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Abstract: In this study, a semi-analytical model was developed to study wave diffraction around a
concentric three-cylinder system near a wall based on linear potential theory. As a critical element,
the target problem is transformed into bidirectional incident wave diffraction around two concentric
structures based on the image principle and an analytical solution is obtained through eigenfunction
expansion combined with a matching technique and Graf’s addition theorem. The validity of the
proposed model was verified by comparing its results to known values. Parametric studies on
porosity, annular spacing, incident angle, space between the structure and wall, and water depth
were performed. The hydrodynamic loads and free-surface elevations in the system were calculated
and compared to those reported in existing works on impermeable and permeable cylinders near
a wall. The results indicate that the wave loads and run-ups on the exterior cylinder increase
significantly based on the existence of the wall. However, based on the presence of an exterior porous
protective structure, a significantly reduced influence of the wall on the interior cylinder can be
observed. Considering the widespread use of concentric circular structures in ocean engineering, it
is essential to conduct study on the hydrodynamic performance of concentric systems near walls,
which can provide useful information for the design of marine structures.

Keywords: analytical derivation; image principle; wave force; wave elevation

1. Introduction

The interactions between water waves and vertical cylinders passing through a fluid
surface have been an active research topic over the past few decades. This is partially
because these structures are widely employed in the construction of oil rigs, docks, wave
power energy conversion systems, etc. In general, the design of marine facilities requires
the accurate prediction of the peak values of hydrodynamic loads and run-ups to ensure
adequate strength for offshore platforms and sufficient clearance below decks [1]. Therefore,
with an increase in the number of marine platforms and wind power plants constructed
for human activities, it is becoming increasingly important to study the hydrodynamic
performance of marine facilities.

Some scholars have studied the wave diffraction performances of various permeable
structures. The wavemaker theory was first proposed by Chwang [2], who studied the total
hydrodynamic pressure distribution on a wavemaker and provided a basis for examining
regular wave interactions between porous structures such as porous walls [3] and perfo-
rated breakwaters [4]. Since then, several types of porous structures have been studied
in terms of wave diffraction performance, among which concentric porous cylindrical
structures are an important research object. Wang and Ren [5] investigated the diffraction
problem of an Airy wave using a concentric porous cylindrical structure by employing the
eigenfunction expansion approach. They determined that the wave loading and elevations
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exerted on the inner cylinder were significantly reduced by the outer porous cylinder.
Teng et al. [6] investigated the interaction between waves and a cylinder with an up-
per porous outer wall and an inner solid column. Konispoliatis et al. [7] presented a
theoretical investigation of the second-order steady horizontal and vertical drift forces
acting on a vertical porous cylindrical body which is exposed to the action of regular plane
waves propagating in finite depth waters. The typical concentric cylindrical structure
was later investigated under different types of incident waves. The interactions between
such structures and different types of waves, such as solitary waves [8,9], short-crested
waves [10], and cnoidal waves [11,12], have been studied by several researchers. Addition-
ally, many studies have focused on the modification of concentric cylindrical structures
to develop a concentric dual-arc structure [13], truncated cylinder with an upper porous
cylinder [14], or floating compound porous cylinder [15]. The wave interaction with a
group of dual porous cylinders consisting of an outer porous cylinder that protects an
impermeable inner cylinder is investigated using the eigenfunction expansion approach
by Sankarbabu et al. [16]. Using the 3D numerical analysis method and eigenfunction
expansion method, Park et al. [17] evaluated the wave forces acting on the array of dual
cylindrical cylinders with partial porous area, which consist of an impermeable inner
cylinder and a porous outer cylinder. Dokken et al. [18,19]performed a mathematical
analysis of the linear wave diffraction–radiation problem of a porous geometry localized
in the surface of a inviscid fluid. Recently, Mackay et al. [20] proposed a boundary el-
ement method model for calculating wave forces on structures composed of solid and
porous surfaces, where the porous surface can be subject to either a linear or quadratic
pressure–velocity relation.

In addition to situations involving one or more cylinders, there are various offshore
structures such as pier columns close to ports, for which it is necessary to predict hy-
drodynamic performance in water near coastlines or docks. The existence of side walls
strongly influences the wave diffraction performance of coastal structures and causes
their hydrodynamic loads to differ from those in unbounded water [21]. Green’s function
mapping method has been used to solve the interactions of waves with structures near
a wall. Several scholars have established analytical programs for the boundary element
method based on this mapping method [22]. However, the boundary element method is
computationally expensive, and there are multiple solutions in the case of high-frequency
problems. To avoid the issues associated with the boundary element method, Teng and
Ning [23] converted the problem of wave diffraction around an impermeable cylinder
near a wall into an issue of two-directional incident wave interaction with two cylinders
via image theory. Subsequently, Teng et al. [24] used the same method to analyze wave
radiation around a solid cylinder near a wall. Furthermore, Ning et al. [25] extended the
work by Teng and Ning [23] by discussing the interactions of waves with a solid cylinder in
front of an orthogonal vertical wall and an analytical solution was obtained. A set of trun-
cated cylinders arranged parallel to a plane wall was investigated by Mavrakos et al. [26].
Zheng and Zhang [21,27] solved the diffraction and radiation problems for near-wall
truncated cylinders and provided a theoretical solution. Recently, Chatjigeorgiou [28]
addressed the issue of water wave diffraction by a cylindrical array in front of a vertical
wall. Konispoliatis et al. [29] investigated the phenomenon of regular waves interacting
with cylindrical arrays in front of infinite-length and finite-length vertical breakwaters.
Cong et al. [30,31] developed a novel analytical model to investigate the interactions
between water waves and a permeable single cylinder near a wall, as well as a group of
permeable cylinders near a wall. They evaluated both hydrodynamic loads and free-surface
wave elevations. Konispoliatis [32] explored the performance of a set of cylindrical oscillat-
ing water column devices with a vertical axis of symmetry placed in front of a breakwater.
Loukogeorgaki and Chatjigeorgiou [33,34] analyzed the hydrodynamic performance of a
linear array of truncated circular cylinders in front of a vertical wall for investigating the
effect of the wave reflections combined with the disturbances induced by the bodies them-
selves. Konispoliatis et al. [35] dealt with the analytical evaluation of the hydrodynamic
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characteristics of an array of vertical axisymmetric bodies of arbitrary shape, placed in
front of a reflecting vertical breakwater, which can be conceived as floaters for wave power
absorption. Based on research by many scholars, we have gained a deep understanding of
the interactions between waves and structures in front of straight walls. However, research
on the hydrodynamic performance of concentric structures in front of walls is still very
limited. Considering that concentric structures are widely applied in engineering facilities
in ocean engineering, it is necessary to study their performance.

In this study, an analytical method was developed for water wave diffraction around
a concentric cylindrical structure near a vertical wall. This problem was transformed
into an equivalent issue of bi-directional incident waves’ interaction with two concentric
cylindrical structures via image theory. Additionally, an analytical solution was obtained
through eigenfunction expansion combined with a matching technique and Graf’s addition
theorem. Accordingly, the free-surface wave elevations and hydrodynamic loads under
various conditions were analyzed in detail, which can provide information that is useful
for the design of coastal porous structures subjected to hydrodynamics.

2. Formulation

A concentric porous structure near a wall is considered, as shown in Figure 1. The
thickness of the outer cylinder is sufficiently small to be considered as negligible relative
to the incident wavelength. A structure formed by three concentric cylinders with radii
of a, b and c, is rigidly fixed in water with a depth h. The minimum distance between
concentric structure center and wall is R, and e = R − a. Assuming that the wall is
infinitely long and completely reflective, the present problem can be converted into bi-
directional incident wave diffraction around two concentric structures based on the imaging
theory [23], as shown in Figure 2. A Cartesian co-ordinate system O− xyz is applied with
the origin located at the middle of the two concentric cylindrical systems at the bottom
of the water with its z-axis pointing upward. For the two concentric cylindrical systems,
the two polar coordinates are (Oprpθpz, p = 1, 2), which are defined by origins located
at (−R, 0, 0) and (R, 0, 0), respectively. By considering the outer porous cylinders of the
two concentric systems as boundaries, the entire fluid domain can be divided into three
subdomains, where Ω1(rp > a, 0 ≤ z ≤ h, p = 1, 2) is the region outside of the two
structures, and Ω2(b ≤ r1 ≤ a, 0 ≤ z ≤ h) and Ω3(b ≤ r1 ≤ a, 0 ≤ z ≤ h) are the annular
regions between the outer and middle cylinders of the left and right concentric cylindrical
systems,respectively, Ω4(c ≤ r2 ≤ b, 0 ≤ z ≤ h) and Ω5(c ≤ r2 ≤ b, 0 ≤ z ≤ h) are the
interior regions between the middle and inner cylinders of the left and right concentric
cylindrical systems, respectively.
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Figure 1. Definition sketch: (a) plane view; (b) side view.
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Figure 2. Imaginary system: (a) plane view; (b) side view.

In the derivative process, the fluid is assumed to be incompressible and inviscid, and
the motion of the fluid is considered irrotational. Then, the velocity potential can be written
as Φ(x, y, z, t) = Re[φ(x, y, z)e−iwt], in which φ is a time-independent velocity potential
that satisfies the Laplace equation in every flow regions, i =

√
−1. The three-dimensional

governing equation for fluid motion is

∂2φ(j)

∂x2 +
∂2φ(j)

∂y2 +
∂2φ(j)

∂z2 = 0 for j = 1, 2, 3, 4, 5 (1)

The complex velocity potential in each region Ωj(j = 1, 2, 3) can be written as

φ(j) = φI + φ
(j)
S (2)

where φI and φ
(j)
S denote the incident velocity potential and scattered velocity potential,

respectively, both of which satisfy Equation (1). For two incident waves propagating along
the β and π − β directions, the total incident velocity potential φI can be written as [21]:

φI = f (z)eiky sin β[eikx cos β + e−ikx cos β] (3)

where f (z) = −i gH
2ω

cosh (kz)
cosh (kh) , g denotes the gravitational acceleration, and k denotes the

wave number. The wave number k and the angular frequency ω keep the dispersion
relationship as ω2 = gk tanh (kh). Additionally, to illustrate the ratio of the water depth to
the wavelength, the wave parameter Cw = g

ω2h is introduced [2,5,36].
These velocity potentials must also satisfy the free-surface and water-bottom boundary

conditions, meaning
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∂φ(j)

∂z
− ω2

g
φ(j) = 0 for z = h, j = 1, 2, 3, 4, 5 (4)

∂φ(j)

∂z
= 0 for z = 0, j = 1, 2, 3, 4, 5 (5)

Normal velocity of the impermeable inner column surface is zero yield

∂φ(j)

∂rp
= 0 for rp = c, j = 3, 5, p = 1, 2 (6)

The boundary condition for a permeable outer cylinder can be written as [2,37,38]

∂φ(1)

∂r1
=

∂φ(2)

∂r1
= ikG1(φ

(2) − φ(1)) for r1 = a (7)

∂φ(1)

∂r2
=

∂φ(4)

∂r2
= ikG2(φ

(4) − φ(1)) for r2 = a (8)

∂φ(2)

∂r1
=

∂φ(3)

∂r1
= ikG1(φ

(3) − φ(2)) for r1 = b (9)

∂φ(4)

∂r2
=

∂φ(5)

∂r2
= ikG2(φ

(5) − φ(4)) for r2 = b (10)

The term of Gj =
ρωγj

µk (j = 1, 2) denotes the porous parameter, where ρ, µ, and γ

denote the density of the fluid, constant coefficient of dynamic viscosity, and material
constant, respectively. The porous parameter G can also be expressed as Gr + iGi, where Gr
is the real part and Gi is the imaginary part [39]. In general G is always a complex number
except if the resistance to flow plays a dominant role in the inertial effects of the fluid inside
the porous material, where G becomes real. Li et al. [40] demonstrated that Gr dominates
Gi. In this study, Gi is assumed to be equal to zero, as discussed by Wang and Ren [5].
Additionally, the porous cylinder becomes an impermeable cylinder for Gj = 0, whereas
for Gj → ∞, the exterior structure vanishes [41].

Finally, the scattered waves from the exterior region must meet the conditions for
radiation at infinity, namely

lim
r0→∞

√
r0[

∂φ
(1)
S

∂r0
− ikφ

(1)
S ] = 0 (11)

3. Analytical Solutions

The complex velocity potential of each subdomain is represented by an orthogonal
series based on the a separation of variables.

In Region j (j = 2, 4), the complex velocity potentials satisfying Equations (4), (5),
(7) and (9) can be written in their respective coordinate systems by using eigenfunction
expansion as follows:

φ(j) = f (z)
∞

∑
n=−∞

[B(j)
n Jn(krj) + D(j)

n H(1)
n (krj)]e

inθj for j = 2, 4, bj ≤ rj ≤ aj (12)

where B(j)
n and D(j)

n are the unknown coefficients, Jn( ) is the first kind of Bessel function of
order n, and H(1)

n ( ) denotes the Hankel function of the first kind of order n.
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In Region j (j = 3, 5), the complex velocity potentials satisfying Equations (4)–(6),
(8) and (10) can be written in their respective coordinate systems by using eigenfunction
expansion as follows:

φ(j) = f (z)
∞

∑
n=−∞

[E(j)
n Un(krj)]e

inθj for j = 3, 5, cj ≤ rj ≤ bj (13)

where

Un(kr) =

Jn(kr)− J′n(kc)

H(1)′
n (kc)

H(1)
n (kr) for c 6= 0

Jn(kr) for c = 0
(14)

and E(j)
n is the unknown coefficients.

In Region 1, the complex velocity potential satisfying Equations (4), (5), (7) and (8)
can be decomposed into a summation of two concentric systems with diffracted velocity
potentials in the exterior domain as follows:

φ(1) = f (z)
∞

∑
n=−∞

[Jn(krj)e
in(θj−β+π/2)eikr0j cos (θ0j−β) + Jn(krj)e

in(θj+β−π/2)eikr0j cos (θ0j−π+β)

+
2

∑
f=1

A( f )
n C( f )

n H(1)
n (kr f )e

inθ f ] for f , j = 1, 2, f 6= j
(15)

where A( f )
n denotes the unknown coefficients to be determined, and θ01 = π, θ02 = 0,

C( f )
n =

J′n(ka f )

H(1)′
n (ka f )

, a f is the radius of the corresponding cylinder f .

In Equation (10), the waves stemming from the two concentric cylindrical structures
are represented by their own local polar coordinate systems. To express the velocity
potentials in these local coordinate systems, the Graf’s addition theorem for Bessel functions
is applied as [42] :

H(1)
n (kr f )e

inθ f =
∞

∑
m=−∞

H(1)
n+m(krj f )Jm(krj)e

im(θj f−θj)+inθ f j for aj ≤ rj < rj f (16)

where θ f j (θ12 = 0, θ21 = π) is the angle between the x-axis and the vector from the center
of the structure f to j.

By substituting Equation (16) into Equation (15), φ(1) can be rewritten as

φ(1) = f (z)
∞

∑
n=−∞

[I(j) Jn(krj)ein(π/2−β)einθj + Î(j) Jn(krj)ein(β−π/2)einθj + A(j)
n C(j)

n H(1)
n (krj)e

inθj

+
2

∑
f=1

∞

∑
m=−∞

A( f )
n C( f )

n H(1)
n−m(krj f )Jm(krj)e

imθj+i(n−m)θ f j ]

for f , j = 1, 2, f 6= j, aj ≤ rj < 2rj f

(17)

where I(j) = eikr0j cos(θ0j−β), Î(j) = eikr0j cos(θ0j−π+β) and C( f )
n = C(j)

n = J′n(ka)
H′n(ka) .

Substituting Equations (12), (13) and (17) into the boundary condition of the porous
cylinder Equations (7)–(10) yields

A(j)
n − B(j)

n −M(j)
n D(j)

n +
2

∑
f=1

∞

∑
m=−∞

A( f )
m C( f )

m H(1)
m−n(krj f )e

i(m−n)θ f j

= −I(j)ein(π/2−β) − Î(j)ein(β−π/2)

(18)
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B(j)
n [N(j)

n − iG1] + D(j)
n [Q(j)

n − iG1P(j)
n ] + iG1 A(j)

n C(j)
n P(j)

n

+
2

∑
f=1

∞

∑
m=−∞

iG1 A( f )
m C( f )

m H(1)
m−n(krj f )e

i(m−n)θ f j

= −iG1 I(j)ein(π/2−β) − iG1 Î(j)ein(β−π/2)

(19)

B(j)
n J′n(kbj) + D(j)

n H(1)′
n (kbj)− E(j)

n U′n(kbj) = 0 (20)

iG2B(j)
n Jn(kbj) + iG2D(j)

n H(1)
n (kbj) + E(j)

n [U′n(kbj)− iG2Un(kbj)] = 0 (21)

where M(j)
n = H(1)′

n (kaj)/J′n(kaj), N(j)
n = J′n(kaj)/Jn(kaj), P(j)

n = H(1)
n (kaj)/Jn(kaj), Q(j)

n =

H(1)′
n (kaj)/Jn(kaj).

The Equations (18)–(21) are a complete set of equations with the unknown coefficients
A(1)

n , A(2)
n , B(1)

n , B(2)
n , D(1)

n , D(2)
n , E(1)

n and E(2)
n for the entire fluid domain. The series are

truncated after N terms, and n lies between 0 and N. Previous studies have reported
excellent convergence achieved by truncating the expansion series after finite terms (e.g.,
N = 20). Therefore, the unknown coefficients can be obtained efficiently by considering
only a few truncated terms. The hydrodynamic force, overturning moment, and free-
surface elevation can subsequently be determined for engineering applications.

For the real concentric system, the free-surface elevation η of water waves can be
written as

η(j) = − 1
g

∂φ(j)

∂t
for z = h, j = 1, 2, 3 (22)

where η(j) represents the wave elevation in region Ωj(j = 1, 2, 3).

η(1) =
H
2

∞

∑
n=−∞

[I(j) Jn(krj)e
in(θj−β+π/2) + Î(j) Jn(krj)e

in(θj+β−π/2)

+
2

∑
f=1

A( f )
n C( f )

n H(1)
n (kr f )e

inθ f ]

(23)

η(2) =
H
2

∞

∑
n=−∞

[B(1)
n Jn(kr1) + D(1)

n H(1)
n (kr1)]einθ1 (24)

η(3) =
H
2

∞

∑
n=−∞

[E(1)
n Un(kr1)]einθ1 (25)

For the real concentric system, based on the linearized Bernoulli equation, the complex
velocity potentials in the three regions φ(j) (j = 1, 2, 3) can be substituted into the hydrody-
namic pressure formula, and the pressure distribution of the wave field is calculated as

P(j) = −ρ
∂φ(j)

∂t
for j = 1, 2, 3 (26)

The hydrodynamic forces acting on the two cylinders along the two orthogonal
directions in the horizontal plane f1x, f1y, f2x and f2y can be obtained by integrating the
pressure as follows:
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f1x = −iρωe−iωt
h∫

0
dz

2π∫
0
(φ(1) − φ(2)) |r1=a a cos θ1dθ1

f1y = −iρωe−iωt
h∫

0
dz

2π∫
0
(φ(1) − φ(2)) |r1=a a sin θ1dθ1

f2x = −iρωe−iωt
h∫

0
dz

2π∫
0

φ(2) − φ(3) |r1=b b cos θ1dθ1

f2y = −iρωe−iωt
h∫

0
dz

2π∫
0

φ(2) − φ(3) |r1=b b sin θ1dθ1

f3x = −iρωe−iωt
h∫

0
dz

2π∫
0

φ(3) |r1=c c cos θ1dθ1

f3y = −iρωe−iωt
h∫

0
dz

2π∫
0

φ(3) |r1=c c sin θ1dθ1

(27)

in which,

f1x = (ρgπ(H/2)ah) (−e−iωt) tanh (kh)
kh

{
(A(1)
−1 − A(1)

1 )J1(ka) + (D1
1 − D1

−1)M1
1 J1(ka)

+(A(1)
1 − A(1)

−1)C
(1))
1 H(1)

1 (ka) + (D(1)
−1 − D(1)

1 )H(1)
1 (ka)

}
f1y = (ρgπ(H/2)ah) (−ie−iωt) tanh (kh)

kh

{
− (A(1)

1 + A(1)
−1)J1(ka) + (D(1)

1 + D(1)
−1)M(1)

1 J1(ka)

+(A(1)
1 + A(1)

−1)C
(1)
1 H(1)

1 (ka)− (D(1)
1 + D(1)

−1)H(1)
1 (ka)

}
f2x = (ρgπ(H/2)bh) (−e−iωt) tanh (kh)

kh

[
(B(1)

1 − B(1)
−1)J1(kb) + (D(1)

1 − D(1)
−1)H(1)

1 (kb)

−(E(1)
1 − E(1)

−1)U1(kb)
]

f2y = (ρgπ(H/2)bh) (−ie−iωt) tanh (kh)
kh

[
(B(1)

1 + B(1)
−1)J1(kb) + (D(1)

1 + D(1)
−1)H(1)

1 (kb)

−(E(1)
1 + E(1)

−1)U1(kb)
]

f3x = (ρgπ(H/2)ch) (−e−iωt) tanh (kh)
kh (E(1)

1 − E(1)
−1)U1(kc)

f3y = (ρgπ(H/2)ch) (−ie−iωt) tanh (kh)
kh (E(1)

1 + E(1)
−1)U1(kc)

(28)

Similarly, the overturning moments on the two cylinders along the two orthogonal
directions in the horizontal plane m1x, m1y, m2x and m2y, can be obtained as

m1x = −iρωe−iωt
h∫

0
zdz

2π∫
0
(φ(1) − φ(2)) |r1=a a cos θ1dθ1

m1y = −iρωe−iωt
h∫

0
zdz

2π∫
0
(φ(1) − φ(2)) |r1=a a sin θ1dθ1

m2x = −iρωe−iωt
h∫

0
zdz

2π∫
0
(φ(2) − φ(3)) |r1=b b cos θ1dθ1

m2y = −iρωe−iωt
h∫

0
zdz

2π∫
0
(φ(2) − φ(3)) |r1=b b sin θ1dθ1

m3x = −iρωe−iωt
h∫

0
zdz

2π∫
0

φ(3) |r1=c c cos θ1dθ1

m3y = −iρωe−iωt
h∫

0
zdz

2π∫
0

φ(3) |r1=c c sin θ1dθ1

(29)

in which,
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m1x = (ρg(H/2)ah2) (−πe−iωt)
(kh)2 [kh tanh(kh)− 1 + 1

cosh(kh) ]
[
(A(1)
−1 − A(1)

1 )J1(ka)

+(D1
1 − D1

−1)M1
1 J1(ka) + (A(1)

1 − A(1)
−1)C

(1))
1 H(1)

1 (ka) + (D(1)
−1 − D(1)

1 )H(1)
1 (ka)

]
m1y = (ρg(H/2)ah2) (−iπe−iωt)

(kh)2 [kh tanh(kh)− 1 + 1
cosh(kh) ]

[
− (A(1)

1 + A(1)
−1)J1(ka)

+(D(1)
1 + D(1)

−1)M(1)
1 J1(ka) + (A(1)

1 + A(1)
−1)C

(1)
1 H(1)

1 (ka)− (D(1)
1 + D(1)

−1)H(1)
1 (ka)

]
m2x = (ρg(H/2)bh2) (−2ie−iωt)

(ka)(kh)2 [kh tanh(kh)− 1 + 1
cosh(kh) ]

[
(B(1)

1 − B(1)
−1)J1(kb)

+(D(1)
1 − D(1)

−1)H(1)
1 (kb)− (E(1)

1 − E(1)
−1)U1(kb)

]
m2y = (ρg(H/2)bh2) (2e−iωt)

(ka)(kh)2 [kh tanh(kh)− 1 + 1
cosh(kh) ]

[
(B(1)

1 + B(1)
−1)J1(kb)

+(D(1)
1 + D(1)

−1)H(1)
1 (kb)− (E(1)

1 + E(1)
−1)U1(kb)

]
m3x = (ρg(H/2)ch2) (−2ie−iωt)

(ka)(kh)2 [kh tanh(kh)− 1 + 1
cosh(kh) ](E(1)

1 − E(1)
−1)U1(kc)

m3y = (ρg(H/2)ch2) (2e−iωt)
(ka)(kh)2 [kh tanh(kh)− 1 + 1

cosh(kh) ](E(1)
1 + E(1)

−1)U1(kc)

(30)

The total wave forces and overturning moments acting on the outer (i = 1), middle
(i = 2) and inner (i = 3) cylinders can be expressed as

Fi =
√
(Fix)2 + (Fiy)2, Mi =

√
(Mix)2 + (Miy)2 for i = 1, 2, 3 (31)

where,

Fix = Re( fix), Fiy = Re( fiy), Mix = Re(mix), Miy = Re(miy) for i = 1, 2, 3 (32)

For convenience, the factors ρgHah, ρgHbh and ρgHch are used to make the hydro-
dynamic loads dimensionless. The maximum dimensionless hydrodynamic loads on the
outer FO, middle FM and inter FI structures are defined as

FO =
|F1|

ρgHah
, FM =

|F2|
ρgHbh

, FI =
|F3|

ρgHch
(33)

4. Results

To study the hydrodynamic characteristics of a concentric system near a vertical wall,
a program was written in FORTRAN to implement the analytical solution described in the
previous section. The factor H is used to make the wave elevation η dimensionless. To
gain a deeper understanding, we also considered the case of concentric systems located in
unbounded water (UW). For this calculation, the radius of the outer cylinder was set to
a = 10 m and the wave height remained constant at H = 1 m. This paper gives the mathe-
matical formula of the interaction between waves and a concentric three-cylinder structure.
However, the concentric two-cylinder structures are prevalently used in coastal and ocean
engineering; for instance, the successful application of a dual cylindrical breakwater in the
Nagashima Port, Japan and the Ekofish gravity offshore structure in the North Sea [10].
Thus, this paper mainly uses the following parameters to study the interaction between
water waves and the concentric structure, i.e., G1 = 1, G2 → ∞ (in the practical calculation,
G = 1000 is applied).

4.1. Model Validation

The validity of the proposed method was verified by comparing our results to the
numerical results presented by Teng and Ning [23] and Cong et al. [30]. When the porous
parameter G1 = 0, the concentric system becomes an impermeable cylinder, as discussed by
Teng and Ning [23]. Figure 3 presents a comparison of the hydrodynamic loads on a solid
cylinder near a wall derived by our method and by Teng and Ning [23] for h/a = 1, G1 = 0,
and e/a = 1. One can see good agreement between these results. When b = c = 0 and the
porous-effect parameter G1 6= 0, the structure becomes a porous cylinder, as discussed by
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Cong et al. [30]. Figure 4 presents a comparison of the hydrodynamic loads on a porous
cylinder near a wall derived by our method and by Cong et al. [30] for b = c = 0, h/a = 5,
G1 = 1, and e/a = 1. One can see that the results are consistent, further validating the
proposed method.
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Figure 3. Comparison of the maximum hydrodynamic loads on an impermeable cylinder near a wall derived by our
method and by Teng and Ning [23] for h/a = 1, G1 = 0, and e/a = 1: (a) x direction, (b) y direction (A is wave amplitude,
A = H/2).
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Figure 4. Comparison of the maximum hydrodynamic loads on a porous cylinder near a wall derived by our method and
by Cong et al. [30] for b = c = 0, h/a = 5, G1 = 1, and e/a = 1: (a) x direction, (b) y direction.

4.2. Influence of the Wave Incident Angle

Because the considered concentric structures are symmetrical, changes in the wave
incident angle have no effect on the wave loads in the unbounded water area. However,
the wave incident angle has a significant impact on wave forces and elevations in the
presence of a vertical wall. Figure 5 presents the effect of the wave incident angle β on the
hydrodynamic loads on the system for e/a = 1, c/a = 0.5, h/a = 1.5, and G1 = 1. The
wave incident angle was varied as β = 0, 15◦, 30◦, and 45◦. One can see that when ka < 0.7,
the wave forces acting on the two cylinders increase as the wave number ka increases and
reach peak values in the low-frequency region. Additionally, the hydrodynamic loads
on the outer and inner cylinders gradually decrease with an increasing β. An analogous
phenomenon was observed by Teng and Ning [23] and Cong et al. [30] for wave diffraction
by impermeable and permeable cylinders near a wall. Additionally, based on the presence
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of the wall, the wave loads acting on the exterior structure are significantly larger than
those in the unbounded water. Based on the combined influence of the vertical wall and
exterior porous cylinder, the variation in the forces acting on the interior impermeable
structure is relatively complex.
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Figure 5. Hydrodynamic forces on the outer and inner cylinders versus ka for four wave incident angles β = 0, 15◦, 30◦, 45◦

with e/a = 1, c/a = 0.5, h/a = 1.5, and G1 = G2 = 1 : (a) the outer cylinder, (b) the inner cylinder.

Figure 6 presents the dimensionless wave elevation distribution around the system
near the vertical wall for various incident angles β with Cw = 0.8, G1 = 1, c/a = 0.5,
e/a = 1, and h/a = 1.5. When β > 0, the symmetrical characteristics of the wave field are
lost. Additionally, a slight increase in the wave run-up around the leeward side of the outer
cylinder can be observed when β = 45◦. In general, the porous structure provides a certain
level of wave dissipation and reduces wave run-up, but reflected waves increase wave
run-up on the leeward side of the outer cylinder. When the waves are obliquely incident,
the elevation exhibits relatively complex variations. Additionally, a significant decrease
in wave run-up around the windward sides of the two cylinders can be observed as β
increases. This is because the effects of the reflected waves on the system are weakened
when the waves are obliquely incident.

Figure 6. Wave elevation in the vicinity of a concentric system near a vertical wall with ka = 0.8, G1 = G2 = 1, c/a = 0.5,
e/a = 1, h/a = 1.5: (a) β = 0 (b) β = 30◦ (c) β = 45◦.

4.3. Influence of the Porous Parameter

The hydrodynamic loads on the two cylinders versus the porous parameter G1 are
presented in Figure 7 for different Cw when e/a = 1, c/a = 0.5, β = 0, and h/a = 1.5.
The wave forces acting on the outer cylinder decrease monotonically until they reach a
minimum value, and then exhibit an almost constant value as G increases further. The loads
on the impermeable inner cylinder increase monotonically toward their asymptotic value
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with an increasing value of G1. Additionally, with an increasing Cw, the hydrodynamic
loads on the inner layer gradually increase. In Figure 7b, one can also see that when G1 < 1,
the lower-frequency waves have a greater influence on the hydrodynamic loads on the
porous outer cylinder compared to the higher-frequency waves.
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Figure 7. Hydrodynamic forces on the outer and inner cylinders versus G for different wave-effect parameters Cw with
e/a = 1, G2 = 0,c/a = 0.5, β = 0, and h/a = 1.5: (a) the outer cylinder, (b) the inner cylinder.

Figure 8 presents the variations in the maximum wave run-up for different G1 with
Cw = 1, e/a = 1, c/a = 0.5, β = 0, and h/a = 1.5. On the windward and leeward sides, the
wave run-ups on the porous outer cylinder decrease, whereas those on the impermeable
inner cylinder increase with an increasing G1. This can be attributed to the increased
wave propagation from the porous outer cylinder as the G1 value increases, leading to
increased direct wave action on the inner cylinder. Overall, the influence of G1 plays
a more important role in wave run-up on the impermeable inner cylinder than on the
permeable outer cylinder. Additionally, the minimum run-up on the two cylinders occurs
at approximately θ = 80◦. This may be related to the distance between the structure and
the wall. The limitations attributed to the assumption of total wave reflection lead to a
more pronounced influence of the incident wave on the structure.
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Figure 8. Wave run-up on the outer and inner cylinders versus θ for different wave-porous parameters G with Cw = 1,
e/a = 1, c/a = 0.5, β = 0, and h/a = 1.5: (a) the outer cylinder, (b) the inner cylinder.
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4.4. Influence of Annular Spacing

The hydrodynamic loads on the two cylinders versus the radius ratio b/a are presented
in Figure 9 for different Cw when e/a = 1, G1 = 1, β = 0, and h/a = 1.5. In Figure 9b,
the hydrodynamic loads on the impermeable inner cylinder increase gradually as c/a
increases, whereas the forces increase monotonically with an increasing Cw, indicating
that long waves have a more significant effect than short waves. Excluding the case
of Cw = 0.4, the hydrodynamic loads on the outer porous cylinder gradually decrease
with an increasing Cw. A similar phenomenon was observed by Wang and Ren [5] for
wave diffraction by a concentric system in unbounded water, meaning that except for
the variations in wave amplitude, the vertical wall has a limited effect on the patterns of
variation of hydrodynamic loads on the structure.
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Figure 9. Hydrodynamic forces on the outer cylinder and the inner cylinders versus c/a for different wave-effect parameters
Cw with e/a = 1, G1 = 1, β = 0, and h/a = 1.5 : (a) the outer cylinder, (b) the inner cylinder.

Figure 10 presents the maximum wave run-up for the concentric system for different
c/a when Cw = 0.8, e/a = 1, G1 = 1, β = 0, and h/a = 1.5. On the windward and leeward
sides, the wave run-ups on the two cylinders increase as b/a increases. The influence of c/a
on wave run-up is greater around the inner cylinder than around the porous outer cylinder.
This is because with an increase in c/a, these is reduced space for wave development in
the annual spacing, leading to waves directly acting on the inner cylinder after passing
through the permeable outer structure. Additionally, the minimum run-up on the two
cylinders occurs at approximately θ = 70◦, which is similar to the observations in Figure 8.

4.5. Influence of Water Depth

The hydrodynamic loads on the two cylinders versus the wave number ka are pre-
sented in Figure 11 for different depth radius ratios h/a when e/a = 1, G1 = 1, β = 0, and
c/a = 0.5. The force acting on the two cylinders decreases gradually as h/a increases. As
shown in Figure 11, the hydrodynamic loads on the two cylinders exhibit an oscillatory
nature with an increasing ka, and the oscillatory amplitude decreases. This is because the
parameter h in Equation (25) exhibits a linear relationship with the hydrodynamic loads,
meaning the water depth only affects the amplitude. Furthermore, the force on the porous
outer cylinder oscillates between its peak and trough values with an increasing ka. The
wave forces on the two cylinders exhibit periodic variations as ka increases.
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Figure 10. Wave run-ups on the outer cylinder and the inner cylinders versus θ for different b/a with Cw = 0.8, e/a = 1,
G1 = 1, β = 0, and h/a = 1.5: (a) the outer cylinder, (b) the inner cylinder.
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Figure 11. Hydrodynamic forces on the outer and inner cylinders versus ka for different values of h/a with e/a = 1, G1 = 1,
β = 0, and c/a = 0.5 : (a) the outer cylinder, (b) the inner cylinder.

4.6. Influence of the Distance between Structure and Wall

The wave forces on the two cylinders versus e/a are presented in Figure 12 for different
G when Cw = 1, β = 0, h/a = 1.5 and c/a = 0.5. Based on the effects of the wall on the
wave field, the hydrodynamic forces on the system increase for a particular range of e/a
and decrease for other range values of e/a, which differs from the force on a concentric
system without a wall. One can see that the hydrodynamic loads on the two cylinders
decrease initially and then increase until they reach their maximum at approximately
e/a = 0.8, followed by a decrease to their minimum at approximately e/a = 3. Based on
the presence of the wall and the assumption of total reflection, the wave amplitude of the
entire wavefield is enhanced. When the structure passes through the peaks and troughs of
the wavefield as it moves away from the wall, periodic variations in the hydrodynamic
loads can be observed.
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Figure 12. Hydrodynamic forces on the outer and inner cylinders versus e/a for different values of G with Cw = 1, β = 0,
h/a = 1.5 and c/a = 0.5 : (a) the outer cylinder, (b) the inner cylinder.

4.7. Influence of Location of the Middle Cylinder

Figure 13 shows the influence of the location of the middle cylinder on the wave forces
versus (b − c)/(a − c) for different kh when e/a = 1.0, β = 0, h/a = 1 and c/a = 0.5.
As expected, the concentric three-cylinder system provides better protection for the inner
cylinder than the concentric two-cylinder structure. As indicated in Figure 13, the wave
forces on the outer and inner cylinders slightly decreases when the middle cylinder moves
from close to the inner cylinder to the outer cylinder. For the middle cylinder, the wave
force increases monotonically towards its asymptotic value. This indicates that the presence
of the middle cylinder can not significantly influence the inner and outer structures, but
requires a higher cost of construction than the concentric two-cylinder system. It may be
one reason that the concentric two-cylinder structures are more widely used in practice.

4.8. Comparison of the Wave Loads and Elevations of Three Structures

The radius of the single cylinder is the same as that of the interior structure in the
concentric system. Figures 14 and 15 present the variations in wave forces and run-ups
for the three different configurations with β = 0, c/a = 0.5, h/a = 1.5, G1 = 1, G2 = 0 and
e/a = 1. As expected, the wave forces and run-ups are the greatest on an impermeable
cylinder near a wall, while they are significantly reduced for a porous cylinder. The
hydrodynamic loads and wave run-ups on the inner cylinder are between those on the
solid and porous cylinders when G1 = 1. At G1 = 0.5, the amplitudes of the wave force
and run-up on the inner cylinder are very close to those on a porous cylinder, meaning that,
with a concentric structure with appropriate porosity, the inner cylinder not only provides
sufficient strength, but is also effective at reducing the wave force and run-up.

Figure 16 presents the dimensionless wave elevations distribution around the three
different configurations with Cw = 1.5, β = 0, c/a = 0.5, h/a = 1.5, and G1 = 1, and
e/a values of 1, 2 and 3. In Figure 16, the alternation of the wave peaks and troughs are
clearly visualized. This is related to the total reflection of the wave in front of the wall,
which creates a steady, increasing wave amplitude field. One can see that the highest wave
run-up occurs on the windward and leeward sides of the impermeable cylinder surface for
e/a = 1 (see Figure 16a,d,g), whereas the wave field variation is relatively limited on the
porous cylinder and concentric structure. Additionally, as e/a increases (see Figure 16a–c),
the wave run-up gradually decreases on the leeward side. Based on presence of a stable
wave field formed by the reflection of waves in front of a wall, the alternative occurrence of
peaks and troughs in wave run-up on the windward and the leeward sides of the structure
can be observed as e/a increases. Figure 17 presents corresponding wave elevations for
the three different configurations along y = 0 for e/a = 1 and 2. As e/a increases from
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one to two, on the leeward side, the wave elevation on the three structures is significantly
reduced. This is a very intuitive representation of the influence of e/a on wave run-up.
Overall, the porosity and distance are critical influencing factors for concentric structures
with internal cylinders. Therefore, these are the key factors to focus on in future research.
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Figure 13. Hydrodynamic forces on the outer, middle and inner cylinders versus (b− c)/(a− c) for different values of kh
with e/a = 1.0, β = 0, h/a = 1 and c/a = 0.5 : (a) the outer cylinder, (b) the middle cylinder, (c) the inner cylinder.
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Figure 14. Comparison of wave forces between the single cylinder and the inner cylinder of the
concentric system near a vertical wall with e/a = 1, β = 0, h/a = 1.5 and c/a = 0.5.
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Figure 15. Comparison of wave run-ups between the single cylinder and the inner cylinder of the
concentric system near a vertical wall with e/a = 1, β = 0, h/a = 1.5 and c/a = 0.5.

Figure 16. Dimensionless wave elevation in the vicinity of the three different configurations with h/a = 1.5, b/a = 0.5,
and Cw = 1.5: (a) a = b, e/a = 1; (b) a = b, e/a = 2; (c) a = b, e/a = 3; (d) b = c = 0, e/a = 1; (e) b = c = 0, e/a = 2;
(f) b = c = 0, e/a = 3; (g) e/a = 1; (h) e/a = 2; (i) e/a = 3.
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Figure 17. Comparison of free-surface elevation between single cylinder and the inner cylinder of the concentric system near a vertical
wall with Cw = 1.5, β = 0, h/a = 1.5 and c/a = 0.5: (a) e/a = 1 (b) e/a = 2.

5. Conclusions

Based on the linear potential theory and imaging theory, an analytical model was
developed to study Airy wave diffraction by a concentric system in front of a vertical wall.
Comparing the present numerical results with those published by Teng and Ning [23]
and Cong et al. [30], it can be found that the method used by this paper is correct and
reliable. The effects of the incident angle, water depth, porosity parameter, radius ratio, and
space between the structure and wall on hydrodynamic loads, wave run-ups, and wave
elevations were explored in detail. Our main conclusions can be summarized as follows:

(1) Wave incident angle is an important parameter in influencing the wave force and
elevation. As the wave frequency increases, the curve of the wave force acting on the
concentric system with ka shows an obvious oscillation characteristic. Additionally,
the oscillation frequency and the maximum peak of the wave force acting on the outer
and inner cylinder gradually decrease as the wave incidence angle increases.

(2) The various hydrodynamic loads on a concentric structure caused by changes in the
structure itself, such as G, h/a, and c/a, have little relation to the presence of a vertical
wall, except for changes in magnitude.

(3) The distance between the structure and wall is a critical parameter in terms of the
hydrodynamic force and wave elevation experience by the structure. These factors
are influenced by the strong reflection of the vertical wall. By comparing the wave
elevations on an impermeable cylinder, porous cylinder, and concentric structure, we
determined that a permeable structure significantly reduces the influence of the wall
presence on the wave domain and on the structure itself while effectively reducing
wave loads and run-up, thereby mitigating the occurrence of overtopping waves.

(4) For the three-cylinder structure in front of a wall, the presence of the middle cylinder
cannot significantly influence the inner and outer structures, but requires a higher
cost of construction than the concentric two-cylinder system. It may be one reason
that the concentric two-cylinder structures are more widely used in practice.
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