
mathematics

Article

Time-Inhomogeneous Feller-Type Diffusion Process in
Population Dynamics

Virginia Giorno † and Amelia G. Nobile *,†

����������
�������

Citation: Giorno, V.; Nobile, A.G.

Time-Inhomogeneous Feller-Type

Diffusion Process in Population

Dynamics. Mathematics 2021, 9, 1879.

https://doi.org/10.3390/

math9161879

Academic Editor: Alexander Zeifman

Received: 29 June 2021

Accepted: 3 August 2021

Published: 7 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Dipartimento di Informatica, Università degli Studi di Salerno, Via Giovanni Paolo II n. 132,
84084 Fisciano, Salerno, Italy; giorno@unisa.it
* Correspondence: nobile@unisa.it
† These authors contributed equally to this work.

Abstract: The time-inhomogeneous Feller-type diffusion process, having infinitesimal drift α(t) x +

β(t) and infinitesimal variance 2 r(t) x, with a zero-flux condition in the zero-state, is considered. This
process is obtained as a continuous approximation of a birth-death process with immigration. The
transition probability density function and the related conditional moments, with their asymptotic
behaviors, are determined. Special attention is paid to the cases in which the intensity functions α(t),
β(t), r(t) exhibit some kind of periodicity due to seasonal immigration, regular environmental cycles
or random fluctuations. Various numerical computations are performed to illustrate the role played
by the periodic functions.

Keywords: diffusion approximation; transient and asymptotic densities; conditional moments;
periodic intensity functions
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1. Introduction and Background

One-dimensional diffusion processes are used to model the time evolution of dynami-
cal systems in biology, genetics, physics, engineering, neuroscience, economics, finance,
queueing and other fields (cf. for instance, Bharucha-Reid [1], Cox and Miller [2], Riccia-
rdi [3,4], Tuckwell [5], Gardiner [6]). For many applications, it is often useful to consider
the class of time-inhomogeneous linear diffusion processes, that includes the Feller-type
diffusion process and the Ornstein-Uhlenbeck diffusion process. In this paper, we focus
on the time-inhomogeneous Feller-type diffusion process with a zero-flux condition in the
zero-state.

The Feller-type diffusion process {X(t), t ≥ t0}, t0 ≥ 0, is an one-dimensional time-
inhomogeneous diffusion process with linear infinitesimal drift and linear infinitesimal variance

A1(x, t) = α(t) x + β(t), A2(x, t) = 2 r(t) x, (1)

defined in the state-space [0,+∞), with α(t) ∈ R, β(t) ≥ 0, r(t) > 0 continuous functions
for all t ≥ t0. Hence, X(t) satisfies the following stochastic differential equation:

dX(t) = [α(t) X(t) + β(t)] dt +
√

2r(t) X(t) dW(t), X(t0) = x0,

where W(t) is a standard Wiener process.
Feller diffusion process is widely used in population dynamics to model the growth

of a population (cf. Feller [7], Ricciardi et al. [8], Pugliese and Milner [9], Masoliver and
Perelló [10], Masoliver [11]). Indeed, in population dynamics the Feller-type diffusion
process arises as a continuous approximation of a birth-death process with immigration. In
these cases α(t), related to the growth intensity function, can be positive, negative or zero
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at different time instants. In particular, α(t) is positive (negative) when the birth intensity
function is greater (less) than the death intensity function, whereas α(t) = 0 if the birth
intensity function is equal to the death intensity function. Instead, the function β(t) is
related to the immigration intensity function. In particular, β(t) > 0 indicates the presence
of immigrations, whereas β(t) = 0 denotes the absence of the immigration phenomena.
The function r(t) takes into account the environmental fluctuations and describes the
noise intensity.

The Feller diffusion process is also used in queueing systems to describe the num-
ber of customers in a queue (cf. Di Crescenzo and Nobile [12]), in neurobiology to
analyze the input-output behavior of single neurons (see, for instance, Sacerdote [13],
Ditlevsen and Lánský [14], Buonocore et al. [15], Giorno et al. [16], Nobile and Pirozzi [17],
D’Onofrio et al. [18]), in mathematical finance to model asset prices, market indices, interest
rates and stochastic volatility (see, Tian and Zhang [19], Cox et al. [20], Maghsoodi [21],
Peng and Schellhorn [22], Linetsky [23], Di Nardo and D’Onofrio [24]).

In many real applications, the transition probability density function (pdf) plays a
relevant role for the description of the evolution of the dynamic system. In the sequel, we
assume that a zero-flux condition is placed in the zero-state of X(t) to ensure that the total
probability mass is conserved in [0,+∞).

The transition pdf f (x, t|x0, t0) of X(t) is solution of Fokker-Planck equation

∂ f (x, t|x0, t0)

∂t
= − ∂

∂x

{
[α(t)x + β(t)] f (x, t|x0, t0)

}
+ r(t)

∂2

∂x2

[
x f (x, t|x0, t0)

]
, (2)

to solve with the initial delta condition

lim
t↓t0

f (x, t|x0, t0) = δ(x− x0) (3)

and a zero-flux condition in the zero-state:

lim
x↓0

{
[α(t)x + β(t)] f (x, t|x0, t0)− r(t)

∂

∂x

[
x f (x, t|x0, t0)

]}
= 0. (4)

Indeed, denoting by

j(x, t|x0, t0) = A1(x, t) f (x, t|x0, t0)−
1
2

∂

∂x

[
A2(x, t) f (x, t|x0, t0)

]
= [α(t)x + β(t)] f (x, t|x0, t0)− r(t)

∂

∂x

[
x f (x, t|x0, t0)

]
, x ≥ 0 (5)

the probability flux (or current) of X(t), the Fokker-Planck Equation (2) can be re-written as
∂ f /∂t = −∂j/∂x and the zero-flux condition (4) corresponds to requiring that

∫ +∞
0 f (x, t|x0, t0)

dx = 1 for all t ≥ t0.
We remark that the time-inhomogeneous Feller-type diffusion process with an absorb-

ing boundary at the zero-state is considered in Lavigne and Roques [25] and in Giorno and
Nobile [26], in which the first-passage time problem through the zero-state is also analyzed.

Plan of the Paper

The paper is organized in five sections and six appendices in which the proofs of
the main results are reported. In Section 2, starting from the forward equations for the
transition probabilities of the time-inhomogeneous birth-death process with immigration,
we describe the continuous approximation that leads to the Fokker-Planck Equation (2),
with the initial condition (3) and the zero-flux condition in the zero-state (4). In Section 3,
for the time-inhomogeneous Feller-type diffusion process X(t), we give some preliminary
results concerning the moment generating function of the transition pdf f (x, t|x0, t0). Some
special situations are analyzed: (i) the absence of immigration with β(t) = 0, (ii) the
proportional case in which β(t) = ξ r(t), with ξ > 0, and (iii) the time-homogeneous case.
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Sections 4 and 5 contain the main results of the paper concerning the analysis of transient
and asymptotic behavior of the Feller-type diffusion process in the general case. Specifically,
in Section 4, the transition pdf f (x, t|x0, t0) is obtained for the time-inhomogeneous Feller-
type process in the general case for x0 = 0 (Section 4.1) and for x0 > 0 (Section 4.2).
Finally, in Section 5, particular attention is paid to the periodic cases by assuming that
the growth intensity function α(t), the immigration intensity function β(t) and the noise
intensity function r(t) have some kind of periodicity. The asymptotic behaviors of the
transition pdf and of the moments are also discussed in the following cases: periodic
immigration intensity function, periodic growth intensity function, periodic immigration
and growth intensity functions and periodic immigration, growth and noise intensity
functions. Various numerical computations are performed making use of MATHEMATICA
to analyze the role played by the involved periodic functions. Specifically, for some choices
of the periodic functions α(t), β(t) and r(t), of the interest in population dynamics, the
transition densities, the conditional means and variances and their asymptotic behaviors
are discussed and compared.

2. Diffusion Approximation of Birth-Death Process with Immigration

In this section, we show that the Feller-type diffusion process X(t) can be obtained
starting from a linear time-inhomogeneous birth-death process N(t) with immigration by
using a standard limit procedure (cf. for instance, Bhattacharya and Waymire [27]). Specif-
ically, we prove that, under suitable assumptions, the discrete scaled process converges
weakly to X(t).

Let {N(t), t ≥ t0} be a time-inhomogeneous linear birth-death process with immigration
having state-space N0, conditioned to start from j ∈ N0 at time t0. The transition probabilities
of N(t) satisfy the Kolmogorov forward equations and the related initial condition:

dpj,0(t|t0)

dt
= −ν(t) pj,0(t|t0) + µ(t) pj,1(t|t0),

dpj,n(t|t0)

dt
= [λ(t)(n− 1) + ν(t)] pj,n−1(t|t0) + µ(t) (n + 1) pj,n+1(t|t0)

− {[λ(t) + µ(t)] n + ν(t)}pj,n(t|t0), n ∈ N,

lim
t↓t0

pj,n(t|t0) = δj,n,

(6)

where λ(t) > 0, µ(t) > 0 and ν(t) ≥ 0 are bounded and continuous functions for t ≥ t0
representing birth, death and immigration intensity functions, respectively, and δj,n is the
Kronecker delta function. For t ≥ t0 and j ∈ N0, the probability generating function of the
process N(t) is (cf. Giorno and Nobile [28]):

G(z, t|j, t0) =
+∞

∑
n=0

zn pj,n(t|t0) =

[
1 + (z− 1) eΛ(t|t0)−M(t|t0) [1− H(t|t0)]

1− (z− 1) eΛ(t|t0)−M(t|t0) H(t|t0)

]j

× exp
{
(z− 1)

∫ t

t0

ν(u) eΛ(t|u)−M(t|u)

1− (z− 1) eΛ(t|t0)−M(t|t0) [H(t|t0)− H(u|t0)]
du
}

, (7)

where

Λ(t|t0) =
∫ t

t0

λ(τ) dτ, M(t|t0) =
∫ t

t0

µ(τ) dτ,

H(t|t0) =
∫ t

t0

λ(τ) eM(τ|t0)−Λ(τ|t0) dτ.
(8)
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By virtue of (7), the transition probabilities pj,n(t|t0) are obtained in Giorno and Nobile [28].
Furthermore, for t ≥ t0 and j ∈ N0, the conditional mean and the conditional variance of
N(t) are

E[N(t)|N(t0) = j] = j eΛ(t|t0)−M(t|t0) +
∫ t

t0

ν(u) eΛ(t|u)−M(t|u) du,

Var[N(t)|N(t0) = j] = j eΛ(t|t0)−M(t|t0)
{

1− eΛ(t|t0)−M(t|t0)

+ 2 eΛ(t|t0)−M(t|t0) H(t|t0)
}
+
∫ t

t0

ν(u) eΛ(t|u)−M(t|u) du

+ 2 eΛ(t|t0)−M(t|t0)
∫ t

t0

ν(u) eΛ(t|u)−M(t|u)[H(t|t0)− H(u|t0)
]

du,

(9)

with Λ(t|t0), M(t|t0) and H(t|t0) defined in (8).
We now consider a diffusion approximation of N(t). To this purpose, we use a suitable

procedure, similar to that adopted in Di Crescenzo et al. [29,30] and Dharmaraja et al. [31].
We rename the intensity functions related to N(t), by setting

λ(t) = α1(t) +
r(t)

ε
, µ(t) = α2(t) +

r(t)
ε

, ν(t) =
β(t)

ε
, (10)

where ε is a positive scaling parameter. In (10), α1(t) > 0, α2(t) > 0, r(t) > 0 and β(t) ≥ 0
are bounded and continuous functions for t ≥ t0. Let us consider the Markov process
{Nε(t), t ≥ t0}, with Nε(t) = ε N(t), having state-space {0, ε, 2ε, . . .}. For ε ↓ 0, the scaled
process Nε(t) converges weakly to a diffusion process {X(t), t ≥ t0} having state-space
[0,+∞). Indeed, with reference to the system (6), substituting pj,n(t|t0) with f (nε, t|jε, t0)ε
and setting x = nε and x0 = jε, we have:

∂ f (x, t|x0, t0)

∂t
=

λ(t)(x− ε) + ν(t)ε
ε

f (x− ε, t|x0, t0)

− [λ(t) + µ(t)]x + ν(t)ε
ε

f (x, t|x0, t0) +
µ(t)(x + ε)

ε
f (x + ε, t|x0, t0),

lim
x→0

{
ε

∂ f (x, t|x0, t0)

∂t
+ [λ(t)x + ν(t)ε] f (x, t|x0, t0)

−µ(t)(x + ε) f (x + ε, t|x0, t0)
}
= 0,

with the intensity functions λ(t), µ(t) and ν(t) defined in (10). Expanding f (x− ε, t|x0, t0)
and f (x + ε, t|x0, t0) as Taylor series, taking the limit as ε ↓ 0 and setting α(t) = α1(t)−
α2(t), we obtain (2) and (4) with the delta initial condition (3). Hence, making use of the
considered approximating procedure, the Fokker-Planck Equation (2) can be obtained from
the second of (6), whereas the zero-flux condition (4) can be derived from the first equation
of (6). Moreover, from (10), it follows that α(t) = λ(t)− µ(t), so that α(t) can be positive,
negative or null for each fixed t.

3. Moment Generating Function and Transition PDF in Special Cases

Let {X(t), t ≥ t0}, t0 ≥ 0, be the time-inhomogeneous Feller-type diffusion process
with infinitesimal drift and infinitesimal variance given in (1), defined in the state-space
[0,+∞), with a zero-flux condition in the zero-state. In this section, we determine the mo-
ment generating function, the conditional mean and the conditional variance. Furthermore,
the explicit expression of the transition pdf f (x, t|x0, t0) is obtained in the following special
situations: (i) in the absence of immigration, (ii) for β(t) = ξ r(t), with ξ > 0, and (iii) for
the time-homogeneous process.
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3.1. Moment Generating Function, Conditional Mean and Conditional Variance

For t ≥ t0 and x0 ≥ 0, we consider the moment generating function:

M(s, t|x0, t0) =
∫ +∞

0
e−sx f (x, t|x0, t0) dx, Re s > 0. (11)

Multiplying both sides of (2) by e−sx, integrating with respect to x over the interval [0,+∞)
and making use of the boundary condition (4), we obtain the following partial differen-
tial equation

∂M(s, t|x0, t0)

∂t
− s [α(t)− s r(t)]

∂M(s, t|x0, t0)

∂s
+ s β(t) M(s, t|x0, t0) = 0, (12)

to solve with the initial condition

lim
t↓t0

M(s, t|x0, t0) = e−s x0 , (13)

derived from (11) by using the initial condition (3).

Proposition 1. For t ≥ t0, by assuming that α(t) ∈ R, β(t) ≥ 0 and r(t) > 0, the moment
generating function of the Feller-type diffusion process X(t) with a zero-flux condition in the
zero-state is:

M(s, t|x0, t0) = exp
{
−s

∫ t

t0

β(u) eA(t|u)

1 + s eA(t|t0)[R(t|t0)− R(u|t0)]
du
}

× exp
{
− s x0 eA(t|t0)

1 + s eA(t|t0) R(t|t0)

}
, x0 ≥ 0, (14)

where

A(t|t0) =
∫ t

t0

α(z) dz, R(t|t0) =
∫ t

t0

r(τ) e−A(τ|t0) dτ. (15)

Proof. The proof is given in Appendix A.

The expression of the moment generating function, given in (14), allows to determine
the conditional mean and the conditional variance of the time-inhomogeneous Feller-type
diffusion process X(t). Indeed, for t ≥ t0 and x0 ≥ 0 one has:

E[X(t)|X(t0) = x0] = x0 eA(t|t0) +
∫ t

t0

β(u) eA(t|u) du,

Var[X(t)|X(t0) = x0] = 2 x0 e2 A(t|t0) R(t|t0)

+ 2 eA(t|t0)
∫ t

t0

β(u) eA(t|u)[R(t|t0)− R(u|t0)
]

du.

(16)

We note that the conditional mean in (16) coincides with the solution of the linear first-order
differential equation:

dx(t)
dt

= α(t) x(t) + β(t), x(t0) = x0.
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Moreover, Equations (14) and (16) can be also derived from (7) and (9), respectively, making
use of the diffusion approximation described in Section 2. Indeed, by virtue of (10) with
α(t) = α1(t)− α2(t), from (7) and (9) one has:

M(s, t|x0, t0) = lim
ε ↓0

G
(

e−sε, t
∣∣∣ x0

ε
, t0

)
,

E[X(t)|X(t0) = x0] = lim
ε ↓0

{
ε E
[

N(t)|N(t0) =
x0

ε

]}
,

Var[X(t)|X(t0) = x0] = lim
ε ↓0

{
ε2 Var

[
N(t)|N(t0) =

x0

ε

]}
.

3.2. Absence of Immigration

We assume that the immigration intensity function β(t) = 0, α(t) ∈ R and r(t) > 0
for t ≥ 0.

Proposition 2. If β(t) = 0, for t ≥ t0 the moment generating function (14) becomes:

M∗(s, t|x0, t0) = exp
{
− s x0 eA(t|t0)

1 + s eA(t|t0)R(t|t0)

}
, x0 ≥ 0. (17)

Furthermore, the transition pdf of X(t) with a zero-flux condition in the zero-state is:

f ∗(x, t|x0, t0) =


δ(x), x0 = 0,

exp
{
− x0

R(t|t0)

}
δ(x) + 1

R(t|t0)

√
x0 e−A(t|t0)

x

× exp
{
− x0+x e−A(t|t0)

R(t|t0)

}
I1

[
2
√

x x0 e−A(t|t0)

R(t|t0)

]
, x0 > 0,

(18)

with A(t|t0) and R(t|t0) defined in (15) and where

Iν(z) =
+∞

∑
k=0

1
k! Γ(ν + k + 1)

( z
2

)2k+ν
, ν ∈ R (19)

denotes the modified Bessel function of the first kind and Γ(ξ) is the Eulero gamma function.

Proof. The proof is given in Appendix B.

Equation (18) is in agreement with the expression given in Masoliver [11] and in
Gan and Waxman [32]. We now consider the random variable T(x0, t0) describing the
first-passage time through the zero-state starting from x0 > 0 at time t0. We note that (18)
can be rewritten as

f ∗(x, t|x0, t0) = P{T(x0, t0) < t} δ(x) + fa(x, t|x0, t0), x0 > 0,

where
P{T(x0, t0) < t} = exp

{
− x0

R(t|t0)

}
is the first-passage time probability through the zero-state starting from x0 > 0 and
fa(x, t|x0, t0) denotes the transition pdf of the considered Feller process in the presence of
an absorbing boundary in the zero-state (cf. for instance, Giorno and Nobile [26]):

fa(x, t|x0, t0) =
1

R(t|t0)

√
x0 e−A(t|t0)

x
exp

{
− x0 + x e−A(t|t0)

R(t|t0)

}
I1

[
2
√

x x0 e−A(t|t0)

R(t|t0)

]
.
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From (18) it follows:∫ +∞

0
f ∗(x, t|x0, t0) dx = P{T(x0, t0) < t}+

∫ +∞

0
fa(x, t|x0, t0) dx = 1.

Setting β(t) = 0 in (16), we obtain the conditional mean and the conditional variance of
X(t) in the absence of immigration. Moreover, making use of (18), the k-th conditional
moment can be evaluated:

E[Xk(t)|X(t0) = x0] =
∫ +∞

0
xk f ∗X(x, t|x0, t0) dx

= (k− 1)!
[

R(t|t0) eA(t|t0)
]k k

∑
j=1

(
k
j

)
1

(j− 1)!

[ x0

R(t|t0)

]j
, k = 1, 2, . . . (20)

We note that if x0 = 0, from (20) one has E[Xk(t)|X(t0) = 0] = 0, according to the first
expression of (18).

3.3. Proportional Case

For t ≥ 0, we assume that the functions β(t) and r(t) are proportional:

β(t) = ξ r(t), ξ > 0. (21)

Proposition 3. Under the assumption (21), if α(t) ∈ R and β(t) > 0 for t ≥ t0 one has:

M(s, t|x0, t0) =
[
1 + s eA(t|t0) R(t|t0)

]−ξ
exp

{
− s x0 eA(t|t0)

1 + s eA(t|t0)R(t|t0)

}
, x0 ≥ 0. (22)

Furthermore, the transition pdf of X(t) with a zero-flux condition in the zero-state is:

f (x, t|x0, t0) =



1
x Γ(ξ)

[
x e−A(t|t0)

R(t|t0)

]ξ
exp

{
− x e−A(t|t0)

R(t|t0)

}
, x0 = 0,

e−A(t|t0)

R(t|t0)

[
x e−A(t|t0)

x0

](ξ−1)/2
exp

{
− x0+x e−A(t|t0)

R(t|t0)

}
× Iξ−1

[
2
√

x x0 e−A(t|t0)

R(t|t0)

]
, x0 > 0,

(23)

with A(t|t0) and R(t|t0) defined in (15) and Iν(z) given in (19).

Proof. The proof is given in Appendix C.

Since for fixed ν, when z→ 0 (cf. Abramowitz and Stegun [33], p. 375, no 9.6.7)

Iν(z) ∼
1

Γ(ν + 1)

( z
2

)ν
ν 6= −1,−2, . . . , (24)

the first formula of (23) follows from the second expression as x0 ↓ 0. Furthermore, by
virtue of (24), from (23) for x0 ≥ 0 one has:

lim
x↓0

f (x, t|x0, t0) =



+∞, 0 < ξ < 1,

e−A(t|t0)

R(t|t0)
exp

{
− x0

R(t|t0)

}
, ξ = 1,

0, ξ > 1.

(25)

Relation (25) shows that if ξ > 1 the zero-state behaves as an entrance boundary that cannot
be reached from the interior of the state-space, while it is possible to starts right there.
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By setting β(t) = ξ r(t), with ξ > 0, in (16), we obtain the conditional mean and the
conditional variance of X(t) in the proportional case. Moreover, making use of (23), the
k-th conditional moment can be evaluated:

E[Xk(t)|X(t0) = x0] = k!
[

R(t|t0) eA(t|t0)
]k
{
(ξ)k

k!

+
k

∑
i=1

(ξ)k−i
i (k− i)!

i

∑
j=1

(
i
j

)
1

(j− 1)!

[ x0

R(t|t0)

]j
}

, k = 1, 2, . . . , (26)

where (ξ)n denotes the Pochhammer symbol, defined as (ξ)0 = 1 and (ξ)n = ξ (ξ +
1) · · · (ξ + n− 1) for n = 1, 2, . . . In particular, by setting x0 = 0 in (26) one has:

E[Xk(t)|X(t0) = 0] = (ξ)k

[
R(t|t0) eA(t|t0)

]k
, k = 1, 2 . . .

3.4. Time-Homogeneous Feller Process

We consider the time-homogeneous Feller process, obtained from (1) by setting α(t) =
α, β(t) = β, r(t) = r, with α ∈ R, β ≥ 0 and r > 0. This process is analyzed by Feller [34,35].
The explicit expression of transition pdf in the presence of a zero-flux condition in the
zero-state for β > 0 is given in Karlin and Taylor [36] and in Giorno et al. [37]. From (15)
we have:

A(t|t0) = α (t− t0), R(t|t0) =


r(t− t0), α = 0,

r
α

(
1− e−α(t−t0)

)
, α 6= 0.

(27)

In the absence of immigration, i.e., when β = 0, the transition pdf can be obtained from
(18) making use of (27). When α = 0, β > 0 and r > 0, by virtue of (27), one has:

f (x, t|x0, t0) =



1
x Γ(β/r)

[
x

r(t−t0)

]β/r
exp

{
− x

r(t−t0)

}
, x0 = 0,

1
r(t−t0)

(
x
x0

)(β−r)/(2r)
exp

{
− x0+x

r(t−t0)

}
× Iβ/r−1

[
2
√

x x0
r(t−t0)

]
, x0 > 0,

(28)

whereas if α 6= 0, β > 0 and r > 0 one obtains:

f (x, t|x0, t0) =



1
x Γ(β/r)

[
α x

r(eα(t−t0)−1)

]β/r
exp

{
− α x

r(eα(t−t0)−1)

}
, x0 = 0,

α

r(eα(t−t0)−1)

[
x e−α(t−t0)

x0

](β−r)/(2r)
exp

{
− α [x+x0 eα(t−t0) ]

r(eα(t−t0)−1)

}
× Iβ/r−1

[
2α
√

x x0 eα(t−t0)

r(eα(t−t0)−1)

]
, x0 > 0.

(29)

Note that (28) and (29) can be derived from (23) by setting ξ = β/r, A(t|t0) and R(t|t0) as
in (27). Moreover, by carrying out the same choices in (26), the conditioned moments are
also obtained.

When α < 0, β > 0 and r > 0, the time-homogeneous Feller process admits a
steady-state behavior:

W(x) = lim
t→+∞

f (x, t|x0, t0) =
1

x Γ(β/r)

( |α| x
r

)β/r
exp

{
−|α| x

r

}
, x > 0,
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that is a gamma density of parameters β/r and r/|α|. We note that

lim
x↓0

W(x) =


+∞, β < r,
|α|/r, β = r,
0, β > r.

The steady-state density W(x) is a decreasing function of x when β ≤ r, whereas W(x) has
a single maximum in x = (β− r)/|α| for β > r. Furthermore, the asymptotic moments are:

E(Xk) = lim
t→+∞

E[Xk(t)|X(t0) = x0] =
( r
|α|

)k Γ(k + β/r)
Γ(β/r)

, k = 1, 2, . . .

4. Transition PDF and Conditional Moments in the General Case

In this section, we obtain the transition pdf and its moments for the Feller-type diffu-
sion process (1) with a zero-flux condition in the zero-state in the general case. Furthermore,
the special cases considered in the Section 3 are now derived from the general case.

From (14), for t ≥ t0 we note that

M(s, t|x0, t0) =

{
M(s, t|0, t0), x0 = 0,
M(s, t|0, t0) M∗(s, t|x0, t0), x0 > 0,

where M(s, t|0, t0) is the moment generating function of X(t) for x0 = 0, whereas M∗(s, t|x0, t0)
is the moment generating function given in (17).

Therefore, to determine the transition pdf f (x, t|x0, t0) of the time-inhomogeneous
Feller process, we proceed as follows:

(1) we determine the transition pdf f (x, t|0, t0) for x ≥ 0 and t ≥ t0;
(2) we calculate the transition density f (x, t|x0, t0) for x0 > 0, x ≥ 0 and t ≥ t0 as a

convolution between f (x, t|0, t0) and the transition pdf f ∗(x, t|x0, t0), given in (18), of
the Feller-type process in the absence of immigration.

4.1. General Case: x0 = 0

To determine the transition pdf of time-inhomogeneous Feller-type process with a
zero-flux condition in the zero-state, we set x0 = 0 in (14), so that for t ≥ t0 we obtain:

M(s, t|0, t0) = exp
{
−s

∫ t

t0

β(u) eA(t|u)

1 + s eA(t|t0)[R(t|t0)− R(u|t0)]
du
}

, (30)

with A(t|t0) and R(t|t0) defined in (15).
In the sequel, we denote by Bn(d1, d2, . . . , dn) the complete Bell polynomials, recur-

sively defined as follows:

B0 = 1, Bn+1(d1, d2, . . . , dn+1)=
n

∑
i=0

(
n
i

)
Bn−i(d1, d2, . . . , dn−i) di+1, n ∈ N0, (31)

with

dk = −
k!

[R(t|t0)]k

∫ t

t0

β(u) e−A(u|t0)[R(u|t0)]
k−1 du, k = 1, 2, . . . (32)

In particular, from (31) and (32) one has

B1(d1) = d1 = − 1
R(t|t0)

∫ t

t0

β(u) e−A(u|t0) du,

B2(d1, d2) = d2
1 + d2 =

1
R2(t|t0)

{[∫ t

t0

β(u)e−A(u|t0) du
]2

− 2
∫ t

t0

β(u)e−A(u|t0)R(u|t0) du
}

.

(33)
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Furthermore, we consider the Laguerre polynomials

Ln(y) =
ey

n!
dn

dyn

(
e−yyn

)
=

n

∑
k=0

(
n
k

)
(−1)kyk

k!
, n = 0, 1, . . . (34)

whose derivative (cf. Gradshteyn and Ryzhik [38], p. 1001, n. 8.971.3) is:

dLn(y)
dy

=
n Ln(y)− n Ln−1(y)

y
. (35)

Proposition 4. Under the assumptions of Proposition 1, for t ≥ t0 and x0 = 0 the transition pdf
of the time-inhomogeneous Feller-type diffusion process X(t) with a condition of zero-flux in the
zero-state is

f (x, t|0, t0) =
+∞

∑
n=0

Bn(d1, d2, . . . , dn)

n!
δ(x) + exp

{
− x e−A(t|t0)

R(t|t0)

}
Φ(x, t|t0), (36)

where

Φ(z, t|t0) =
+∞

∑
n=1

Bn(d1, d2, . . . , dn)

n!
d
dz

Ln

[ z e−A(t|t0)

R(t|t0)

]
, z > 0, (37)

with A(t|t0) and R(t|t0) defined in (15), Bn(d1, d2, . . . , dn) given in (31) and (32), Ln(y) and
dLn(y)/dy defined in (34) and (35), respectively.

Proof. The proof is given in Appendix D.

Proposition 5. Under the assumptions of Proposition 1, for t ≥ t0 the k-th conditional moment of
X(t) with X(t0) = 0 is:

E[Xk(t)|X(t0) = 0] = k!
[

R(t|t0) eA(t|t0)
]k k

∑
n=1

(−1)n
(

k− 1
n− 1

)
Bn(d1, d2, . . . , dn)

n!
(38)

for k = 1, 2, . . .

Proof. The proof is given in Appendix E.

We note that, by virtue of (33), from (38) follows (16) for x0 = 0.

4.2. General Case: x0 > 0

We determine the transition pdf of X(t) when x0 > 0.

Proposition 6. For t ≥ t0 and x0 > 0, the transition pdf of the time-inhomogeneous Feller-type
diffusion process X(t) with a condition of zero-flux in the zero-state is:

f (x, t|x0, t0) = f ∗(x, t|x0, t0)
+∞

∑
n=0

Bn(d1, d2, . . . , dn)

n!

+ exp
{
− x0 + x e−A(t|t0)

R(t|t0)

}{
Φ(x, t|t0) +

1
R(t|t0)

×
∫ x

0

√
x0 e−A(t|t0)

x− z
I1

[2
√
(x− z) x0 e−A(t|t0)

R(t|t0)

]
Φ(z, t|t0) dz

}
, (39)

where f ∗(x, t|x0, t0) is the transition pdf in the absence of immigration, defined in (18), and
Φ(x, t|t0) is given (37).
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Proof. For x0 > 0, the moment generating function (14) for the Feller process X(t) can
be written as M(s, t|x0, t0) = M(s, t|0, t0) M∗(s, t|x0, t0), where M(s, t|0, t0) is the moment
generating function of X(t) for x0 = 0, whereas M∗(s, t|x0, t0) is the moment generating
function given (17). Therefore, for t ≥ t0 the transition pdf f (x, t|x0, t0) is given by the
following convolution:

f (x, t|x0, t0) =
∫ x

0
f (x− z, t|0, t0) f ∗(z, t|x0, t0) dz, x0 > 0 (40)

from which, recalling (18) and (36), Equation (39) follows.

Proposition 7. Under the assumptions of Proposition 6, for t ≥ t0 the k-th conditional moment of
X(t) with X(t0) = x0 > 0 is:

E[Xk(t)|X(t0) = x0] = k!
[

R(t|t0) eA(t|t0)
]k
{

k

∑
n=1

(−1)n
(

k− 1
n− 1

)
Bn(d1, d2, . . . , dn)

n!

+
k−1

∑
i=1

1
i

[ i

∑
j=1

(
i
j

)
1

(j− 1)!

[ x0

R(t|t0)

]j
][ k−i

∑
n=1

(−1)n
(

k− i− 1
n− 1

)
Bn(d1, d2, . . . , dn)

n!

]

+
1
k

k

∑
j=1

(
k
j

)
1

(j− 1)!

[ x0

R(t|t0)

]j
}

(41)

for k = 2, 3, . . ., whereas for k = 1 the first formula of (16) holds.

Proof. The proof is given in Appendix F.

Note that (36) and (38) follow taking the limit as x0 ↓ 0 in (39) and (41), respectively.

Remark 1 (Absence of immigration). We assume that β(t) = 0. We prove that (18) can be
obtained from (36) and (39).

Indeed, from (31) and (32) one has

dn = 0, B0 = 1, Bn(d1, d2, . . . , dn) = 0, n = 1, 2, . . . ,

so that, recalling (37), one has:

+∞

∑
n=0

Bn(d1, d2, . . . , dn)

n!
= 1, Φ(z, t|t0) = 0.

Hence, from (36) we have f (x, t|0, t0) = δ(x), that coincides with the first expression of (18),
whereas from (39) we obtain the second formula of (18). Furthermore, by setting β(t) = 0 in (41),
we have (20).

Remark 2 (Proportional case). We assume that (21) holds, i.e., β(t) = ξ r(t), with ξ > 0. We
prove that (23) can be obtained from (36) and (39).

Indeed, by virtue of (31) and (32) one has

dn = −ξ (n− 1)!, B0 = 1, Bn(d1, d2, . . . , dn) = (−ξ)n, n = 1, 2, . . .

Recalling the binomial series

+∞

∑
n=0

(
n + b− 1

n

)
xn =

+∞

∑
n=0

(b)n
xn

n!
= (1− x)−b,
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it follows:
+∞

∑
n=0

Bn(d1, d2, . . . , dn)

n!
=

+∞

∑
n=0

(−ξ)n

n!
= 0, ξ > 0. (42)

Furthermore, since (cf. Erdèlyi et al. [39], p. 213, no. 16)

+∞

∑
n=0

(−ξ)n

n!
Ln(y) =

yξ

Γ(ξ + 1)
, y > 0, ξ ≥ 0,

from (37) one has:

Φ(z, t|t0) =
+∞

∑
n=1

(−ξ)n

n!
d
dz

Ln

[ z e−A(t|t0)

R(t|t0)

]
=

d
dz

+∞

∑
n=0

(−ξ)n

n!
Ln

[ z e−A(t|t0)

R(t|t0)

]
=

zξ−1

Γ(ξ)

[ e−A(t|t0)

R(t|t0)

]ξ
. (43)

Hence, making use of (42) and (43) in (36), the first expression of (23) follows. Moreover, from (39),
by virtue of (42) and (43), it follows:

f (x, t|x0, t0) =
1

Γ(ξ)
exp

{
− x0 + x e−A(t|t0)

R(t|t0)

}[ e−A(t|t0)

R(t|t0)

]ξ

×
{

xξ−1 +
1

R(t|t0)

∫ x

0
zξ−1

√
x0 e−A(t|t0)

x− z
I1

[2
√
(x− z) x0 e−A(t|t0)

R(t|t0)

]
dz
}

that leads to the second expression of (23), being

∫ x

0
(x− z)ξ−1z−1/2 I1(2 a

√
z) dz = − xξ−1

a
+ Γ(ξ)a−ξ x(ξ−1)/2 Iξ−1(2a

√
x), Re a ≥ 0.

Finally, recalling that

k

∑
n=1

(−1)n
(

k− 1
n− 1

)
(−ξ)n

n!
=

(ξ)k
k!

, k = 1, 2 . . . ,

from (41) one obtains (26).

5. Periodic Intensity Functions

Periodic immigration and periodic growth intensity functions play an important role
in the description of the evolution of dynamic systems influenced by seasonal immigration
or other regular environmental cycles. Furthermore, the population dynamics can be
affected by noise of periodic intensity. Therefore, in this section we assume that the growth
intensity function α(t), or the immigration intensity function β(t) or the noise intensity
r(t) have some kind of periodicity (cf. for instance, Coleman et al. [40], Keeling and
Rohani [41]).

5.1. Periodic Immigration Intensity Function

We consider the time-inhomogeneous Feller process X(t) such that

A1(x, t) = α x + ξ r(t), A2(x, t) = 2 r(t) x, (44)
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with α ∈ R, ξ > 0 and a zero-flux condition in the zero-state. We assume that r(t) is
a periodic function of period Q1. From (15) for n = 0, 1, . . . one has A(t + n Q1|t0) =
α (t + n Q1 − t0) and

R(t + n Q1|t0) =
∫ t+n Q1

t0

r(τ) e−A(τ|t0) dτ

= eα t0

{
1− e−n α Q1

1− e−α Q1

∫ t0+Q1

t0

r(τ) e−α τ dτ + e−n α Q1

∫ t

t0

r(τ) e−α τ dτ

}
.

If α < 0, the process X(t) admits an asymptotic behavior. In this case, from (23), one has:

W(x, t) = lim
n→+∞

f (x, t + n Q1|x0, t0) =
1

x Γ(ξ)
[
ψ1(t) x

]ξ e−ψ1(t) x, x ≥ 0, (45)

where

ψ1(t) = lim
n→+∞

e−A(t+n Q1|t0)

R(t + n Q1|t0)
=

e|α|Q1 − 1
R(t + Q1|t)

, α < 0. (46)

We note that (45) is a gamma density of parameters ξ and [ψ1(t)]−1 for all t ≥ 0, so that for
α < 0 it follows:

Mk(t) = lim
n→+∞

E{[X(t + n Q1)]
k|X(t0) = x0} = [ψ1(t)]−k(ξ)k, k = 1, 2, . . . , (47)

with ψ1(t) given in (46).

Example 1. The dynamic of a population influenced by seasonal immigration and regular environ-
mental cycles, can be described by the time-inhomogeneous Feller process (44), with

r(t) = ν
[
1 + c sin

(2πt
Q1

)]
, t ≥ 0, (48)

where ν > 0 is the average of the periodic function r(t) of period Q1, c is the amplitude of the
oscillations, with 0 ≤ c < 1. These choices of parameters ensure that the both the immigration
intensity function and the environment noise are positive functions. From (15), for t ≥ t0 one has
A(t|t0) = α (t− t0) and

R(t|t0)=



ν(t− t0) +
c ν Q1

2π

[
cos
(

2πt0
Q1

)
− cos

(
2πt
Q1

)]
, α = 0,

ν
α

(
1− e−α(t−t0)

)
+ c ν Q1

4π2+Q2
1 α2

{
2π cos

(
2πt0
Q1

)
+α Q1 sin

(
2πt0
Q1

)
− e−α(t−t0)

[
2π cos

(
2πt
Q1

)
+ α Q1 sin

(
2πt
Q1

)]}
, α 6= 0.

For α < 0, the asymptotic density and the asymptotic moments are given in (45) and (47),
respectively, with

ψ1(t) =
1
ν

{
1
|α| −

c Q1

4π2 + Q2
1 α2

[
2π cos

(2πt
Q1

)
+ α Q1 sin

(2πt
Q1

)]}−1

.

In Figures 1–5, we consider the process (44); we assume that r(t) = 0.5
[
1 + 0.9 sin

(
πt
)]

and that
at the initial time t0 = 0 the size of population is X(t0) = x0 = 5. We recall that α < 0 (α > 0)
means that the birth intensity of the population is less (greater) than the death intensity. In Figures 1
and 2 we assume that α = −0.05, so that the process admits an asymptotic behavior. Specifically, in
Figure 1, for ξ = 1.5 the transition pdf of X(t) is plotted as function of x on the left and as function
of t on the right; the dotted functions indicate the corresponding asymptotic densities given in (45).
Furthermore, in Figure 2, the conditional mean and variance of the population size and the related
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asymptotic behaviors are shown as function of t for various choices of ξ. In Figures 3–5 we assume
that α = 0.05 (on the left) and α = 0 (on the right), so that X(t) does not admit an asymptotic
behavior being α ≥ 0. In particular, in Figures 3, for ξ = 0.6 the transition densities of the process
(44) are plotted as function of x. Finally, in Figures 4 and 5, the conditional mean and variance
are plotted as function of t for various choices of ξ; we note that the mean and the variance of the
population size don’t have an upper bound as t increases.
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(a) Transition densities as function of x
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(b) Transition densities as function of t
Figure 1. For the process (44), with x0 = 5, α = −0.05, ξ = 1.5 and r(t) = 0.5

[
1 + 0.9 sin

(
πt
)]

, the
transition densities are plotted. The dotted functions indicate the corresponding asymptotic densities.
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(a) Conditional means
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(b) Conditional variances
Figure 2. For the process of Figure 1, the conditional means and variances are plotted as function of
t for various choices of ξ. The dotted functions indicate the corresponding asymptotic means and
variances.
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(a) Transition densities for α = 0.05
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(b) Transition densities for α = 0
Figure 3. For the process (44), with x0 = 5, ξ = 0.6 and r(t) = 0.5

[
1 + 0.9 sin

(
πt
)]

, the transition
densities are plotted as function of x.
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(a) Conditional means for α = 0.05
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(b) Conditional means for α = 0
Figure 4. For the process of Figure 3, the conditional means are plotted as function of t for various
choices of ξ.
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(a) Conditional variances for α = 0.05
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(b) Conditional variances for α = 0
Figure 5. For the process of Figure 3, the conditional variances are plotted as function of t for various
choices of ξ.

5.2. Periodic Growth Intensity Function

We consider the time-inhomogeneous Feller process X(t) such that

A1(x, t) = α(t) x + ξ r, A2(x) = 2 r x, (49)

with r > 0, ξ > 0 and a zero-flux condition in the zero-state. We assume that α(t) is a
periodic function of period Q2 and let

α =
A(t + Q2|t)

Q2
=

1
Q2

∫ t+Q2

t
α(τ) dτ (50)

be the mean of α(t) in the period Q2. From (15), for n = 0, 1, . . . one has:

A(t + n Q2|t0) =
∫ t+n Q2

t0

α(τ) dτ = n A(t0 + Q2|t0) + A(t|t0) = n α Q2 + A(t|t0),

R(t + n Q2|t0) = r
∫ t+n Q2

t0

e−A(τ|t0) dτ

= r
{

1− e−n α Q2

1− eα Q2

∫ t0+Q2

t0

e−A(τ|t0) dτ + e−n α Q2

∫ t

t0

e−A(τ|t0) dτ

}
.

If α < 0, the process X(t) admits an asymptotic behavior and, from (23), one has:

W(x, t) = lim
n→+∞

f (x, t + n Q2|x0, t0) =
1

x Γ(ξ)
[
ψ2(t) x

]ξ e−ψ2(t) x, x ≥ 0, (51)

where

ψ2(t) = lim
n→+∞

e−A(t+n Q2|t0)

R(t + n Q2|t0)
=

e|α|Q2 − 1
R(t + Q2|t)

, α < 0. (52)



Mathematics 2021, 9, 1879 16 of 29

We note again that (51) is a gamma density of parameters ξ and [ψ2(t)]−1 for all t ≥ 0;
hence, for α < 0 we have:

Mk(t) = lim
n→+∞

E{[X(t + n Q2)]
k|X(t0) = x0} = [ψ2(t)]−k(ξ)k, k = 1, 2, . . . , (53)

with ψ2(t) given in (52).

Example 2. For the time-inhomogeneous Feller process (49), we consider the flexible growth
intensity function

α(t) = η − 2π b
Q2

cos
(

2πt
Q2

)
1 + b sin

(
2πt
Q2

) , t ≥ 0, (54)

where η ∈ R, Q2 is the period of α(t) and b determines the amplitude of the oscillations, with
0 ≤ b < 1. As shown in Figure 6, the growth intensity function (54) can be positive, negative or
zero at different time instants; furthermore, different choices of the parameter b make the function
(54) less or more asymmetric in a period. Hence, the variety of shapes exhibits by α(t) allows to
model several population growth trends.

η=�� �=���� ��=�

η=-�� �=���� ��=�

η=�� �=���� ��=�

� � � � �
�

-�

-�

-�

�

�

�

�
α(�)

(a) b = 0.2

η=�� �=���� ��=�

η=-�� �=���� ��=�

η=�� �=���� ��=�

� � � � �
�

-�

-�

�

�

�

α(�)

(b) b = 0.4

Figure 6. The growth intensity function α(t), given in (54), is plotted as function of t for some choices
of the parameters.

From (15), making use of (54), for t ≥ t0 one obtains the following cumulative growth
intensity function

A(t|t0) = η (t− t0)− ln
[
1 + b sin

(2πt
Q2

)]
+ ln

[
1 + b sin

(2πt0

Q2

)]
(55)

and hence

R(t|t0)=



r

1+b sin
(

2πt0
Q2

) {t− t0 − b Q2
2π

[
cos
(

2πt
Q2

)
− cos

(
2πt0
Q2

)]}
, η = 0,

r

1+b sin
(

2πt0
Q2

) { 1−e−η(t−t0)

η − 2 π b Q2
4π2+Q2

2 η2

[
e−η(t−t0) cos

(
2πt
Q2

)
+Q2η

2π e−η(t−t0) sin
(

2πt
Q2

)
− cos

(
2πt0
Q2

)
− Q2η

2π sin
(

2πt0
Q2

)}
, η 6= 0.

(56)

From (50) and (54) we have α = η, so that X(t) admits an asymptotic behavior for η < 0; the
asymptotic density and the asymptotic moments are given in (51) and (53), respectively, with

ψ2(t) =
1
r

[
1 + b sin

(2πt
Q2

)]{ 1
|η| −

2 π b Q2

4π2 + Q2
2 η2

[
cos
(2πt

Q2

)
+

Q2η

2π
sin
(2πt

Q2

)]}−1

.

In Figures 7–11, we consider the process (49) with r = 1 and α(t) = η − 0.4 π cos
(
2 πt

)[
1 +

0.2 sin
(
2 πt

)]−1; furthermore, we assume that at the initial time t0 = 0 the size of population
is X(t0) = x0 = 5. We note that η < 0 (η > 0) indicates that the average of birth intensity
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of the population is less (greater) than the average of the death intensity. In Figures 7 and 8 we
assume that η = −1, so that the process admits an asymptotic behavior. In particular, in Figure 7,
for ξ = 1.5 the transition pdf of X(t) is plotted as function of x on the left and as function of t
on the right; the dotted functions indicate the corresponding asymptotic densities, given in (51).
Furthermore, in Figure 8 the conditional mean and variance and the related asymptotic behaviors
are plotted as function of t for various choices of ξ. Instead, in Figures 9–11 we assume that η = 1
on the left and η = 0 on the right. Specifically, in Figure 9, the transition densities of the process
(49), for ξ = 1.5 are shown as function of x. Finally, in Figures 10 and 11 the conditional mean and
variance of the population size are plotted as function of t for various choices of ξ.
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� � � � � ��
����

���
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���

���
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���
�[���|����]

(a) Transition densities as function of x
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���

���

���
�[���|����]

(b) Transition densities as function of t
Figure 7. For the process (49), with x0 = 5, r = 1, ξ = 1.5, η = −1 and α(t) = η− 0.4 π cos

(
2 πt

)[
1+

0.2 sin
(
2 πt

)]−1, the transition densities are plotted. The dotted functions indicate the corresponding
asymptotic densities.
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(b) Conditional variances
Figure 8. For the process of Figure 7, the conditional means and variances are plotted as function of t
for various choices of ξ. The dotted functions indicate the related asymptotic means and variances.
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(a) Transition densities for η = 1
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(b) Transition densities for η = 0
Figure 9. For the process of Figure 7, the transition densities are plotted as function of x.
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(a) Conditional means for η = 1
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(b) Conditional means for η = 0
Figure 10. For the process of Figure 7, the conditional means are plotted as function of t for various
choices of ξ.
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(a) Conditional variances for η = 1
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(b) Conditional variances for η = 0
Figure 11. For the process of Figure 7, the conditional variances are plotted as function of t for various
choices of ξ.

5.3. Periodic Immigration and Growth Intensity Functions

We consider the process X(t) such that

A1(x, t) = α(t) x + ξ r(t), A2(x, t) = 2 r(t) x, (57)

with ξ > 0 and a zero-flux condition in the zero-state. We assume that r(t) and α(t) are
periodic functions of periods Q1 and Q2, respectively. We denote by Q = LCM(Q1, Q2)
the least common multiple between Q1 and Q2 and let

α̂ =
A(t + Q|t)

Q
=

1
Q

∫ t+Q

t
α(τ) dτ =

1
Q2

∫ t+Q2

t
α(τ) dτ = α

be the mean of α(t) in Q. From (15) for n = 0, 1, . . . one has:

A(t + n Q|t0) =
∫ t+n Q

t0

α(τ) dτ = n A(t0 + Q|t0) + A(t|t0) = n α̂ Q + A(t|t0),

R(t + n Q|t0) =
∫ t+n Q

t0

r(τ) e−A(τ|t0) dτ

=
1− e−n α̂ Q

1− e−α̂ Q

∫ t0+Q

t0

r(τ) e−A(τ|t0) dτ + e−n α̂ Q
∫ t

t0

r(τ) e−A(τ|t0) dτ.

If α̂ < 0, the process X(t) admits an asymptotic behavior and, from (23), one obtains the
gamma density:

W(x, t) = lim
n→+∞

f (x, t + n Q|x0, t0) =
1

x Γ(ξ)
[
ψ3(t) x

]ξ e−ψ3(t) x, x ≥ 0, (58)

where

ψ3(t) = lim
n→+∞

e−A(t+n Q|t0)

R(t + n Q|t0)
=

e|α̂|Q − 1
R(t + Q|t) , α̂ < 0. (59)
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Hence, for α̂ < 0 we have:

Mk(t) = lim
n→+∞

E{[X(t + n Q)]k|X(t0) = x0} = [ψ3(t)]−k(ξ)k, k = 1, 2, . . . , (60)

with ψ3(t) given in (59).

Example 3. We consider a population described by the time-inhomogeneous Feller process (57)
and we assume that the noise intensity r(t) is defined in (48) and the growth intensity function
α(t) is chosen as in (54). In this case, the cumulative growth intensity function A(t|t0) is given
in (55) and

R(t|t0) =
ν

1 + b sin
(

2πt0
Q2

) ∫ t

t0

e−η(τ−t0)
[
1 + c sin

(2πτ

Q1

)][
1 + b sin

(2πτ

Q2

)]
dτ. (61)

From (50) and (54) we have α̂ = η. For η < 0, the asymptotic density and the asymptotic moments
are given in (58) and (60), respectively, with

ψ3(t) =
1
ν

[
1 + b sin

(2π t
Q2

)]{ 1
|η| − c Q1 B1(t)− b Q2 B2(t)−

b c Q1Q2

2
[C(t)− D(t)]

}−1

,

where

Bi(t) =
2π cos

(
2π t
Qi

)
+ Qi η sin

(
2π t
Qi

)
4π2 + Q2

i η2
, i = 1, 2,

C(t) =
Q1Q2 η cos

(
2π Q1−Q2

Q1Q2
t
)
− 2π (Q1 −Q2) sin

(
2π Q1−Q2

Q1Q2
t
)

4π2(Q1 −Q2)2 + Q2
1 Q2

2 η2
,

D(t) =
Q1Q2 η cos

(
2π Q1+Q2

Q1Q2
t
)
− 2π (Q1 + Q2) sin

(
2π Q1+Q2

Q1Q2
t
)

4π2(Q1 + Q2)2 + Q2
1 Q2

2 η2
.

In Figures 12–16, we assume that the noise intensity function is r(t) = 0.5
[
1 + 0.9 sin

(
πt
)]

and

the growth intensity function is α(t) = η − 0.4 π cos
(
2 πt

)[
1 + 0.2 sin

(
2 πt

)]−1 ; since r(t)
has period Q1 = 2 and α(t) has period Q2 = 1, one has Q = LCM(Q1, Q2) = 2. Furthermore,
the size of population at time t0 = 0 is X(0) = 5. In Figures 12 and 13 we assume that η = −1, so
that the process admits an asymptotic behavior. Specifically, in Figure 12, for ξ = 1.5 the transition
pdf of the process (57) is plotted as function of x on the left and as function of t on the right; the
dotted functions indicate the corresponding asymptotic densities, given in (51). Furthermore, in
Figure 13 the conditional mean and variance and the related asymptotic behaviors are plotted as
function of t for various choices of ξ. Comparing Figures 8 and 13 we can highlight the effect of
the periodic noise intensity on the conditional mean and variance of the population size for a fixed
periodic growth intensity function. In Figures 14–16, we consider η = 1 on the left and η = 0
on the right; in these cases the process does not exhibit an asymptotic behavior, being η ≥ 0. In
Figure 14, for ξ = 1.5 the transition densities of the process are plotted as function of x. Finally, in
Figures 15 and 16 the conditional mean and variance of the population size are shown as function of
t for various choices of ξ.
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(a) Transition densities as function of x
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(b) Transition densities as function of t
Figure 12. For the process (57), with x0 = 5, ξ = 1.5, η = −1, α(t) = η − 0.4 π cos

(
2 πt

)[
1 +

0.2 sin
(
2 πt

)]−1 and r(t) = 0.5
[
1 + 0.9 sin

(
πt
)]

, the transition densities are plotted. The dotted
functions indicate the related asymptotic densities.
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(a) Conditional means
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(b) Conditional variances
Figure 13. For the process of Figure 12, the conditional means and the conditional variances are
plotted as function of t for various choices of ξ. The dotted functions indicate the corresponding
asymptotic means and variances.
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(a) Transition densities for η = 1
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(b) Transition densities for η = 0
Figure 14. For the process of Figure 12, the transition densities are plotted as function of x.
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(b) Conditional means for η = 0
Figure 15. For the process of Figure 12, the conditional means are plotted as function of t for various
choices of ξ.
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(a) Conditional variances for η = 1
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(b) Conditional variances for η = 0
Figure 16. For the process of Figure 12, the conditional variances are plotted as function of t for
various choices of ξ.

5.4. Periodic Immigration, Growth and Noise Intensity Functions

We consider the time-inhomogeneous Feller process X(t) having infinitesimal mo-
ments (1), with a zero-flux condition in the zero-state. We assume that r(t), α(t) and β(t)
are periodic functions of periods Q1, Q2 and Q3, respectively. Some, but not all, of these
functions can be constant. We denote by Q the least common multiple of the periods related
to the periodic functions and by α̂ the mean of α(t) in Q, so that relations in (58) hold.

If α̂ < 0, the process X(t) admits an asymptotic behavior. In this case, from (16) one
obtains the asymptotic mean and variance:

M1(t) = lim
n→+∞

E{X(t + n Q)|X(t0) = x0} =
1

e|α̂|Q − 1

∫ t+Q

t
β(u) e−A(u|t) du,

(62)

V(t) = lim
n→+∞

Var{X(t + n Q)|X(t0) = x0} =
2

(e|α̂|Q − 1)2 (1 + e|α̂|Q)

×
∫ t+Q

t
β(u) e−A(u|t)

[
R(u|t) + e|α̂|Q

∫ t+Q

u
r(τ) e−A(τ|t) dτ

]
du. (63)

Note that if β(t) = ξ r(t), from (62) and (63) one has M1(t) = ξ [ψ3(t)]−1 and V(t) =
ξ [ψ3(t)]−2, with ψ3(t) defined in (59).

Example 4. We consider the process (1) and we assume that β(t) = β > 0, r(t) is given in (48)
and α(t) is defined in (54). In this case, the immigration rate is constant, whereas the growth and
the noise intensity functions are periodic functions with different periods. Expressions (55) and (61)
for A(t|t0) and R(t|t0) hold. Furthermore, from (50) and (54) we have α̂ = η, so that for η < 0
the process admits an asymptotic behavior.

We assume that the noise intensity function r(t) has period Q1 = 2 and the growth intensity
function α(t) has period Q2 = 1, so that Q = LCM(Q1, Q2) = 2. In Figure 17, the conditional
mean and variance and the related asymptotic behaviors are plotted as function of t for various
choices of β. We note that the conditional mean is not affect to the periodicity of r(t), whereas the
conditional variance depends on the different periodicities of the growth intensity function α(t) and
of the noise intensity function r(t).



Mathematics 2021, 9, 1879 22 of 29

β=���

β=���

β=���

� � � � �
��

�

�

�

�

�

�
�[�(�)|����]

(a) Conditional means

β=���β=��� β=���

� � � � �
��

�

�

�

�

�
���[�(�)|�� ��]

(b) Conditional variances

Figure 17. For the process (1), with x0 = 5, η = −1, α(t) = η − 0.4 π cos
(
2 πt

)[
1 + 0.2 sin

(
2 πt

)]−1

and r(t) = 0.5
[
1 + 0.9 sin

(
πt
)]

, the conditional means and variances are plotted as function of t
for various choices of β. The dotted functions indicate the corresponding asymptotic means and
variances.

Example 5. We consider the process (1) and we assume that r(t) = r > 0, α(t) is defined in (54) and

β(t) = β
[
1 + c sin

(2πt
Q1

)]
, t ≥ 0, (64)

where β > 0 is the average of the periodic function β(t) of period Q1, c is the amplitude of the
oscillations, with 0 ≤ c < 1. Differently from Example 4, the noise intensity is constant, whereas
the growth and the immigration intensity functions are periodic functions with different periods.
Expressions (55) and (56) for A(t|t0) and R(t|t0) hold. Furthermore, from (50) and (54) we have
α̂ = η, so that for η < 0 the process admits an asymptotic behavior.

We assume that the immigration intensity function β(t), given in (64), has period Q1 = 2
and the growth intensity function α(t) has period Q2 = 1, so that Q = LCM(Q1, Q2) = 2. In
Figure 18, the conditional mean and variance and the related asymptotic behaviors are plotted as
function of t for various choices of β. We note that both the mean and the variance depend on the
periodicities of the intensity functions α(t) and β(t).
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(a) Conditional means
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(b) Conditional variances
Figure 18. For the process (1), with x0 = 5, η = −1, r = 1, α(t) = η − 0.4 π cos

(
2 πt

)[
1 +

0.2 sin
(
2 πt

)]−1 and β(t) = β
[
1 + 0.9 sin

(
πt
)]

, the conditional means and variances are plotted as
function of t for various choices of β. The dotted functions indicate the related asymptotic means and
variances.

6. Concluding Remarks

In this paper, we considered a time-inhomogeneous Feller-type diffusion process
{X(t), t ≥ t0}, t0 ≥ 0, with infinitesimal drift A1(x, t) = α(t) x + β(t) and infinitesimal
variance A2(x, t) = 2 r(t) x, defined in the state-space [0,+∞), with a zero-flux condition
in the zero-state. We have assumed that α(t) ∈ R, β(t) ≥ 0, r(t) > 0 for all t ≥ t0. This
diffusion process plays a relevant role in several biological applications and can be derived
as the continuous approximation of the time-inhomogeneous birth-death process with
immigration. In the general case, the transition density and the conditional moments are
explicitly obtained. Some special situations are analyzed: (i) the absence of immigration
with β(t) = 0, (ii) the proportional case in which β(t) = ξ r(t), with ξ > 0, and (iii) the time-
homogeneous case. Sometimes in the dynamics of populations it is necessary to consider
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periodic intensity functions. Indeed, periodic immigration and periodic growth intensity
functions play an important role in the description of the evolution of dynamic systems
influenced by seasonal immigration or other regular environmental cycles. Furthermore,
the population dynamics can be affected by noise of periodic intensity. Therefore, we have
assumed that the growth intensity function α(t), or the immigration intensity function β(t)
or the noise intensity r(t) have some kind of periodicity. In these cases, the asymptotic
behaviors of the transition pdf and of the moments are discussed. Various numerical
computations are performed to analyze how the population dynamics is affected by the
periodic intensity functions.
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Appendix A. Proof of Proposition 1

We solve (12) with initial condition (13) making use of the method of characteristics
(cf. for instance, Williams [42]). We consider the differential equations:

dt
dξ

= 1,
ds
dξ

= −s [α(t)− s r(t)],
dM
dξ

= −s β(t) M, (A1)

and the initial conditions:

t(w, ξ = t0) = t0, s(w, ξ = t0) = w, M(w, ξ = t0) = e−wx0 . (A2)

The first expression of (A1), with the first initial condition in (A2), leads to t = ξ. Solving
the second equation in (A1) with t = ξ and recalling of the second formula of (A2), it
follows:

s =
w e−A(ξ|t0)

1− w R(ξ|t0)
· (A3)

Then, solving the third equation in (A1), with the related initial condition in (A2) and with
t = ξ and s given in (A3), we obtain:

M(w, ξ) = e−wx0 exp
{
−w

∫ ξ

t0

β(u) e−A(u|t0)

1− w R(u|t0)
du
}

. (A4)

From (A3) with ξ = t, we also have

w =
s eA(t|t0)

1 + s eA(t|t0) R(t|t0)
· (A5)

Finally, Equation (14) follows from (A4), recalling that ξ = t and making use of (A5).
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Appendix B. Proof of Proposition 2

Setting β(t) = 0 in (14), we immediately obtain (17), from which one has:

M∗(s, t|x0, t0) =
∫ +∞

0
e−sx f ∗(x, t|x0, t0) dx

= exp
{
− x0

R(t|t0)

}
exp

{ x0

R(t|t0)

1
1 + s eA(t|t0)R(t|t0)

}
, s > 0. (A6)

Setting

1 + s eA(t|t0) R(t|t0) = z,
x e−A(t|t0)

R(t|t0)
= y, (A7)

in (A6), we obtain∫ +∞

0
e−zy

{
ey f ∗

[
R(t|t0) eA(t|t0)y, t|x0, t0

]}
dy

=
e−A(t|t0)

R(t|t0)
exp

{
− x0

R(t|t0)

}
exp

{ x0

R(t|t0)

1
z

}
. (A8)

Since ∫ +∞

0
e−p y

{√
a
y

I1(2
√

a y) + δ(y)
}

dy = ea/p,

taking the inverse Laplace transforms on both sides of (A8), it follows:

f ∗
[
R(t|t0) eA(t|t0)y, t|x0, t0

]
= e−y e−A(t|t0)

R(t|t0)
exp

{
− x0

R(t|t0)

}
×
{

δ(y) +
√

x0

y R(t|t0)
I1

(
2
√

x0 y
R(t|t0)

)}
. (A9)

Equation (18) follows from (A9), applying again the transformation x = R(t|t0) eA(t|t0) y
and recalling that δ(ax) = δ(x)/|a|.

Appendix C. Proof of Proposition 3

We note that

d
du

ln
{

1 + s eA(t|t0)
[
R(t|t0)− R(u|t0)

]}
= − s r(u) eA(t|u)

1 + s eA(t|t0)
[
R(t|t0)− R(u|t0)

] , t0 ≤ u ≤ t,

so that

exp
{
−
∫ t

t0

s β(u) eA(t|u)

1 + s eA(t|t0)[R(t|t0)− R(u|t0)]

}
= exp

{
−ξ

∫ t

t0

s r(u) eA(t|u)

1 + s eA(t|t0)[R(t|t0)− R(u|t0)]

}
=
[
1 + s eA(t|t0)R(t|t0)

]−ξ . (A10)

Hence, making use of (A10) in (14), one obtains (22).
To derive (23), we distinguish two cases: (i) x0 = 0 and (ii) x0 > 0.

Case (i) If x0 = 0, the expression (22) becomes:

M(s, t|0, t0) =
[ e−A(t|t0)

R(t|t0)

]ξ [
s +

e−A(t|t0)

R(t|t0)

]−ξ
, ξ > 0, (A11)
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which is recognized to be the moment generating function of a gamma distribution of
parameters ξ and e−A(t|t0)/R(t|t0) for all t ≥ t0. Indeed, since (cf. Erdèlyi et al. [43], p. 144,
no. 3) ∫ +∞

0
e−sx xν−1 e−ax dx = Γ(ν) (s + a)−ν, Re ν > 0,

from (11), for t ≥ t0 the first formula of (23) immediately follows.

Case (ii) If x > 0, from (11) and (22) it follows:

∫ +∞

0
e−sx f (x, t|x0, t0) dx =

[
1 + s eA(t|t0) R(t|t0)

]−ξ
exp

{
− s x0 eA(t|t0)

1 + s eA(t|t0)R(t|t0)

}
,

so that, by virtue of (A7), one has:∫ +∞

0
e−zy

{
ey f

[
y R(t|t0)eA(t|t0), t|x0, t0

]}
dy =

e−A(t|t0)

R(t|t0)
exp

{
− x0

R(t|t0)

}
×z−ξ exp

{ x0

z R(t|t0)

}
, ξ > 0. (A12)

Since (cf. Erdèlyi et al. [43], p. 197, no. 18)∫ +∞

0
e−zy a−ν/2 yν/2 Iν(2

√
a y) dy = z−ν−1 ea/z, Re ν > −1,

taking the inverse Laplace transforms on both sides of (A12), for t ≥ t0 we obtain:

f
[
y R(t|t0)eA(t|t0), t|x0, t0

]
= e−y e−A(t|t0)

R(t|t0)
exp

{
− x0

R(t|t0)

} [ x0

R(t|t0)

](1−ξ)/2

×y(ξ−1)/2 Iξ−1

[
2
√

x0 y
R(t|t0)

]
, ξ > 0. (A13)

The second expression of (23) follows from (A13), applying the transformation x =
R(t|t0) eA(t|t0) y.

Appendix D. Proof of Proposition 4

We assume that x ≥ 0 and t ≥ t0. Recalling (11) and by using (A7) in (30), we have:

∫ +∞

0
e−zy

{
ey f

[
y R(t|t0) eA(t|t0), t|0, t0

]}
dy =

e−A(t|t0)

R(t|t0)

× exp

{
−(z− 1)

∫ t

t0

β(u) e−A(u|t0)

z R(t|t0)− (z− 1) R(u|t0)
du

}
,

where

exp

{
−(z− 1)

∫ t

t0

β(u) e−A(u|t0)

z R(t|t0)− (z− 1) R(u|t0)
du

}

= exp

− z− 1
z

∫ t

t0

β(u) e−A(u|t0)

R(t|t0)
[
1− z−1

z
R(u|t0)
R(t|t0)

] du


= exp

{
−

+∞

∑
k=1

(
1− 1

z

)k 1
[R(t|t0)]k

∫ t

t0

β(u) e−A(u|t0) [R(u|t0)]
k−1 du

}
. (A14)
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Note that the last equality in (A14) follows being

0 <
z− 1

z
R(u|t0)

R(t|t0)
< 1, t0 ≤ u ≤ t.

Let Bn(d1, d2, . . . , dn) be the complete Bell polynomials defined in (31), with dk given in (32).
Since (cf. for instance, Comtet [44]):

exp

{
+∞

∑
r=1

dr

r!
ϑr

}
=

+∞

∑
n=0

Bn(d1, d2, . . . , dn)

n!
ϑn,

from (A14) one obtains:

exp

{
−(z− 1)

∫ t

t0

β(u) e−A(u|t0)

z R(t|t0)− (z− 1) R(u|t0)
du

}
=

+∞

∑
n=0

Bn(d1, d2, . . . , dn)

n!

(
1− 1

z

)n
. (A15)

Making use of (A15) in (A14), it follows:

∫ +∞

0
e−zy

{
ey f

[
y R(t|t0) eA(t|t0), t|0, t0

]}
dy =

e−A(t|t0)

R(t|t0)

{ +∞

∑
n=0

Bn(d1, d2, . . . , dn)

n!

+
+∞

∑
n=1

Bn(d1, d2, . . . , dn)

n!

[(
1− 1

z

)n
− 1
]}

. (A16)

Recalling (34), one obtains∫ +∞

0
e−zy d

dy
Ln(y) dy =

(
1− 1

z

)n
− 1, Re z > 0,

so that Equation (A16) leads to:

f
[
y R(t|t0) eA(t|t0), t|0, t0

]
= e−y e−A(t|t0)

R(t|t0)

{+∞

∑
n=0

Bn(d1, d2, . . . , dn)

n!
δ(y)

+
+∞

∑
n=1

Bn(d1, d2, . . . , dn)

n!
d

dy
Ln(y)

}
.

Finally, Equation (36) follows, applying again the transformation x = y R(t|t0) eA(t|t0).

Appendix E. Proof of Proposition 5

By virtue of (36), for k = 1, 2, . . . one has:

E[Xk(t)|X(t0) = 0] =
∫ +∞

0
xk f (x, t|0, t0) dx

=
+∞

∑
n=1

Bn(d1, d2, . . . , dn)

n!

∫ +∞

0
xk exp

{
− x e−A(t|t0)

R(t|t0)

} d
dx

Ln

[ x e−A(t|t0)

R(t|t0)

]
dx. (A17)

By using the transformation y = x e−A(t|t0)/R(t|t0) on the right-hand side of (A17), one has:

∫ +∞

0
xk exp

{
− x e−A(t|t0)

R(t|t0)

} d
dx

Ln

[ x e−A(t|t0)

R(t|t0)

]
dx

=
[

R(t|t0) eA(t|t0)
]k ∫ +∞

0
yke−y d

dy
Ln(y) dy, k = 1, 2, . . . (A18)
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Since ∫ +∞

0
yk e−y d

dy
Ln(y) dy =

n

∑
r=1

(
n
r

)
(−1)r

(r− 1)!
(k + r− 1)!

=

{
(−1)n k! (k−1

n−1), n = 1, 2, . . . , k
0, n = k + 1, k + 2, . . . ,

from (A18) one obtains:

∫ +∞

0
xk exp

{
− x e−A(t|t0)

R(t|t0)

} d
dx

Ln

[ x e−A(t|t0)

R(t|t0)

]
dx

=

 (−1)n k! (k−1
n−1)

[
R(t|t0) eA(t|t0)

]k
, n = 0, 1, . . . , k

0, n = k + 1, k + 2, . . .
(A19)

Relation (38) follows making use of (A19) in (A17).

Appendix F. Proof of Proposition 7

Making use of (40), for k = 1, 2, . . . it follows:

E[Xk(t)|X(t0) = x0] =
∫ +∞

0
xk f (x, t|x0, t0) dx

=
∫ +∞

0
dx xk

∫ x

0
f ∗(y, t|x0, t0) f (x− y, t|0, t0) dy

=
k

∑
i=0

(
k
i

) ∫ +∞

0
yi f ∗(y, t|x0, t0) dy

∫ +∞

0
zk−i f (z, t|0, t0) dz. (A20)

For k = 1, from (A20) one has

E[X(t)|X(t0) = x0] =
∫ +∞

0
y f ∗(y, t|x0, t0) dy +

∫ +∞

0
z f (z, t|0, t0) dz,

that leads to the first expression of (16), making use of (20) and (38). Instead, for k = 2, 3, . . .
from (A20) one obtains:

E[Xk(t)|X(t0) = x0] =
∫ +∞

0
zk f (z, t|0, t0) dz +

∫ +∞

0
yk f ∗(y, t|x0, t0) dy

+
k−1

∑
i=1

(
k
i

) ∫ +∞

0
yi f ∗(y, t|x0, t0) dy

∫ +∞

0
zk−i f (z, t|0, t0) dz,

from which Equation (41) follows, recalling (20) and (38).
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