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Abstract: In this paper, we study 3-dimensional compact and connected trans-Sasakian manifolds
and find necessary and sufficient conditions under which these manifolds are homothetic to Sasakian
manifolds. First, four results in this paper deal with finding necessary and sufficient conditions on
a compact and connected trans-Sasakian manifold to be homothetic to a compact and connected
Sasakian manifold, and the fifth result deals with finding necessary and sufficient condition on a
connected trans-Sasakian manifold to be homothetic to a connected Sasakian manifold. Finally, we
find necessary and sufficient conditions on a compact and simply connected trans-Sasakian manifold
to be homothetic to a compact and simply connected Einstein Sasakian manifold.
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1. Introduction

It is well known that the product M = M × R of a (2n + 1)-dimensional almost
contact metric manifold (M, F, t, u, g) (cf. Reference [1]) has an almost complex structure J,
which with product metric g makes (M, g) an almost Hermitian manifold. The geometry
of the almost contact metric manifold (M, F, t, u, g) depends on the geometry of the almost
Hermitian manifold (M, J, g) and gives several structures on M like a Sasakian structure,
a quasi-Sasakian structure, and others (cf. References [1–3]). There are sixteen different
types of structures on the almost Hermitian manifold (M, J, g) (cf. Reference [4]), and the
structure in the classW4 on (M, J, g) gives a structure (F, t, u, g, α, β) on M known as trans-
Sasakian structure (cf. Reference [5]), which generalizes a Sasakian structure, a Kenmotsu
structure, and a cosymplectic structure on a contact metric manifold (cf. References [2,3]),
where α, β are smooth functions defined on M. Here, the classW4 should not be confused
with Stiefel–Whitney characteristic class, but it is one of the sixteen classes specified by
different combinations of covariant derivatives of the almost complex structure J on the
almost Hermitian manifold.

A trans-Sasakian manifold (M, F, t, u, g, α, β) is called a trans-Sasakian manifold of
type (α, β) and trans-Sasakian manifolds of type (0, 0), (α, 0) and (0, β) are called cosym-
plectic, α-Sasakian and β-Kenmotsu manifolds, respectively. In Reference [6], Marrero
proved that a trans-Sasakian manifold of dimension greater than or equal to five is either a
cosymplectic manifold, a α-Sasakian manifold, or a β-Kenmotsu manifold; therefore, after
this result, there is an emphasis in studying geometry of 3-dimensional trans-Sasakian
manifolds. We shall abbreviate a 3-dimensional trans-Sasakian manifold (M, F, t, u, g) by a
TRS-manifold.
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An interesting question is to seek conditions under which a closed (compact without
boundary) TRS-manifold is homothetic to a Sasakian manifold. The geometry of TRS-
manifold is important because of Thurston’s conjecture (cf. Reference [7]), now known as
Geometrization-Conjecture, which gave eight geometries on a 3-dimensional manifold,
namely Spherical geometry S3, Euclidean geometry E3, Hyperbolic geometry H3, the
geometry of S2 ×R, the geometry of H2 ×R, the geometry of universal cover of SL(2, R),
the Nil geometry, and the Sol geometry (for details on this topic, see Reference [8]). In
addition, we know that 3-dimensional Sasakian manifolds are in abundance, for example,
the unit sphere S3, the Euclidean space E3, the unit tangent bundle T1S2 of the sphere S2,
the special unitary group SU(2), the Heisenberg group H3, and the special linear group
SL(2, R) (cf. Reference [9]). Thus, the geometry of TRS-manifolds, in matching them with
Thurston’s eight geometries on 3-dimensional closed Riemannian manifolds, becomes
more interesting, and, as we see, many in the list of Thurston’s geometries are included in
the list of Sasakian manifolds.

In References [10–19], the authors studied compact TRS-manifolds with some restric-
tions on the smooth functions α, β and the vector field t appearing in their definition for
getting conditions under which a TRS-manifold is homothetic to a Sasakian manifold. It
is known that a compact simply connected TRS-manifold satisfying Poisson equations
∆α = β, ∆α = α2β, respectively, gives a necessary and sufficient condition for it to be
homothetic to a Sasakian manifold (cf. Reference [13]).

In addition, in References [19–21], interesting results on the geometry of TRS-manifolds
are obtained, where the authors (W. Wang, X. Liu, Y. Wang, Y. Zhao) considered other
aspects in Thurston’s eight geometries. In Reference [13], a question was asked whether the
function β on a compact TRS-manifold satisfying the differential equation gradβ = t(β)t
necessitates the TRS-manifold to be homothetic to a Sasakian manifold. It is shown that this
question has negative answer (cf. Reference [21]). However, with additional restrictions,
such as positivity of sectional curvatures, and certain differential inequality satisfied by the
function, β gives an affirmative answer to this question (cf. Theorem 3.5, [15]).

Owing to Thurston’s geometrization conjecture, geometry of TRS-manifolds (being
3-dimensional Riemannian manifolds) have become an important subject. Moreover,
Sasakian geometry picks up many important geometries in Thurston’s eight geometries;
hence, the question of finding conditions under which a TRS-manifold is homothetic to
a Sasakian manifold has considerable importance. In Section 3 of this paper, the first
four results deal with finding necessary and sufficient conditions on a compact connected
TRS-manifold (M, F, t, u, g, α, β) to be homothetic to a compact and connected Sasakian
manifold, and the fifth deals with finding necessary and sufficient conditions on a connected
TRS-manifold (M, F, t, u, g, α, β) to be homothetic to a connected Sasakian manifold.

In the first result, we consider a compact connected TRS-manifold (M, F, t, u, g, α, β) of
constant scalar curvature τ satisfying the inequality τ ≤ 6

(
α2 + β2) and the Ricci operator

T satisfying T(t) = τ
3 t, and we give necessary and sufficient conditions for M to be

homothetic to a compact and connected Sasakian manifold (see Theorem 2). In the second
result, we show that a compact and connected TRS-manifold (M, F, t, u, g, α, β) with Ricci
curvature S(t, t) a non-zero constant and satisfying S(t, t) ≤ 2

(
α2 + β2) give necessary

and sufficient conditions for M to be homothetic to a compact and connected Sasakian
manifold (see Theorem 3). Similarly, in the third result, we show that conditions S(t, t) 6= 0
and F(gradα) = gradβ on a compact and connected TRS-manifold (M, F, t, u, g, α, β) are
necessary and sufficient for M to be homothetic to a compact and connected Sasakian
manifold (see Theorem 4). In addition, the fourth result deals with conditions α(p) 6= 0
for a point p ∈ M and F(gradβ) = −gradα on a compact and connected TRS-manifold
(M, F, t, u, g, α, β) to reach a similar conclusion (see Theorem 5). Finally, in the fifth result,
we show that compactness could be dropped with the conditions α(p) 6= 0 for a point
p ∈ M and ‖gradα‖2 = 4α2β2 on a connected TRS-manifold (M, F, t, u, g, α, β) to reach a
similar conclusion (see Theorem 6).
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Among Sasakian manifolds, Einstein Sasakian manifolds play an important role
because of their elegant geometry, as well as their important applications in theoretical
physics (see the excellent monograph in Reference [9]). In the last section of this paper,
we find necessary and sufficient conditions on a compact and simply connected TRS-
manifold (M, F, t, u, g, α, β) to be homothetic to a compact simply connected Einstein
Sasakian manifold (see Theorem 7).

2. Preliminaries

Let (M, F, t, u, g) be a 3-dimensional almost contact metric manifold, where F is a
(1, 1)-tensor field, t a unit vector field, and u a smooth 1-form dual to t with respect to the
Riemannian metric g, satisfying

F2 = −I + u⊗ t, F(t) = 0, u ◦ F = 0, g(FU, FV) = g(U, V)− u(U)u(V), (1)

U, V ∈ X(M), where X(M) is the Lie algebra of smooth vector fields on M (cf. Reference [1]).
If there are smooth functions α, β on an almost contact metric manifold (M, F, t, u, g)
satisfying

(∇F)(U, V) = α(g(U, V)t− u(V)U) + β(g(FU, V)t− u(V)FU), (2)

then (M, F, t, u, g, α, β) is said to be a trans-Sasakian manifold, where (∇F)(U, V) =
∇U FV − F(∇UV), U, V ∈ X(M), and ∇ is the Levi-Civita connection with respect to the
metric g (cf. References [7,10–15,20]). We shall abbreviate the 3-dimensional trans-Sasakian
manifold (M, F, t, u, g, α, β) by TRS-manifold. Using Equations (1) and (2), we get

∇Ut = −αF(U) + β(U − u(U)t), U ∈ X(M). (3)

Let S be the Ricci tensor of a Riemannian manifold (M, g). Then, the Ricci operator
T is defined by S(U, V) = g(TU, V), U, V ∈ X(M). On a TRS-manifold, we have the
following:

t(α) = −2αβ, (4)

T(t) = F(gradα)− gradβ + 2(α2 − β2)t− t(β)t. (5)

Note that Equation (3) implies

divt = 2β, (6)

and, using this equation, together with Equation (4), we have

div(αmt) = mαm−1t(α) + αmdivt = −2mαmβ + 2αmβ = −2(m− 1)αmβ.

Thus, on a compact TRS-manifold, using Equation (6) and the above equation, we
have ∫

M

β = 0,
∫
M

αmβ = 0 for m 6= 1. (7)

Now, we state the following result of Okumura.

Theorem 1 (Reference [18]). Let (M, g) be a Riemannian manifold. If M admits a Killing vector
field t of constant length satisfying

α2(∇U∇Vt−∇∇UVt
)
= g(V, t)U − g(U, V)t

for non-zero constant α and any vector fields U and V, then M is homothetic to a Sasakian manifold.
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Given two Riemannian manifolds (M1, g1), (M2, g2), a diffeomorphism f : M1 → M2
is said to be a conformal transformation if the pullback f ∗(g2) of the metric g2 satisfies

f ∗(g2) = eσg1,

where σ is a smooth function on M1. If the function σ is a constant, then the diffeomorphism
f is said to be a homothety, and, in this situation, the Riemannian manifold (M1, g1) is said
to be homothetic to the Riemannian manifold (M2, g2). Thus, Theorem 1 gives a condition
under which a Riemannian manifold (M, g) is homothetic to a Sasakian manifold.

For a smooth function f on a Riemannian manifold (M, g), the Hessian operator A f
of f is defined by

A f (U) = ∇U grad f , U ∈ X(M),

and the Laplace operator ∆ is defined by ∆ f = div(grad f ), and it satisfies

∆ f = trA f .

3. TRS-Manifolds Homothetic to Sasakian Manifolds

In this section, we find necessary and sufficient conditions on a TRS-manifold (M, F, t, u,
g, α, β) to be homothetic to a Sasakian manifold.

Theorem 2. A compact and connected TRS-manifold (M, F, t, u, g, α, β) with constant scalar
curvature τ satisfying

τ ≤ 6
(

α2 + β2
)

is homothetic to a compact and connected Sasakian manifold of constant scalar curvature if and only
if the Ricci operator T satisfies

T(t) =
τ

3
t.

Proof. Suppose T(t) = τ
3 t holds, then, using Equation (5), we have

F(gradα)− gradβ + 2(α2 − β2 − τ

6
− 1

2
t(β))t = 0.

Taking the inner product in the above equation with t, we get

t(β) = α2 − β2 − τ

6
. (8)

Using Equation (6), we have div(βt) = t(β) + 2β2, and, by (8), we have

div(βt)− 2β2 = α2 − β2 − τ

6
.

Integrating the above equation, we conclude∫
M

(
α2 + β2 − τ

6

)
= 0.

Using the inequality in the statement, we get

α2 + β2 =
τ

6
.

Since, τ is a constant, we get M is homothetic to a Sasakian manifold of constant scalar
curvature (cf. Theorem 3.1, in Reference [14]). The converse is trivial.
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Theorem 3. A compact and connected TRS-manifold (M, F, t, u, g, α, β) with Ricci curvature
S(t, t) a non-zero constant is homothetic to a compact and connected Sasakian manifold if and
only if

S(t, t) ≤ 2
(

α2 + β2
)

.

Proof. Using Equation (5), we have

S(t, t) = 2
(

α2 − β2 − t(β)
)

. (9)

Now, using div(βt) = t(β)) + 2β2 in the above equation, we get

S(t, t)− 2
(

α2 − β2
)
+ 2div(βt)− 4β2 = 0.

Integrating the above equation, we have∫
M

(
S(t, t)− 2

(
α2 + β2

))
= 0.

Using condition in the statement, we conclude

S(t, t) = 2
(

α2 + β2
)

. (10)

Combining Equations (9) and (10), we arrive at t(β) = −2β2, i.e., 3β2t(β) = −6β4 or
t
(

β3) = −6β4. Thus, using Equation (6), we have

div
(

β3t
)
= −6β4 + 2β4 = −4β4.

Integrating the above equation, we conclude that β = 0. Consequently, Equation (9)
implies S(t, t) = 2α2, and, as the Ricci curvature S(t, t) is non-zero constant, we conclude α
is a non-zero constant. The Equation (3) now takes the form

∇Ut = −αF(U), U ∈ X(M), (11)

and we get

(£tg)(U, V) = −αg(F(U), V)− αg(F(V), U) = 0, U, V ∈ U(M),

i.e., the unit vector field t is Killing. Moreover, using Equation (11), we get

α−2(∇U∇Vt−∇∇UVt
)
= g(V, t)U − g(U, V)t,

where α is a non-zero constant. Hence, by Theorem 1, we conclude that M is homothetic to
a Sasakian manifold. The converse is trivial as for a Sasakian manifold S(t, t) = 2.

Theorem 4. A compact and connected TRS-manifold (M, F, t, u, g, α, β) with the Ricci curvature
S(t, t) 6= 0 is homothetic to a compact and connected Sasakian manifold, if and only if, F(gradα) =
gradβ.

Proof. Suppose F(gradα) = gradβ. Then, we have ∆β = divF(gradα) and

divF(gradα) =
3

∑
i=1

g(∇ei F(gradα), ei) =
3

∑
i=1

g((∇F)(ei, gradα) + F(Aαei), ei),
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where {e1, e2, e3} is a local orthonormal frame on M, and Aα is the Hessian operator of α.
Using TrFAα = 0 and Equations (2) and (4), we get

divF(gradα) = −2αt(α) = 4α2β.

Thus, we have ∆β = 4α2β, i.e.,

β∆β = 4α2β2.

Integrating by parts the above equation gives

−
∫
M

‖gradβ‖2 = 4
∫
M

α2β2.

The above integral implies ∫
M

‖gradβ‖2 ≤ 0,

i.e., ‖gradβ‖2 = 0, and it gives β is a constant. Now, using Equation (7), we conclude β = 0.
Then, we have F(gradα) = 0, and, operating F on this equation while using Equation (1),
we get

gradα = t(α)t.

In order to accomplish the result, we intend to use Theorem 3 by showing that
S(t, t) ≤ 2(α2 + β2). However, β = 0 in Equation (4) implies t(α) = 0; therefore, the above
equation implies α is a constant. Moreover, using Equation (5), we get S(t, t) = 2α2, and,
using the condition in the statement, we get α is a non-zero constant. Thus, as in Theorem 3,
we conclude that M is homothetic to a Sasakian manifold. The converse is trivial.

Theorem 5. A compact and connected TRS-manifold (M, F, t, u, g, α, β) with α(p) 6= 0 for
a point p ∈ M, is homothetic to a compact and connected Sasakian manifold, if and only if,
F(gradβ) = −gradα.

Proof. Suppose F(gradβ) = −gradα holds. Then, we have

F(gradα)− gradβ = −t(β)t,

and, inserting above equation in Equation (5), we arrive at

T(t) = 2(α2 − β2 − t(β))t.

In addition, using similar steps as in Theorem 4, we compute divF(gradβ) = −2αt(β).
Thus, we have ∆α = 2αt(β), i.e., α∆α = 2α2t(β). Integrating this equation, we get

−
∫
M

‖gradα‖2 = 2
∫
M

α2t(β). (12)

Now, we observe that

div
(

β
(

α2t
))

= α2t(β) + βdiv
(

α2t
)
= α2t(β) + 2αβt(α) + α2βdivt,

and, using Equations (4) and (6) in the above equation, we get

div
(

β
(

α2t
))

= α2t(β)− 2α2β2,
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and, by Equation (12), we conclude

−
∫
M

‖gradα‖2 = 4
∫
M

α2β2,

which implies gradα = 0. Hence, α is a constant, which through the condition in the
statement implies α is a non-zero constant. Moreover, we have t(α) = 0, and, in view of
Equation (4), we have β = 0. Thus, as in Theorem 3, we conclude that M is homothetic to a
Sasakian manifold. The converse is trivial.

We observe that Equation (4) implies g(t, gradα)2 = 4α2β2, and, with t being a unit
vector field, it implies 4α2β2 ≤ ‖gradα‖2. Naturally, one feels prompted to ask what
happens in case of the equality. Interestingly, the answer is the TRS-manifold which, in this
case, is homothetic to a Sasakian manifold without imposition of compactness, as seen in
the following result.

Theorem 6. A connected TRS-manifold (M, F, t, u, g, α, β) with α(p) 6= 0 for a point p ∈ M is
homothetic to a connected Sasakian manifold, if and only if, ‖gradα‖2 = 4α2β2.

Proof. Suppose that ‖gradα‖2 = 4α2β2 holds. Then, using Equation (4), we have

‖gradα + 2αβt‖2 = ‖gradα‖2 + 4α2β2 + 4αβt(α)

= ‖gradα‖2 − 4α2β2 = 0,

i.e.,
gradα = −2αβt. (13)

Taking covariant derivative in the above equation with respect to U ∈ X(M) and
using Equation (3), we arrive at

AαU = 2α2βF(U)− 2αβ2U − 2
(

U(αβ)− 2αβ2u(U)
)

t.

Now, using symmetry of the operator Aα, the above equation implies

4α2βg(F(U), V)− 2U(αβ)u(V) + 2V(αβ)u(U) = 0, U, V ∈ X(M), (14)

and U = t in the above equation yields

t(αβ)u(V) = V(αβ), V ∈ X(M),

i.e.,
grad(αβ) = t(αβ)t. (15)

Using Equations (4) and (13) in the above equation, we arrive at

α(gradβ− t(β)t) = 0.

Note that, as in the statement α 6= 0 and, accordingly, on connected M, the above
equation implies

gradβ = t(β)t. (16)

Using Equation (14), we get

2α2βF(U) = U(αβ)t− u(U)grad(αβ), U ∈ X(M).
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The above equation, together with Equations (4), (13), (15), and (16) in the above
equation, we conclude

2α2βF(U) = 0, U ∈ X(M),

i.e., α2β = 0. Since α 6= 0, we get β = 0. Thus, Equation (13) implies α is a non-zero
constant, and, using Equations (2) and (3), we get

α−2(∇U∇Vt−∇∇UVt
)
= g(V, t)U − g(U, V)t,

and this proves M is homothetic to a connected Sasakian manifold (see Theorem 1). The
converse is trivial.

4. TRS-Manifolds Homothetic to Einstein Sasakian Manifolds

Recall that, among Sasakian manifolds, Einstein Sasakian manifolds have elegant
geometry (cf. Reference [9]), as well as play a vital role in physics (see References [22,23]
for details). In this section, we prove the following:

Theorem 7. A compact and simply connected TRS-manifold (M, F, t, u, g, α, β) with T(t) =
2
(
α2 + β2)t, is homothetic to a compact and simply connected Sasakian manifold if and only if

(∇T)(U, t) = (∇T)(t, U), U ∈ X(M).

Proof. Suppose T(t) = 2
(
α2 + β2)t holds. Then, using Equation (5) gives

F(gradα) = gradβ + 4β2t + t(β)t, (17)

and, taking the inner product with t in the above equation, we get t(β) = −2β2. Thus, we
have 3β2t(β) = −6β4, i.e., t

(
β3) = −6β4, and, using Equation (6), we conclude

div
(

β3t
)
= −4β4.

Integrating the above equation confirms β = 0. Then, Equations (4) and (17) imply
t(α) = 0 and F(gradα) = 0, and, operating F on the second equation, we get gradα = 0,
i.e., α is a constant. Now, M being simply connected, we claim that α is a non-zero constant.
For, if α = 0, then, by Equation (3), the vector field t is parallel; therefore, u is closed and
has to be exact, and there exists a smooth function ϕ such that u = dϕ. Thus, t = gradϕ,
and, as M is compact, there exists a point x ∈ M such that (gradϕ)(x) = 0, i.e., t(x) = 0,
which is a contradiction to the fact that t is a unit vector field. Hence, constant α 6= 0 and,
with β = 0, Equations (2) imply the Lie derivative

£tg = 0.

This proves that t is a Killing vector field, and the flow of t consists of isometries of M,
and, as such, we have

(£tT)(U) = 0, U ∈ X(M),

and the above equation in view of Equation (3) implies

(∇T)(t, U) = αT(FU)− αF(TU), U ∈ X(M).

Using the condition in the statement, we have

(∇T)(U, t) = αT(FU)− αF(TU), U ∈ X(M). (18)



Mathematics 2021, 9, 1887 9 of 10

Now, with β = 0 and α a constant, we have T(t) = 2α2t, and, taking covariant
derivative in this equation while using Equation (3), we have

(∇T)(U, t) + T(−αFU) = −2α3FU, U ∈ X(M). (19)

Combining Equations (18) and (19) with constant α 6= 0, we get

F(TU) = 2α2FU, U ∈ X(M),

and, operating F on the above equation, and keeping in mind the equation T(t) = 2α2t, we
have

TU = 2α2U, U ∈ X(M),

i.e., M is an Einstein manifold. Now, with α, a non-zero constant, and β = 0, using
Equations (2) and (3), we conclude

α−2(∇U∇Vt−∇∇UVt
)
= g(V, t)U − g(U, V)t.

Hence, by virtue of Theorem 1, we get M is homothetic to a compact simply connected
Einstein Sasakian manifold. The converse is trivial.
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