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Abstract: Growth models have been widely used to describe behavior in different areas of knowledge;
among them the Logistics and Gompertz models, classified as models with a fixed inflection point,
have been widely studied and applied. In the present work, a model is proposed that contains these
growth models as extreme cases; this model is generalized by including the Caputo-type fractional
derivative of order 0 < β ≤ 1, resulting in a Fractional Growth Model which could be classified as
a growth model with non-fixed inflection point. Moreover, the proposed model is generalized to
include multiple sigmoidal behaviors and thereby multiple inflection points. The models developed
are applied to describe cumulative confirmed cases of COVID-19 in Mexico, US and Russia, obtaining
an excellent adjustment corroborated by a coefficient of determination R2 > 0.999.

Keywords: fractional Caputo derivative; sigmoidal function; Gompertz model; logistic model

1. Introduction

Understanding population growth phenomena has been a task that over the time has
provided various challenges to mathematicians, physicists, biologists, medics, economists
and many others. From economic areas, where applying growth models to poultry allows
making imperative predictions for the profitability of operations [1], to biological and
medical areas, where growth models have been applied to the growth of animals, plants,
yeast cells, tumors and recently to adjust and model COVID-19 pandemic data [2–5].

Several authors classify population growth models as bounded and unbounded,
where bounded growth models are characterized by having a sigmoidal behavior with a
fixed inflection point or a sigmoidal behavior with a non-fixed inflection point [1,2].

Among the various existing growth models, Logistics (Verhulst) and Gompertz models
have been widely studied and solved by a large number of methods; some of which are:
successive approximation method, singular perturbation method, Adomian decomposition
method, shifted Legendre polynomials, homotopy method, see [5–15] and the references
therein; where even fractal dimensions are considered for the case of the Logistics equation.

In order to model phenomena with greater precision, fractional calculus has been
implemented in growth models; particularly, in the models previously described. For the
Logistic model, it has been implemented in the discrete model showing chaotic fractional
behavior and fractional bifurcation diagrams [12]; in the continuous model, the fractional
predictor-corrector scheme is implemented [13]; reaching analytical solutions considering
power law coefficients [14]; and even conformable derivatives [15], all of these considering
the fractional derivative of the Caputo type.

For the Gompertz model, the Caputo-type fractional derivative is implemented in the
Gompertz linearized differential equation and solved by means of the Laplace transform [5];
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on the other hand, in the linearized Gompertz equation, the Caputo fractional derivative of
a function is implemented with respect to the exponential function, allowing the asymptotic
behavior of the function to depend on the order of the fractional derivative [11].

In general, solving fractional problems analytically, whether linear or nonlinear, repre-
sents a great challenge; therefore, the generalization of numerical methods to approximate
fractional derivatives and fractional differential equations has been a very useful tool.
When proposing numerical schemes, various authors use the relationship between the
Caputo derivative and the Riemann–Liouville derivative where stability and convergence
have been fully studied [16]; on the other hand, the equivalence between the derivative of
Caputo and the integral equation of Volterra is used, where the stability and convergence
have been proven in various works [17–20].

Finally, COVID-19 is a recent disease caused by the SARS-CoV-2 virus and declared as
a public health emergency of international importance by the World Health Organization
(WHO) on 30 January 2020 [21]; since then, many countries have implemented complex
models in order to understand the behavior of this phenomenon and thus be able to make
predictions [22–24]; even for these arduous modeling tasks, models as simple as Logistics
and Gompertz continue to be used, showing a good fit to describe cumulative data on
confirmed cases and deaths [3,4,25].

The work proceeds as follows. Section 2 shows the necessary tools of Fractional
Calculus. Section 3 develops the fractional growth model while Section 4 justifies the
existence and uniqueness of the solution of the model with the numerical scheme applied.
Section 5 generalizes the model to include multiple sigmoidal behaviors and, therefore,
multiple inflection points. In Section 6, the models developed are applied to describe the
data of COVID-19 cases from Mexico, US and Russia. Finally, Section 7 summarizes the
results shown and the conclusions reached.

2. Fractional Calculus

To model phenomena with physical initial conditions, the Caputo fractional derivative
is naturally the choice to make. Next, this fractional derivative will be defined along with
some of its most important properties, for more information, see [26,27].

Definition 1. Let −∞ < t0 < ∞. The Riemann–Liouville fractional integral, RL Iβ
t0+

y(t), of
order β ∈ R is defined by(

RL Iβ
t0+

y
)
(t) =

1
Γ(β)

∫ t

t0

(t− τ)β−1y(τ)dτ, t > t0, (1)

where Γ(·) is Euler’s gamma function.

From the fractional integral, we have to definitions.

Definition 2. The Riemann–Liouville fractional derivative, RLDβ
t0+

y(t), of order β ∈ R is
defined by(

RLDβ
t0+

y
)
(t) =

(
dn

dtn
RL In−β

t0+
y
)
(t) =

1
Γ(n− β)

dn

dtn

∫ t

t0

(t− τ)n−β−1y(τ)dτ, (2)

where n ∈ N with n− 1 < β ≤ n.

Definition 3. The Caputo fractional derivative, CDβ
t0+

y(t), of order β ∈ R, is defined by

(
CDβ

t0+
y
)
(t) =

(
RL In−β

t0+
dn

dtn y
)
(t) =

1
Γ(n− β)

∫ t

t0

(t− τ)n−β−1y(n)(τ)dτ, (3)

where n ∈ N with n− 1 < β ≤ n and y(n) is the n-th derivative.
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The Riemann–Liouville fractional derivative and Caputo fractional derivative are related by

(
CDβ

t0+
y
)
(t) =

(
RLDβ

t0+

[
y(x)−

n−1

∑
j=0

y(j)(t0)

j!
(x− t0)

j

])
(t). (4)

Although both definitions of fractional derivative are strongly related, they have great
differences such as their behavior for constants, that is, if y(t) = c with c a constant, then

(
RLDβ

t0+
y
)
(t) =

c(t− t0)
−β

Γ(1− β)
; (5)(

CDβ
t0+

y
)
(t) = 0; (6)

furthermore, when considering applications, the Caputo fractional derivative allows us to
continue using initial conditions as in the classical case, with integer derivatives, which is
not the case for the Riemann–Liouville fractional derivative.

3. Fractional Growth Model

Definition 4. Logistic and Gompertz growth models are defined, respectively, through the following
differential equations:

dN
dt

= rN(t)
(

1− N(t)
N∞

)
, N(0) = N0; (7)

dN
dt

= rN(t) ln
(

N∞

N(t)

)
, N(0) = N0; (8)

where N = N(t) represents the size of the population, t is time, r > 0 is the growth rate, N∞ > 0
is the maximum number of individuals that the population can sustain or carrying capacity of the
environment and N0 is the initial condition.

Indeed, Logistic and Gompertz growth models have been studied extensively and
both are classified as models with a fixed inflection point where the inflection point in each
model is given, respectively, by

Ninflection = N∞
2 , in tinflection =

1
r

ln
(

N∞

N0
− 1
)

; (9)

Ninflection = N∞
e , in tinflection =

1
r

ln
(

ln
(

N∞

N0

))
. (10)

Considering the limit

lim
µ→∞

µ
(

1− x1/µ
)
= − ln(x), (11)

and substituting the integer derivative for the Caputo fractional derivative, Logistic and
Gompertz models, Equations (7) and (8), can be generalized by the following fractional
growth model; namely

CDβ
0 N(t) = rµN(t)

(
1−

(
N(t)
N∞

)1/µ
)

, N(0) = N0; (12)

where N(t), N∞ and t have the same meaning as in Equations (7) and (8) and µ > 0 is
a shape parameter; while r = ν/τβ−1 where ν is a growth rate and τ is a reference time
introduced in order to maintain dimensional balance in the equation. Note that for β = 1
and µ = 1, the fractional model becomes the Logistic model and, for µ → ∞, the model
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is equivalent to the Gompertz model. Likewise, for the non-fractional case, β = 1, the
inflection point is

Ninflection =
N∞

(1 + 1/µ)µ , in tinflection =
1
r

ln

(
µ

[(
N∞

N0

)1/µ

− 1

])
; (13)

where it is concluded that the fractional model, even for β = 1, belongs to the family of
growth models with a non-fixed inflection point.

4. Analytical and Numerical Solution of the Fractional Growth Model

Equation (12) shows the model studied in this work. Before showing the results of the
fractional growth model and its application, some results on the existence and uniqueness
of the solution of the fractional growth model as well as the numerical scheme used will
be shown.

4.1. Existence and Uniqueness of Solutions

Let

f (t, N(t)) = rµN(t)

(
1−

(
N(t)
N∞

)1/µ
)

, (14)

be the right part of the fractional differential Equation (12); consider the following theorems
given by Diethelm and Ford [28].

Theorem 1 (Existence). Assume that D := [0, χ∗] × [N0 − α, N0 + α] with some χ∗ > 0
and some α > 0, and let the function f : D → R be continuous. Furthermore, define χ :=
min{χ∗, (αΓ(β + 1)/‖ f ‖∞)1/β}. Then, there exists a function N : [0, χ]→ R solving the initial
value problem (12).

Theorem 2 (Uniqueness). Assume that D := [0, χ∗]× [N0 − α, N0 + α] with some χ∗ > 0 and
some α > 0. Furthermore, let the function f : D → R be bounded on D and fulfill a Lipschitz
condition with respect to second variable, i.e.,

| f (t, y)− f (t, z)| ≤ L|y− z| (15)

with some constant L > 0 independent of t, y and z. Then, denoting χ as in Theorem 1, there exists
at most one function N : [0, χ]→ R solving the initial value problem (12).

Indeed, the function shown in Equation (14) satisfies the conditions required by the
theorems given by Diethelm and Ford, so it is concluded that the solution of the fractional
growth model, Equation (12), exists and is unique.

4.2. Stability and Numerical Convergence

Let t ∈ [0, T] with T > 0 and consider a uniform mesh with the nodes defined by
tk = k∆t with ∆t = T/n and k = 0, 1, · · · , n.

Note that the fractional growth model, Equation (12), is equivalent to the Volterra
integral equation

N(t) = N0 +
1

Γ(β)

∫ t

0
(t− s)β−1 f (s, N(s))ds, (16)

where f is as in Equation (14).
Considering Euler’s fractional method, the numerical scheme applied is

N(tk+1) = N0 +
1

Γ(β)

k

∑
j=0

bj,k+1 f (tj, f (N(tj))) (17)
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with bj,k+1 = ∆tβ

β [(k − j + 1)β − (k − j)β] where 0 ≤ j ≤ k and k = 0, 1, · · · , n− 1. The
numerical stability of this method has been extensively studied for both linear and nonlinear
fractional differential equations, see [29,30] and the references therein.

4.3. Sensitivity Analysis

Next, we will show synthetic results of the fractional growth model and its sensitivity
to the variation of the main parameters of the model, namely µ and β.

Figures 1 and 2 show the numerical results of the fractional growth model for
0 < β ≤ 1 considering the numerical scheme shown in Equation (17). Figure 1 shows
the case β = 1, where the fractional growth model recovers the extreme behaviors of the
Logistics model and Gompertz model by varying the parameter µ; Figure 1a shows the
behavior of the function N(t); while Figure 1b shows the behavior of the function N′(t)
that shows how the inflection point moves as function of the parameter µ.

(a) (b)
Figure 1. Fractional Growth Model and its derivative with the classic fractional derivative order, β = 1, varying the
parameter µ where the classical sigmoidal behavior and its non-fixed inflection point are shown. (a) Fractional Growth
Model by varying the parameter µ. (b) Derivative of the Fractional Growth Model by varying the parameter µ.

Figure 2 shows the behavior of the fractional growth model with different values of
the order of the fractional derivative β. For β = 1, the fractional derivative behaves as the
classical derivative. Figure 2a shows the sigmoidal behavior of the function N(t), while
Figure 2b shows the behavior of its derivative where the inflection point varies, also, as a
function of β.

Figure 2 shows that when the order of the fractional derivative β decreases, the
sigmoidal behavior of the function is lengthened, delaying the appearance of the inflection
point. It is also observed how the asymptotic behavior of the function is affected, showing
not only a slower growth, it is also shown that the asymptote reached is smaller as β→ 0.

(a) (b)
Figure 2. Fractional Growth Model and its derivative varying the order of the fractional derivative β where the sigmoidal
behavior and its non-fixed inflection point are preserved. (a) Fractional growth model varying the order of the fractional
derivative β. (b) Derivative of the Fractional Growth Model by varying the order of the fractional derivative β.
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5. Fractional Growth Model for Sprouts

Growth models, including the fractional growth model, Equation (12), have the
characteristic of having a single sigmoidal behavior, that is, a single inflection point. In
order to describe growth data with multiple sigmoidal behaviors and therefore multiple
inflection points, the fractional growth model will be generalized.

Suppose a growth phenomenon with k sprouts; because the number of individuals is
clearly additive, the principle of superposition will be applied and the global phenomenon
will be modeled as the sum of each local phenomenon, namely

N(t) =
k

∑
j=1

Nj(t), (18)

where Nj(t) for j = 0, 1, . . . , k satisfies Equation (12) with its respective parameters.
The global initial condition, N0, and the global maximum number of individuals that

the population can sustain, N∞, are defined as

N0 =
k

∑
j=1

Nj,0, N∞ =
k

∑
j=1

Nj,∞; (19)

where Nj,0 and Nj,∞ are the initial condition and the maximum number of individuals that
the population can sustain for each sprout.

Let the weight factors ωj be given as

ωj =
Nj,0

N0
=

Nj,∞

N∞
; (20)

clearly, it is true that ∑k
j=1 ωj = 1.

Therefore, the fractional growth model with multiple sprouts is

CDβ
0 N(t) =

k

∑
j=1

CD
β j
0 Nj(t) =

k

∑
j=1

rjµjNj(t)

1−
(

Nj(t)
ωjN∞

)1/µj
, N(0) = N0. (21)

The numerical scheme applied to solve the fractional growth model for multiple
sprouts, Equation (21), was obtained analogously to the numerical scheme shown in
Equation (17), that is,

N(tm+1) =
k

∑
j=1

Nj(tm+1) = N0 +
k

∑
j=1

1
Γ(β j)

m

∑
l=0

bl,m+1rjµjNj(tm)

1−
(

Nj(tm)

ωjN∞

)1/µj
. (22)

The proof for the existence and uniqueness for the fractional growth model with
multiple sprouts as well as the numerical stability of the used scheme are proven by
induction without much effort, so it will be omitted for reasons of space.

The fractional growth model with multiple sprouts, Equation (21), was solved nu-
merically by applying the numerical scheme shown in Equation (22). In order for the
function N(t) to be a solution of the fractional growth model with multiple sprouts and
to fit cumulative confirmed case data of COVID-19, the function fit from MATLAB was
applied to find the values of the parameters in the model.

6. Applications to COVID-19 Data

Since the beginning of the pandemic, the effect of COVID-19 has been different
throughout the world; however, even with the various measures that each country has
taken, the accumulated confirmed cases continue to have a sigmoidal behavior. Therefore,
the fractional growth model will be applied to describe the cumulative confirmed cases of
COVID-19 from Mexico, the United States (US) and Russia during their first outbreak and
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the fractional growth model with multiple sprouts will be applied to all the data obtained
from their respective first case to 14 July 2021 [31].

6.1. Mexico Data

Historically, the first confirmed case of COVID-19 in Mexico was on 28 February 2020 [32];
Mexico has constantly updated, through its official pages, the number of Confirmed, Sus-
pect, Negative and Deaths caused throughout the pandemic [31,33].

Figure 3 shows the confirmed cases data of COVID-19 from 28 January 2020 to 14 July
2021; where cumulative confirmed cases are shown in red, while daily confirmed cases are
shown in blue.

Figure 3. COVID-19 Mexico data.

For the purpose of applying both models, the fractional growth model and the frac-
tional growth model with multiple sprouts, different datasets will be considered for each
model and the Matlab function fit will be applied to find the corresponding parameters
that minimize the error in the least squares sense.

6.1.1. Fractional Growth Model with One Sprout

In order to adequately describe the data presented by the proposed fractional growth
model, the data will be taken from 1 March 2020 to 1 October 2020; because from the
proposed initial date, it is observed that cumulative cases have an exponential growth type
behavior and, after the proposed final date, the effect of a subsequent sprout is observed.

Figure 4 shows the fit made by the fractional growth model, Equation (12), to the
proposed data corresponding to the observed 1st wave of COVID-19. Figure 4a shows the
comparison between the model and the cumulative confirmed cases on a semilog scale
where it is observed that from a certain day, t ≈ 70 days, there is no distinction between the
model and the data. Figure 4b shows the comparison between N′(t), calculated numerically
from the numerical solution obtained, and the confirmed daily cases where, despite the
dispersion shown by the daily cases data, a very good fit is observed by the model which
is corroborated by the coefficient of determination R2, as observed in Table 1.

From the fitted parameters it is observed that, because µ� 1, the Fractional Growth
Model has a similar Gompertz-like behavior; furthermore, because β < 1, the phenomenon
shows a slower growth compared to a classical growth with integer derivative. Likewise,
the model shows its inflection point at t = 146.3 while the day of maximum confirmed
cases was reported on 1 August 2020, that is, t = 154.
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(a) (b)

Figure 4. Fractional Growth Model Fit for single sprout compared to confirmed COVID-19 data from Mexico. In (a) the
function N(t), solution to the fractional growth model, is compared with the cumulative confirmed cases; while in (b) the
function N′(t) is compared with the confirmed daily cases.

6.1.2. Fractional Growth Model with Multiple Sprouts

Consider the data from 1 March 2020 to 14 July 2021 and consider the fractional growth
model for multiple sprouts, Equation (21). Figure 5 shows the fit made by the fractional
growth model with multiple sprouts, with k = 3, to the cumulative confirmed data of
COVID-19 in Mexico.

Figure 5a shows the fit from the model for k = 3 sprouts compared to the cumulative
confirmed cases on logarithmic scale. Although, at the beginning, there is a slight difference
between the data and the adjustment carried out, it is observed that after a certain day,
t ≈ 70 days, the difference is indistinguishable. On the other hand, Figure 5b shows the
comparison between N′(t), calculated numerically, and the confirmed daily cases where,
as can be seen, the behavior of the model follows the characteristic behavior of the data,
that is, it shows a good concordance between the inflection points of the model and the
moments of maximum recorded cases, as well as the increasing and decreasing behaviors
which is shown by the R2, as observed in Table 1.

(a) (b)
Figure 5. Fractional Growth Model Fit for k = 3 sprouts compared to confirmed COVID-19 data from Mexico. In (a) the
function N(t), solution to the fractional growth model with multiple sprouts, is compared with the cumulative confirmed
cases; while in (b) the function N′(t) is compared with the confirmed daily cases.

Figure 5 shows 2 sprouts already finished and a third sprout in process, where the first
outbreak had a considerably longer duration than the subsequent sprouts, ω1 = 0.4754;
likewise, µ1 � 1 implies that the first outbreak has a Gompertz-like behavior while the
following sprouts have a Logistic-like behavior.

Note that, by applying the principle of superposition, that is, when considering each
sprout as part of a global phenomenon, the parameters that characterize each sprout are
susceptible to global behavior, which explains why the parameters shown in Figure 5 for
the first sprout do not match those shown in Figure 4.
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Finally, observing the order of the fractional derivative for each sprout, βi for i = 1, 2, 3;
the first sprout had a considerably slower behavior than a classical behavior with an integer
derivative and, therefore, a delay in the appearance of the maximum number of confirmed
cases, that is, the inflection point; the second sprout, given that β2 ≈ 1, has a behavior very
close to the classical behavior with integer derivative, so the delay in this case is little; for the
third sprout, considering the fit with the actual data, a considerably slower development is
observed than could be obtained for a classical behavior with an integer derivative.

6.2. US Data

The reported data of confirmed cases by COVID-19 in the US date back to 22 January
2020 [31]. In this time period, the data have proven that the US has had multiple sprouts
of COVID-19; therefore, the fractional growth model for multiple sprouts will be applied
directly to the full history data.

Figure 6 shows the confirmed cases of COVID-19 from 22 January 2020 to 14 July 2021;
where cumulative confirmed cases are shown in red while daily confirmed cases are shown
in blue.

Figure 6. COVID-19 US data.

Figure 7 shows the fit made by the fractional growth model with k = 4 sprouts to the
cumulative confirmed data of COVID-19 in the US since 13 March 2020. This is because,
from this date, the cumulative data begin to show an exponential growth type behavior.

Figure 7a shows the comparison between the fit made by the model and the cumulative
confirmed data on a logarithmic scale where from a certain day, t ≈ 40, there is no visual
distinction between the model and the data. Figure 7b shows the comparison between
N′(t), calculated numerically, and the confirmed daily cases where it is observed that,
despite the dispersion in the data, the model has a good fit, which is corroborated by the
coefficient of determination R2 in Table 1.

Based on the parameters shown in Figure 7, the first and second sprouts have had
a similar duration, ω1 ≈ 0.14 ≈ ω2, and the third sprout has had a noticeably longer
duration, ω3 ≈ 0.6; likewise, the first sprout has a Gompertz-like behavior, µ1 � 1, while
the subsequent sprouts has a Logistic-like behavior, µk ≈ 1 for k = 2, 3, 4.

It is remarkable to observe that, since the order of the fractional derivative associated
with the first two sprouts, β1 and β2, is less than one, the behavior in both sprouts is
considerably slower compared to the classical behavior with integer derivative, that is, the
time of maximum daily cases was substantially delayed and, at the same time, the number
of maximum cases also decreased. On the other hand, the third sprout shows a value of β3
near to 1 which implies that this sprout had an almost classical behavior; finally, the fourth
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sprout shows a value of β4 ≈ 0.9 showing that this sprout is slower than what could be
observed with a classic case, although not on a par with the first sprouts.

(a) (b)
Figure 7. Fractional Growth Model Fit for k = 4 sprouts compared to confirmed COVID-19 data from the US. In (a) the
function N(t), solution to the fractional growth model with multiple sprouts, is compared with the cumulative confirmed
cases; while in (b) the function N′(t) is compared with the confirmed daily cases.

6.3. Russia Data

The reported data of confirmed cases by COVID-19 in Russia date back to 31 January
2020, [31]. Since then and until 14 July 2021, COVID-19 has shown multiple sprouts in the
country. Figure 8 shows these data where cumulative confirmed cases are shown in red
while daily cases are shown in blue.

Figure 8. COVID-19 Russia data.

Figure 9 shows the fit made by the fractional growth model with k = 3 sprouts to
the data of cumulative confirmed cases since March 13, 2020, since from this date, an
exponential growth is observed.

Figure 9a compares the model with the cumulative confirmed cases on a logarithmic
scale, while Figure 9b compares the function N′(t), calculated numerically, with the con-
firmed daily cases, where a low data dispersion is observed which allows an excellent fit
by the model, verified by the coefficient of determination R2, Table 1.

Considering the data shown in Figure 9, there are 2 finished sprouts and a third sprout
in development in Russia. The first sprout has a Gompertz-like behavior, µ1 � 1, while
the following sprouts have a Logistic-like behavior, µk ≈ 1 for k = 2, 3; it is observed that
the second sprout lasts considerably longer than the first sprout ω2 ≈ 0.5.
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In this case, it is observed from the order of the fractional derivative that the first
sprout has a slower behavior compared to how it would appear if said sprout had a classical
behavior with an integer derivative; while for the second sprout, even though there is
indeed a slight slowdown in the phenomenon, the behavior is similar to the classical case.

(a) (b)
Figure 9. Fractional Growth Model Fit for k = 3 sprouts compared to confirmed COVID-19 data from Russia. In (a) the
function N(t), solution to the fractional growth model with multiple sprouts, is compared with the cumulative confirmed
cases; while in (b) the function N′(t) is compared with the confirmed daily cases.

Table 1. Statistical results of the fit of the Fractional Growth Model and the Fractional Growth Model for multiple sprouts.

Country Model R2 Forecast Peak Real Peak

Mexico Single Sprout 0.9998 t = 146.3 days t = 154 days
Multiple Sprouts 0.9999 t = 153.3 and t = 319.7 days t = 154 and t = 327 days

US Multiple Sprouts 0.9999 t = 46.7, t = 143.7, t = 296 and
t = 410.7 days

t = 40, t = 138, t = 308 and
t = 389 days

Russia Multiple Sprouts 0.99996 t = 84 and t = 286.3 days t = 71 and t = 298 days

Finally, Table 1 shows a summary of the adjustments made by the fractional growth
model for a single sprout and for multiple sprouts to the data of cumulative confirmed
cases by COVID-19 in Mexico, US and Russia. It is observed that, in effect, the adjustments
are excellent given that, for all the applications, the coefficient of determination R2 is greater
than 0.999. Furthermore, the inflection points by the models are shown in comparison with
the number of the day with the maximum number of confirmed registered cases, where it
is observed that, in general, the days obtained by the model are quite close to the real data.

7. Conclusions

A growth model is proposed that contains the Gompertz and Logistics models as
particular cases. The Caputo fractional derivative was incorporated with 0 < β ≤ 1
obtaining the fractional growth model which belongs to the class of models with non-
fixed inflection point. Furthermore, in order to apply the model to phenomena with
multiple sigmoidal growths and, therefore, with multiple inflection points, the proposed
model was generalized to obtain a fractional growth model for multiple sprouts. The
models developed were applied to describe cumulative confirmed cases of COVID-19 in
Mexico, US and Russia, obtaining excellent adjustments corroborated by the coefficient of
determination, R2, where for all the adjustments made, it was obtained that R2 > 0.999.
Finally, it was shown how the different sprouts in the various countries have behaviors
similar to the Gompertz and Logistics models and how these sprouts were far from having a
classic behavior, with an integer derivative, which can be considered as a consequence of the
measures taken by these countries. The models developed, even when they were applied
for 0 < β ≤ 1, can also describe sigmoidal behaviors that have a more aggressive or fast-
spreading behavior, as is the case of some COVID-19 strains that are currently spreading.
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