.

(a) The limit in the RHS of (18) has to be understood in the sense of distributions: first, one
integrates against a test function, then one takes the limit for ε→ 0+.

(b) The smooth functions u, vn ∈ C∞(O×O) are known as Hadamard coefficients. They are
obtained as unique solutions of a hierarchy of differential equations that arise by imposing
that the RHS of (18) solves the Klein–Gordon equation in the variable x, interpreting y as a
parameter and setting w = 0. See, e.g., [38] (Appendix A) for further details.

(c) Definition 5 immediately raises the question: does the series on the RHS of (18) converge?
The answer, unfortunately, is negative. The convergence of the series is only guaranteed
when (M, g) is analytic. In the general smooth case, the series appearing in (18) has to be
understood as an asymptotic expansion ‘in smoothness’, namely, the identity (18) means

ω2(x, y)− lim
ε→0+

(
1

4π2
u(x, y)
σε(x, y)

+

(
N

∑
n=0

vn(x, y)σ(x, y)n

)
ln(σε(x, y)/`2)

)
∈ CN−1(O ×O)

for every N = 1, 2, . . . .
However, if one wants to work with a uniformly convergent series, the issue of non-convergence
can be circumvented as follows. Choose a smooth cut-off χ : R→ [0, 1],

χ(τ) =

{
1 |τ| ≤ 1

2 ,
0 |τ| > 1.

Then, there exists a real sequence

0 < c1 < c2 < c3 < cn < . . .→ +∞

such that the series

v(x, y) :=
+∞

∑
n=0

vn(x, y)σn(x, y)χ(cnσ(x, y))

converges uniformly along with all its derivatives to a jointly smooth function v ∈ C∞(O ×O).
The distribution

H(x, y) := lim
ε→0+

[
1

4π2
u(x, y)
σε(x, y)

+ v(x, y) ln(σε(x, y)/`2)

]
which goes under the name of Hadamard parametrix, is a well-defined approximate solution
of the Klein–Gordon equation—a parametrix—in both arguments x and y. Here, ‘approxi-
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mate’ means ‘up to a jointly smooth function in x and y’, i.e., there exists k ∈ C∞(O ×O)
such that

lim
ε→0+

∫
O×O

H(x, y)[(�+ m2) f1](x) f2(y) ρg(x) ρg(y) dx dy

=
∫
O×O

k(x, y) f1(x) f2(y) ρg(x) ρg(y) dx dy,

for every f1, f2 ∈ C∞
0 (O), where ρg(x) :=

√
|det gµν(x)|.

Different choices of the cut-off χ yield different smooth errors k.
(d) Definition 5 completely prescribes the singular structure of the 2-point function, including

the numerical prefactors. The definition of H only involves the geometry of our spacetime
and the equation of motion, which enters in the Hadamard coefficients, but does not identify
a particular state. The information about the ‘physics’ of the system—that is, about the
individual state—is contained in the smooth term w.

(e) Definition 5 prescribes the singular structure of ω2 locally but, prima facie, does not tell us
anything about global properties of ω or ω2.

Although Definition 5 is rooted in good physical intuition, it is not very easy to
handle or convenient to check. An alternative equivalent definition, based on the notion of
wavefront set, was given in the now classical paper [56] by Radzikowski.

Theorem 4. A state ω is locally Hadamard in the sense of Definition 5 if and only if, for every
geodesically convex O ⊂M, its 2-point function ω2 satisfies the microlocal spectrum condition:

WF(ω2|O×O) = {(x1, x2; ξ1,−ξ2) ∈ T′(O ×O) | (x1, ξ1) ∼ (x2, ξ2), ξ1 . 0}. (19)

Here, (x1, ξ1) ∼ (x2, ξ2) means that there exists a lightlike geodesic γ connecting x1 and x2, such
that ξ1 is cotangent to γ at x1 and ξ2 is the parallel transport of ξ1 from x1 to x2 along γ with
respect to the Levi–Civita connection. The notation ξ1 . 0 means that ξ1 is future directed.

Remark 4. Loosely speaking, the microlocal spectrum condition means that—pointwise in the
cotangent space—the ‘Fourier transform’ of the 2-point function is rapidly decaying everywhere,
but in the future light cone, and this holds in a consistent manner as we move the base point around.
This effectively implements on curved spacetimes the usual positive frequency condition of QFT.
The generalization of this equivalence result to more general vector-valued fields (together with a
minor technical fix in the original proof) was given in [57].

The two equivalent definitions of Hadamard states—Definition 5 and Theorem 4—
are inherently local. While there is no clear way of defining a global object starting from
Definition 5, one can use the microlocal spectrum condition to do so, by simply dropping
the restriction to a convex neighborhood in (19). We call the resulting object a global
Hadamard state.

The relation between local and global Hadamard states is clarified by the following
two theorems.

Theorem 5 (Radzikowski’s local-to-global theorem [58]). If a quasifree state ω on a globally
hyperbolic spacetime (M, g) is locally of Hadamard form, then it is a global Hadamard state.

Theorem 6 (Propagation of the Hadamard property [59]). Let (M, g) be a globally hyperbolic
spacetime and let ω be a quasifree state. Suppose that the microlocal spectrum condition (19) holds
for ω in a neighborhood of a Cauchy surface M. Then it holds globally.

Finally, we conclude this section with a result due to Fulling, Narcowich and Wald [60],
which shows that one always has Hadamard states to work with.
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Theorem 7. Let (M, g) be a globally hyperbolic spacetime. Then, there exists at least one
Hadamard state.

It is important to point out that Hadamard states are far from being unique on any
globally hyperbolic spacetime. As it is apparent from the definition, the Hadamard condi-
tion only constrains the singularity structure of the 2-point function ω2 of a state ω, and any
other state ω′ whose 2-point function ω′2 differs from ω2 by a smooth function has the same
singularity structure and is therefore another Hadamard state. In fact, on every globally
hyperbolic spacetime, there are infinitely many Hadamard states, and in a sense, all reason-
able quantum states are expected to be of the Hadamard form. Moreover, Hadamard states
are closed under quantum field theoretical operations (see, e.g., [61,62]); once your chosen
vacuum state is Hadamard, then the entire corresponding folium of states is such. Thus,
the actual physical content of the state is, roughly speaking, encoded in the smooth rather
than in the singular part. The Hadamard condition, essentially, rules out pathological
states that would prevent the reasonable application of physically motivated mathematical
operations. In particular, vacuum states are widely assumed to be Hadamard. While
there have been alternative proposals for the definition of the class of physically relevant
quantum states, Hadamard states seem to be the most popular and best justified of all [63].

Now, the selection of a vacuum state among infinitely many Hadamard states is
another big problem in quantum field theory on curved spacetimes. By physical intuition,
a vacuum state should minimize the energy in some sense, but in quantum field theory,
the energy density is not bounded from below pointwise. In the Minkowski spacetime,
the Minkowski vacuum defined earlier is singled out as the canonical choice of a vacuum
state due to its unique feature of being invariant under all spacetime symmetries. A generic
curved spacetime, on the other hand, may not have any symmetries, and thus infinitely
many candidate vacuum states will stand on equal footing. There have been proposals in
the literature for singling out a unique vacuum state, such as the so-called states of low
energy, which minimize the energy density as measured by a hypothetical observer [45,64].
However, this definition is very observation-dependent and the general question of the
choice of a vacuum state in a curved spacetime remains open.

4.2. Construction of Hadamard States

The construction of the wave propagator can be suitably extended to Lorentzian
manifolds with compact Cauchy surface. When the manifold carries a globally hyperbolic
Lorentzian, as opposed to Riemannian, metric, greater care is needed, as time can no longer
be treated as an external parameter and the components of the metric tensor explicitly
depend on it. As a result, constructing an analogue of the propagator (6) in a global,
invariant fashion presents some additional challenges arising from the spacetime geometry.

One can show [1,27] that singularities of solutions of the wave equation on globally
hyperbolic spacetimes propagate along light-like geodesics. Now, the four-dimensional
version of our Hamiltonian (7) vanishes identically on light-like covectors. Nevertheless,
one can still construct a distinguished geometric phase function in the spirit of (1) as follows.

Let (M, g),M' R×M, be a globally hyperbolic spacetime of dimension d. Let us
denote by ιs : Ms → M the embedding of Ms ' {s} ×M intoM. Let Y = (s, y) ∈ M.
For any η ∈ T∗y \ {0}, let η+ be the unique future pointing null covector in T∗YM such that
ι∗s η+ = η. Here, and further, the upper ∗ denotes the pull-back along the map it is applied
to. Furthermore, let us define

η̂+ :=
η+
‖η‖hs

,

where ‖η‖hs =
√

hs
αβ(y)ηαηβ.

Definition 6 ([19] (Definition 4.2)). The Levi–Civita flow is defined to be the map

ς 7→ (X̃∗(ς; s, y, η), Ξ̃∗(ς; s, y, η)),
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where

• X̃∗( · ; s, y, η) : ς 7→ X̃∗(ς; s, y, η) is the unique null geodesic stemming from Y with initial
cotangent vector η̂+, parameterized by proper time;

• Ξ̃∗(ς; s, y, η) is the parallel transport along X̃∗( · ; s, y, η) of η+, from Y to X̃∗(ς; s, y, η).

The Levi–Civita flow is designed in such a way that it encodes information about
propagation of singularities and X∗ and Ξ∗ are positively homogeneous in η of degree 0
and 1, respectively.

It is easy to see [19] (Lemma 4.3) that the Levi–Civita flow can be reparameterized
using the global time coordinate t. With slight abuse of notation, we denote by

t 7→ (X̃∗(t; s, y, η), Ξ̃∗(t; s, y, η)).

such reparameterization.

Definition 7 (Lorentzian Levi–Civita phase function [19] (Definition 4.4)). Let X = (t, x),
Y = (s, y) ∈ M and let (X∗(t; s, y, η) , Ξ∗(t; s, y, η)) be the Levi–Civita flow. We define the
Lorentzian Levi–Civita phase function to be the infinitely smooth function ϕ :M×R× T′M→ C
defined by

ϕ(t, x; s, y, η) := −〈Ξ∗(t; s, y, η) , gradZ σ(X, Z)|Z=X∗(t;s,y,η)〉
+ i ε‖η‖hs σ(X, X∗(t; s, y, η)) ,

if X lies in a geodesic normal neighborhood of X∗(τ; s, y, η), and smoothly continued elsewhere in
such a way that the imaginary part is positive.

Starting from the Lorentzian Levi–Civita phase function, one can set in motion ma-
chinery similar to that of Section 2.2. We refrain from discussing the technical details here,
and we refer the interested reader to [19].

In the remainder of this section, we will explain how one can construct Hadamard
states using these techniques in the special case of ultrastatic spacetimes. Observe that
a conformal transformation turns a static spacetime into an ultrastatic one. Therefore,
the following immediately applies to the class of static spacetimes.

Further on, (M ' R×M, g = −dt2 + g) is an ultrastatic spacetime of dimension d
with a compact Cauchy surface. Consider the operator

Ω(t, s) :=
1
2

√
−∆g e−i(t−s)

√
−∆g , (20)

where (
√
−∆g)−1/2 is the square root of the pseudo-inverse of −∆g, see [65] (Chapter 2,

Section 2). Then, we have the following [66] (Sections 5.1 and 9.1) [67] (Section 6.2) [19]
(Theorem 5.2).

Theorem 8. The Schwartz kernel ω2 of (20) is of Hadamard form as a distribution inD′(M×M).

Hence, on account of the results of Section 2.2, one can construct the 2-point function of
Hadamard states onM as a single oscillatory integral, in a global and invariant fashion, as

ω2(t, x; s, y) mod C∞
=

1
(2π)d−1

∫
T∗y M

eiϕ(t−s,x;y,η) f(t− s; y, η) χ(t− s, x; y, η)w(t− s, x; y, η) dη.

An explicit formula for the scalar symbol f can be obtained by constructing e−i(t−s)
√
−∆g

first, and then composing the outcome with the parametrix
√
−∆g. Alternatively, one can

construct (20) in one go by replacing the initial condition U(0) = Id from Section 2.2 with
the condition Ω(s, s) = 1

2
√
−∆g.
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Remark 5. From the above discussion, the reader may be led to think that there are no fundamental
differences between studying partial differential equations on Riemannian manifolds and doing so
on Lorentzian ones, provided one is prepared to take care of the amount of additional technicalities
that the latter brings about. While this is true in some instances, it is very much not the case in
general. Indeed, fully relativistic equations of mathematical physics are not always associated with a
natural inner product, not even an indefinite non-degenerate one. As a result, in the Lorentzian
setting one is often forced to work with equations, as opposed to operators, see [68,69].

Whilst a systematic review of the subject goes beyond the scope of this paper, we should
conclude by mentioning that a number of different approaches to construct Hadamard states,
alternative to that presented here, have been proposed over the years, see, for example, [60]
or [70,71]. The closest to the above in terms of techniques employed are perhaps those of
Gérard and Wrochna [72,73], heavily reliant on pseudo-differential calculus.

5. Conclusions

The interplay between partial differential equations and mathematical physics has,
over the years, proved extremely fruitful in both directions. In this review, we have
discussed a very specific aspect of this relationship, namely, how the construction of
propagators for hyperbolic PDEs as global oscillatory integrals is useful in describing
physically meaningful quantum states in curved spacetimes, the so-called Hadamard states.
The results presented here are relatively recent, and we believe that this expository paper,
which brings together theory and applications in a self-contained manner, will help to make
some progress towards establishing a common language and, ultimately, bridging different
research communities working in partial differential equations and mathematical physics.

The topics presented here open the way to future exciting avenues of research. In-
teresting questions are, for example: Can one perform a similar global construction for
systems—say, for the Dirac field? Can one perform a similar global construction on globally
hyperbolic manifolds with non-compact Cauchy surface and with boundary? Or, finally,
can one apply the above techniques to construct Feynman propagators? These generaliza-
tions are expected to be related to remarkable technical complications and may necessitate
the introduction of additional mathematical tools.
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