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Abstract: This paper aimed to demonstrate the capabilities of decomposable semi-regenerative pro-
cesses for the investigation of the k-out-of-n system. Proposed in 1955 by W. Smith, the regeneration
idea has come a long way in terms of development and has found widespread applications. First,
we briefly recall the history of the development of the regeneration idea and the main results of the
theory of regenerative, semi-regenerative, and decomposable semi-regenerative processes. Then,
the methods of the theory of decomposable semi-regenerative processes are used for the study of
a k-out-of-n renewable system with exponentially distributed life and generally distributed repair
times of its components. This system is very important for practice and its special cases have pre-
viously been considered (including by the authors); however, only special cases and using other
methods are considered herein. In the current paper, two scenarios of system repair after its failure
are considered for the first time: the partial and the full system repair scenarios. For both scenarios,
the time-dependent system state probabilities are calculated in terms of their Laplace transforms.
The closed form representation of the stationary probabilities for both scenarios are also presented.
These latest results represent a new contribution to the study of this system.

Keywords: decomposable semi-regenerative processes; k-out-of-n system; generally distributed
repair times; time-dependent and stationary probabilities

1. Introduction and Motivation

The paper aimed to demonstrate the capabilities of decomposable semi-regenerative
processes for the investigation of k-out-of-n systems. In this paper, we use traditional
symbols P and E to denote probability and expectation, respectively.

As a generalization of classical independence, the regeneration idea was proposed
by W. Smith in 1955 [1]. For a stochastic process X = {X(t) : t ∈ R} with its flow of
σ-algebras FX

t , it is supposed that a sequence of points of time — regeneration times
{Sn : n = 1, 2, . . . }—exists in which the process forgets its past, i.e., for any Γ, it holds that:

P{X(Sn + t) ∈ Γ |FX
Sn
} = P{X(Sn + t) ∈ Γ |Sn} = P{X(S1 + t) ∈ Γ}.

Here, the process X is known as a regenerative process (RP), and the intervals [Sn−1, Sn)
and their lengths Tn = Sn − Sn−1 are called regeneration periods.
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The state probabilities π(t; Γ) of any RP can be calculated in terms of its state prob-
abilities during a separate regeneration period π(1)(t, Γ) = P{X(Sn + t) ∈ Γ, t < Tn} in
the form:

π(t; Γ) ≡ P{X(t) ∈ Γ} =
t∫

0

P{X(t− u) ∈ Γ, t− u < T}H(du) ≡

≡
t∫

0

π(1)(t− u, Γ)H(du), (1)

where F(t) = P{Tn ≤ t} and the renewal function of the process:

H(t) = E
[

∑
n≥0

1{Sn≤t}

]
= ∑

n≥0
P{Sn ≤ t} = ∑

n≥0
F?n(t)

satisfies the equation below, where the symbol ”?” means convolution:

H(t) = F(t) + F ? H(t) ≡ F(t) +
t∫

0

F(du)H(t− u). (2)

Moreover, this approach also allows to prove the existence of stationary probabilities
and gives its closed form representation in terms of the process distribution in a separate
regeneration period:

π(Γ) = lim
t→∞

π(t; Γ) =
1

E[Tn]

∞∫
0

π(1)(t, Γ)dt. (3)

However, if the process behavior in a separate regeneration period is complex enough
and the probability distributions in it cannot be analytically represented, the more detailed
investigation of the process can be performed by using Markov-type dependency, which
leads to the construction of the theory of semi-Markov processes, (see E. Cinlar (1969) [2],
J. Jacod (1971) [3], V. Korolyuk and A. Turbin (1976) [4], among others). The combination
of these notions led to the introduction of semi-regenerative processes, which first appeared
under different names such as semi-Markov processes with additional trajectories in 1966
(Klimov [5]), regeneration processes with several types of regeneration points in 1971 (Rykov
and Yastrebenetsky [6]), before they were named semi-regenerative processes (SRP) thanks to
E. Nummeline [7].

The difference between SRP and RP is the assumption that in its semi-regeneration
points of time Sn, the future of the process does not depend on its past but depends on its
present—the state of the process at the last semi-regeneration point of time X(Sn). We will
refer to them as regeneration states, and denote their set by E:

P{X(Sn + t) ∈ Γ |FX
Sn
} = P{X(Sn + t) ∈ Γ |X(Sn)} = P{X(S1 + t) ∈ Γ |X(S1)}.

The main characteristic of the SRP ([4,7,8]) is its semi-Markov matrix (SMM)
Q(t) = [Qij(t)]ij∈E with the components:

Qij(t) = P{X(Sn+1) = j, Tn < t, |X(Sn) = i}.
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For semi-regenerative processes with a denumerable set of regeneration states E that
start from regeneration states with an initial distribution α = {αi, i ∈ E}, Formula (1) takes
the following form:

π(t, Γ) ≡ P{X(t) ∈ Γ} = ∑
i∈E

αi

δijπ
(1)
j (t, Γ) +

t∫
0

Hij(du)π(1)
j (t− u, Γ)

, (4)

where π
(1)
j (t, Γ) = P{X(Sn + t) ∈ Γ, t < Tn |X(Sn + 0) = j} is the process state probability

distribution at SRP of type j, and H(t) = [Hij(t)] is its Markov renewal matrix (MRM) with:

Hij(t) = E
[

∑
n≥1

1{Sn≤t, X(Sn)=j} |X(0) = i

]
=

[
∑
n≥1

Q∗n(t)

]
ij∈E

,

which satisfies to the following equation:

H(t) = Q(t) + Q ? H(t). (5)

On the other hand, Formula (3) now takes the following form:

π(Γ) = lim
t→∞

π(t, Γ) =
1
m

∞∫
0

∑
j∈E

ᾱjπ
(1)
j (t, Γ)dt, (6)

where ᾱ = {ᾱi, (i ∈ E)} are invariant probabilities of an embedded Markov chain, and
m = ∑i∈E ᾱiEi[Tn] is an expectation of the stationary regeneration period.

The next step in the generalization of the regeneration idea consists of finding, within
the main regeneration period, some new regeneration time points and the construction
of the so-called decomposable semi-regenerative process (DSRP). If the process behavior in
some separate regeneration period Tn is complex enough and its distribution cannot be
analytically represented, sometimes it is possible to find within this period some embedded
regeneration points of time S(1)

k (k = 1, 2, . . . ), in which the process forgets its past up to

the present state X(1)
(

S(1)
k

)
conditionally to its behavior in the embedded regeneration

period T(1)
k = S(1)

k − S(1)
k−1. The subset of embedded regeneration states of the process

will be denoted by E(1). Since these are extended to any regeneration periods Tn, this
procedure leads to the construction of DSRP. The strong definitions and details can be
found in V. Rykov (1975) [9] (as can also be seen in [8,10]).

While analyzing the DSRP, the role of the ordinary MRM plays the appropriate
embedded Markov renewal matrix (EMRM) H(1)(t) = [H(1)

ij (t)] with components:

H(1)
ij (t) = Ei

[
∑
k≥0

1{[0, t), j}

(
S(1)

k , X(1)
k

)
1
{S(1)

k <Tn}

]
.

This matrix study depends on the type of construction of the embedded regeneration
points. There are different scenarios for building the embedded regeneration points’
construction. If they arise as min[S(1)

k , Tn], then unlike Equations (2) and (5), for EMRM
the following equation holds:

H(1)(t) = Q(1)
1 (t) + H(1) ? Q(1)(t)−Q(t), (7)

where the Q(t) and Q(1)(t) are the SMM of the external and internal embedded periods
and now the symbol ”?” means matrix-functional convolution.
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However, in most practical situations, both internal and external regeneration times
coincide with the time moments of entering the regeneration states. In this case, the external
regeneration points are the moments when the process leaves the subset of the embedded
regeneration states. In this case, the transition matrix for the embedded moments of regen-
eration Q(1)(t) = [Q(1)

ij (t)]ij∈E1 is a sub-matrix of the main matrix Q(t) with components

from the subset of the embedded states E(1) and therefore it is a degenerate one. In this
case, the equation for EMRM H(1)(t) = [H(1)

ij (t)]ij∈E1 has the following form:

H(1)(t) = Q(1)(t) + Q(1)(t) ? H(1)(t),

and its solution is:

H(1)(t) = (I −Q(1)(t))−1Q(1)(t) = ∑
n≥1

[
Q(1)∗(n)(t)

]
,

and it is bounded for all t when t → ∞ and tends to the mean number of visits of
subset E(1).

Similarly to (4), if it is possible to find within a regeneration period of the first level
T(1)

n embedded regeneration points of the second level S(2)
k , then different characteris-

tics within the regeneration period of the first level T(1)
n can be expressed in terms of

its corresponding characteristics of the embedded RP of the second level regeneration
period T(2)

k . Particularly, for the one-dimensional distributions π
(1)
i (t, Γ), the following

representation holds:

π
(1)
i (t, Γ) ≡ P

{
X(1)

(
S(1)

k + t
)
∈ Γ|X(1)

(
S(1)

k + 0
)
= i
}
=

= ∑
j∈E

∫ t

0
H(1)

ij (du)π(2)
j (t− u, Γ) ≡ ~H(1)

i ? ~π(2)(t, Γ),

where:

π
(2)
i (t, Γ) = P

{
X(1)

(
S(1)

k + t
)
∈ Γ, t < T(2)

k+1 | X(1)
(

S(1)
k + 0

)
= i
}

is the process state probabilities during the embedded regeneration period of the second
level and EMRM H(1)(t) satisfies Equation (7).

This procedure can be developed for the construction of DSRP with several levels of
decomposition. The above system of embedded regeneration periods makes it possible to
calculate the process distribution in terms of its distributions during the smallest regen-
eration periods, as can be seen for example in [8,11]. The limit theorem for SRPs allows
calculating its stationary distributions.

In this paper, the methods of DSRP will be used for the investigation of a k-out-of-n : F
(1 ≤ k ≤ n) system, which is defined as a repairable redundant system that consists of n
components in parallel and fails when k of them fail. A k-out-of-n : F configuration is a
typical form of redundancy and systems of this type have been widely used in practical
fields such as data transmission, networks, production management, transportation, voting
systems, etc.

Due to the wide practical application area, a lot of papers are devoted to the study
of k-out-of-n systems. The literature on such studies is vast (see for example Trivedi [12],
Chakravarthy et al. [13] and the bibliography therein). The bibliography of later studies
can be found in, e.g., in [14]. Most of these investigations deal with the systems under
assumptions about components’ Poisson failure flow and exponential distribution of their
repair time. In [15], M.S. Mustafa considered the k-out-of-n system with exponential life
and the general repair time distribution of its components with the help of an embedded
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Markov chains method. Paper [16] contains a detailed analysis of 2-out-of-n and 3-out-of-n
systems with exponential life and general repair time distributions.

In the series of our previous works, the bibliography of which one can find for
example in [14], for an investigation of a renewable k-out-of-n system with the Poisson
flow of its components’ failures and their arbitrarily distributed repair times, the so-
called Markovization method was used. The method consists of the introduction of
supplementary variables that allows describing the system behavior by a two-dimensional
Markov process. This approach allows standing and proposing the way for the solution of
one of the principal problems for system reliability investigation, namely: the problem of
the sensitivity analysis of their output characteristics to the shape of input distributions.
Some of the research results in this direction can be found, e.g., in [17,18] and in a series of
our works, reference to which one can find, for example, in Chapter 9 of [19]. One may find
recent reliability studies on k-out-of-n and related systems in [20,21]. Some applications for
concrete problems in the oil and gas industry are also presented in [22,23].

In the current paper, to study the k-out-of-n system, we used an approach based on
the methods of DSRP that allows extending the previous results and finding closed form
representations for time-dependent and stationary characteristics of the system. In the
future, these results can be used for the sensitivity analyses of the system characteristics to
the shape of components’ repair time distributions.

The paper is organized as follows. In the next section, the problem setting and
some notations will be introduced. In two next sections, the model with partial and full
system repair will be studied. The paper ends with the conclusions and plans for further
investigations.

2. State of Problem. Notations

Consider a repairable k-out-of-n : F system, which can be considered as a repairable
n-components system in parallel that fails when k of its components fail. For such a system,
there exist at least two possible scenarios of system repair after its failure:

• Partial repair — when after the system’s failure, the repair of the component being
repaired is prolonged, and after its end, the system passes to state k− 1; or

• Full repair — when after the system’s failure, the repair of the whole system begins,
and after its end, the system becomes as good as new, and enters state 0.

In this paper, we used the following assumptions:

• The lifetimes of the systems’ components are independent identically distributed
(i.i.d.) random variables (r.v.’s) that are exponentially distributed with parameter α.

• Failed components are repaired by a single facility and after repair become as good
as new.

• Repair times are i.i.d. r.v.’s Bi (i = 1, 2, . . . ) for partial and Gi (i = 1, 2, . . . ) for
full repair, respectively, with the common cumulative distribution functions (c.d.f.’s)
B(t) = P{Bi ≤ t} and G(t) = P{Gi ≤ t}.
Note that hereinafter, the random variables designated by letters without indices will

imply the representatives of the corresponding sequences of i.i.d r.v.’s.
To study the system, we introduced the following notations:

• P{·}, E[·] — symbols of probability and expectation, symbols Pi{·}, Ei[·] are used
for conditional probability and expectation, given that the initial state of the process
is i;

• Λi is the random time to one of the system’s component failures, when it is in the
state i;

• λi = (n − i)α is the parameter of this r.v. (intensity of the failure of one of the
components—when the system is in the state i, sometimes the notation (n− i)α for
this value is also used);

• E = {0, 1, . . . k} is the system set of states, where j means the number of failed
components and k is the system failure state;
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• with this set of states, we define the random process X = {X(t), t ≥ 0} by
the correlation:

X(t) = j, if in time epoch t the system is in the state j ∈ E;

• system (and the process) state probabilities πj(t) = P{X(t) = j};
• T is the time to the system failure, T = inf{t : X(t) = k}.

Suppose also that initially, all system components are in good (UP) state, which means
that the initial state of the process X is zero, X(0) = 0. It is also supposed that immediate
repairs of components and the whole system after its failure are impossible and both mean
times to repair are finite:

B(0) = G(0) = 0,
∞∫

0

(1− B(t))dt < ∞,
∞∫

0

(1− G(t))dt < ∞.

Furthermore, in the paper, the system time-dependent state probabilities (t.d.s.p.’s):

πj(t) = P{X(t) = j},

reliability function:
R(t) = P{T > t},

and the steady state probabilities (s.s.p.’s):

πj = lim
t→∞

πj(t)

are calculated.

3. Partial Repair Regime

Considering first a partial repair regime, when after the system failure (when the
system enters state k), the repair of the component being repaired continues and after its
end, the system goes to state k− 1.

3.1. Semi-Regenerative Process

In this case, we consider the process X as a semi-regenerative one (see Figure 1).
Its regeneration time points Sn of the type j are the repair completion times when the
system enters state j, X(Sn + 0) = j, semi-regeneration periods are Tn = Sn − Sn−1 and
the regeneration set of states is E1 = {j : (j = 0, k− 1)}.

Recall first that the time-dependent state probabilities of the process X depend on the
initial process distribution vector-row~α(0) = {α(0)i : i ∈ E}. Thus, denoting by ~π(t) =
{πj(t) : j ∈ E} the vector-row of the process state probabilities, and by Π(t) = [πij(t)]ij∈E
the probability transition matrix of the process X, where:

πij(t) = P{X(t) = j |X(0) = i} ≡ Pi{X(t) = j}, (i, j ∈ E)

in matrix form, it holds that:
~π(t) =~α(0)Π(t).

On the other hand, according to the theory of semi-regenerative processes, as it
was mentioned in the Introduction section, the process transition probabilities Π(t) =
[πij(t)]ij∈E can be represented in the following form:

Π(t) = Π(1)(t) + H ? Π(1)(t) (8)
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in terms of corresponding state probabilities Π(1)(t) = [π
(1)
ij (t)]i∈E1,j∈E in separate regener-

ation periods, where:

π
(1)
ij (t) = P{X(Sn−1 + t) = j, t ≤ Tn |X(Sn−1 + 0) = i)}, (i ∈ E1, j ∈ E)

and the Markov renewal matrix H(t) =
[
Hij(t)

]
ij∈E1

with:

Hij(t) = E
[

∑
n≥1

1{Sn≤t, X(Sn)=j} |X(0) = i

]
≡ Ei

[
∑
n≥1

1{Sn≤t, X(Sn)=j}

]
.

( )X t

t

1

j

1j 

1k 

k

...
...

1S

...
. . .

. . .

2S 3S *S
**S

0 0S 

Figure 1. Trajectory of the process X for the system with partial repair, where S∗ and S∗∗ are arbitrary
regeneration time points.

Remark 1. Note that the representation (8) is the solution of the equation:

Π(t) = Π(1)(t) + Q ? Π(t).

It is known from the introduction that the MRM in matrix form satisfies the
following equation:

H(t) = Q(t) + Q ? H(t), (9)

where Q(t) = [Qij(t)]ij∈E1 is the Semi-Markov matrix of the process X with:

Qij(t) = P{X(Sn + 0) = j, Tn ≤ t |X(Sn−1 + 0) = i}.

Equations (8) and (9) show that the best way to calculate the process time-dependent
probabilities is using Laplace (LT) and Laplace–Stiltjes transforms (LST). Thus, further,
along with all time-dependent characteristics of the process, we will present their LT or
LST. Denote by

Π̃(s) =
∞∫

0

e−stΠ(t)dt, Π̃(1)(s) =
∞∫

0

e−stΠ(1)(t)dt, and h̃(s) =
∞∫

0

e−st H(dt)

LT of matrices Π(t), Π(1)(t) and LST of matrix H(t). Following this approach, the
transition to the LT in relation to (8) and LST in (9) gives:

Π̃(s) = (I + h̃(s))Π̃(1)(s), and h̃(s) = q̃(s) + q̃(s)h̃(s).
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The solution of the last equation is h̃(s) = (I − q̃(s))−1q̃(s).
This leads to the following result:

Π̃(s) = (I + h̃(s))Π̃(1)(s) = [I + (I − q̃(s))−1q̃(s)]Π̃(1)(s) =

=

[
I +

(
∑
n≥0

q̃n(s)

)
q̃(s)

]
Π̃(1)(s) = (I − q̃(s))−1Π̃(1)(s). (10)

Thus, our goal was to calculate the matrix of the process state probabilities Π(1)(t) in
separate semi-regenerative periods and the SMM Q(t) = [Qij(t)]ij∈E1 of the process X. In
order to calculate the last matrix, we denote by pij(t) the probability that the non-repairable
k-out-of-n : F system during time t passes from state i to state j, i.e., that during time t, j− i
components of the system out of n− i that are working in the beginning of the interval fail.
Denote by Pik(t) the probability that starting from state i, the system leaves the subset of
working states during time t, i.e., the probability that during time t, at least k− i system
components fail out of n− i that are working in the beginning of the time interval. These
probabilities are obtained as follows:

pij(t) =
(

n− i
j− i

)
(1− e−αt)j−ie−(n−j)αt,

and:
Pik(t) = ∑

j≥k
pij(t) = 1− ∑

i≤j≤k−1
pij(t).

Note that the latter probability is the lifetime c.d.f. of a non-repairable
k-out-of-n system.

To simplify further calculations, we represent these probabilities by Newton’s binomial
formula as the sum and with the substitution λi = (n− i)α (note that the symbol α is also
possible) we obtain:

pij(t) =
(

n− i
j− i

) j−i

∑
m=0

(−1)m
(

j− i
m

)
e−λj−mt. (11)

and:

Pik(t) = ∑
j≥k

(
n− i
j− i

) j−i

∑
m=0

(−1)m
(

j− i
m

)
e−λj−mt. (12)

Using these notations for the differentials of the SMM, the following lemma holds.

Lemma 1. The differentials of the SMM of the process X are:

Q0j(dt) =

t∫
0

λ0e−λ0u du p1j+1(t− u)B(dt− u), j = 0, k− 2;

Q0k−1(dt) =

t∫
0

λ0e−λ0u du P1k(t− u)B(dt− u);

Qij(dt) = pij+1(t)B(dt), (i = 1, k− 2, j = i− 1, k− 2);

Qik−1(dt) = Pik(t)B(dt), (13)
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and their LST q̃ij(s) =
∫ ∞

0 e−stQij(dt) equals:

q̃0j(s) =
λ0

s + λ0

(
n− 1

j

) j

∑
l=0

(−1)j−l
(

j
l

)
b̃(s + λl+1), j = 0, k− 2;

q̃0k−1(s) =
λ0

s + λ0
∑
j≥k

(
n− 1
j− 1

) j

∑
l=1

(−1)j−l
(

j− 1
j− l

)
b̃(s + λl);

q̃ij(s) =

(
n− i

j− i + 1

) i−1

∑
l=j

(−1)j−l
(

j− i + 1
j− l

)
b̃(s + λl+1);

q̃ik−1(s) = ∑
j≥k

(
n− i
j− i

) i

∑
l=j

(−1)j−l
(

j− i
j− l

)
b̃(s + λl). (14)

Proof. Indeed, in order for the system in some regeneration epoch to occur in state j ≤
, wherek− 2 is in the previous regeneration epoch in state 0, it is necessary and sufficient
that at some time point u, before time point t, one of the system components fails with the
probability λ0e−λ0udu, then during the remaining time t− u, another j component fails
with probability p1j+1(t− u) and the originally failed component is repaired in the small
vicinity of the time point t with probability B(dt− u).

In a similar way, in order for the system in some regeneration epoch to occur in state
k− 1 while being in the previous one—in state 0—it is necessary and sufficient that, at
some time point u before t, one of the system components fails with probability λ0e−λ0udu,
then during the remaining time t− u, it must reach state k with probability P1k(t− u) and
the originally failed component is repaired in the small vicinity of the time point t with
probability B(dt− u).

Analogously, in order for the system in some regeneration epoch to occur in state j
while being in the previous one—in state i—it is necessary and sufficient that the repair of
the component under repair ends with probability B(dt), while other j + 1− i components
fail during time t with probability pij+1(t).

Finally, in order for the system in some regeneration epoch to occur in state k − 1
while being in the previous one—in state i—it must reach state k with probability Pik(t)
and return to state k − 1 due to the end of repair of the component under repair with
probability B(dt).

The proof of expression (14) follows from passing to LST in Formula (13) with the help
of expressions (11) and (12):

q̃0j(s) =
∫ ∞

0
e−stQ0j(dt) =

= λ0

∫ ∞

0
e−st

∫ t

0
e−λ0u p1j+1(t− u)B(dt− u)du =

=
λ0

s + λ0

∫ ∞

0
e−sv p1j+1(v)B(dv) =

=
λ0

s + λ0

(
n− 1

j

) j

∑
m=0

(−1)m
(

j
m

)
b̃(s + λj+1−m);

q̃0k−1(s) =
∫ ∞

0
e−stQ0k−1(dt) =

= λ0

∫ ∞

0
e−st

∫ t

0
e−λ0uP1k(t− u)B(dt− u)du =

=
λ0

s + λ0

∫ ∞

0
e−svP1k(v)B(dv) =

=
λ0

s + λ0
∑
j≥k

(
n− 1
j− 1

) j−1

∑
m=0

(−1)m
(

j− 1
m

)
b̃(s + λj−m);
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q̃ij(s) =
∫ ∞

0
e−stQij(dt) =

∫ ∞

0
e−st pij+1(t)B(dt) =

=

(
n− i

j− i + 1

) j−i+1

∑
m=0

(−1)m
(

j− i + 1
m

)
b̃(s + λj+1−m);

q̃ik−1(s) =
∫ ∞

0
e−stQik−1(dt) =

∫ ∞

0
e−stPik(t)B(dt) =

= ∑
j≥k

(
n− i
j− i

) j−i

∑
m=0

(−1)m
(

j− i
m

)
b̃(s + λj−m).

By substitution l = j−m, we obtain Formula (14).

In the next section, the behavior of the process X in a separate semi-regeneration
period is considered.

3.2. Behavior of the Process in a Separate Semi-Regeneration Period

The system time-dependent state probabilities in separate regeneration periods are
given in the following lemma.

Lemma 2. The system time-dependent state probabilities in separate semi-regeneration periods are:

π
(1)
00 (t) = e−λ0t;

π
(1)
0j (t) =

t∫
0

λ0e−λ0u p1j(t− u)(1− B(t− u))du, (j = 1, k− 1);

π
(1)
0k (t) =

t∫
0

λ0e−λ0uP1k(t− u)(1− B(t− u))du;

π
(1)
ij (t) = pij(t)(1− B(t)), (1 ≤ i ≤ j ≤ k− 1);

π
(1)
ik (t) = Pik(t)(1− B(t)), (i = 1, k− 1). (15)

The LT π̃
(1)
ij (s) of the process state probabilities π

(1)
ij (t) in the separate embedded regeneration

period are:

π̃
(1)
00 (s) =

1
s + λ0

;

π̃
(1)
0j (s) =

λ0

s + λ0

(
n− 1
j− 1

) j

∑
l=0

(−1)j−l
(

j− 1
l − 1

)
1− b̃(s + λl)

s + λl
, (j = 1, k− 1);

π̃
(1)
0k (s) =

λ0

s + λ0
∑
j≥k

(
n− 1
j− 1

) j

∑
l=0

(−1)j−l
(

j− 1
l − 1

)
1− b̃(s + λl)

s + λl
;

π̃
(1)
ij (s) =

(
n− i
j− i

) j+1

∑
l=i

(−1)j−l
(

j− i
l − i

)
1− b̃(s + λl)

s + λl
, (1 ≤ i ≤ j ≤ k− 1);

π̃
(1)
ik (s) = ∑

j≥k

(
n− i
j− i

) j+1

∑
l=i

(−1)j−l
(

j− i
l − i

)
1− b̃(s + λl)

s + λl
. (16)

Proof. In fact, the semi-regeneration periods of the zero-type are Λ0 + B, and the semi-
regeneration periods of all other types are equal to the repair times B. Thus, in order for the
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process to be in state 0, at time t, within a separate zero-type regeneration period, it should
not leave this state before the first component’s failure during time t with probability e−λ0t:

π
(1)
00 (t) = P0{X(t) = 0, t < Λ0 + B} = P0{t < Λ0} = e−λ0t.

Analogously, in order for the system to occur in state j within a separate semi-
regeneration period of zero-type, it is necessary and sufficient that at some time u before
time t, one of the system’s components fails with the probability λ0e−λ0udu and during the
remaining time t− u, exactly j− 1 new components of the system fail with the probability
p1j(t− u) before the repair of the first one ends with probability (1− B(t− u)):

π
(1)
0j (t) = P0{X(t) = j, t < Λ0 + B} =

t∫
0

λ0e−λ0udu p1j(t− u)(1− B(t− u)).

Similarly, in order for the process to occur in state k during a separate semi-regeneration
period of zero-type, it is necessary and sufficient that at some time u before t, one of the
system’s components fails with the probability λ0e−λ0udu and during the remaining time
t− u, the process reaches state k with the probability P1k(t− u) before the repair of the first
one ending with the probability (1− B(t− u)):

π
(1)
0k (t) = P0{X(t) = j, t < Λ0 + B} =

t∫
0

λ0e−λ0udu P1k(t− u)(1− B(t− u))

Analogously, in order for the process to be in state j at time t in a separate i-th type
semi-regeneration period, it is necessary and sufficient that during this time period, the
repair does not end with probability 1− B(t), and that during this time period, the system
passes from state i to state j with probability pij(t) that is equal to:

π
(1)
ij (t) = Pi{X(t) = j, t < B} = pij(t)(1− B(t)).

The same arguments lead to the end of Formula (15):

π
(1)
ik (t) = Pik(t)(1− B(t)).

The proof of Formula (16) follows from passing to LT in expression (15) with the help
of representations (11) and (12):

π̃
(1)
00 (s) =

t∫
0

e−t(s+λ0)dt =
1

s + λ0
;

π̃
(1)
0j (s) =

t∫
0

e−st
t∫

0

λ0e−λ0udu p1j(t− u)(1− B(t− u)) =

=
λ0

s + λ0

∞∫
0

e−st p1j(t)(1− B(t))dt =
λ0

s + λ0
π̃
(1)
1j (s)

=
λ0

s + λ0

(
n− 1
j− 1

) j−1

∑
m=0

(−1)m
(

j− 1
m

)
1− b̃(s + λj−m)

s + λj−m
;



Mathematics 2021, 9, 1933 12 of 23

π̃
(1)
0k (s) =

t∫
0

e−st
t∫

0

λ0e−λ0udu P1k(t− u)(1− B(t− u)) =

=
λ0

s + λ0

∞∫
0

e−stP1k(t)(1− B(t))dt =

=
λ0

s + λ0

[
1− b̃(s)

s
− ∑

1≤j≤k−1

(
n− 1
j− 1

) j−1

∑
m=0

(−1)m
(

j− 1
m

)
1− b̃(s + λj−m)

s + λj−m

]
;

π̃
(1)
ij (s) =

∞∫
0

e−st pij(t)(1− B(t))dt =

=

(
n− i
j− i

) j−i

∑
m=0

(−1)m
(

j− i
m

)
1− b̃(s + λj−m)

s + λj−m
;

π̃
(1)
ik (s) =

∞∫
0

e−stPik(t)(1− B(t))dt =

=
1− b̃(s)

s
− ∑

i≤j≤k−1

(
n− i
j− i

) j−i

∑
m=0

(−1)m
(

j− i
m

)
1− b̃(s + λj−m)

s + λj−m
.

By substitution l = j−m, we obtain, Formula (16).

3.3. Time-Dependent and Stationary Probabilities

By combining the results obtained above, the following theorem holds:

Theorem 1. The LT of the time-dependent state probabilities of the process X in matrix form is
given by equality (10):

Π̃(s) = (I − q̃(s))−1Π̃(1)(s),

where components π̃
(1)
ij (s) of the matrix Π̃(1)(s) are given by Formula (16) from Lemma 2, and

components q̃l j(s) of matrix q̃(s) given by Formula (14) from Lemma 1.

The steady state probabilities of the process could be calculated by passing to the
limit in the last equality. However, it would be preferable to use the limit theorem for the
transition probabilities of semi-regenerative processes.

Theorem 2. The stationary regime of the considered system under partial repair scenario exists
and the steady state probabilities equal:

πj =
1
m ∑

0≤l≤j∧(k−1)
αlπ̃

(1)
l j (0), (j = 0, k), (17)

where~α = {αl : l ∈ E1} satisfies the system of equations:

~α′ =~α′ q̃(0), ∑
0≤l≤k−1

αl = 1, (18)

m = λ−1
0 (α0 + λ0b), and π̃

(1)
ij (0) can be found from Formula (16) of Lemma 2.

Proof. The embedded Markov chain of the process X is finite and irreducible. Thus, its
invariant probabilities exist and according to the limit theorem for transition probabili-
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ties of semi-regenerative processes and according to the Introduction from Equation (6)
independently of the initial state for any j = 0, k, it holds that:

πj = lim
t→∞

πij(t) =
1
m ∑

0≤l≤j∧(k−1)
αl

∞∫
0

π
(1)
l j (t)dt =

1
m ∑

0≤l≤j∧(k−1)
αlπ̃

(1)
l j (0),

where vector ~α = {αl : l ∈ E1} is the invariant probability measure of the embedded
Markov chain that satisfies the system of Equation (18) and m is the mean semi-regenerative
period m = ∑

0≤l≤k−1
αlEl [T]. Taking into account that the zero-type semi-regeneration

period is equal to Λ0 + B and all others equal B, it is possible to show that:

m = α0(λ
−1
0 + b) + (1− α0)b =

1
λ0

(α0 + λ0b).

3.4. Example 1

As an example, we consider a special case of a 2-out-of-n : F system. To find the s.s.p.
of the system, it is necessary to calculate the LST of SMM Q̃(s) as well as the LT of the
process state probabilities in the SRP Π̃(1)(s). From Lemma 1, we find Q̃(s) using Formulas
(11) and (12):

Q̃(s) =

λ0b̃(λ1 + s)
λ0 + s

λ0(b̃(s)− b̃(λ1 + s))
λ0 + s

b̃(λ1 + s) b̃(s)− b̃(λ1 + s).


Lemma 2 gives the representation of Π̃(1)(s):

Π̃(1)(s) =


1

s + λ0

λ0(1− b̃(λ1 + s))
(λ0 + s)(λ1 + s)

λ0

λ0 + s

(
1− b̃(s)

s
− 1− b̃(λ1 + s)

λ1 + s

)
0

1− b̃(λ1 + s)
λ1 + s

1− b̃(s))
s

− 1− b̃(λ1 + s))
λ1 + s


To find the stationary regime of the considered system, the invariant probability

measure of the embedded Markov chain ~α′ and the mean semi-regenerative period m
should be calculated. From Equation (18) and Theorem 2, we obtain:

α0 = b̃(λ1), α1 = 1− b̃(λ1), m = b +
b̃(λ1)

λ0
.

Finally, by using (17), we obtain the s.s.p. of the 2-out-of-n system:

π0 =
b̃(λ1)

b̃(λ1) + λ0b
, π1 =

λ0(1− b̃(λ1))

λ1(b̃(λ1) + λ0b)
, π2 =

λ0(λ1b− (1− b̃(λ1)))

λ1(b̃(λ1) + λ0b)
.

In the case of exponentially distributed repair time with LST b̃(λ) = 1
1+λb , the steady-

state probabilities coincide with those, obtained for the birth and death process:

π0 =
1

1 + λ0b + λ0λ1b2 , π1 =
λ0b

1 + λ0b + λ0λ1b2 , π2 =
λ0λ1b2

1 + λ0b + λ0λ1b2 .

Note that the analytical results for the special case of a 3-out-of-n system were also
verified, but due to their cumbersomeness, we do not present them. These results also
coincide with those obtained for the simple Markov model.
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4. Full Repair Regime

To study the system’s behavior under the full repair regime, we consider the main
process X as a regenerative one, whose regeneration points Sn (n = 1, 2, . . . ), S0 = 0 are
the full repair completion times of the system after its failure. The regeneration periods
Θn = Sn − Sn−1 of the process X consist of two terms: the system life times (times to
system failure after repair) Fn and the system repair times after failure Gn : Θn = Fn + Gn
(as can be seen in Figure 2). Denote by F(t) = P{Fn ≤ t} and Γ(t) = P{Θn ≤ t} the
common distribution function of r.v.’s Fn and Θn (n = 1, 2, . . . ), respectively.

( )X t

t

1

j

1j 

1k 

k

...
...

(1)

1S
...

. . .

. . .

(1)

2S (1)

3S (1)

*S 1S
0 0S  (1)

1S
(1)

2S

Figure 2. Trajectory of the process X for the system with a full repair scenario.

4.1. The Main Regenerative Process

From the theory of regenerative processes in the sense of Smith, it follows that the time-
dependent probabilities of the system can be represented in terms of the corresponding
process state distribution π

(Θ)
j (t) = P{X(t) = j, t < Θ} during a separate regeneration

period Θ as follows:

πj(t) = π
(Θ)
j (t) +

t∫
0

π
(Θ)
j (t− u)H(du). (19)

Here, H(t) is the corresponding renewal function which is generated by the c.d.f. Γ(t) =
P{Θn ≤ t} of r.v’s. Θn, and according to the Smith theorem, can be calculated as

H(t) = ∑
n≥1

P{Sn ≤ t} = ∑
n≥1

Γ(∗n)(t),

whose LST equals:

h̃(s) =
∞∫

0

e−st H(dt) =
γ̃(s)

1− γ̃(s)
, (20)

where γ̃(s) is LST of the c.d.f. Γ(t).
Thus, to study the process, we first need to calculate the distribution of the regener-

ation periods Θn, the corresponding renewal function H(t) and the process distribution
π
(Θ)
j (t) for them. Denote by Fn (n = 1, 2, . . . ) time to the n-th system failure after its

previous full repair, and by F(t), their common distribution function F(t) = P{Fn ≤ t}. We
remind that the r.v. Θn is the sum of two independent r.v.’s Fn and Gn, as the distribution
of the second one is supposed to be known and the distribution of the first one will be
obtained, jointly with its LST later in Lemma 5 (see Remark 2 to it).
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Now, we pass on to the calculation of the process state distribution π
(Θ)
j (t) in a sepa-

rate regeneration period Θn = Fn + Gn. The process behavior in the separate regeneration
period can be divided into two parts: the process behavior within a separate system lifetime
Fn and its behavior during the repair time Gn:

{X(Sn−1 + t) = j : t ≤ θn} =
{

X(Sn−1 + t) = j : for t ≤ Fn, j 6= k
k : for Fn < t ≤ Θn, j = k.

(21)

Thus, the process time-dependent state probabilities in a separate regeneration period
are given in the following lemma.

Lemma 3. The system state probabilities in a separate regeneration period Θ in terms of the
corresponding probabilities within a separate system lifetime F are:

π
(Θ)
j (t) = (1− δjk)π

(F)
j (t) + δjkP{F ≤ t < Θ}

with their Laplace transform:

π̃
(Θ)
j (s) = (1− δjk)π̃

(F)
j (s) + δjk f̃ (s)

1− g̃(s)
s

. (22)

Proof. The first equality of the lemma directly follows from the relation (21). In terms of
LT, from this equality, it follows that:

π̃
(Θ)
j (s) =

∞∫
0

e−stπ
(Θ)
j (t)dt = (1− δjk)π̃

(F)
j (s) + δjk

∞∫
0

P{F ≤ t < Θ}dt =

= (1− δjk)π̃
(F)
j (s) + δjk

∞∫
0

e−stdt
t∫

0

(1− G(t− u))F(du) =

= (1− δjk)π̃
(F)
j (s) + δjk f̃ (s)

1− g̃(s)
s

,

which is the second equality of the lemma.

The last equality shows that we need the process state distribution within a separate
system lifetime F, which is considered in the following subsection.

4.2. Embedded Semi-Regenerative Process

Since the process behavior within the system lifetime F is rather complicated, the
process X during this time will be considered as an embedded semi-regenerative process
(ESRP) X(1)

n = {X(1)
n (t) : t ≥ 0} with:

X(1)
n (t) = X(Sn−1 + t), t ≤ Fn.

Its semi-regeneration times S(1)
n of the type j are the same as for the semi-regenerative

process in Section 3.1 (see Figure 2) except for the fact that now the process X(1)
n is consid-

ered in a separate main regeneration period and therefore never enters state k− 1 after
the system’s repair completion. Thus, there are only k− 1 embedded regeneration states,
E(1) = {0, 1, . . . , k− 2}.

In order to study the behavior of the process before it enters state k, we denote by:

• T(1)
l = S(1)

l − S(1)
l−1, l = 1, 2, . . . the intervals between embedded semi-regeneration

times of the ESRP X(1) (time points between the components repair completions);
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• Q(1)(t) = [Q(1)
ij (t)]ij∈E(1) the embedded semi-Markov matrix (ESMM) whose compo-

nents are the process transition probabilities between semi-regeneration times:

Q(1)
ij (t) = P{X(1)(S(1)

l + 0) = j, T(1)
l ≤ t |X(1)(S(1)

l−1 + 0) = i};

• ~Q(1)(t) = [Q(1)
ik (t)] the vector-function, the components of which are the c.d.f.’s

of the first passage time from state i to the absorbing state k by the ESRP along a
monotone trajectory.

• ~F(t) = [Fik(t)] the vector-function, the components of which are c.d.f.’s of the absorb-
ing state k destination time by the ESRP starting from state i (i = 0, k− 2);

• H(1)(t) = [H(1)
ij (t)]ij∈E(1) the embedded Markov renewal matrix, whose components

are the conditional embedded renewal functions in the separate lifetime period:

H(1)
ij (t) = E

[
∑
l≥1

1
{X(1)(S(1)

l +0)=j, S(1)
l ≤t}

|X(1)(S(1)
0 ) = i

]
.

We start with the calculation of the ESMM Q(1)(t) = [Q(1)
ij (t)]ij∈E(1) of the ESRP X(1).

To calculate it, we note that its components coincide with those from Section 3.1 that were
determined in Lemma 1 except for the fact that now the process X(1) never enters state
k− 1 after the completion of the repair. Thus, they are only defined for j ≤ k− 2, and in
terms of Notations (11) and (12), are represented in differential form in Lemma 1. Thus,
since the set of embedded regeneration states of the process X(1) is a proper subset of the
set of states of the process X, its transition matrix is a degenerate matrix in contrast to
the matrix of the previous section. Since the corresponding expressions are used later, we
repeat them jointly with the components Q(1)

ik (t) of vector ~Q(1)(t) of the probabilities of
reaching the state k, together with their LST in the following lemma.

Lemma 4.

(1) The differentials of the ESMM components of the process X(1) are:

Q(1)
0j (dt) =

t∫
0

λ0e−λ0u du p1j+1(t− u)B(dt− u), (j = 0, k− 2),

Q(1)
ij (dt) = pij+1(t)B(dt), (i = 1, k− 2, j = i− 1, k− 2); (23)

while the differentials of the components of vector ~Q(1)(dt) = [Q(1)
ik (dt)]i=0,k−2 are:

Q(1)
0k (dt) =

t∫
0

λ0e−λ0u du P1k(dt− u)(1− B(t− u)),

Q(1)
ik (dt) = Pik(dt)(1− B(t)).

(2) The corresponding LST for the components of matrix Q(1)(t) are equal to:

q̃(1)0j (s) =
λ0

s + λ0

(
n− 1

j

) j

∑
m=0

(−1)m
(

j
m

)
b̃(s + λj+1−m), (j = 0, k− 2);

q̃(1)ij (s) =

(
n− i

j− i + 1

) j−i+1

∑
m=0

(−1)m
(

j− i + 1
m

)
b̃(s + λj+1−m),

(i = 1, k− 2, j = i− 1, k− 2); (24)
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while the corresponding LST for the components of vector ~Q(1)(t) are:

q̃(1)0k (s) =
λ0

s + λ0
∑

1≤j≤k−1

(
n− 1
j− 1

) j

∑
l=0

(−1)j−l
(

j− 1
l − 1

)
1− b̃(s + λl)

s + λl
,

q̃(1)ik (s) = ∑
1≤j≤k−1

(
n− i
j− i

) j+1

∑
l=i

(−1)j−l
(

j− i
l − i

)
1− b̃(s + λl)

s + λl
. (25)

Proof. Formulas (23) and (24) are derived in the same way as in Lemma 1.
In order to calculate q̃(1)ik (s), we first need to calculate P′1k(t). Based on (12) for its

derivative, it holds:

P′ik(t) = ∑
i≤j≤k−1

(
n− i
j− i

)
∑

0≤m≤j−i
(−1)m

(
j− i
m

)
λj−me−λj−mt.

Regarding the components Q(1)
0k (dt) of the vector ~Q(1)(dt), for the process to be in state

k in the vicinity of the time point t, leaving state 0, it is necessary and sufficient that, during
time u and before time t, one of the components fails with probability λ0e−λ0udu and in the
remaining time t− u, its repair was not completed with probability (1− B(t− u)) and there
were at least k− 1 failures in the neighboring point t− u with probability P1k(dt− u). Thus:

q̃(1)0k (s) =
∫ ∞

0
e−stQ(1)

0k (dt) = λ0

∫ ∞

0
e−st

∫ t

0
e−λ0uP1k(dt− u)(1− B(t− u))du =

=
λ0

s + λ0

∫ ∞

0
e−svP′1k(v)(1− B(v))dv =

=
λ0

s + λ0
∑

1≤j≤k−1

(
n− 1
j− 1

)
∑

0≤m≤j−1
(−1)m

(
j− 1

m

)
λj−m

1− b̃(s + λj−m)

s + λj−m
.

In order for the process in the vicinity of the point t to hit state k from state i, it is
necessary and sufficient that up to time t, the repair was not completed with the probability
(1− B(t)) and there were at least k − i new failures in the neighbor at this time t with
probability Pik(dt):

q̃(1)ik (s) =
∫ ∞

0
e−stQ(1)

ik (dt) =
∫ ∞

0
e−stP′ik(t)(1− B(t))dt =

= ∑
i≤j≤k−1

(
n− i
j− i

)
∑

0≤m≤j−i
(−1)m

(
j− i
m

)
λj−m

1− b̃(s + λj−m)

s + λj−m
.

By substitution l = j−m, we obtain Formula (25).

For the vector ~F(t), the following representation holds.

Lemma 5. The vector function column of differentials ~F(dt) satisfies the following equation:

~F(dt) = ~Q(1)(dt) + Q(1) ? ~F(dt), (26)

whose unique solution in terms of LST is:

~̃f (s) = (I − q̃(1)(s))−1~̃q(1)(s). (27)

Proof. The differentials of the components of the vector ~F(t) satisfies the almost evident equation:

Fik(dt) = Q(1)
ik (dt) + ∑

l∈E(1)

t∫
0

Q(1)
il (du)Flk(dt− u).
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Truly, starting from any state i, the process X(1) reaches the absorbing state k in a
small interval dt around t if it reaches it along the monotone trajectory with probability
Q(1)

ik (dt) (the first term in the above equality), or if the process first enters some other

non-absorbing state l in time u, before time t with probability Q(1)
il (du), and then reaches

the absorbing state k in a small interval dt during the remaining time t− u with probability
Fik(dt− u) (the second term in the above equality). In terms of LST, Equation (26) takes the
following form:

~̃f (s) =~̃q(1)(s) + q̃(1)(s)~̃f (s),

whose unique solution due to the degeneracy of matrix q̃(1)(s) is (27).

Remark 2. Furthermore, as noted in Section 4.1, the first components F0k(t) of the vectors ~F(t)
constitute the c.d.f. of the time to the first (and between) failure(s) for the system starting from state
0. Its moment generating function (m.g.f.) is the first component f̃0k(s) of vector ~̃f (s); therefore,
they will be denoted without indices:

F0k(t) ≡ F(t), f̃0k(s) ≡ f̃ (s).

Taking into account that:

R(t) = 1− F(t) = 1−
t∫

0

f (u)du

the following corollary holds.

Corollary 1. The LT of the reliability function of the system is:

R̃(s) =
1
s
(1− f̃ (s)).

Corollary 2. Since the process regeneration cycle Θ is equal to the sum of two independent r.v.’s,
the time to the system failure F and its repair time G, its m.g.f. equals:

γ(s) ≡ E
[
e−sΘ

]
= f̃ (s)g̃(s).

Now, the expression (20) leads to the following corollary.

Corollary 3. The LST h̃(s) of the renewal function H(t) of the system operating in the full repair
regime equals:

h̃(s) =
f̃ (s)g̃(s)

1− f̃ (s)g̃(s)
. (28)

4.3. Process State Probabilities in a Separate Lifetime Period

To study the process behavior during a separate system lifetime, we consider
the following.

• matrix Π(F)(t) = [Π(F)
ij (t)]ij∈E(1) , whose components are transition probabilities of the

process within a separate lifetime:

Π(F)
ij (t) = P{X(1)

n (t) = j, t < Fn |X(1)
n (0) = i};
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• matrix Π(1)(t) = [Π(1)
ij (t)]ij∈E(1) , whose components are transition probabilities of

the process in a separate embedded semi-regeneration period (between successive
repair completions):

Π(1)
ij (t) = P

{
X(1)

n (S(1)
l−1 + t) = j, t < T(1)

l |X(1)
n (S(1)

l−1 + 0) = i
}

.

In terms of these notations and according to the DSRP theory, the following represen-
tations hold:

Π(F)(t) = Π(1)(t) + H(1) ? Π(1)(t);

and in terms of LT for matrices Π(F)(t), Π(1)(t) and LST for matrices H(1)(t), this equation
takes the following form:

Π̃(F)(s) = Π̃(1)(s) + h̃(1)(s) · Π̃(1)(s).

In our case:
H(1)(dt) = Q(1)(dt) + Q(1) ? H(1)(dt)

and therefore:
h̃(1)(s) = (I − q̃(1)(s))−1q̃(1)(s).

From here:
I + h̃(1)(s) = I + ∑

l≥1
q̃(1)∗l(s) = (I − q̃(1)(s))−1

and:
Π̃(F)(s) = Π̃(1)(s) + h̃(1)(s) · Π̃(1)(s) = (I − q̃(1)(s))−1 · Π̃(1)(s). (29)

The system state transition probabilities within a separate embedded repair time
Π(1)(t) coincide for the embedded set of states E(1) with the corresponding probabilities in
Section 3.2 and presented in Formula (16) of Lemma 2. We repeat here the corresponding
LT π̃

(1)
ij (s) for the subset of embedded states E(1) for further references.

Lemma 6. The LT π̃
(1)
ij (s) of the process state probabilities π

(1)
ij (t) in a separate embedded regen-

eration period are:

π̃
(1)
00 (s) =

1
s + λ0

;

π̃
(1)
0j (s) =

λ0

s + λ0

(
n− 1
j− 1

) j

∑
l=0

(−1)j−l
(

j− 1
l − 1

)
1− b̃(s + λl)

s + λl
(j = 1, k− 2);

π̃
(1)
0k−1(s) =

λ0

s + λ0
∑

j≥k−1

(
n− 1
j− 1

) j

∑
l=0

(−1)j−l
(

j− 1
l − 1

)
1− b̃(s + λl)

s + λl
;

π̃
(1)
ij (s) =

(
n− i
j− i

) j+1

∑
l=i

(−1)j−l
(

j− i
l − i

)
1− b̃(s + λl)

s + λl
, (1 ≤ i ≤ j ≤ k− 2);

π̃
(1)
ik−1(s) = ∑

j≥k−1

(
n− i
j− i

) j+1

∑
l=i

(−1)j−l
(

j− i
l − i

)
1− b̃(s + λl)

s + λl
. (30)

Proof. The proof repeats the arguments of Lemma 2, taking into account the new set of
regeneration states E(1).

4.4. Process Time-Dependent and Stationary State Probabilities

In this subsection, we unite the results obtained above in order to represent the
t.d.s.p.’s and s.s.p.’s of the process X (and the appropriate system) in terms of LST.
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Theorem 3. The LT π̃j(s) of the time-dependent state probabilities process X, starting from the
state zero, equals:

π̃j(s) =
1

1− f̃ (s)g̃(s)

{
π̃
(F)
j (s) for j = 0, k− 1,

f̃ (s) 1−g̃(s)
s for j = k,

(31)

where f̃ (s) is defined as the first component of vector ~̃f (s) from Remark 2, which is represented
by Formula (27), and the LT of the time-dependent process state probabilities in a separate process
lifetime period π̃

(F)
j (s) is the first row of matrix Π̃(F)(s), which can be calculated from (24), (29)

and (30):

Proof. Expression (31) follows passing to LT in Formula (19) from Section 4.1 with the help
of expressions (22) and (28) from Corollary 3.

Remark 3. Since any main regeneration period begins with the state 0 for the calculation of the
process t.d.s.p.’s as well as s.s.p.’s, we only need probabilities with the initial zero state.

Remark 4. The representation of the final results in the initial system information are generally
cumbersome enough and will be presented in examples.

From this theorem, and by using Smith’s key renewal theorem, one can obtain the
stationary process probabilities.

Theorem 4. The s.s.p.’s πj of the process X, starting from any state, are equal to:

πj =
1

f + g

{
π̃
(F)
j (0) for j = 0, k− 1,

g for j = k,
(32)

where g = E[G], f = E[F] = − f̃ ′(0) is mean system lifetime that can be found from Formula (27),
and the values π̃

(F)
j (0) are the components of first row of matrix Π̃(F)(0), which can be calculated

from (24), (29) and (30).

4.5. Example 2

Consider as before an example of a 2-out-of-n system. Here, we calculate the reliability
function and the s.s.p.’s of the process. According to Corollary 1, the LT of the reliability
function is connected with the m.g.f. f̃ (s) of the system’s lifetime F. From Remark 2, one
can obtain:

f̃ (s) ≡ f̃02(s) = (1− q̃(1)00 (s))−1q̃(1)02 (s) =
λ0λ1(1− b̃(s + λ1))

(s + λ1)(s + λ0(1− b̃(s + λ1)))
, (33)

where q̃(1)00 (s) and q̃(1)02 (s) are given by (24) and (25). Thus:

R̃(s) =
1
s
(1− f̃ (s)) =

1
s

[
1− λ0λ1(1− b̃(s + λ1))

(s + λ1)(s + λ0(1− b̃(s + λ1)))

]
=

=
s + λ0(1− b̃(s + λ1)) + λ1

(s + λ1)(s + λ0(1− b̃(s + λ1)))
.

The mean time to the system failure can be calculated as f = E[F] = R(0) which
allows to obtain the following expression for it:

f = R(0) =
1

λ1
+

1
λ0(1− b̃(λ1))

. (34)
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According to Theorem 4, the s.s.p.’s πj of the process X for j = 0, 1 are presented

in terms of π̃
(F)
j (0), i.e., the mean sojourn time of the process in state j within a separate

lifetime F. For j = 2, these probabilities are presented in terms of the mean repair time
during a separate regeneration period (see Formula (32)). The corresponding expressions
are obtained using Formula (29) for j = 0, 1 with s = 0:

π̃
(F)
0 (0) = (1− q̃(1)00 (0))−1π̃

(1)
00 (0) =

1
λ0(1− b̃(λ1))

,

π̃
(F)
1 (0) = (1− q̃(1)00 (0))−1π̃

(1)
01 (0) =

1
λ1

,

where the transition probability q̃(1)00 (0) follows from (24) as q̃(1)00 (0) = b̃(λ1), and π̃
(1)
0j (0)

are obtained from (30) of Lemma 6 as

π̃
(1)
0j (0) =

{
1

λ0
for j = 0,

1−b̃(λ1)
λ1

for j = 1.

Thus, the s.s.p.’s πj from (32) are equal to:

π0 =
1

( f + g)λ0(1− b̃(λ1))
, π1 =

1
( f + g)λ1

, π2 =
g

f + g
,

where the mean time to failure of the system f is shown by (34).

Consider now a special case of the corresponding model with the exponential distri-
bution of the repair times of the components and the whole system, where b and g are the
mean times of partial and full repair, respectively:

B(t) = 1− e−
t
b , G(t) = 1− e−

t
g .

In this case, both the LT of the reliability function:

R̃(s) =
1 + b(s + λ0 + λ1)

s(1 + bs) + λ0λ1b + bs(λ0 + λ1)
,

as well as the s.s.p.’s:

π0 =
1 + λ1b

1 + b(λ0 + λ1 + λ0λ1g)
, π1 =

λ0b
1 + b(λ0 + λ1 + λ0λ1g)

,

π2 =
λ0λ1bg

1 + b(λ0 + λ1 + λ0λ1g)

coincide with those obtained with the simple birth and death process.

5. Conclusions and Further Investigations

In this paper, the embedded regeneration approach was used to perform the reliability-
centered study of a k-out-of-n : F system and obtain its main reliability characteristics. We
studied two scenarios of the system’s restoration after its failure: (i) partial repair, when
after the system’s failure, the repair of the repaired component is prolonged, and after its
completion, the system hits the next to last state; and (ii) full repair, when after the system’s
failure, the repair of the whole system begins, and after its completion, the system becomes
as good as new.

In a series of previous works, this system has been investigated with the help of
other methods (method of embedded Markov chains [15,16] supplementary variables
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method [14]). However, the works in [15,16] only succeeded in obtaining results for special
cases (k = 2, 3), and in [14], only reliability function of the system was found.

The novel DSRP approach proposed in the current paper allows to calculate all the
main reliability characteristics of the considered system in the general case. This not only
represents a significant contribution to the study of a considered specific system, but also
significantly expands and enriches the methods for studying stochastic models. Moreover,
the proposed approach opens up the possibility of further sensitivity analyses of the time-
dependent and the steady state probabilities of this system to the shape of its components’
repair time distribution, which is the plan of our future research.
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c.d.f. Cumulative distribution function
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m.g.f. Moment generating function

References
1. Smith, W.L. Regenerative stochastic processes. Proc. R. Soc. Ser. A 1955, 232, 6–31. [CrossRef]
2. Cinlar, E. On semi-Markov processes on arbitrary space. Proc. Camb. Philos. Math. Proc. Camb. Philos. Soc. 1969, 66, 381–392.

[CrossRef]
3. Jacod, J. Theoreme de renouvellement et classification pour les chaines semi-Markoviennes. Ann. Inst. Henri Poincare B 1971, 7,

85–129.
4. Korolyuk, V.S.; Turbin, A.F. Semi-Markov Processes and Their Applications; Kiev: Dumka, India, 1976; p. 184.
5. Klimov, G.P. Stochastic Service Systems; Nauka: Moscow, Russia, 1966.

http://doi.org/10.1098/rspa.1955.0198
http://dx.doi.org/10.1017/S0305004100045096


Mathematics 2021, 9, 1933 23 of 23

6. Rykov, V.V.; Yastrebenetsky, M.A. On regenerative processes with several types of regeneration points. Cybernetics 1971, 3, 82–86.
7. Nummelin, E. Uniform and ratio-limit theorems for Markov-renewal and semi-regenerative processes on a general state space.

Ann. Inst. Henri Poincare B 1978, 14, 119–143.
8. Rykov, V.V. Decomposable Semi-Regenerative Processes and Their Applications; Lap Lambert Academic Publishing: Berlin, Germany,

2011; p. 75.
9. Rykov, V.V. Regenerative processes with embedded regeneration periods and their application for priority queuing systems

investigation. Cybern. B 1975, 6, 105–111. [CrossRef]
10. Rykov, V.V.; Jolkoff, S.Y. Generalized regenerative processes with embedded regeneration periods and their applications. MOS

Ser. Optim. 1981, 12, 575–591.
11. Rykov, V.V. Decomposable Semi-Regenerative Processes: Review of Theory and Applications to Queueing and Reliability Systems.

RT&A 2021, 16, 157–190.
12. Trivedi, K.S. Probability and Statistics with Reliability; Wiley: New York, NY, USA, 2002.
13. Chakravarthy, S.R.; Krishnamoorthy, A.; Ushakumari, P.V. A k-out-of-n reliability system with an unreliable server and Phase

type repairs and services: The (N, T) policy. J. Appl. Math. Stoch. Anal. 2001, 14, 361–380. [CrossRef]
14. Rykov, V.; Kozyrev, D.; Filimonov, A.; Ivanova, N. On Reliability Function of a k-out-of-n System with General Repair Time

Distribution. Probab. Eng. Inform. Sci. 2020, 51, 433–441. [CrossRef]
15. Moustafa, M.S. Availability of k-out-of-n: G Systems with Exponential Failure and General Repairs. Econ. Qual. Control. 2001, 16,

75–82. [CrossRef]
16. Linton, D.G.; Saw, J.G. Reliability analysis of the k-out-of-n: F system. IEEE Trans. Reliab. 1974, 23, 97–103. [CrossRef]
17. Kala, Z. Sensitivity analysis in probabilistic structural design: A comparison of selected techniques. Sustainability 2020, 12, 4788.

[CrossRef]
18. Efrosinin, D.; Rykov, V.; Vishnevskiy, V. Sensitivity of Reliability Models to the Shape of Life and Repair Time Distributions. In

Proceedings of the 9th International Conference on Availability, Reliability and Security (ARES 2014), Fribourg, Switzerland, 8–12
September 2014; pp. 430–437.

19. Rykov, V. On Reliability of Renewable Systems. In Reliability Engineering; Vonta, I., Ram, M., Eds.; Theory and Applications: Boca
Raton, FL, USA, 2018; pp. 173–196.

20. Levitin, G.; Xing, L.; Dai, Y. Optimal operation and maintenance scheduling in m-out-of-n standby systems with reusable elements.
Reliab. Eng. Syst. Saf. 2021, 211, 107582. [CrossRef]

21. Yin, J.; Cui, L. Reliability for consecutive-k-out-of-n: F systems with shared components between adjacent subsystems. Reliab.
Eng. Syst. Saf. 2021, 210, 107532. [CrossRef]

22. Rykov, V.V.; Sukharev, M.G.; Itkin, V.Y. Investigations of the Potential Application of k-out-of-n Systems in Oil and Gas Industry
Objects. J. Mar. Sci. Eng. 2020, 8, 928. [CrossRef]

23. Rykov, V.; Kochueva, O.; Farkhadov, M. Preventive Maintenance of a k-out-of-n System with Applications in Subsea Pipeline
Monitoring. J. Mar. Sci. Eng. 2021, 9, 85. [CrossRef]

http://dx.doi.org/10.1007/BF01074243
http://dx.doi.org/10.1155/S1048953301000326
http://dx.doi.org/10.1017/S0269964820000285
http://dx.doi.org/10.1515/EQC.2001.75
http://dx.doi.org/10.1109/TR.1974.5215215
http://dx.doi.org/10.3390/su12114788
http://dx.doi.org/10.1016/j.ress.2021.107582
http://dx.doi.org/10.1016/j.ress.2021.107532
http://dx.doi.org/10.3390/jmse8110928
http://dx.doi.org/10.3390/jmse9010085

	Introduction and Motivation
	State of Problem. Notations
	Partial Repair Regime
	Semi-Regenerative Process
	Behavior of the Process in a Separate Semi-Regeneration Period
	Time-Dependent and Stationary Probabilities
	Example 1

	Full Repair Regime
	The Main Regenerative Process
	Embedded Semi-Regenerative Process
	Process State Probabilities in a Separate Lifetime Period
	Process Time-Dependent and Stationary State Probabilities
	Example 2

	Conclusions and Further Investigations
	References

