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Abstract: The aim of this paper is to study, from a topological and geometrical point of view, the
iteration map obtained by the application of iterative methods (Newton or relaxed Newton’s method)
to a polynomial equation. In fact, we present a collection of algorithms that avoid the problem of
overflows caused by denominators close to zero and the problem of indetermination which appears
when simultaneously the numerator and denominator are equal to zero. This is solved by working
with homogeneous coordinates and the iteration of self-maps of the Hopf fibration. As an application,
our algorithms can be used to check the existence of multiple roots for polynomial equations as
well as to give a graphical representation of the union of the basins of attraction of simple roots and
the union of the basins of multiple roots. Finally, we would like to highlight that all the algorithms
developed in this work have been implemented in Julia, a programming language with increasing
use in the mathematical community.

Keywords: Newton’s method; Hopf fibration; multiple roots; rational functions; homogeneous
coordinates; Riemann sphere

1. Introduction

In this paper, we present a geometrical and topological framework and some mathe-
matical techniques to study a numerical method for solving nonlinear algebraic equations
from a different point of view. In general, a root-finding method applied to a polynomial
complex equation gives rise to rational functions that could be defined on the Riemann
sphere. Instead of taking the iteration of a rational function on the Riemann sphere, we
consider the iteration of a “function” on the Hopf fibration S3 → S2 ∼= P1(C), where Sn

denotes the n-sphere and P1(C) is the complex projective line. In addition, we develop
a collection of algorithms for the iteration of a rational function that avoids the problem
of overflows caused by denominators close to zero and the problem of indetermination
which appears when simultaneously the numerator and denominator are equal to zero.
Although these algorithms can be applied to any rational function, we focus our interest
in rational functions that arise from the application of a numerical method for solving a
nonlinear polynomial equation. In particular, we consider the relaxed Newton’s method
for solving polynomial equations, but our study could be generalized to other iterative
methods. One of the main applications of our algorithms is the division of the Riemann
sphere in three regions: the union of the basins of multiple roots, the union of the basins
of simple roots, and the rest of the points. Consequently, our numerical procedures are
appropriate for analyzing the existence of multiple roots of an equation.

It is interesting to observe that a rational map f (z) = p(z)
q(z) is given by a quotient of two

polynomials p(z), q(z) and this representation can be or not be irreducible. In an iteration
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process, on the one hand, you may encounter an overflow problem when p(z) 6= 0 and
q(z) is a very small complex number; on the other hand, if the representation of f (z) is not
given in an irreducible expression, it can have common roots z0 of p(z) = 0 and q(z) = 0.
For z near z0, an iteration algorithm has to compute p(z), q(z) and the quotient p(z)

q(z) . In
these cases, you have an indeterminacy problem and the computer system cannot calculate
the quotient p(z)

q(z) . As a consequence, the computational environment gives an error and
the iteration process stops. We refer the reader to the penultimate section of [1] where this
type of error is explained and some solutions are given through the technique of starting
the iteration at a different point. Other useful methods based on the infinite-precision
arithmetic [2,3] are able to avoid in many cases the types of errors that appear in the
iteration process, but this technology is not a panacea. In this paper, we use the iteration
of self-maps of the Hopf fibration and the use of normalization methods to avoid errors
caused by overflow and indeterminacy problems.

In previous works ([4–6]), we have developed some homogeneous versions of numer-
ical methods associated with a complex rational map a(z)/b(z), where a, b are elements in
the complex polynomial ring C[z] and b 6= 0. The procedure used in these papers consists
of changing a(z)/b(z) by F(u, v)/G(u, v), where z = u/v and F(u, v), G(u, v) are homoge-
neous bivariate polynomials with the same degree; that is, R = (F, G) is a homogeneous
pair (see current Definitions 2 and 3).

However, the present work is based on the iteration of a self-map of the pointed Hopf
fibration: Given a homogeneous pair R = (F, G), we consider the following commutative
diagram:

C2

p
��

R // C2

p
��

S3+

q
��

RS
// S3+

q
��

P1+(C) RP
// P1+(C)

where the pointed Hopf fibration q : S3+ → P1+(C) is the canonical extension by an
additional point of the well-known Hopf fibration q : S3 → P1(C), see [7]. The definitions
of p : C2 → S3+ and q : S3+ → P1+(C) are given by Formula (4) in Section 2.2. The
definitions of R, RS, RP appear in (9)–(11), respectively.

In a first approach, we are interested in solving a nonlinear equation g(z) = 0, where
g : C→ C is a d-degree polynomial, by using the well-known relaxed Newton’s method

zn+1 = Nµ(g)(zn) =
zng′(zn)− µg(zn)

g′(zn)
, n ≥ 0, µ ∈ C. (1)

Note that the classical Newton’s method is obtained for µ = 1. If the previous
sequence starts at an initial approximation z0 close enough to a root of the polynomial
g, then it converges to such a root. The influence of the multiplicities of the roots of the
polynomial g in the numerical and dynamical properties of a rootfinding method has been
analyzed by several authors, see [5,6,8–10]. In addition, the importance of the relaxing
parameter µ in the convergence of the sequence defined in (1) has been studied in papers
like [11] or [12], for instance.

In this work, from a theoretical point of view, we consider the Newton and relaxed
Newton methods as endomorphisms of the pointed Hopf fibration. That is, the relaxed
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Newton method associated with a complex polynomial g ∈ C[z] is given by a homogeneous
pair R = (F, G) such that the following induced diagram is commutative:

S3+ RS=[F,G] //

q
��

S3+

q
��

P1+(C)
RP=[F:G]// P1+(C).

Moreover, if (F, G) 6= (0, 0) is irreducible (see Definition 5), one has that RS(S3) ⊂ S3

and RP(P1(C)) ⊂ P1(C); therefore, the restriction in the diagram above to S3 → P1(C) is
an endomorphism of the standard Hopf fibration.

The augmented complex projective line P1+(C) = P1(C) ∪ {0̄} is obtained by adding
a new point 0̄ to the usual complex projective line P1(C). In this paper, when R 6= (0, 0),
we analyze the properties of the finite set of proper indeterminate points PInd(RP) =
P1(C) ∩ (RP)−1({0̄}). If we remove the indetermination points of a homogeneous pair R
(that is, we eliminate the common zeros of the numerator and denominator of a rational
map presented as a quotient of polynomials), we obtain a new irreducible homogeneous
map which is denoted by red(R)P. The set PInd(RP) has the following properties:

• If PInd(RP) = ∅, then R = (F, G) is irreducible, the restriction of the pair (RS, RP) is
an endomorphism of the Hopf fibration q : S3 → P1(C), and RP : P1(C) → P1(C) is
an analytic global map of the Riemann sphere (P1(C) ∼= S2 ∼= Ĉ.)

• If PInd(RP) 6= ∅, then R = (F, G) is not irreducible and the proper basin of 0̄ is
contained in the union of the basins of end points associated with proper indetermi-
nate points of RP in P1(C) taking as iteration map red(R)P : P1(C)→ P1(C), where
red(R)P is the irreducible pair obtained from R by a canonical procedure (see (15)).

The algorithms associated with the iteration of the self-map RP : P1+(C)→ P1+(C)
have the difficulty of the choice of a suitable representative element in the equivalence
class [z : t] = {λ(z, t) ∈ C2|λ ∈ C \ {0}}. Since P1+(C) is a quotient of S3+ and S3+ is a
quotient of C2, we have tackled this problem using the iteration of the self- map (R, RS)
given in the commutative diagram:

C2

p
��

R // C2

p
��

S3+ RS
// S3+,

and the fact that Equations (2)–(4), (7), (8), (12) and (14)–(16) are formulated in terms of
usual computational types (integers, real and complex numbers, arrays, etc.) that can be
easily implemented in many computational languages. In this case, we have implemented
these formulas and associated algorithms in Julia Language (in some previous papers, we
have developed other algorithms and implementations in Mathematica and Sage [13,14]).

In this work, we focus on the development of the theory of the iteration of endomor-
phisms (of type (R, RS)) of the pointed Hopf fibration and the design of algorithms for the
study of indeterminate points (for a detailed description of the implementation of these
algorithms in Julia, we refer the reader to [15].)

The Julia programming language has very nice properties: It has automatic translation
of formulas into efficient executable code. It allows programmers to write clear, high-level,
generic, and abstract code that closely resembles mathematical formulas, as they have
grown accustomed to in dynamical systems, yet produces fast, low-level machine code
that has traditionally only been generated by static languages. Moreover, one can easily
use parallel programing to obtain faster computational executions. For more complete
information, we refer the reader to the paper [16] by Bezanson, Edelman, Karpinski, and
Shah who started working on Julia language in 2009.
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One of the objectives of this work is the construction of algorithms to detect the
existence of multiple roots of polynomial equations. These algorithms are designed to have
a high performance and can be easily implemented in programming languages like Julia.
Its design is based on the evaluation of a canonical function associated with a homogeneous
pair in the orbit of a point in the Riemann sphere (see Section 4). To do this, instead of
working with the complex rational functions that arise from methods (1), we consider the
homogeneous version of the methods (see Section 5.1).

For the relaxed Newton method, the existence of proper indeterminate points is
equivalent to the existence of multiple roots (see Theorem 2). In addition, the use of
homogeneous coordinates and the inclusion of new points in our model (the infinity
point, a super-zero point) has a series of numerical advantages, avoiding overflows and
underflows in the calculations.

In order to obtain a graphic representation of the union of the basins of attraction of
the multiple roots and the union of the basins of attraction of the simple roots, we divide
the complex projective line into three disjoint regions

P1(C) = Red∪Green∪ Black.

The red region Red is the union of the proper basins of end points associated with
proper indeterminate points PInd(RP) under the iteration of red(R)P, see Section 2.1. Note
that Red contains the proper basin (under the iteration of RP) of the super-zero point 0̄.
The green region Green is the union of the basins of fixed points which are not proper
indeterminate points, and Black is the complementary subset: Black = P1(C) \

(
Red ∪

Green
)
.

In this work, we have developed algorithms implemented in Julia language which
give a graphical approach to these three regions, see Tables 1 and 2. For given tolerances
10−N , 10−C, where N, C ∈ N, the implemented algorithms give pixelated regions Red(N,C),
Green(N,C), Black(N,C) approaching the regions Red, Green, Black.

In particular, we study homogeneous pairs obtained by applying the Homogeneous
relaxed Newton method R = HNµ(g) to a univariate complex polynomial g. For the
relaxed method, by Theorem 2, we have that MZ(g) ∼= PInd(HNµ(g)P); that is, there is
a bijective correspondence between the finite set of multiple roots of g and the finite set
of proper indeterminate points of HNµ(g)P. In this case, one has that the region Red is
the union of the basins of multiple roots and the region Green is the union of the basins of
simple roots. Therefore, when one obtains a non-empty red region, the polynomial g has
at least a multiple root. However, we have to take into account that, in a computational
environment, we usually work modulo some tolerances; therefore, in some cases, a red
region in a graphical representation could be a consequence of the existence of a cluster of
simple roots contained in a very small disk. For more results about the relations between
clusters of simple roots and multiple roots, we refer the reader to [17].

We remark that our approach considers a numerical method as a self-map of the
pointed Hopf fibration which is closely related to the self-maps on the Riemann sphere.
There is much literature about the iteration of a rational map on the Riemann Sphere; for
more information, we refer the reader to [18–20].
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Table 1. (Relaxation parameter µ = 1) The first row gives a graphic of the function l(φ) associated
with HN(p) in a neighborhood (nbh) at the origin and at the infinity point, respectively. In the second
row, we have a global representation of the union of basins of multiple roots in red and the union of
basins of simple roots in green. In the third row, we use different colors to give a contour graphic of
the function k(10,15,100).

Graphic of l(φ) on a rectangular nbh at 0 Graphic of l(φ) on a rectangular nbh at ∞

Basins of attraction on a rectangular nbh at 0 Basins of attraction on a rectangular nbh at ∞

Contour graphic of k(10,15,100) on a nbh at 0 Contour graphic of k(10,15,100) on a nbh at ∞
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Table 2. (Relaxation parameter µ = 2) The first row gives a graphic of the function l(φ) associated
HN2(p) in a neighborhood (nbh) at the origin and at the infinity point, respectively. In the second
row, we have a global representation of the union of basins of multiple roots in red. In the third row,
we use different colors to give a contour graphic of the function k(10,15,100).

Graphic of l(φ) on a rectangular nbh at 0 Graphic of l(φ) on a rectangular nbh at ∞

Basins of attraction on a rectangular nbh at 0 Basins of attraction on a rectangular nbh at ∞

Contour graphic of k(10,15,100) on a nbh at 0 Contour graphic of k(10,15,100) on a nbh at ∞

2. Preliminaries

In order to create a theoretical basis to hold and justify the correct construction of
our algorithms for the representation of basins of end points corresponding to rational
maps, we shall use the mathematical techniques described in this section. This study will
be developed within the theoretical framework of dynamics on the Hopf fibration which is
related to the complex dynamics on the Riemann sphere and dynamics on the 3-sphere.

2.1. Discrete Metric Semi-Flows and Basins

If X is a metric space with metric d and h : X → X is a continuous map, then (X, h)
is said to be a metric discrete semi-flow that will shortly be denoted by X. Given an integer
n ≥ 0, hn denotes the n-th composition h ◦ · · · ◦ h and h0 = idX. We consider the usual
notions of fixed point, periodic point and q-cyclic point of h. Note that x ∈ X is a q-periodic
point if and only if x is a fixed point of hq.
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The end space of X is the quotient: Π(X) = {(hn(x))n∈N|x∈X}
∼ , where, for x, y ∈ X,

(hn(x)) ∼ (hn(y)) if and only if (d(hn(x), hn(y)))
n→+∞

// 0. An element a = [(hn(x))] ∈
Π(X) is called an end point of X. Note that any point x ∈ X induces an end point repre-
sented by (hn(x)). Therefore, one has a natural map ω : X → Π(X), ω(x) = [(hn(x))] =
[(x, h(x), h2(x), . . . )]. In particular, a fixed point x determines an end point represented by
the constant sequence (x).

The map ω decomposes the discrete semi-flow X =
⊔

a∈Π(X) B(a), where B(a) =

ω−1(a), a ∈ Π(X), is said to be the basin of the end point a. In particular, if x0 ∈ X is a
fixed point, we have that the basin of x0 is given by ω−1([(x0, x0, · · · )]).

Here, we also consider the case of augmented metric spaces of the form X+ = X ∪ {∗}
(∗ 6∈ X) which are provided with a metric d extending the metric d of X. We analyze the
iteration of a continuous map f : X+ → X+ with the additional property that f (∗) = ∗.
In this work, the construction X+ will be used for X = S2 ⊂ R3 taking ∗ = (0, 0, 0) ∈ R3,
X = S3 ⊂ C2 taking ∗ = (0, 0) ∈ C2 and for X = P1(C) taking ∗ = [0 : 0], see Section 2.2.
In these examples, since the additional point is induced by different tuples with 0’s, we
will use the notation ∗ = 0̄.

Definition 1. Given a map f : X+ → X+, a point x ∈ X+ is said to be a fixed point if f (x) = x
and x is said to be a proper fixed point if x is a fixed point and x 6= ∗. Denote by Fix( f ), PFix( f )
the subsets of fixed points and proper fixed points of f , respectively. A point x ∈ X+ is said to be
an indeterminate point if f (x) = ∗ and x is said to be a proper indeterminate point if x is an
indeterminate point and x 6= ∗. Denote by Ind( f ), PInd( f ) the subsets of indeterminate points
and proper indeterminate points of f , respectively.

In these cases, the map ω decomposes the discrete semi-flow X+ as a disjoint union of
basins. If B is a basin of f , we say that the intersection B∩X is a proper basin of f : X+ → X+.
Notice that if {∗} is invariant by f ; that is, f−1({∗}) = {∗}, then PInd( f ) = ∅ and
f (X) ⊂ X. If in the context this is clear, the restriction f |X : X → X is also denoted by f .

2.2. The Augmented Sphere and the Augmented Complex Projective Line

With the aim of studying the iteration of a complex rational map, we will use the
following models and isomorphisms: S2 = {(r1, r2, r3) ∈ R3 | r2

1 + r2
2 + r2

3 = 1} is the unit
2-sphere, Ĉ = C∪ {∞} denotes the Alexandroff compactification of C and P1(C) denotes
the complex projective line given by P1(C) = C2 \ {(0, 0)}/∼, where (z, t) ∼ (z′, t′) if
there exists a λ ∈ C \ {0} such that (z, t) = (λz′, λt′) (the equivalence class of (z, t) is
denoted by [z : t]).

We have the isomorphisms θ̃ : S2 → Ĉ, θ : P1(C)→ Ĉ:

θ̃(r1, r2, r3) =

{
r1

1−r3
+ i r2

1−r3
, if r3 < 1,

∞, if r3 = 1.
; θ([z : t]) =

{
z/t, if t 6= 0,
∞, if t = 0,

and the induced isomorphism θ̃−1θ : P1(C)→ S2.
We also consider the augmented 2-sphere S2+ = S2 t {(0, 0, 0)} and the augmented

complex projective line P1+(C), given by P1+(C) = C2/∼, where (z, t) ∼ (z′, t′) if there
exists a λ ∈ C \ {0} such that (z, t) = (λz′, λt′) (the equivalence class of (z, t) is also
denoted by [z : t].) Note that we have a canonical isomorphism P1+(C) ∼= P1(C)t {[0 : 0]},
where one can reduce the notation using 0̄ = [0 : 0].

We also have the extended isomorphism (θ̃−1θ)+ : P1+(C)→ S2+ given by

(θ̃−1θ)+([z : t]) =

{
(0, 0, 0) if t̄t + zz̄ = 0,(

z̄t+zt̄
t̄t+zz̄ , i(z̄t−zt̄)

t̄t+zz̄ , −t̄t+zz̄
t̄t+zz̄

)
in other cases.

(2)
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Since S2+ is a subspace of R3, the usual Euclidean metric of R3 induces a Euclidean
chordal metric d on S2+. Using the bijection (θ̃−1θ)+ : P1+(C)→ S2+, we can translate the
metric structure from S2+ to P1+(C) with the following formula:

d([z : t], [z′ : t′]) = d((θ̃−1θ)+([z : t]), (θ̃−1θ)+([z′ : t′])), (3)

where we have denoted again by d the induced metric on P1+(C).
In this paper, we also consider the subspace S3 = {(z, t) ∈ C2| |z|+ |t| = 1} of C2,

where |λ| represents the absolute value (or modulus) of a complex number λ, and its
augmented version S3+ = S3 ∪ {(0, 0)}. We are going to work with the composite of
quotients:

C2 → S3+ → P1+(C)

given by the following relations:
Let (z, t), (z′, t′) be in C2: (z, t) ∼p (z′, t′) if there is λ ∈ R, λ > 0, such that (z′, t′) =

λ(z, t).
Let (z, t), (z′, t′) be in S3+: (z, t) ∼q (z′, t′) if there is λ ∈ C, |λ| = 1, such that

(z′, t′) = λ(z, t) .
These equivalence relations induce the following quotient maps:

p : C2 → S3+, p((z, t)) = [z, t], (z, t) ∈ C2

[z, t] =

{
(0, 0) if |z|+ |t| = 0,
( z
|z|+|t| ,

t
|z|+|t| ) in other cases.

(4)

q : S3+ → P1+(C), q((z, t)) = [z : t], (z, t) ∈ S3+.

Given a point [z : t] ∈ P1(C), a representative pair (z, t) is called the homogeneous
coordinates of this point and, in this work, we call normalized homogeneous coordinates to the
pair [z, t] =

( z
|z|+|t| ,

t
|z|+|t|

)
. Given a pair (z, t) ∈ C2, its normalization [z, t] is defined by

Formula (4).
We note that the chordal metric given on P1+(C) induces chordal pseudo-metrics on

S3+ and C2 by the formulas:

d((z1, t1), (z2, t2)) = d([z1 : t1], [z2 : t2]), (z1, t1), (z2, t2) ∈ S3+ (5)

d((z1, t1), (z2, t2)) = d([z1, t1], [z2, t2]), (z1, t1), (z2, t2) ∈ C2. (6)

Observe that, if we are working in a computational environment with a prefixed
Nullity Tolerance 10−N , N ∈ N, and we have a point [z : t] ∈ P1(C) whose homogeneous
coordinates (z, t) verify that |z|+ |t| ≤ 10−N , then the computation system can take (z, t)
as (0, 0). This is the reason why we consider the space P1+(C) = P1(C) ∪ {[0 : 0]} and the
quotient map pN : C2 → S3+, given by

pN((z, t)) = [z, t]N =

{
(0, 0) if |z|+ |t| ≤ 10−N ,
( z
|z|+|t| ,

t
|z|+|t| ) in other cases,

(7)

and the composite qpN : C2 → S3+ → P1+(C). Notice that limN→+∞ pN = p.

Remark 1. The homogeneous coordinates have the property that a pair (tuple) and its normalization
represent the same point in P1(C). We can normalize homogeneous coordinates with the function
given in (4). However, in order to obtain an implementation in Julia, it is better to work with
normalized coordinates modulo some nullity tolerance (10−N) using the Formula (7). To see all the
details of the implementations of Formulas (2) and (4)–(7), we refer the reader to [15].

We remark that the use of the normalized homogeneous coordinates presented in
this subsection allow us to represent the infinity point in Ĉ and to avoid overflow and
underflow errors and indeterminacies in our computer programs.
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3. Homogeneous Pairs
3.1. Homogeneous Pairs of Complex Rational Maps

Let C[z] be the ring of polynomials with complex coefficients and C(z) the field of
complex rational functions f (z) = A(z)

B(z) where A, B ∈ C[z], and B is not the zero polynomial.
The degree d of f is given by d = max{degree(A), degree(B)}, where the degree of the
zero polynomial is taken to be −∞.

Let C[z, t] be the ring of bivariate polynomials with complex coefficients.

Definition 2. Given F ∈ C[z, t], it is said to be a homogeneous bivariate polynomial if F = 0
or there is k ∈ N such that, for every λ ∈ C \ {0}, F(λz, λt) = λkF(z, t) for every z, t ∈ C. If
F 6= 0 is a homogeneous bivariate polynomial, it is said that the integer k is the degree of F.

Denote by Ch[z, t] the subset of homogeneous bivariate polynomials.
A homogeneous bivariate polynomial F with degree k ≥ 0 can be expressed as

F(z, t) = ∑k
i=0 aizitk−i, ai ∈ C, and, if n = min{m|ai = 0 for i ≥ m}, one has that an 6= 0,

and we will write F as F(z, t) = ∑n
i=0 aizitk−i, ai ∈ C, an 6= 0, n ≤ k.

If C[x]×N = {(A, d) ∈ C[x]×N|degree(A) ≤ d}, we can consider the following
homogenization operator:

H : C[x]×N→ Ch[z, t]

H(A, d) =

{
0 if A = 0,
a0td + a1ztd−1 + · · ·+ anzntd−n if A 6= 0, A = a0 + a1x + · · ·+ anxn, an 6= 0,

(8)

Note that, if A 6= 0, H(A, d)(λz, λt) = λdH(A, d)(z, t).

Definition 3. Given F, G ∈ Ch[z, t], the pair (F, G) is said to be a homogeneous pair if either the
product FG = 0 or F and G have the same degree. We say that d = max{degree(F), degree(G)}
is the degree of the homogeneous pair (F, G).

Denote by

Ch[z, t]×Ch[z, t] = {(F, G) ∈ Ch[z, t]×Ch[z, t]|(F, G) is a homogeneous pair}.

Given a pair R = (F, G) ∈ Ch[z, t]×Ch[z, t], we have the induced commutative
diagram:

C2

p
��

R // C2

p
��

S3+

q
��

RS
// S3+

q
��

P1+(C) RP
// P1+(C)

where
R((z, t)) = (F((z, t)), G((z, t)) for (z, t) ∈ C2, (9)

RS((z, t)) = [F((z, t)), G((z, t))] for (z, t) ∈ S3+, (10)

RP([z : t]) = [F((z, t)) : G((z, t))] for [z : t] ∈ P1+(C). (11)

For a prefixed nullity tolerance 10−N , we can define

RS
N = pN Rj, (12)

where j : S3+ → C2 is the canonical inclusion, and pN is given in (7).
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Remark 2. We note that many numerical methods are based in the iteration of a rational map
f (x) = A(x)

B(x) . The connection with the methods developed in this work is given by taking x = z
t

and F(z, t) = td A( z
t ), G(z, t) = tdB( z

t ), where d = degree( f ). In this way, we obtain the map
R = (F, G) : C2 → C2 which induces the pair of maps (RS, RP). It is interesting to note that,
when B(x0) = 0, x0 = z0/t0, we have G(z0, t0) = 0 and R(z0, t0) = (F(z0, t0), 0) ∈ C2.

Since R is a homogeneous pair of degree d, one has that RS(λ(z, t)) = λdRS((z, t)) if
|λ| = 1. Then, there is an induced map RP

N : P1+(C)→ P1+(C), and we have a commuta-
tive diagram:

C2 R // C2

pN
��

S3+

j

OO
Rj

99

q
��

RS
N // S3+

q
��

P1+(C)
RP

N // P1+(C)

where RS
N((z, t)) = [F((z, t)), G((z, t))]N for (z, t) ∈ S3+ and RP

N([z : t]) = qRS
N((z, t)) for

(z, t) ∈ S3+.
Note that

lim
N→+∞

RS
N = RS, lim

N→+∞
RP

N = RP. (13)

3.2. Normalization of a Homogeneous Pair

Definition 4. For F ∈ Ch[z, t] given by F(z, t) = a0td + a1ztd−1 + · · ·+ anzntd−n, we define
the norm ‖F‖ by the formula

‖F‖ = |a0|+ |a1|+ · · ·+ |an|.

Suppose that (F, G) ∈ Ch[z, t]×Ch[z, t] where F(z, t) = a0td + a1ztd−1 + · · ·+ anzntd−n and
G(z, t) = b0td + b1ztd−1 + · · ·+ bmzmtd−m. We define the norm of (F, G) by

‖(F, G)‖ = ‖F‖+ ‖G‖ = |a0|+ |a1|+ · · ·+ |an|+ |b0|+ |b1|+ · · ·+ |bm|.

The normalization [F, G] of a pair (F, G) ∈ Ch[z, t]×Ch[z, t] is given as follows:

[F, G] =

{
(0, 0) if (F, G) = (0, 0),
( 1
‖(F,G)‖ F, 1

‖(F,G)‖G) if (F, G) 6= (0, 0).
(14)

A homogeneous pair (F, G) is said to be a normalized pair if [F, G] = (F, G).

Denote by
(
Ch[z, t]×Ch[z, t]

)
normalized the subset of normalized homogeneous pairs.

3.3. Irreducible Homogeneous Pairs

Definition 5. Given (F, G) ∈ Ch[z, t]×Ch[z, t], (F, G) is said to be irreducible if either (F, G) =
(0, 0) or (F, G) 6= (0, 0), and it satisfies that (F, G) = (HF1, HG1) implies degree(H) = 0.

Note that, if R = (F, G) ∈ Ch[z, t]×Ch[z, t], for the map RP = [F : G], the subsets
Fix(RP), PFix(RP), Ind(RP), PInd(RP) of P1+(C) (see Definition 1) are given by

Fix(RP) = {[z : t]|there exists λ ∈ C \ {0}, F(z, t) = λz, G(z, t) = λt}
PFix(RP) = {[z : t]|(z, t) 6= (0, 0) and there exists λ ∈ C \ {0}, F(z, t) = λz, G(z, t) =

λt}
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Ind(RP) = {[z : t]|F(z, t) = 0, G(z, t) = 0}
PInd(RP) = {[z : t]|(z, t) 6= (0, 0), F(z, t) = 0, G(z, t) = 0}.
We also consider the following subsets of P1+(C):

Z(F) = {[z : t]|F(z, t) = 0}, PZ(F) = {[z : t]|(z, t) 6= (0, 0), F(z, t) = 0},

Z(F, G) = {[z : t]|F(z, t) = 0, G(z, t) 6= 0}, P(F, G) = {[z : t]|F(z, t) 6= 0, G(z, t) = 0}.

Proposition 1. Suppose that (F, G) ∈ Ch[z, t]×Ch[z, t] and (F, G) 6= (0, 0). Then,
(i) There is H1 ∈ Ch[z, t] \ {0} such that (F, G) = (H1F1, H1G1) and (F1, G1)

∈ Ch[z, t]×Ch[z, t] is irreducible.
(ii) If (F, G) = (H1F1, H1G1), (F, G) = (H2F2, H2G2), H1, H2 ∈ Ch[z, t] \ {0} and

(F1, G1), (F2, G2) are irreducible, then [F1 : G1] = [F2 : G2].
(iii) There is H ∈ Ch[z, t] \ {0} such that (F, G) = (HFred, HGred) and (Fred, Gred) is a

normalized irreducible homogeneous pair.

Proof. (i) and (iii): For any pair (F, G) ∈ Ch[z, t]×Ch[z, t], we have the following particular
cases:

If F = 0 and G = 0, then we take F1 = Fred = 0, G1 = Gred = 0 and, for any
H1 ∈ Ch[z, t] \ {0}, we have that (F, G) = (H1F1, H1G1) and (F1 = Fred, G1 = Gred) is a
normalized irreducible pair.

If F 6= 0 and G = 0, then we take Fred = 1, Gred = 0 and H1 = F. We have that
(Fred, Gred) is a normalized irreducible pair.

If F = 0 and G 6= 0, then we take F1 = Fred = 0, G1 = Gred = 1 and H1 = G. We have
that (Fred, Gred) is a normalized irreducible pair.

Otherwise, we have F 6= 0 , G 6= 0 and degree(F) = d = degree(G): Suppose that
F(z, t) = teF (a0td−eF + a1ztd−1−eF + · · · + anzd−eF ), G(z, t) = teG (b0td−eG + b1ztd−1−eF +
· · ·+ bmzd−eG ), an 6= 0 and bm 6= 0.

Take the polynomials a(z) = a0 + a1z+ · · ·+ anzd−eF , b(z) = b0 + b1z+ · · ·+ bmzd−eG

and the canonical factorizations a(z) = an(z− zp
1 )

α1 · · · (z− zp
r )

αr , b(z) = bm(z− zq
1)

β1 · · ·
(z− zq

s )
βs .

Taking into account the common roots of a(z) and b(z) and their multiplicities, we can
uniquely take polynomials h(z), p1(z), q1(z) such that h(z) is monic and a(z) = h(z)p1(z),
b(z) = h(z)q1(z). Note that degree(a(z)) = d− eF ≥ 0, degree(b(z)) = d− eG ≥ 0, then
we have degree(h(z)) = dh ≥ 0, degree(p1(z)) = dp1 ≥ 0 and degree(q1(z)) = dq1 ≥ 0.
Taking the operator H given in (8), we can consider K1 = H(h, dh), P1 = H(p1, dp1),
Q1 = H(q1, dq1). Then, one has that F = teF K1P1, G = teG K1Q1. Let e = min{eF, eG} and
take F1 = Fred = 1

‖(P1,Q1)‖
(teF−eP1), G1 = Gred = 1

‖(P1,Q1)‖
(teG−eQ1), H1 = ‖(P1, Q1)‖teK1.

Then, we have that F = H1Fred, G = H1Gred and (Fred, Gred) is a normalized irreducible
pair.

(ii): Suppose that (F, G) = (H1F1, H1G1), (F, G) = (H2F2, H2G2), H1, H2 ∈ Ch[z, t] \
{0} and (F1, G1), (F2, G2) are irreducible. Suppose that degree(F)=degree(G) > 0. Taking
into account that Z(H1) = Z(F, G) = Z(H2), the equations F = H1F1 = H2F2, G =
H1G1 = H2G2 and that, if (z0, t0) ∈ Z(F, G), the multiplicity of (z0, t0) in H1 is equal to
the multiplicity of (z0, t0) in H2, it follows that there is α ∈ C \ {0} such that H2 = αH1.
Then, H1F1 = H1(αF2), H1G1 = H1(αG2). This implies that F1 = αF2, G1 = αG2. That is,
[F1 : G1] = [F2 : G2]. In the other cases, one can also check that [F1 : G1] = [F2 : G2].

This gives a canonical reduction process
red : Ch[z, t]×Ch[z, t]→ (Ch[z, t]×Ch[z, t])normalized,

R = (F, G)→ red(R) = red((F, G)) = (Fred, Gred) (15)

such that, if (F, G) 6= (0, 0), then PInd(red(R)P) = ∅.
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Note that, if R = (F, G) ∈ Ch[z, t]×Ch[z, t], and we consider RP = [F : G] ∈
End(P1+(C)); then, we have:

Fix(RP) ⊂ Fix((red(R)P)) ⊂ Fix(RP) ∪ Ind(RP)
Ind(RP) \ Fix((red(R)P)) = {x ∈ P1+(C)|RP(x) = 0̄ and (red(R)P)(x) 6= x}.

Moreover, R = (F, G) 6= (0, 0) is irreducible if and only if PInd(RP) = ∅.

Remark 3. It is interesting to observe that, if R = (F, G) ∈ Ch[z, t]×Ch[z, t] is irreducible
and (F, G) 6= (0, 0), then one has induced maps R = (F, G) : C2 \ {(0, 0)} → C2 \ {(0, 0)},
RS = [F, G] : S3 → S3 and RP = [F : G] : P1(C)→ P1(C).

Remark 4. Given R = (F, G) ∈ Ch[z, t]×Ch[z, t], one has an induced map of the pointed Hopf
fibration:

S3+ RS=[F,G] //

q
��

S3+

q
��

P1+(C)
RP=[F:G]// P1+(C)

and, if (F, G) 6= (0, 0) is irreducible, we have an endomorphism of the Hopf fibration.

3.4. Indeterminacy Search Function of a Homogeneous Pair

In this paper, for a given homogeneous pair R = (F, G) of degree d, if R+ = [0,+∞),
we consider the norm function ‖.‖ : C2 → R+, ‖(z, t)‖ = |z|+ |t| and the composites

φ = ‖.‖R : C2 → R+, φS = ‖.‖Rj : S3+ → R+ (16)

where j : S3+ → C2 is the canonical inclusion. Note that, if |λ| = 1, then φS(λ(z, t)) =

‖R(λ(z, t))‖ =
∥∥∥λdR((z, t))

∥∥∥ = |λd|φS((z, t)) = φS((z, t)). Therefore, we have an induced

map φP : P1+(C)→ R+ given by

φP([z : t]) = φ((z, t)) = |F(z, t)|+ |G(z, t)|. (17)

It is interesting to note that, if degree(R) 6= 0, then φ((0, 0)) = φS((0, 0)) = φP(0̄) = 0.

Definition 6. Given a homogeneous pair (F, G), the induced map φ : C2 → R+ ( φS : S3+ →
R+, φP : P1+(C) → R+) is said to be the indeterminacy search function of (F, G) on C2

(respectively on: S3+, P1+(C)).

The map φP has the following properties:

Theorem 1. Consider P1+(C) as the topological sum of P1(C) and {0̄} and let R = (F, G) be
an homogeneous pair with degree(R) ≥ 1. Then, for the induced maps RP : P1+(C)→ P1+(C),
φP : P1+(C)→ R+, we have:

(i) Given [z0 : t0] ∈ P1+(C), φP([z0 : t0]) = 0 if and only if [z0 : t0] ∈ Ind(RP).
(ii) [z0 : t0] ∈ Ind(RP) if and only if for every N ∈ N there is an neighborhood UN at [z0 : t0]

such that, for every [z : t] in UN , φP([z : t]) ≤ 10−N .
(iii) [z0 : t0] ∈ Ind(RP) ∩ Fix(red(R)P) if and only if for every N ∈ N and C ∈ N there are

neighborhoods UN , UC at [z0 : t0] such that, for every [z : t] in UN , φP([z : t]) ≤ 10−N and,
for every [z : t] in UC \ {[z0 : t0]}, d([z0 : t0]), RP([z : t])) ≤ 10−C.

(iv) Let [z : t] be in P1(C) and [z0 : t0] ∈ Ind(RP) ∩ Fix(red(R)P). If [z : t] is in the basin of
red(R)P at [z0 : t0], then, for every N ∈ N and every C ∈ N, there is k(N,C) ∈ N such that
φP((RP

N)
k([z : t])) ≤ 10−N and |φP((RP

N)
k−1([z : t]))− φP((RP

N)
k([z : t]))| ≤ 10−C for

every k ≥ k(N,C).
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Proof. (i): We have that φP([z0 : t0]) = |F(z0, t0)|+ |G(z0, t0)|. Therefore, φP([z0 : t0]) = 0
if and only if F(z0, t0) = 0 and G(z0, t0) = 0.

(ii): It follows from (i) and the fact that φP is a continuous map.
(iii): For the case [z0 : t0] = [0 : 0], we can take UN = UC = {[0 : 0]}. Now, we

suppose that [z0 : t0] ∈ P1(C). One implication follows from the continuity properties
of functions φP and RP (on P1(C) \ Ind(RP)). Note that RP has only a finite number of
indeterminate points, then we can suppose that for any [z : t] in UC \ {[z0 : t0]}, we have
that red(R)P([z : t]) = RP([z : t]). We can choose [zC : tC] in UC \ {[z0 : t0]} such that
[zC : tC] →C→+∞ [z0 : t0]. Then, d([zC : tC], red(R)P([zC : tC])) = d([zC : tC], RP([zC :
tC]))→ 0 and d([zC : tC], red(R)P([zC : tC]))→ d([z0 : t0], red(R)P([z0 : t0])). This implies
that d([z0 : t0], red(R)P([z0 : t0])) = 0; that is, [z0 : t0] ∈ Fix(red(R)P). By (ii), we also have
that the condition φP([z : t]) ≤ 10−N for all [z : t] ∈ UC implies that [z0 : t0] ∈ Ind(RP).

(iv): Suppose that [z : t] be in P1(C), [z0 : t0] ∈ Ind(RP) ∩ Fix(red(R)P) and [z : t]
is in the basin of red(R) at [z0 : t0]. We have that red(R)P([z0 : t0]) = [z0 : t0]. If [z : t]
is in the basin of [z0 : t0], given C, N ∈ N, there is k0 ∈ N such that d((red(R)P)k([z :
t]), [z0 : t0]) ≤ 10−C

2 for every k ≥ k0. Since either (RP
N)

k([z : t]) = (red(R)P)k([z : t])
or (RP

N)
k([z : t]) = [0 : 0] and φP is continuous and φP([z0 : t0]) = 0 = φP([0 : 0]),

there is k1 = k(N,C) ∈ N such that |φP((RP
N)

k−1([z : t]))− φP((RP
N)

k([z : t]))| ≤ 10−C and
φP((RP

N)
k([z : t])) ≤ 10−N for every k ≥ k(N,C).

The last property (iv) can be established for φS as follows:

Corollary 1. Consider S3+ as the topological sum of S3 and {(0, 0)} and let R = (F, G)
be a homogeneous pair with degree(R) ≥ 1. Then, for the induced maps RS : S3+ → S3+,
RP : P1+(C)→ P1+(C) , φS : S3+ → R+, φP : P1+(C)→ R+, we have:

If [z : t] is in the basin of red(R)P at [z0 : t0] ∈ Ind(RP) ∩ Fix(red(R)P), then, for every
N ∈ N and every C ∈ N, there is k(N,C) ∈ N such that

φS((RS
N)

k((z, t))) ≤ 10−N and |φS((RS
N)

k−1((z, t)))− φS((RS
N)

k((z, t)))| ≤ 10−C

for every k ≥ k(N,C).

Therefore, for a given (z, t) ∈ S3, one can check if, for N, C ∈ N, there is k(N,C) ∈ N
satisfying:

Cauchy inequality on S3+:

d((RS
N)

k−1((z, t)), (RS
N)

k((z, t))) ≤ 10−C for every k ≥ k(N,C); (18)

Cauchy inequality for φS:

|φS((RS
N)

k−1((z, t)))− φS((RS
N)

k((z, t)))| ≤ 10−C for every k ≥ k(N,C); (19)

Nullity inequality for φS:

φS((RS
N)

k((z, t))) ≤ 10−N for every k ≥ k(N,C). (20)

These are necessary conditions for [z : t] to be in the basin of some points [z0 : t0] ∈
Ind(RP) ∩ Fix(red(R)P).

4. Algorithms to Detect the Existence of Proper Indeterminate Points

In the present section, for a given homogeneous pair R = (F, G), we develop some
algorithms that divide the augmented complex projective line in three disjoint regions (see
Tables 1 and 2): the red region Red approaches the proper basin of RP at the super-zero
point [0.0], which is contained in the union of the basins of red(R)P at the end points
associated with proper indeterminate points of RP, the green region Green is the union
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of the proper basins of RP at proper fixed points and the black complementary region
Black = P1+(C) \ (Red∪Green).

This algorithm is based on the evaluation of the indeterminacy search function φS

associated with a homogeneous pair R = (F, G) on the orbit of a point on S3+. The map
RS (or RS

N) can be iterated for non irreducible pairs R = (F, G). Then, it is not necessary to
compute previously the lists of indeterminate points of R or the fixed points of red(R).

We have to take into account that we obtain a graphic approaching the region that is
the union of the proper basins at end points of RP induced by proper indeterminate points,
and we do not know how this region is divided into different proper basins.

4.1. m-Truncated Cauchy Inequality and Nullity Inequality

Let R = (F, G) be a homogeneous pair with degree(R) 6= 0 and N ∈ N. Consider the
induced maps RS : S3+ → S3+, RS

N : S3+ → S3+, RP : P1+(C) → P1+(C), RP
N : P1+(C) →

P1+(C) , φS : S3+ → R+, φP : P1+(C) → R+. For (z, t) ∈ S3+, we are going to work with
sequences of the form:(

(z, t), RS
N((z, t)), (RS

N)
2((z, t)), (RS

N)
3((z, t)), . . . , (RS

N)
k−1((z, t)), (RS

N)
k((z, t))

)
, (21)(

[z : t], RP
N([z : t]), (RP

N)
2([z : t]), (RP

N)
3([z : t]), . . . , (RP

N)
k−1([z : t]), (RP

N)
k([z : t])

)
, (22)

(φS((z, t)), φS(RS
N((z, t))), φS((RS

N)
2((z, t))), . . . , φS((RS

N)
k−1((z, t))), φS((RS

N)
k((z, t)))), (23)(

φP([z : t]), φP(RP
N([z : t])), φP((RP

N)
2([z : t])), . . . , φP((RP

N)
k−1([z : t])), φP((RP

N)
k([z : t]))

)
. (24)

In a computational context, to stop the construction of sequences of the form (21)–(24),
we can try to verify if the conditions (18)–(20) are satisfied. However, we have to consider
two additional problems: It is not possible to verify this type of condition for every
k ≥ k(N,C), and it is necessary to establish a maximum number of iterations m of the
function RS

N .
Therefore, for a given (z, t) ∈ S3, one can check if, for N, C ∈ N, there is k(N,C,m) < m

satisfying the following condition:

|φS((RS
N)

k(N,C,m)−1((z, t)))− φS((RS
N)

k(N,C,m)((z, t)))| ≤ 10−C and

|φS((RS
N)

k−1((z, t)))− φS((RS
N)

k((z, t)))| > 10−C, 0 < k < k(N,C,m). (25)

We refer to this condition as the m-truncated Cauchy inequality for φS.
For a given k ∈ N such that 1 ≤ k < m, we can check if the following condition is

satisfied:
Nullity inequality: φS((RS

N)
k((z, t))) ≤ 10−N . (26)

We note that the condition (19) implies the existence of m ∈ N such that the condition
(25) is verified.

If we have chosen tolerances 10−N and 10−C, we have considered the following
algorithm based on the verification of the logical condition (25):

While |φS((RS
N)

k−1((z, t)))− φS((RS
N)

k((z, t)))| greater than 10−C and k < m, then
(a) is applied; otherwise, (b) is obtained.

(a) a new iteration is done and the logical condition is verified again for the new integer
k + 1.

(b) the output (φS((RS
N)

k((z, t))), k) is taken (note that the integer k depends on the
choice of the tolerances (N, C)).

For the output of this algorithm, one has two cases:

• If k < m, then we have that k verifies condition (25). Since it also depends on (z, t),
we use the notation k = k(N,C,m)((z, t)).

• otherwise, k = m, in this case, condition (25) is not satisfied. The k in this output will
also be denoted by k = k(N,C,m)((z, t)).
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For prefixed tolerances N, C, a maximum number of iterations m and the continuous
function φ, the above algorithm induces the maps:

k(N,C,m) : S3 → N, (27)

(RS
N)

k(N,C,m) : S3+ → S3+, (28)

l(φ, N, C, m) : P1(C)→ [0,+∞), l(φ, N, C, m)([z : t]) = φS((RS
N)

k(N,C,m)((z,t))((z, t))).
(29)

In some cases, we reduce notation by writing l(φ) = l(φ, N, C, m).
It is easy to check that, for a rectangle (a, b)× (c, d) which contains the unit disk, the

images of the parametrizations α : (a, b)× (c, d)→ P1(C), (u, v)→ [u + iv : 1], β : (a, b)×
(c, d) → P1(C), (u, v) → [1 : u + iv] cover P1(C) and the two graphics of the maps
l(φ)([u + iv : 1]) and l(φ)([1 : u + iv]) give a global description of the function l(φ). For
example, for the indeterminacy search functions given in Sections 6.1 and 6.2, you can see
the graphic of l(φ) in the first row of Tables 1 and 2. For these tables, we have taken the
rectangle (−2.5, 2.5)× (−2.5, 2.5). In this case, α((−2.5, 2.5)× (−2.5, 2.5)) is a “rectangular”
neighborhood at “origin point” [0 : 1] and β((−2.5, 2.5)× (−2.5, 2.5)) is a “rectangular”
neighborhood at the “infinity point” [1 : 0].

It is interesting to remark that, as a consequence of the basic properties of φP, φS

given in Theorem 1 and Corollary 1, one has that the restriction of l(φ) to the basin of the
super-zero point is equal to 0 (modulo some tolerance) and the restriction of l(φ) to the
basin of a fixed point [z0 : t0] is equal to φS((z0, t0)) 6= 0 (modulo some tolerance).

Remark 5. In general, if k(N,C,m)((z, t)) = m � 0, the corresponding orbit of [z : t] does not
converge to a fixed point [z0 : t0] (included the super-zero point). However, it is possible that, for
some point in the basin of a fixed point [z0 : t0] or in the basin of an indeterminate point, one
could have k(N,C,m)((z, t)) = m � 0 when the convergence of the orbit of [z : t] is very slow.
In this case, one could run the algorithm again taking a new integer number m′ � m to obtain
k(N,C,m′)((z, t)) < m′.

If a fixed point [z0 : t0] is very close to a point [z1 : t1] where [z1 : t1] is either a fixed point or
an indeterminate point, one can have that l(φ)((z0, t0)) < 10−N . In this case, these algorithms

“can move” points from the basin of a (simple) fixed point to the basin of the super-zero point. One
can avoid this situation taking a new N′ � N. We note that these algorithms and implementations
work modulo tolerances 10−N and 10−C, so when one has a cluster of h simple roots contained in
a very small disk, this type of computational program can take this h-cluster as a multiple root of
order h. For a study of different methods to analyze this type of cluster, we refer the reader to [17].

Remark 6. Let (z0, t0) be the normalized coordinates of a point [z0 : t0] ∈ P1(C). For pre-
fixed parameters (N, C, m) and a homogeneous pair R = (F, G), we can analyze the function
k(N,C,m)((z, t)) when [z : t] is in a neighborhood U at [z0 : t0]; in general, if [z0 : t0] is contained
in the basin of a simple fixed point, there is a neighborhood U at [z0 : t0] in P1(C) such that
|k(N,C,m)((z, t))− k(N,C,m)((z0, t0))| ≤ 1 for [z : t] ∈ U. However, in the basin of the super-zero
point, it is easy to find points [z0 : t0] such that the function k(N,C,m)((z, t)) takes many different
values ≤ m in a small neighborhood U at [z0 : t0] (see the third row in Tables 1 and 2).

4.2. Computing Type-Iteration 2-Arrays

Given a pair (z, t) ∈ S3 representing a point [z : t] ∈ P1+(C), using the maps (27)–(29),
we can compute (

φS((RS
N)

k(N,C,m)((z,t))((z, t))), k(N,C,m)((z, t))
)

and one has three possibilities:
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(a) If k(N,C,m)((z, t)) = m, then we say that the type (z, t) is 0 (type((z, t)) = 0). This
means that

|φS((RS
N)

k−1((z, t)))− φS((RS
N)

k((z, t)))| > 10−C, 0 < k ≤ k(N,C,m)((z, t)).

(b) If k(N,C,m)((z, t)) < m and φS((RS
N)

k(N,C,m)((z,t))((z, t))) ≤ 10−N , then it implies that

|φS((RS
N)

k−1((z, t)))− φS((RS
N)

k((z, t)))| ≤ 10−C, 0 < k ≤ k(N,C,m)((z, t)).

In this case, we say that the type of (z, t) is 1 (type((z, t)) = 1). This means that the
orbit with initial point [z : t] converges likely to an indeterminate point of RP.

(c) If k(N,C,m)((z, t)) < m and φS((RS
N)

k(N,C,m)((z,t))((z, t))) > 10−N , then it implies that

|φS((RS
N)

k−1((z, t)))− φS((RS
N)

k((z, t)))| ≤ 10−C, 0 < k ≤ k(N,C,m)((z, t)).

In this case, we say that the type of (z, t) is 2 (type((z, t)) = 2). That is, the orbit with
initial point [z : t] converges likely to a fixed point of RP.

Remark 7. Note that, in some exceptional cases, the type of (z, t) could conduce to misinter-
pretations. For instance: If for an r-cycle C = (x0, RP(x0), · · · , (RP)r−1(x0)), x0 ∈ P1(C),
one could have that φP(x0) = · · · = φP((RP)r−1(x0)) > 0. In this exceptional case, one
could have that, if the orbit of a point [z : t] converges to C, then |φS((RS

N)
k(N,C,m)−1((z, t)))−

φS((RS
N)

k(N,C,m)((z, t)))| ≤ 10−C and φS((RS
N)

k(N,C,m)((z, t))) ≤ 10−N . Then, the algorithm
“could move" points from the basin of the r-cycle C to the union of the basins of end points induced
by proper indeterminate points.

Suppose we have a grid of pairs
(
(z, t)ij

)
for i in {1, . . . , u} and, for j in {1, . . . , v} ,

u, v ∈ N; that is, a 2-array of elements in C×C. Then, we can compute a 2-array of pairs
(type, iteration); that is, a 2-array of elements in {0, 1, 2} ×N by applying the algorithm
above. The existence of points of type 1 is related to the existence of indeterminate points.

One can obtain a graphic representation associated with a homogeneous pair R = (F, G)
using the two parametrizations and the three types {0, 1, 2}. For example, we can choose
the black color for type = 0, red color for type = 1, and green color for type = 2. The existence
of some regions having a red color, in one of the two rectangles associated with these two
parametrizations, means that, for the representation R = (F, G) of the rational function,
RP : P1+(C)→ P1+(C) very likely possesses some indeterminate points.

5. Applications to the Relaxed Newton Method

For the relaxed homogeneous Newton method, the existence of indeterminate points
is equivalent to the existence of multiple points, and, since non-extraneous fixed points are
attracting, tolerances 10−C, 10−N exist that give a graphic description without ambiguity
points.

5.1. The Relaxed Homogeneous Newton Method

Given a polynomial p ∈ C[x], p(x) = a0 + a1x + · · ·+ anxn, an 6= 0, its derivative
polynomial p′ is p′(x) = a1 + 2a2x + · · ·+ nanxn−1.

Associating with µ ∈ C \ {0}, we consider the homogeneous relaxed Newton method
HNµ:

HNµ : C[x]→ Ch[z, t]×Ch[z, t]

defined by:
If p = 0, HNµ(p) = (0, 0).
If p 6= 0, HNµ(p) = (H(xp′ − µ p, d), H(p′, d)), where d = degree(p) and H :

C[x]×N→ Ch[z, t] is the homogenization map defined in Equation (8).
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One can also describe the homogeneous relaxed Newton method as follows:

HNµ(a0 + a1x + · · ·+ anxn) = (F(z, t), G(z, t)) (30)

F(z, t) = −µa0tn + (a1 − µa1)ztn−1 + · · ·+ (nan − µan)zn (31)

G(z, t) = a1tn + 2a2ztn−1 + · · ·+ nanzn−1t (32)

where (F, G) is a homogeneous pair of degree n.
It is interesting to note that, for µ = 1, we obtain the Homogeneous Newton method

HN = HN1.

With p ∈ C[x] being a polynomial, we can consider the set of roots Z(p) = {x ∈
C|p(x) = 0}, and the set of multiple roots MZ(p) = {x ∈ C|p(x) = 0, p′(x) = 0}.

Lemma 1. Let b(x) = b0 + b1x + · · ·+ bmxm, bm 6= 0 be a polynomial. Consider the canonical
map α : C→ P1(C), α(x) = [x : 1]. Then,

(i) α|Z(b) : Z(b)→ Z(H(b, m)) \ {0̄} is a bijection,
(ii) H(xb, m + 1) = zH(b, m), α|Z(xb) : Z(xb) → {[0 : 1]} ∪ (Z(H(b, m)) \ {0̄}) is a bijec-

tion.
(iii) H(b, m + 1) = tH(b, m), α|Z(b) : Z(b)→ Z(H(b, m + 1)) \ {0̄, [1 : 0]} is a bijection.

Proof. It is a routine check.

Now, we can prove the following result:

Theorem 2. Let p = a0 + a1x + · · ·+ anxn (an 6= 0) be a polynomial. If µ 6= degree(p) ≥ 1,
then α : MZ(p)→ PInd(HNµ(p)P), α(x0) = [x0 : 1], is a bijection.

Proof. Note that
H(xp′, n)(z, t) = zH(p′, n− 1)(z, t).

HNµ(p)(z, t) = (H(xp′, n)(z, t)− µH(p, n)(z, t), H(p′, n)(z, t)).

Suppose p(x0) = 0, p′(x0) = 0. By Lemma 1, we have H(p′, n − 1)(x0, 1) = 0,
H(p, n)(x0, 1) = 0.

Then, H(xp′, n)(x0, 1)− µH(p, n)(x0, 1) = zH(p′, n− 1)(x0, 1)− µH(p, n)(x0, 1) = 0.
Therefore, (HNµ(p))P([x0 : 1]) = 0̄. This implies that α(MZ(p)) ⊂ PInd(HNµ(p)P).

Now, suppose that (HNµ(p)P)([z : t]) = 0̄ and [z : t] 6= 0̄; that is, HNµ(p)(z, t) =
(0, 0) and (z, t) 6= (0, 0). Then, H(p′, n)(z, t) = 0. Note that H(p′, n)(z, t) = tH(p′, n−
1)(z, t). If t 6= 0, H(p′, n − 1)(z, t) = 0. Since zH(p′, n − 1)(z, t) − µH(p, n)(z, t) = 0,
we have H(p, n)(z, t) = 0. Therefore, for x0 = z/t, we have p(x0) = p′(x0) = 0 and
α(x0) = [x0 : 1] = [z : t]. If t = 0, zH(p′, n− 1)(z, 0)− µH(p, n)(z, 0) = (n− µ)anzn 6= 0.
Then, PInd(HNµ(p)P) ⊂ α(MZ(p)).

Note that, if µ 6= degree(p) ∈ {0, 1}, then MZ(p) ∼= PInd(HNµ(p)P) = ∅ and, if
p = 0, then MZ(p) = C, PInd(HNµ(p)P) = P1(C).

5.2. Graphic Detection of the Existence of Multiple Roots

The algorithm developed in this article to detect the existence of indeterminate points
is very interesting when it is applied to the case of the homogeneous Newton and homoge-
neous relaxed Newton maps.

Let p(z) be a polynomial of degree d ≥ 2. The standard Newton’s method is also
called the Newton–Raphson method, and we have that any root of the polynomial p(z)
is a fixed point of the corresponding Newton rational map N(p)(z) obtained for µ = 1
in (1). It is well known that a simple root is always super-attractive, and so Newton’s
method converges quadratically to such roots. At a multiple root of order k, the eigenvalue
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is k−1
k < 1, and so the method only converges linearly there. The point ∞ is always a

repelling fixed point with eigenvalue d
d−1 > 1.

When we take Nµ(p)(z) = zp′(z)−µp(z)
p′(z) , one has the relaxed Newton’s method. If

µ ∈ N, this relaxed Newton’s method will converge quadratically to a root of order exactly
µ. We briefly mention the following well-known properties: At a root of order k, the
multiplier of Nµ(p) is |1− µ

k |. If µ > 2k, then |1− µ
k | > 1 and the root will be repelling. If

µ < 2k, then |1− µ
k | < 1 and the convergence will be only linear. If µ = 2k, then the root is

an indifferent fixed point. The point ∞ is a repelling fixed point with eigenvalue d
d−µ .

We have taken into account that, for the Newton method N(p)(z) = zp′(z)−p(z)
p′(z) and

for a root z0 of the equation p(z) = 0, one has two cases:

• If z0 is a simple root, we have that N(p)(z0) = z0,

• if z0 is a multiple root, the value of the expression N(p)(z) = zp′(z)−p(z)
p′(z) at z0 is not

determinate. One could solve this indetermination computing limz→z0
zp′(z)−p(z)

p′(z) .

Recall that, in this paper, instead of working with N(p) or Nµ(p), we consider the
homogeneous methods HN(p) or HNµ(p), respectively. In these cases, the existence of
proper indeterminate points is equivalent to the existence of multiple roots, see Theorem 2.
This implies that the algorithm developed in Section 4 can be applied to detect the existence
of multiple roots of a polynomial p using relaxed homogeneous Newton methods.

For the Newton method, taking into account that the roots of a polynomial p corre-
spond to attractive fixed points of red(HN(p))P, we obtain a graphic representation which
gives in red a region approaching the union of proper basins of multiple roots and in green
a region approaching the union of proper basins of simple roots. For the relaxed method
HNµ(p), one has a similar graphic result: the red region approaches the union of proper
basins of (attractive) multiple roots and the green region approaches the union of proper
basins of (attractive) simple roots.

6. Examples

In the following subsections, we consider the polynomial p(z) = (z3 − 1)(z − 1),
which has z = 1 as a double root and z = e

2πi
3 , z = e

4πi
3 as simple roots, and we apply the

Homogeneous and Homogeneous relaxed Newton methods.

6.1. Graphic Results for the Homogenous Newton Map

Instead of working with the Newton rational map N(p)(z) = −1−2z3+3z4

−1−3z2+4z3 , our algo-
rithms work with the Homogeneous Newton map:

HN(p)(z, t) = (−t4 − 2z3t + 3z4,−t4 − 3z2t2 + 4z3t).

Then, we have the homogeneous bivariate polynomials A(z, t) = −t4 − 2z3t + 3z4 and
B(z, t) = −t4 − 3z2t2 + 4z3t and the normalized homogeneous pair R = (F, G), where
F(z, t) = 1

14 (−t4 − 2z3t + 3z4) and G(z, t) = 1
14 (−t4 − 3z2t2 + 4z3t).

Now, we consider the induced map φ : C2 → [0,+∞) given by

φ((z, t)) = | 1
14

(−t4 − 2z3t + 3z4)|+ | 1
14

(−t4 − 3z2t2 + 4z3t)|.

As we have seen in Section 3.2, we have the induced maps φS : S3+ → [0,+∞),
φP : P1+(C)→ [0,+∞), and, for prefixed N, C, m, the map

l(φ, N, C, m) : P1(C)→ [0,+∞), l(φ, N, C, m)([z : t]) = φS((RS
N)

k(N,C,m)((z,t))((z, t))),

which is briefly denoted by l(φ) = l(φ, N, C, m).
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In the first row of Table 1, using the rectangle [−2.5, 2.5]× [−2.5, 2.5], we have included
the graphics of l(φ) = l(φ, 10, 15, 100) on two neighborhoods at [0 : 1] and at [1 : 0] by
taking the functions l(φ)([ z

1+|z| : 1
1+|z| ]) and l(φ)([ 1

1+|z| : z
1+|z| ]), respectively.

In the second row, we have the red region which approaches the proper basin of the
super-zero, and it corresponds to the attraction proper basin of the double root z = 1 of
the polynomial p(z) = (z3 − 1)(z− 1) = (z− 1)2(z− e

2πi
3 )(z− e

4πi
3 ). Note that F( 1

2 , 1
2 ) =

1
14·16 (−1− 2 + 3) = 0, G( 1

2 , 1
2 ) =

1
14·16 (−1− 3 + 4) = 0 and φ(( 1

2 , 1
2 )) = 0. Therefore, in

this case, [1 : 1] = [ 1
2 : 1

2 ] is an indeterminate point of R = (F, G). Recall that, by Theorem 2,
MZ(p) ∼= PInd(HN(p)P).

The green region corresponds to points z = u+ vi with (u, v) ∈ [−2.5, 2.5]× [−2.5, 2.5]
such that k(10,15,100)(

1
1+|z| (z, 1)) < 100 (or k(10,15,100)(

1
1+|z| (1, z)) < 100 on the right). This

means that, for k = k(10,15,100)(
1

1+|z| (z, 1)):

|φS((RS
10)

k−1(
1

1 + |z| (1, z)))− φS((RS
10)

k(
1

1 + |z| (1, z)))| ≤ 10−15

and similarly for 1
1+|z| (1, z). In this case, the green region corresponds to the union of the

attraction proper basins associated with the simple roots z = e
2πi

3 and z = e
4πi

3 .
In the third row in Table 1, we study the functions k(10,15,100)(

1
1+|z| (1, z)) (on the

left) and k(10,15,100)(
1

1+|z| (z, 1)) (on the right) which take integer values in the interval
[0, 100]. We have associated a different color to each value in [0, 100]. Now the green
region is divided depending on the number of iterations that are necessary to satisfy the
100-truncated Cauchy inequality.

The phenomenon observed in the red region is very interesting. Now the red region
appears divided into small pixels having different colors. This means that, for any point z0
in the red region, the number of iterations k(10,15,100)(

1
1+|z| (1, z)) for z in a neighborhood at

z0 is very unstable; that is, this function takes many different values in this neighborhood.

6.2. Graphic Results for the Homogenous Relaxed Newton Map

In this subsection, the relaxation parameter µ has been set to µ = 2. In this way,
we can compare the graphic results obtained for µ = 1 (Table 1) and for µ = 2 (Table 2).
As in the previous subsection, instead of working with the relaxed Newton rational map
N2(p)(z) = 2z4−z3+z−2

4z3−3z2−1 , we take the Homogeneous relaxed Newton map:

HN2(p)(z, t) = (−2t4 + zt3 − z3t + 2z4,−t4 − 3z2t2 + 4z3t).

Then, we have the bivariate polynomials A(z, t) = −2t4 + zt3− z3t+ 2z4 and B(z, t) =
−t4 − 3z2t2 + 4z3t and the normalized homogeneous pair F(z, t) = 1

14 (−2t4 + zt3 − z3t +
2z4) and G(z, t) = 1

14 (−t4 − 3z2t2 + 4z3t).
Now, we consider the induced map φ : C2 → [0,+∞) given by

φ((z, t)) = | 1
14

(−2t4 + zt3 − z3t + 2z4)|+ | 1
14

(−t4 − 3z2t2 + 4z3t)|.

As we have seen in Section 3.2, we have the induced maps φS : S3+ → [0,+∞),
φP : P1(C)→ [0,+∞), and, for prefixed N, C, m, the map

l(φ, N, C, m) : P1(C)→ [0,+∞), l(φ, N, C, m)([z : t]) = φS((RS
N)

k(N,C,m)((z,t))((z, t))),

and we denote l(φ) = l(φ, N, C, m).
In the first row of Table 2, using the rectangle [−2.5, 2.5]× [−2.5, 2.5], we have the

graphics of l(φ) = l(φ, 10, 15, 100) associated with HN2(p) on two neighborhoods at [0 : 1]
and at [1 : 0].
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In the second row, we have the red region which is the basin of the super-zero, and it
corresponds to the attraction basin of the the double root z = 1 of the polynomial p(z) =
(z3− 1)(z− 1) = (z− 1)2(z− e

2πi
3 )(z− e

4πi
3 ). Note that F( 1

2 , 1
2 ) =

1
44·16 (−2+ 4− 4+ 2) = 0,

G( 1
2 , 1

2 ) =
1

44·16 (−4 + 12− 12 + 4) = 0 and φ(( 1
2 , 1

2 )) = 0. In this case, [1 : 1] = [ 1
2 : 1

2 ] is
an indeterminate point of R = (F, G).

The black region corresponds to points z = u+ vi with (u, v) ∈ [−2.5, 2.5]× [−2.5, 2.5]
such that k(10,15,100)(

1
1+|z| (z, 1)) = 100 (or k(10,15,100)(

1
1+|z| (1, z)) = 100 on the right). This

means that

|φS((RS
10)

k−1(
1

1 + |z| (1, z))
)
− φS((RS

10)
k(

1
1 + |z| (1, z))

)
| > 10−15, 0 < k ≤ 100

and similarly for 1
1+|z| (z, 1).

To compare the Newton method HN(p) to the relaxed Newton method HN2(p), it is
interesting to observe the second rows in Tables 1 and 2. For the HN2(p), the red region in
Table 2 is larger than the red region for HN(p) in Table 1, and the green regions in Table 1
reduce their size and become a black region in Table 2, as we indicated in [6].

In the third row in Table 2, we can see that the functions

k(10,15,100)(
1

1 + |z| (1, z)) and k(10,15,100)(
1

1 + |z| (z, 1))

are constant in the black region. Now, the red region appears divided into small pixels
having different colors. However, the behavior in Table 2 is different than in Table 1: in
some areas (inside of the red region), the function k(10,15,100)(

1
1+|z| (1, z)) is stable (locally

constant), and, in other areas, it is locally unstable.

7. Conclusions

In this work, we have presented a collection of algorithms and implementations
based on the representation of a rational map as a self-map of the pointed Hopf fibration
S3+1 → P1+(C). This procedure has the following advantages:

(i) The use of homogeneous coordinates permits us to work at the point at infinity;
(ii) The representation of a rational function by a pair of homogeneous bivariate polyno-

mials with the same degree R = (F, G) allows us to compute the numerical value of
the function at any pole point and at the point at infinity;

(iii) The use of normalized homogeneous coordinates avoids overflow and underflow
errors in our algorithms.

One interesting contribution of our algorithms is that the mathematical models P1(C),
S2, S3 are improved with the addition of a new element: the super-zero point 0̄. In this way,
we get the augmented complex projective line P1+(C) = P1(C) ∪ {0̄ = [0 : 0]} and the
corresponding augmented spheres S2+ = S2 ∪ {0̄ = (0, 0, 0)}, S3+ = S3 ∪ {0̄ = (0, 0)}.
(iv) This permits us to avoid indetermination problems which appear when simultane-

ously the values of the numerator and denominator of a rational function are equal to
zero. In these cases, the super-zero is taken as the image of the indeterminate point.

The study of the proper zeros of the function φP : P1(C) → R+ helps to study the
proper indeterminate points of RP : P1+(C) → P1+(C), RP 6= 0̄. In general, one con-
siders the associated map red(R)P and, for each point x0 ∈ PInd(RP), we can analyze
the corresponding end point induced by red(R)P: [(x0, red(R)P(x0), (red(R)P)2(x0), · · · )].
This end point can have different possibilities and properties. For instance, the orbit
(x0, red(R)P(x0), (red(R)P)2(x0), · · · ) can converge to a fixed point or to a cycle of red(R)P.
However, in the particular case that we take the Homogeneous relaxed Newton method
R = HNµ(p), p 6= 0, one has the additional properties PFix(red(R)P) = PFix(RP) ∪
PInd(RP) and PInd(RP) is bijective with the finite set of multiple roots of the polynomial p.
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(v) The algorithms developed in this paper and its implementations in Julia language
are able to give a graphic approximation to a “red region” which is the union of the
attraction basins of multiple roots of a polynomial p 6= 0 when the relaxed Newton
method (or the Newton method) is applied. We emphasize the fact that our algorithms
do not require the previous calculus of the roots of the corresponding polynomial.

(vi) The formulation of a homogeneous pair using the maps R, RS, RP in the diagrams

S3+

��

RS
// S3+

��
P1+(C) RP

// P1+(C)

C2

��

R // C2

��
S3+ RS

// S3+

has two advantages: (1) the diagram on the left gives us the relation with analytic
maps on the complex projective line, and (2) the diagram on the right permits us to
have an easy implementation of our algorithms in Julia language.

(vii) The implementation in Julia language allows us a fast performance that permits
numerical computations and graphic constructions in a short period of time.

(viii) The techniques developed in this paper can be applied to other families of rational
maps—for instance, that obtained with Chebyshev’s method and Halley’s method
(note that any iterative method represented by a rational map also admits a homoge-
neous version).

(ix) Another interesting line of research appears when we evaluate a continuous map φ :
P1+(C)→ [0,+∞) on the orbits of a homogeneous pair (rational map) on P1+(C), so
we can compute basins of simple and multiple cycles of a homogeneous pair using
Lyapunov functions associated with φ.
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