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Abstract: The COVID-19 pandemic and subsequent lockdowns highlight the close and delicate
relationship between a country’s public health and economic health. Models that combine macroeco-
nomic factors with traditional epidemic dynamics to calculate the impacts of a disease outbreak are
therefore extremely useful for policymakers seeking to evaluate the best course of action in such a
crisis. We developed a macroeconomic SIR model that considers herd immunity, behavior-dependent
transmission rates, remote workers, and the indirect externalities of lockdowns. It is formulated as an
exit time control problem where a social planner is able to prescribe separate levels of the lockdown
low-risk and high-risk portions of the adult population. The model predicts that by considering the
possibility of reaching herd immunity, high-risk individuals are able to leave lockdown sooner than
in models where herd immunity is not considered. Additionally, a behavior-dependent transmission
rate (which represents increased personal caution in response to increased infection levels) can lower
both output loss and total mortality. Overall, the model-determined optimal lockdown strategy,
combined with individual actions to slow virus transmission, is able to reduce total mortality to
one-third of the model-predicted no-lockdown level of mortality.

Keywords: epidemic modeling; COVID-19; social planner’s problem; exit time control problem;
value iterations

1. Introduction

The COVID-19 global pandemic has led to massive lockdowns to slow the spread
of the virus. Policymakers faced, and continue to face, a dilemma: extended periods of
lockdown have put a strain on the economy, but returning to “normal” too quickly could
result in an equally troubling wave of new infections, even with the currently growing
vaccine distribution. The task is therefore to find the optimal balance between public health
and economic growth. Models such as those proposed by [1,2] have used a macroeco-
nomic approach and variations on the susceptible-infectious-recovered (SIR) epidemic
model proposed by [3] to solve an optimization problem determining the lockdown pol-
icy that minimizes both the loss of life and the effects on output. We expand on these
previous models by presenting our original work, which considers more factors affecting
epidemic progression. These novel improvements are listed below and discussed in detail
in Section 2:

• We formulated an exit time control problem where lockdown measures are lifted
when the population reaches herd immunity;

• We incorporated a transmission rate that captures how individuals react to current
infection levels. This “behavior-dependent” transmission rate seeks to model individ-
ual behaviors that occur independently of lockdown. For example, individuals might
wear masks, practice social distancing, and take other precautions to reduce their risk
as infection numbers go up, even in the absence of official lockdown measures;

• We considered the costs of indirect deaths attributed to the adverse mental and physi-
cal effects of lockdown and of continued unemployment after the lockdown has ended
and the positive impact of workers who are able to work remotely during lockdown;
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• We added a penalty for overwhelming intensive care unit (ICU) capacity and a term
that captures the future impacts of missed health screenings during the pandemic.

By formulating our problem in such a way, we captured a wider and more accurate
picture of the overall situation and found that the inclusion of these elements markedly
altered the calculated optimal lockdown strategies.

Literature Review

Epidemic modeling has been a subject of study since the 1700s, and researchers con-
tinue to explore new models and approaches, for example those detailed in [4]. The classic
susceptible-infected-recovered ODE model [3] is the basis of our (and many other) mod-
els, but other approaches have also been taken. Some alternatives include agent-based
modeling [5,6], which takes an individual-level approach instead of a population-level one,
and metapopulation modeling, which looks at various fragmented populations and their
interactions, as in [7]. Motivated by the COVID-19 pandemic, there have been many new
additions to the literature in mathematical epidemiology, taking many different approaches.
For example, several researchers have taken an individual-level approach, which seeks a
mean-field equilibrium. Some notable works include [8–10], which compared the mean-
field equilibrium to a socially optimal strategy where agents can choose their contact rate
and are influenced by various incentives. In addition, data-based approaches such as those
in [11,12] have provided interesting insights into targeted lockdowns and the efficacy of
stay-at-home orders. In this paper, we chose to manipulate a standard SIR model in order
to more easily investigate the effects of added macroeconomic elements, which attempts to
capture unique aspects of a modern global pandemic such as COVID-19. This approach is
more in line with papers such as [1,2].

The planning problem developed in [1] was the basis of the one used in our model.
The paper referenced the SIR method of epidemic modeling, which has also been used
in subsequent papers, to represent population dynamics. Many of its parameters, such
as the level of obedience to lockdowns, were also used in our model. The death rate
was calculated as a function of the number of infected individuals in order to model
the effects of hospital overcrowding and encourage “flattening the curve”. The objective
function quantifies the economic and social impacts of both the pandemic and the resulting
lockdown measures and develops an optimization problem for a planner to solve. The cost
of lockdown is represented by the income that is lost by those who are in quarantine and
so are unable to work, while the cost of death was calculated as the value of statistical life.
Their model examined the role of the population’s level of obedience, as well as the effect
of being able to test those who are recovered and excluded them from lockdown. They also
investigated the results of different values of statistical life. The authors concluded that
being able to test and return recovered individuals to the workforce has a large positive
effect on outcomes and that these outcomes are sensitive to the fatality rate and its elasticity
with respect to the infection level.

A subsequent paper [2] took this model and extended it by considering the possibility
of different optimal lockdown measures for different groups. In their case (and in ours), the
groups were differentiated by age, since the severity of COVID-19 infection varies widely
based on age. The paper also explicitly considered the number of infected individuals
admitted to the ICU at each point in time, which was then used to calculate the death rate.
The authors used Pareto curves created by varying the nonpecuniary value of life to show
that targeted lockdown measures unilaterally perform better than uniform lockdowns,
regardless of whether one seeks to prioritize reducing output loss or reducing mortality.
In fact, while they considered three age groups (20–49, 50–64, and 65+), their results showed
that it is sufficient to consider a “semitargeted” policy that prescribes one lockdown policy
to those aged 20–64 and another policy for those over 65 y. Due to this result, we also split
the working population into two groups, one aged 20–64 and one aged 65 and over.

The inclusion of a controllable behavioral parameter that captures the incentives and
effects of social distancing has appeared in various game theoretic epidemic models [13,14]
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and was also recently discussed in [15]. We therefore refer to our model as a behav-
ioral SIR (BSIR) model, because individual behaviors affect infection transmission rates.
In both [13,14], the base transmission rate was multiplied by a controlled scale factor be-
tween zero and one, which represents the current best-response level of social distancing.
In contrast, in our model, the effects of social distancing behaviors were not directly con-
trolled. Rather, the scale factor on the transmission rate fluctuated between zero and one
based on the current proportion of infected individuals. This reflects the tendency of
individuals to be more careful as infection levels rise in their community.

These works developed a solid framework for our model, but we undertook the task
of increasing the accuracy and realism through herd immunity as an exit time, behavior-
dependent transmission rates, deaths indirectly due to lockdown, the additional costs of
lockdown, and the portion of the population that is able to work remotely. These additions
affect the model in various ways, but overall, our augmented model concluded that the
high-risk group does not need to maintain a strict and full lockdown for the entire duration
of the pandemic when factors such as personal precautionary behaviors and the possibility
of herd immunity are included.

The main body of the paper presents our model and its numerical results. In Section 2.1,
we lay out the SIR dynamics used to model the transmission of the virus and discuss certain
model additions, especially the addition of deaths indirectly caused by lockdown and a
behavior-dependent transmission rate. In Section 2.2, we introduce the exit time control
problem that ends when the population reaches herd immunity and discuss the terms in
the objective function. In Section 3, we discuss our numerical model, which discretizes the
problem and is solved through value iterations. We calibrated it with the results of [1,2]
and compared these results to our augmented model using death rates on the same scale.
Then, we updated the death rates to match more recent data from [16] and adjusted the non-
pecuniary value of life. We present and discuss our results and performed some parameter
robustness analysis. These experiments serve to illustrate the general mechanisms of the
model and to present planners with an idea of our model’s potential. If a planner wishes to
experiment with our model, the parameter values can be changed in our code, found at
(https://github.com/april-nellis/COVID19-BSIR, accessed on 7 August 2021), to accu-
rately reflect a specific planner’s current situation.

2. Methods
2.1. Population Dynamics

As in [2], we considered policies that assign different lockdown strategies to popula-
tion groups with different responses to infection and lockdown. Influenced by their results,
we divided adults into one group aged 20–64, called “low-risk” and indexed by j = 1,
and one group aged 65 and over, called “high-risk” and indexed by j = 2. We denote the set
of population groups as J = {1, 2}. We only considered adults older than 20, so the low-
risk group makes up 82% of the population of interest, while the high-risk group makes up
18% [17]. The second group can also include individuals of any age who are more likely to
contract severe cases of COVID-19 and experience complications due to immunodeficiency,
respiratory weakness, or other preexisting conditions. These individuals were considered
separately from the general working population. We denote the population of group j as a
proportion, Nj, of the total population and lay out the following relationship:

Sj(t) + Ij(t) + Rj(t) + Dj(t) = Nj, ∀j ∈ J , where ∑
j∈J

Nj = 1.

https://github.com/april-nellis/COVID19-BSIR
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Individuals move from susceptible (Sj(t)) to infected (Ij(t)) to recovered (Rj(t)),
with additional flows from all three to death (Dj(t)). The dynamics are given by:

Ṡj(t) = −Sj(t)(1− θLj(t))∑
k

βkj(t)(1− θLk(t))Ik(t)− ξ(Lj(t))Sj(t),

İj(t) = Sj(t)(1− θLj(t))∑
k

βkj(t)(1− θLk(t))Ik(t)− γIj(t),

Ṙj(t) = (γ− φ(Ij(t)))Ij(t)− ξ(Lj(t))Rj(t),

Ḋj(t) = φ(Ij(t))Ij(t) + ξ(Lj(t))(Sj(t) + Rj(t)) = −Ṅj(t).

(1)

The number of new infections depends on the size of the susceptible and infected
populations, as well as the lockdown levels, Lj(t), and transmission rates between groups,
βij(t). The lockdown levels were introduced to reduce the number of susceptible individ-
uals who are at risk of being exposed to infection and to reduce the number of infected
individuals who are able to infect others. The transmission rate, βij(t), is more complex
than in the standard SIR model, as the transmission rate varies depending on the interact-
ing populations and also changes in time. It is described in more detail in Section 2.1.2.
As others have suggested [1,2] and as history has shown, a portion of the population will
disregard lockdown orders. The level of obedience is represented by θ. As in [2], we set
θ = 0.75, though this parameter is difficult to quantify exactly. Patients move out of the
infected category with rate γ in accordance with the expected recovery time of 18 d [16].
Deaths due to COVID-19 occur at rate φ(Ij(t)) < γ, and other deaths occur at rate ξ(Lj(t)).
For convenience, the parameters that appear in (1) and in the objective function (2), along
with their levels, are listed in Table A1 of the Appendix A.

2.1.1. Deaths

One unique element of COVID-19 is its significantly different death rates for different
groups [16]. Therefore, the base death rate δ0

j for each group was set individually. In addi-
tion, as the number of infected individuals increases and hospitals become more crowded,
death rates increase as a function of the total number of infected patients as in [1]. We
represent this increase in the death rate as δ1

j and followed [2] in assuming that an infection
level of 30% increases the death rate by a factor of five. Therefore, the death rate due to
viral infection is:

φ(Ij(t)) = δ0
j + δ1

j ∑
k∈J

Ik(t).

The number of new deaths due to COVID-19 at a given time must be less than or
equal to the total number of individuals removed from the infected category at that time,
so we require φ(Ij(t)) ≤ γ, ∀j ∈ J . Since ∑k∈J Ik(t) ≤ 1, this can be achieved by ensuring
δ0

j + δ1
j ≤ γ, ∀j ∈ J .

Additionally, as lockdowns stretch on, concerns have been raised regarding “deaths
of despair” due to the impacts of lockdowns on mental health [18,19]. Hospitals have
also shut down many departments to accommodate the increased need for ICU units for
COVID-19 patients. Many nonelective surgeries and routine health checks have also been
canceled or rescheduled [20]. This neglect of health maintenance is also very likely to have
repercussions on public health. To encompass all this, we added the term ξ(Lj(t)), which
is written as:

ξ(Lj(t)) = αLLj(t).

This represents the number of deaths indirectly caused by the lockdown, and scales
with Lj(t). We argue that, in the absence of any way to verify immunity, indirect deaths
occur in both the susceptible and recovered populations. Therefore, the total number of
deaths is given by:

∑
j∈J

φ(Ij(t))Ij(t) + ξ(Lj(t))(Sj(t) + Rj(t)).
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2.1.2. Behavior-Dependent Disease Transmission

The basic transmission rate of COVID-19 is approximately 0.2 [1,2]. This means that
about 20% of those who come in contact with an infected individual will become infected
themselves. However, we incorporated a transmission rate that decreases as infections
increase due to increased caution between people. In addition, we considered an intergroup
interaction factor, ρ, as in [2]. This reflects a lower rate of interactions between groups.
For example, working people aged 20–64 will interact more with their peers than with
those in the high-risk group. Combining these two ideas, we represent the transmission
rate as:

βkj(t) =

{
ρβ0e−αI I(t) if k 6= j,
β0e−αI I(t) if k = j.

For demonstration purposes, the scale factor αI in our benchmark model was chosen
such that the rate of transmission can be decreased by 25% = 1− e−0.3αI when 30% of the
population is infected with the virus. This could be adjusted after more is known about the
viral transmission of particular strains of COVID-19.

2.2. Objective Function

The questions of how long and how severely to lock down the population during a
pandemic can be thought of as a planning problem. Given the above dynamics, we modeled
the optimization problem that must be solved by a social planner using the following
objective function, which represents the overall societal costs of a given lockdown policy:

min
L∈Λ

∫ σ

0
e−(r+ν)t

(
∑
j∈J

[
Cj

O + Cj
φ + Cj

ξ + Cj
E

]
+ Ω(t)

)
dt.

Cj
O = ωjLj(t)(Sj(t) + Ij(t) + pRj(t))(1− h)

Cj
φ = (χ +

ωj

r
(1− e−r∆j))φj(I(t))Ij(t)

Cj
ξ =

ωj

r
(1− e−r∆j)ξ(Lj)(F + Sj(t) + pRj(t))

Cj
E = αEωjLj(t)(Sj(t) + Ij(t) + pRj(t))

(2)

2.2.1. Attainable Lockdown Levels

There are certain jobs that must be performed even during a pandemic, preventing the
population from attaining full lockdown. These essential professions include healthcare
workers, grocery store employees, delivery workers, and the postal service, among others.
Because of this, we set an upper limit on the possible lockdown level, denoted L̄j, and the
set of possible lockdown policies is written as Λ = [0, L̄1] × [0, L̄2]. We set L̄1 at 0.7 to
account for essential workers in the low-risk group. On the other hand, L̄2 was set at 1
since we assumed that the high-risk group does not work.

2.2.2. Herd Immunity

Previous models considered either an infinite time horizon with stochastic vaccine ar-
rival or a fixed horizon with deterministic vaccine arrival when formulating their objective
function. We contribute a new approach that sets reaching herd immunity as the end of the
problem. This can be reached either naturally via infection spread and recovery (which
confers immunity) or via the arrival of a vaccine. We assumed that those who have been
infected with COVID-19 once will remain immune for the rest of the outbreak. Additionally,
we assumed that if a vaccine is approved for distribution, vaccination levels will be high
enough to produce herd immunity, as appears to be the case. We define σ as the time at
which natural herd immunity is reached. We assumed a herd immunity threshold of 60%
recovered (In [16], Table 1 (Scenario 5: Current Best Estimates), the basic reproduction
number of COVID-19 was R0 = 2.5. Herd immunity was calculated as 1− 1/R0 = 0.6.),
so we set σ = σ(60) = inf{t ≥ 0 : ∑j∈J Rj(t) ≥ 0.6}. Herd immunity achieved through
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vaccination was incorporated into the model via discounting by e−νt, where stochastic
vaccine arrival follows an exponential distribution with intensity ν. While the current
situation shows that vaccines arrived in less than 1.5 y, we maintained ν = 1/1.5 to remain
comparable to previous works [1,2].

2.2.3. Output Loss (CO)

The most noticeable result of lockdown measures is economic slowdown. Many
workers who are not deemed essential and cannot work remotely have found themselves
jobless as companies lose revenue. As in [2], we took the average wage of a full-time
worker, normalized it to 1, and assumed that, on average, those in the high-risk group do
not earn any wages. We did not assume the existence of an “immunity passport” given to
those who have recovered, and so assumed they are also subject to lockdown measures.
This was accomplished by setting p = 1 in the expressions below. The parameter p can be
instead set to 0 to be consistent with the cases of [1,2], where recovered individuals are not
subject to lockdown measures. On the other hand, we considered some proportion h of the
workforce who are able to work from home. Therefore, we denote the purely salary-based
cost of lockdown as:

ωjLj(t)(Sj(t) + Ij(t) + pRj(t))(1− h).

When presenting our numerical results, we refer to the output loss due to lockdown.
This is not the value of the objective function presented in (2), but rather the losses in output
caused by requiring people to stay home and not work. The output loss is represented by:∫ σ

0
e−(r+ν)t ∑

j∈J
ωjLj(t)(Sj(t) + Ij(t) + pRj(t))(1− h)dt

and is compared to annual “normal” output. This output is calculated as the amount of
output produced until the expected vaccine arrival time, 1/ν, if there were no COVID-19
pandemic and no lockdown, annualized using the expected vaccine arrival time. This is
given by:

ν
∫ ∞

0
e−(r+ν)t ∑

j∈J
wjNjdt =

ν

r + ν ∑
j∈J

wjNj.

2.2.4. Cost of Death (Cφ + Cξ)

The main societal concern during a pandemic is the loss of life due to infection,
represented in our model by Cφ. We calculated the cost of a COVID-19 death in group j in
the same manner as in [2]. Here, χ is the nonpecuniary cost of life, which we considered
as a measure of the public impact of deaths due to COVID-19. This can be thought of
as a measure of the planner’s priorities. Lower values of χ lead to prioritizing output
loss minimization, while higher values are chosen to encourage longer lockdowns and
decrease mortality at the expense of output. To ensure that this cost is on the same order of
magnitude as wages, we scaled by the interest rate when choosing χ, similar to [1]. Note
that χ = 0.2/r is consistent with [2], where χ = 20 and r = 0.01. ∆j is the number of years
left in an average individual’s career. We set ∆1 = 20 and ∆2 = 0. Therefore, the cost per
death due to COVID-19 is given by:

χ +
ωj

r
(1− e−∆jr).

Deaths indirectly caused by lockdown, represented by Cξ , are not explicitly catego-
rized and counted, and so can be considered “invisible deaths”. For this reason, we did not
include χ in the cost of these deaths and only counted lost productivity. We also accounted
for similar future deaths due to the lack of preventative healthcare using a constant F
(the number of indirect deaths in the future relative to those that occur during lockdown).
These deaths do not appear in the dynamics, as they have not yet occurred, but they were
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considered when calculating the costs of lockdown. For this reason, F appears in (2), but
not in (1), and the total cost of indirect deaths is given by:

ωj

r
(1− e−r∆j)ξ(Lj)(Rj(t) + Sj(t) + F)

2.2.5. Future Loss of Employment (CE)

Another addition to the model acknowledges the long-lasting economic impacts of a
period of economic slowdown. Large corporations such as JCPenney and Hertz filed for
bankruptcy during the initial lockdowns [21] under financial strain [22]. Federal stimulus
measures may alleviate some of this burden, but they cannot completely compensate for
current drops in consumption. Effects may manifest in a variety of ways, but we chose to
express them as a “future loss in employment”, in which one day in lockdown results in
some αE days of lost employment (on average) after lockdown ends. We set this to be 0.42
(reflecting the current 14.7% unemployment rate [23] and assuming an average of 3 d of
unemployment for 1 d of lockdown). The cost of future unemployment is modeled by:

αEωjLj(t)(Sj(t) + Ij(t) + pRj(t)).

2.2.6. ICU Overcapacity (Ω)

A major incentive for lockdown measures is “flattening the curve”—slowing the
spread of the virus so that hospitals and ICUs will not become overwhelmed by a flood of
patients in need of ventilators and other specialized medical equipment. This is already re-
flected in the death rate, which increases as infections increase, but we added an additional
penalty on top of that. We assumed that a fixed proportion of infected patients, ιj, require
ICU care. We set this level to be 2.6% for people without underlying conditions and 7.4%
for high-risk groups [16]. Then, we incorporated a penalty η (representing a daily penalty
scaled by the level of overcapacity) for hospitalizations exceeding the estimated average
ICU capacity, which is 30 beds per 100,000 people [24]. This is performed via the function:

Ω(t) := η
[

∑
j∈J

ιj Ij(t)− ICU
]+
×max

j
ωj.

3. Numerical Results
3.1. Numerical Method

We used value iterations, first introduced by [25], to solve the optimization problem
presented by our model. The model was discretized using first-order Taylor approximations,
and the value function was calculated over a regular grid. Because the change in popula-
tion due to deaths is very small, we followed the precedent set in [1] and iterated over a
four-dimensional (S1, S2, I1, I2) grid to determine the optimal lockdown policy instead of
the larger and more computationally expensive (but more accurate) six-dimensional grid
(S1, S2, I1, I2, R1, R2). By this, we mean that instead of separately keeping track of the recov-
ered and dead populations, they were considered together as one unit when determining the
optimal lockdown policy. Since the vast majority of this “nonsusceptible” group is recovered,
this simplification, which removes two state variables, has a small effect on accuracy, but
a large effect on computational complexity. When determining the pandemic trajectory for
given initial conditions and a given lockdown policy, total deaths can still be calculated via
the population dynamics shown in (1). We chose ∆S = 0.0714 and ∆I = 0.0357 in our
discretization and set days as the unit of time. For all models, we took the initial conditions
to be uniform across groups (if applicable) and set them at the level of 98% susceptible, 1%
infected, and 1% recovered, unless otherwise specified.
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3.2. Calibration

To test the validity of our numerical models, we used the parameter values of [1,2]
and compared our model’s recommendations to their results. A full list of the parameter
values used in this section is presented in Table A1. In Figure 1, we compare a one-group
version of our model with the one presented in [1], whose recommended optimal lockdown
reached 70% lockdown after about one month and then slowly reduced in intensity until
lockdown was lifted approximately 140 d (4.5 mo) after the outbreak began. Our version of
this model maintains the maximum lockdown of 70% for slightly longer and ends slightly
later. Interestingly, the ending of lockdown nearly coincides with the population reaching
herd immunity, though we did not add any such considerations when running this example.
In Figure 2, we set up our model to mimic the semitargeted policy from [2] and to find
similar levels of output loss, total deaths, and general lockdown recommendations. Namely,
the optimal strategy keeps the high-risk group in lockdown until the arrival of a vaccine,
while the low-risk group is able to emerge and return to work after approximately 200 d of
lockdown have elapsed. In this figure, note that the population reaches herd immunity well
before the arrival of a vaccine, implying that the lockdown on the high-risk group could have
been ended earlier.

Now, we investigate the results of our new model using comparable parameter levels.
We incorporated herd immunity, deaths indirectly due to lockdown, the ability to work
remotely, and behavior-dependent transmission rates. Additionally, we considered the
possibility of lost employment after the end of the pandemic, as well as the costs of
missed health screenings and a monetary penalty for exceeding ICU capacity. To allow
comparisons with previous works, we used death rates of a similar magnitude to those
in [1,2], but we changed some parameters to better fit the current situation. Interest rates
have dropped significantly, so we used a 0.001% interest rate, instead of the 5% used by [1]
or the 1% used by [2]. Note that since the interest rate is extremely low, there was little
to no discounting applied to wages. We also lengthened the projected average career
length in the low-risk group. Finally, we adjusted the population distribution slightly from
21% high-risk to 18% high-risk, based on data from the 2010 United States Census [17].
The results of our model using the parameters listed in Table A1 are shown in Figure 3. Most
noticeably, lockdown rates for both groups fall to zero after the entire population reaches
herd immunity, which was explicitly imposed by our model. Additionally, the lockdown
for the low-risk group is slightly shorter, but more intense. Unsurprisingly, incorporating
deaths of despair increases the total number of deaths due to the pandemic, but this
effect is kept small by the shorter lockdowns. Long-term costs of lockdown (an additional
penalty for ICU overcrowding, future deaths due to current health negligence, and future
unemployment beyond the lockdown) increase output loss while not directly contributing
to deaths during lockdown. However, these output losses are offset by the proportion of
the population that is able to work remotely from home and the shorter lockdown periods.



Mathematics 2021, 9, 1901 9 of 24

Figure 1. Our implementation of the model of [1] (no groups or herd immunity); parameters from Table A1. Output loss:
13.4232%, total deaths: 1.1754%.

Figure 2. Our implementation of the model of [2] (two groups and no herd immunity); parameters from Table A1. Output
loss: 8.9676%, total deaths: 1.3121%.
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Figure 3. Proposed model (two groups, herd immunity); parameters from Table A1. Herd immunity: 211 d, output loss:
7.8767%, total deaths: 1.8873%.

3.2.1. Realistic Death Rates

Recent CDC reports [16] indicate that the death rates are much lower than those used
in Section 3.2. To increase the realism of our model, we updated the model death rates
according to this newer data (We calculated death rates based on the data in [16], Table 1
(Scenario 5: Best Current Estimates). To calculate δ0

1 , we constructed a weighted average
of the symptomatic case fatality ratio for 0–49 year-olds and for 50–64 year-olds using
the 2010 Census data [17] and multiplied by 0.65, since the CDC estimates that 35% of
cases are asymptomatic. For the same reason, we multiplied the symptomatic case fatality
ratio for the 65+ group by 0.65 to determine δ0

2 . We set δ1
j such that a 30% infection level

causes a five-fold increase in deaths, as in [2], and used them for all subsequent results.
These death rates are listed in Table 1, and the result, shown in Figure 4, predicts a total
mortality of 0.4464% and a total output loss of 0.0013%. The negligible output loss is due
to the negligible lockdown for the low-risk group. However, lockdowns have already been
imposed for both groups (and indeed, we might desire a death rate lower than 0.4464%),
so we increased the nonpecuniary value of life, χ, and observed how the model changes.
By increasing χ from 0.2/r to 10/r, Figure 5 shows that both groups experience levels of
lockdown similar to that of Figure 3, but with an output loss of 4.8984% and a lower total
death toll of only 0.3266%. We designate this the benchmark situation, which uses the death
rates from Table 1 and χ = 10/r, but keeps all other parameter values are consistent with
those in Table A1. We also compared the results of the optimal lockdown to those generated
by an uncontrolled scenario with the same parameters, shown in Figure 6 and Table 2.
Without lockdown, there is no output loss, but final mortality numbers are approximately
twice as high.
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Figure 4. Proposed model with lower death rates from Table 1 (χ = 0.2/r, all others from Table A1). Herd immunity: 80 d,
output loss: 0%, total deaths: 0.4464%.

Figure 5. Benchmark—herd immunity: 207 d, output loss: 7.3439%, total deaths: 0.3266%. Benchmark parameters: χ = 10/r,
r = 0.001%, αE = 0.42, h = 0.4, αL = 10−5, αI = 1, ρ = 0.75, F = 1, θ = 0.75, ν = 0.67, η = 10. Death rates from Table 1.
Herd immunity = 60%.
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Figure 6. Comparison of optimal lockdown policy to no lockdown, using benchmark parameters. Optimal lockdown
deaths: 0.3266% vs. uncontrolled deaths: 0.6189%.

Table 1. Death rates estimated using [16]. γ = 1/18 is the recovery rate as listed in Table A1.

Group δ0 δ1

Age 20–64 0.000634× γ 0.00845× γ
Age 65+ 0.00845× γ 0.1× γ

Table 2. Comparison of the optimal lockdown policy to no lockdown, using benchmark parameters.

Situation Output Loss Total Deaths

No Lockdown 0% 0.6189%
Optimal Lockdown 7.3439% 0.3266%

3.2.2. Varying Initial Conditions

Since we are currently in the middle of the pandemic, we investigated how different
initial conditions change the recommended lockdown levels. We modeled a situation where
the pandemic is ongoing and lockdown measures have been lifted, but a sudden spike in
infections occurs that prompts new lockdown measures. We considered a case where 20%
of the population has recovered and 0.2% has died, similar to the estimates of the current
situation in New York City [26]. In Figure 7a, a small infection spike affects 5% of the
population before lockdown measure are put in place. In this case, we see additional deaths
of 0.2452%. In Figure 7b, a large infection spike affects 25% of the population, causing
0.3346% additional deaths. Note that the lockdown is actually shorter for larger infection
spikes, since the larger infection level (which occurs before lockdowns are imposed) moves
the population closer to herd immunity. The price of this shorter lockdown, though, is
higher mortality rates.
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Figure 7. Results for varied initial conditions using benchmark parameters. (a) S0 = 74.8%, I0 = 5%, R0 = 20%, D0 = 0.2%,
lockdown: 118 d, output loss: 3.4677%, additional deaths: 0.2452%; (b) S0 = 54.8%, I0 = 25% R0 = 20%, D0 = 0.2%,
lockdown: 52 d, output loss: 2.1755%, additional deaths: 0.3346%.
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3.3. Parameter Robustness and Discussion

It is natural to ask how changes in other parameters affect the optimal controls.
In general, changes in parameters create the expected changes in lockdown length and
intensity, output loss, and mortality. The more interesting question asks about the level of
impact of various parameters. The effects of the nonpecuniary value of life (χ) have already
been discussed and are displayed in Figures 4 and 5 and Table 3, but now, we discuss other
parameters. In Table 4, we list the lockdown levels, mortality, and output loss for various
other configurations of parameter choices.

Table 3. A comparison of mortality rates for different nonpecuniary values of life; death rates from Table 1.

Nonpecuniary
Value of Life

Output
Loss

Total
Deaths
(All)

COVID-
19 Deaths
(All)

Total
Deaths
(20–64)

COVID-
19 Deaths
(20–64)

Total
Deaths
(65+)

COVID-
19 Deaths
(65+)

χ = 0.2/r 0% 0.4464% 0.4335 % 0.1433% 0.1433% 0.3017% 0.2902%
χ = 10/r (Benchmark) 7.3439% 0.3266% 0.2544% 0.1201% 0.0855% 0.2066% 0.1689%

Table 4. Parameter robustness results (note: lockdown for 65+ ends at herd immunity). Benchmark parameters: χ = 10/r,
r = 0.001%, αE = 0.42, h = 0.4, αL = 10−5, αI = 1, ρ = 0.75, F = 1, θ = 0.75, ν = 0.67, η = 10. Death rates from Table 1.
herd immunity threshold = 60%.

Parameter Values Avg. Lockdown
(20–64)

Length (20–64)
(Days)

Avg. Lockdown
(65+)

Length (65+)
(Days)

Output Loss
(%)

Total
Deaths (%)

COVID-19
Deaths (%)

Benchmark 0.3188 161 0.8819 207 7.3439 0.3266 0.2544

αE = 0.21 0.3123 205 0.8878 239 8.9667 0.3265 0.2388
αE = 0.84 0.2864 126 0.8663 167 5.2962 0.338 0.2848

αL = 0 0.3083 192 0.8863 227 8.3612 0.2456 0.2456
αL = 5× 10−5 0.2689 116 0.8511 154 4.6199 0.5319 0.2977

αI = 0 0.3582 214 0.9057 249 10.6699 0.3712 0.2707
αI = 6 0.2173 144 0.7758 219 4.5236 0.2651 0.2106
αI = 8 0.1503 84 0.4962 188 1.9019 0.259 0.2328
αI = 10 0.041 24 0.3852 189 0.1558 0.245 0.2314

h = 0 0.2874 126 0.8631 168 8.8592 0.338 0.2846
h = 0.6 0.3106 201 0.8866 235 5.842 0.3251 0.2394

ρ = 0.5 0.2989 193 0.8418 233 8.118 0.2753 0.1955
ρ = 1 0.3316 147 0.891 194 7.0292 0.3657 0.2975

αF = 0 0.3065 175 0.855 211 7.6457 0.3324 0.2588

ν = 1 0.3177 160 0.8803 206 6.8007 0.3264 0.2548
ν = 1.5 0.3171 158 0.88 204 6.0805 0.3262 0.2556

η = 0 0.3188 161 0.8819 207 7.3439 0.3266 0.2544
η = 106 0.3188 161 0.8819 207 7.3439 0.3266 0.2544

θ = 0.6 0.3552 129 0.8792 161 6.7354 0.3589 0.2992
θ = 0.85 0.2736 266 0.8815 304 9.7995 0.3075 0.2023

σ(0.65) 0.2982 185 0.8973 242 7.8084 0.2948 0.2135
σ(0.7) 0.2983 186 0.8919 279 7.8496 0.2724 0.1852
σ(0.75) 0.2793 202 0.8633 Vaccine 7.967 0.2732 0.1444
σ(0.8) 0.2775 204 0.9909 Vaccine 7.9881 0.2834 0.1416
σ(0.9) 0.2754 206 1.0 Vaccine 8.0011 0.2832 0.1405
σ(1) 0.2754 206 1.0 Vaccine 8.0011 0.2832 0.1405
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There are some elements of the model that did not have large impacts on the results.
The ICU overcapacity constraint barely affected the results, likely due to a combination
of low infection rates and a sufficiently high number of ICU beds (on average) in the
United States. This allows ICU admittance rates to remain at or below the threshold.
The expected vaccine arrival date also did not have much effect on the optimal lockdown
levels, since the population is expected to reach herd immunity well before its introduction.
To acknowledge that multiple vaccines have already begun circulating, we also considered
expected vaccine arrival times of 1 y (ν = 1) and 8 mo (ν = 1.5) and found that neither
adjustment had much effect. It can also be seen from the table that removing F, the cost
representing future deaths due to the current lack of health maintenance lengthens the
lockdown only slightly and has little effect on output loss and mortality.

In contrast, loss of future employment, ability to work remotely, indirect death rate in
lockdown, intergroup interaction, and behavior-dependent infection transmission have
significant effects on lockdown length and severity. Adding output savings from remote
work, future employment loss due to lockdown, and indirect deaths of lockdown affects the
wider population, and so produces similar changes in the outcomes. The model produces
uniformly better outcomes when the level of remote work, h, is increased, though lock-
downs do last longer, as seen in Figure 8. Intuitively, this follows from the idea that more
people working remotely helps to maintain economic activity without increasing the risk
of infection. Changing αI and αL in the opposite direction of remote work creates similar
effects on the optimal lockdown policy, though outcomes move differently. Increasing
the length of projected future unemployment, αE, leads to a shorter lockdown and less
output loss, while deaths increase. This suggests that αE influences the trade-off between
output loss and mortality. When we look at varying values of αL, we can see what hap-
pens when the optimization tries to minimize deaths due to COVID-19 while also trying
to avoid deaths due to lockdown. When αL = 0 and the model does not take indirect
deaths into account, the lockdown extends for longer and has a larger effect on output,
but we see much lower mortality levels. However, when αL is increased to 50 deaths per
100,000 individuals at full lockdown, the model dramatically shortens the lockdown, which
decreases output loss and indirect deaths, but leads to higher deaths due to COVID-19.
Accurately determining the true value of this parameter is therefore of high importance
when developing a policy based on our model.

We now discuss the effects of behavior-related parameters. Interestingly, these are the
only parameters we discuss that also have an effect on the uncontrolled outcomes. If the level
of interaction between groups, ρ, is lowered, there is less interaction between the low-risk
and high-risk groups, and so, lockdowns are more effective. In Figure 9, when ρ goes from
0.75 to 0.5, the low-risk group is able to begin easing the lockdown earlier since there is
less worry about transmission to high-risk individuals. However, the lockdown lasts longer
overall, since it is harder to reach herd immunity. This increase in output is offset by a drop
in mortality. With the optimal lockdown, mortality decreases to 0.2552% compared to the
benchmark of 0.3166% when ρ = 0.75. With no lockdown, mortality decreases to 0.5268%
from 0.6189%. The opposite occurs when ρ is increased to one, meaning that the groups mix
freely. Herd immunity arrives sooner due to increased intergroup transmission; however,
mortality increases to 0.3599% with lockdown and to 0.6891% without it. This suggests that
it is beneficial for high-risk individuals to exercise extra caution in their interactions with
members of the low-risk group. The other parameter that reflects individual behavior, αI ,
also has a notable impact on optimal lockdown policies. This parameter determines the
efficacy of personal actions taken to slow the transmission of COVID-19. In the benchmark
case, αI = 1. If transmission rates are constant (αI = 0), then the lockdown lasts longer
due to the increased likelihood of transmission and mortality increases to 0.3394%. In the
uncontrolled case, the mortality increases as well, to 0.7586%. However, if αI is set very
high (say 10, which implies that personal caution can reduce the transmission rate by 95%
when infections reach 30%), then a lockdown is barely necessary, as shown in Figure 10.
In this case, uncontrolled mortality is a mere 0.2581%. This second scenario is perhaps too
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optimistic, but it demonstrates the potential power of social distancing. If we examine αI = 6
and αI = 8, we see that the lockdowns increase as αI decreases. If we consider the more
modest change from αI = 0 to αI = 1 and decrease the interaction level between groups
from ρ = 0.75 to ρ = 0.5, then imposing the optimal lockdown decreases overall mortality
from 0.7586% to 0.2552%. This implies that taking measures to reduce transmission during
social interactions, in addition to reducing the number of interactions, can play a major role in
controlling disease spread.

Figure 8. Robustness results for h (percentage of workforce that can work remotely). ρ = 0.75, χ = 10/r, r = 0.001%,
ν = 0.67, αL = 10−5, αI = 1, αE = 0.42, η = 10, F = 1. (a) h = 0, lockdown: 168 d, output loss = 8.8592%, total
deaths = 0.338%; (b) h = 0.60, lockdown: 235 d, output loss = 5.842%, total deaths = 0.3251%.



Mathematics 2021, 9, 1901 17 of 24

Figure 9. Robustness results for ρ (inter-group interaction level). χ = 10/r, r = 0.001%, ν = 0.67, αL = 10−5, αI = 1,
αE = 0.42, η = 10, F = 1, h = 0.4, (a) ρ = 0.5, lockdown: 233 d, output loss = 8.118%, total deaths = 0.2753%; (b) ρ = 1,
lockdown: 194 d, output loss = 7.0292%, total deaths = 0.3657%.
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Figure 10. Robustness results for αI (scale factor for individual carefulness in response to current levels of infection).
ρ = 0.75, χ = 10/r, r = 0.001%, ν = 0.67, αL = 10−5, αE = 0.42, η = 10, F = 1, h = 0.4. (a) αI = 0, lockdown: 249 d, output
loss: 10.6699%, total deaths: 0.3712%; (b) αI = 6, lockdown: 219 d, output loss: 4.5236%, total deaths: 0.2651%; (c) αI = 8,
lockdown: 188 d, output loss: 1.9019%, total deaths: 0.259%; (d) αI = 10, lockdown: 189 d, output loss = 0.1558%, total
deaths = 0.245%.
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If the population is less obedient and disregards lockdown measures, for example if θ
decreases from 0.75 to 0.6, we see that the lockdown is shorter because herd immunity is
reached sooner. This decreases output loss, but leads to more deaths. If the population is
more obedient, however, for example if θ = 0.85, the effect of a given level of lockdown
is larger with respect to the same level of output loss, so lockdowns are less intense, but
last longer. The arrival of herd immunity is slower, leading to higher output loss, but the
strategy has the benefit of lower mortality. This is because the same level of output is
lost for a given lockdown rate, regardless of θ, and so, higher obedience levels result in a
lockdown being more “worth” the output loss; therefore, the algorithm allows a slightly
higher output loss in order to achieve much lower mortality rates. This implies that if a
lockdown is enacted, for maximum efficiency, it should be correctly incentivized in order
to achieve high obedience.

Finally, in Figure 11, we investigate the effect of more conservative herd immunity
thresholds σ(x) = min{t ≥ 0 : Rt ≥ x}. In all the examples, the low-risk group is able to
leave lockdown before the arrival of herd immunity, so moving the threshold does not have
much impact on output loss. However, σ(x) has important implications for the high-risk
group. From Figure 11, we see that there is a clear change in the dynamics for thresholds
of 75% and above. The length of lockdown for the low-risk group increases by about 20
d, but the high-risk group remains in lockdown until the vaccine arrives—an increase of
almost 300 d. This abrupt change in strategy arises because eventually, the population
reaches a steady state with very low infections, so basically, it reaches herd immunity. This
reflects the relationship between herd immunity and transmission rates and indicates that
the herd immunity threshold has been overestimated. If the herd immunity threshold is
100%, this is equivalent to removing the herd immunity exit time. The impact of including
σ can therefore be observed as a decrease in output loss and an increase in mortality, while
decreasing lockdown length for the high-risk group by 340 d and for the low-risk group by
45 d.

Figure 11. Cont.
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Figure 11. Robustness results for σ (arrival of herd immunity). ρ = 0.75, χ = 10/r, r = 0.001%, ν = 0.67, αL = 10−5, αI = 1,
αE = 0.42, η = 10, F = 1, h = 0.4. (a) Herd immunity = 65%, output loss: 7.8084%, total deaths: 0.2948%; (b) herd immunity
= 70%, output loss = 7.8496%, total deaths = 0.2724%; (c) herd immunity = 75%, output loss: 7.967%, total deaths: 0.2732%.

4. Conclusions

We presented a realistic model of pandemic modeling that incorporates previously
unconsidered factors such as natural herd immunity, behavior-dependent transmission
rates, and indirect deaths due to lockdown, and thereby extends previous models, resulting
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in markedly different lockdown recommendations. The most notable difference was shorter
lockdowns, due to the hope of reaching herd immunity and the cost of indirect deaths as
an additional penalty on lengthy lockdowns. This strategy did result in lower levels of
output loss, but it also resulted in higher mortality rates, especially among the high-risk
population. Our major results can be summarized as follows:

• When the expected vaccine arrival time is 1.5 y after the start of the outbreak, our
model recommends less than 7 mo of lockdown for the high-risk group (instead of
locking down for the full 1.5 y until the vaccine). Additionally, lockdowns for the
low-risk group are 6 wk shorter than in previous models. This means that there are
ways of slowing community spread of COVID-19 to protect high-risk individuals;

• The addition of a behavior-dependent virus transmission rate contributes to these
shorter lockdowns and decreases mortality. In an extreme situation where individuals
can take measures that decrease transmission by 95% when infections reach 30%,
less than a month of lockdown is prescribed for the low-risk group. In the more
moderate benchmark case, where individuals are able to reduce their transmission
by 25% when infections reach 30% of the population, herd immunity arrives a month
earlier than in a situation with a constant disease transmission rate. In both cases,
we also observe lower output loss due to shorter lockdown and fewer deaths due to
slower transmission;

• Increasing the predicted length of future unemployment and the predicted rate of
lockdown-related deaths both decrease lockdown length in similar manners and have
negative impacts on outcomes. Adjusting the length of future unemployment and
the predicted number of indirect deaths due to lockdown leads to trade-offs between
output and mortality. Running the model with different initial conditions shows that
higher prelockdown infection levels lead to earlier onset of herd immunity, but higher
death tolls, highlighting the risks of infection spikes. Future impacts of current missed
health screenings and a penalty for overfull ICUs are revealed to have little impact on
the optimal lockdown policy in our formulation;

• Increasing the level of remote work reduces the impact of COVID-19 by decreasing
both mortality and output loss, even though a longer lockdown is imposed. This
supports the intuitive idea that increased remote work reduces infection risk without
sacrificing economic activity.

In addition, when comparing between our proposed model and our implementation
of the model described in [1], using the same parameters, output loss was reduced by
1.0909% and lockdowns for the high-risk population ended after 211 d instead of the
expected 540, while mortality was increased by 0.5752% (in absolute terms). The social
planner would have to consider whether this tradeoff is desirable. However, incorporating
a behavior-dependent transmission rate that reflects the effects of using personal protective
equipment and social distancing could result in shorter lockdowns and lower mortality
rates. As expected, reduced disease transmission results in unequivocally better outcomes
and should be a priority for policymakers.

In the future, we could expand this model in a variety of ways. The SIR model is a
very simple and elegant method of modeling disease transmission, but has its drawbacks
because of this lack of complexity. For example, Reference [27] reported inaccuracies when
applying SIR models to a case study on the city of Isfahan. More complicated models,
such as those that take into account fading immunity over time (SIRS) or include an
incubation period (SEIR), could be used to further increase the accuracy of the model.
However, Reference [28] found that an SIR model performed better than the more complex
SEIR model when matching model predictions to real-world COVID-19 data. Therefore,
the efficacy of SIR models is still a topic of discussion in the scientific community. Other
considerations, such as low vaccination rates, could also be considered when modeling the
“end” of the pandemic and trying to determine the appropriate lockdown length. Multiple
strains of a disease with different transmission rates, or different transmission methods,
could also be incorporated to generalize our model. In this vein, we could further increase
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the realism of the model by inserting some element of stochasticity into the SIR dynamics,
either through a stochastic transmission rate or by replacing the current deterministic
disease progression by Levy processes. However, we believe that the current formulation
strikes a good balance between being specific enough for accuracy and being general
enough for flexibility.
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Appendix A

Table A1. Full list of parameters.

Parameter Description [1] [2] Our Model

L̄ Maximum attainable lockdown 0.7 [0.7, 0.7, 1] [0.7, 1]
γ Recovery rate 1/18 1/18 1/18
δ0

j Base mortality 0.01γ [0.001γ, 0.01γ, 0.06γ] [0.01γ, 0.06γ]

δ1
j Rate of mortality increase based on infec-

tion levels
0.05γ if I = 30%, then mortality rates

are 5 times the base rates
[0.06γ, 0.10γ]

ιj Rate of ICU admittance N/A σ (unknown) [0.026,
0.074]

ICU ICU capacity as the proportion of the overall
population (based on beds/100,000 individ-
uals)

N/A N/A 0.0003

η Scale factor for the cost of ICU overcapac-
ity

N/A N/A 10

β0 Initial transmission rate 0.2 0.2 0.2
ρ Interaction level between groups N/A 1 0.75
ν Intensity for vaccine/cure arrival 0.667/365

(1.5 yrs)
0.667/365 0.667/365

ωj Normalized individual daily productivity 1 [1, 1, 0] [1,0]
h Proportion of the workforce that can

work remotely
0 0 0.4

r Yearly interest rate 5% 1% 0.001%
χ Nonpecuniary cost of death 0 20 0.2/r
∆j Years left in career ∞ [15, 7.5, 0] [20, 0]
θj Obedience to lockdown 0.5 0.75 0.75
αL Scaling factor for indirect deaths due to

lockdown
0 0 0.00001

αI Scaling factor for decrease in βt due
to personal social distancing measures
(masks, etc.)

0 0 1

αE Scale factor for decreasing potential career
length/increasing chance of bankruptcy as
lockdown lengthens

N/A 0 0.01
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Table A1. Cont.

Parameter Description [1] [2] Our Model
F Future cost of missing health maintenance

during lockdown
0 0 1

p Immunity passport
p = 1 =⇒ no passport
p = 0 =⇒ passport

0 0 1
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