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Abstract: The aim of this paper is to design an approach to evaluate the expected efficiency and
performance of future airport infrastructure. First, an airport sampling method to select similar
airports is developed based on socioeconomic and operational airport variables that are summarized
in a proxy variable; second, the ARIMA-GARCH-Bootstrap method is applied to forecast the selected
outputs (PAX and ATMS) whilst the selected inputs (Cities, Gates, Runaways, Airport Size, Pax
carriers, and Num. of employees) remain constant; and third, the VRS-OO and the CRS-OO DEA
models are implemented to evaluate the efficiency and performance of the airports in the current and
future years. The proposed approach is used to evaluate the future airport infrastructure of the new
Mexico City Airport against 19 representative worldwide airport hubs. The proposed approach is
applied to analyze the Mexico City Airport multi-airport system infrastructure as a case study. The
results show that this multi-airport system requires more airside infrastructure that must be added
by the new Mexico City Airport, airlines should operate aircrafts with more capacity to serve more
PAX per ATM, and airlines must open new connections at the new Mexico City Airport to increase
the expected efficiency and performance of this multi-airport system.

Keywords: airport planning; air transport infrastructure; productivity; efficiency; data
envelopment analysis

1. Introduction

The air transport industry highly contributes to the development of the economy
and society of any country in the world, mainly because it generates jobs and stimulates
social and economic activities [1]. This industry is a catalyst of economic growth and
social development [2,3] by supporting tourism and facilitating trade between countries,
states, and cities. Therefore, it is important to plan new airport infrastructure based on
future performance, analyzing actual and forecasting data and proposing management
strategies to assure that future airport infrastructure will be as efficient and sustainable as
possible [4–6]. Thus, the aim of this paper is to propose an approach that evaluates the
expected efficiency and performance of future airport infrastructure and, with the results,
establish airport management strategies to reach efficiency.

Commonly, the viability of future airport infrastructure is evaluated with a cost-benefit
analysis [7]. The precision of a cost-benefit analysis depends mainly on the accuracy of
traffic forecasts (enplaned passenger demand (PAX) and air transport movements (ATMS))
and construction costs forecasts [8]. PAX and ATMS are forecasted because they are output
variables that give an idea about the traffic volume that an airport would probably have to
operate in the future, and hence, these are the most important indicators of airport opera-
tional performance [9]. However, PAX and ATMS forecasts are likely to be wrong [10] and
the uncertainty over 50% because forecasting methods cannot guarantee 100% accuracy [11].
So, future airport infrastructure is expected to be either under-dimensioned if traffic fore-
cast is low at the end or over-dimensioned if traffic forecast is too high. Consequently, new
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airports might be inefficient, and airport managers must design methodologies to develop
and implement airport management strategies in advance to assure efficiency of future
airport infrastructure.

Airport performance studies have been developed for some time [9] applying differ-
ent methodologies, but mainly, Data Envelopment Analysis (DEA), Stochastic Frontier
Analysis, econometric theory, and through the development of benchmark indexes. How-
ever, lately, the amount of research that applies DEA to study Airport performance has
grown [12]. This is because airports are homogeneous decision-making unites (DMUs) that
use the same inputs to produce the same outputs, and DEA is a non-parametric optimiza-
tion model for evaluating the relative efficiencies of a set of homogeneous DMUs that uses
the same inputs and outputs variables [13]. Therefore, different DEA models have been
proposed to study airport efficiency or airport performance by evaluating different inputs
and outputs variables [2,3,9,12,14–37].

Most DEA applications use the constant returns-to-scale DEA model (CRS) proposed
by [38], also known as the CCR model, and/or the variable return-to-scale DEA model
(VRS) proposed by [39]. The difference between the CRS model and the VRS model is
that the CRS model supposes complete proportionality between inputs and outputs, and
the VRS model is based on the axioms of convexity and free disposability and does not
assume this form of proportionality. The efficiency of a DMU calculated by the VSR model
is higher than its efficiency calculated by the CRS model. This is because the discrimi-
nant of the CRS model is better than that of the VSR models when the proportionality
assumption is satisfied. Therefore, the VRS efficiency can be described as overoptimistic,
and the CRS model cannot be used if this assumption is not valid [40]. DEA models can
measure efficiency in two different orientations: input-oriented DEA models determine the
minimum input needed, if used efficiently, to achieve the same output and output-oriented
DEA models determine the maximum potential output that can be reached if the given
inputs are used efficiently [41]. With these arguments in mind, in this paper, we use the
CRS model proposed by [38] from an output orientation (CRS-OO) to plan future airport
infrastructure performance. We choose this DEA model because [3,42] found that airports
operate under a constant return on scale and also because it is possible to assume that, in
this study, the selected inputs (Cities, Gates, Runaways, Airport Size, Pax carriers, and
Num. of employees) and the selected outputs (PAX and ATMS) can be classified as physical
levels because these measures are actual amounts of products that are often assumed to be
proportional to resources, and therefore, they satisfy the assumption of proportionality [40].
However, since [18] propose to apply the VRS DEA model from an output orientation
(VRS-OO) to maximize the use of airport infrastructure to satisfy the increasing demand of
PAX and ATMS, we also use the VSR-OO model proposed by [39] to compare the results
between the CRS-OO and the VSR-OO.

In the literature, many variables have been proposed to study airports
performance [2,3,9,12,14–21,24–29,31–37]. Most of the proposed input variables are related,
similar, and try to measure the same that some of the variables chosen to study future
airport infrastructure performance in this paper, which are: the number of runways (Run-
ways), airport size (Airport Size), the number of employees (Num. of Employees), the
number of city connections (Cities), the number of gates (Gates), and the number of pax
carriers (Pax Carriers). The output variables are PAX and ATMS because they are the most
important indicators of airport operational performance [9].

In the literature, many forecasting methods have been developed to predict PAX and
ATMS. Normally, quantitative forecasting methods are used to forecast PAX and ATMS.
Quantitative forecasting methods can be divided in causal models or explanatory models
(multiple-regressions, data panel and gravity models) and time-series forecasting meth-
ods [7]. Both causal models and time-series forecasting methods need historic data to be
used. The main disadvantage of causal methods is their necessity of finding and gather-
ing enough data of different independent variables (socioeconomic and/or operational
variables) to forecast PAX and ATMS. However, the problem is that independent variables
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must be predicted to forecast PAX and ATMS adding more uncertainty than time-series
methods. Knowing this problem, in this study, we decide to use a time-series method.
Trend, seasonality, volatility, and distribution are the characteristics of time-series data,
and they must be considered to forecast PAX and ATMS [43]. In the literature, most time-
series methods only consider trend and seasonality but not volatility and distribution [43].
For these reasons, new forecasting methods have been developed as the combination of
multiple individual forecasting methods to substantially improve forecast accuracy [43].
In this paper, we use the ARIMA-GARCH-Bootstrap forecasting method to forecast PAX
and ATMS because [44] probed that this method is more suitable for long-term PAX and
ATMS forecasts than four of the most used models in the air transport industry: ARIMA,
Holt-Winters Additive, Holt-Winters Multiplicative, and the Damp Trend Grey Model
(DTGM), which has been proven to be better than the Grey Model [45].

Many studies have been proposed to measure performance using DEA models [46].
However, few of them address the problem of airport performance [29]; only one of them
evaluates future airport performance for airport sustainability planning in short-term, and
neither of them estimates the efficiency or performance of future airports infrastructures
projects in mid and long term. So, we attempt to add to the literature by evaluating the
efficiency and performance of future airport infrastructure in the mid-term.

This study evaluates the future airport infrastructure performance of the new Mexico
City Airport against 19 representative worldwide airport hubs: Atlanta (ATL), Houston
(IAH), Miami (MIA), Los Angeles (LAX), Dallas Fort Worth (DFW), San Francisco (SFO),
La Guardia (LGA), John F. Kennedy (JFK), Newark (EWR), Bogota (BOG), Chicago O’Hare
(ORD), Dubai (DXB), London Heathrow (LHR), Hong Kong (HKG), Paris Charles de
Gaulle (CDG), Amsterdam (AMS), Frankfurt (FRA), Singapore (SIN), and Denver (DEN).
In the first step of the proposed approach, we select an airport’s sample based on four
characteristics: market size through time, the level of socioeconomic activities in the
metropolitan area where the airports are located, local airport competition or the existence
of a multi-airport system, and the airport competitiveness index. These characteristics aims
to select similar airports that can be compared. In the second step, the ARIMA-GARCH-
Bootstrap forecasting method is applied to forecast the selected outputs (PAX and ATMS),
and the selected inputs (Cities, Gates, Runaways, Airport Size, Pax carriers, and Num. of
employees) remain constant. Finally, in the third step, the VRS-OO and the CRS-OO DEA
models are used to evaluate the performance of the airports in the sample in current and
future years. In the literature, many papers evaluate the performance and efficiency of an
airport’s infrastructure, and few of them forecast and evaluate airports’ systems to analyze
their sustainable development. However, there is no paper to our knowledge that evaluates
the expected efficiency and performance of future airport infrastructure. This paper also
contributes to the air transport management and to the Mexican air transport industry by
studying the efficiency of MEX and concluding the required infrastructure for the new
Mexico City Airport, which just began construction. We select to study the performance of
MEX and the new Mexico City Airport infrastructure as a multi-airport system because
the Mexican government is currently building a new airport for Mexico City for two main
reasons: MEX has been congested since 2014, and the demand of PAX and ATMS are
expected to grow in the coming years, mostly in its domestic and international connectivity
markets [47]. This airport is going to be part of Mexico City multi-airport system form by
three main airports (MEX, Toluca International Airport (TLC), and the new Mexico City
airport). MEX has a location advantage over TLC and the new Mexico City airport because
it is located inside Mexico City, and therefore, it is very close to demand. So, TLC and the
new Mexico City airport will not represent competition, airlines will use these airports
only because MEX is congested, and they do not have access to slots at MEX. Therefore, it
is highly probable that the new Mexico City airport will become a secondary airport only
to alleviate the congestion at MEX. It is important to remember that this has happened
in the past, TLC was used as a secondary airport operated by low-cost carriers (LCCs),
but once Mexicana Airlines bankrupted and its slots were available at MEX, LCCs moved
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operations from TLC to MEX, even when aircrafts turn-around times and aeronautical
fees were considerable lower in TLC than in MEX. The advantage of the new Mexico City
airport over TLC is that TLC has operational restrictions because of its altitude, where
heavy and big aircrafts might not be allowed to land and take off. Knowing this, it is
possible to conclude that the new Mexico City airport infrastructure should be set to satisfy
the demand of PAX and ATMS that MEX cannot operate. Therefore, in this paper, the
proposed approach is used to establish airport management strategies and to determine
the required infrastructure of the new Mexico City airport to efficiently satisfy the expected
demand of PAX and ATMS as an airport system where the new airport will have to operate
efficiently to satisfy the excess of PAX and ATMS that MEX cannot satisfy.

The results suggest that the new Mexico City airport system would require mostly
airside infrastructure that must be covered by the new Mexico City airport, and the
management strategies suggest that airlines should operate aircrafts with more capacity
(big aircrafts) to serve more PAX per ATM, and airlines must open new connections or new
destinations in this airport to increase the Mexico City airport system network.

DEA models have been developed to benchmark the Technical Efficiency (TE), Pure
Technical Efficiency (PTE), and the productivity of multiple industries, being transportation
systems where DEA models are commonly used to assess public and private infrastruc-
ture [48]. These models can assess the performance of transport systems, such as road
(highways), air (airlines and airports), maritime (ports), railway (trains), the sustainability
of transport infrastructure, and other transportation issues [49].

The authors of [32] use a DEA model called Robust Data Envelopment Analysis
(RDEA) to study the performance of 21 Iranian airports. RDEA allows handling the
uncertainty in the data. The results show that most of the Iranian airports are inefficient.
Even with the government subside, the number of employees in each terminal is not
enough to cover the PAX. In a similar study, Ref. [50] applies a CRS DEA model to analyze
the relations between airport infrastructure and passenger processing. The aim of [50]’s
paper is to benchmark the level of service of 19 Brazilian airports to maintain an appropriate
level. Considering the total number of passengers that the airport receives with the internal
services availability as number of checks in counters or number of parking spaces, these
studies helped to identify airports whose level of service would be prejudiced in short
term. In the same way, Ref. [3] use a VRS DEA model to study the Italian airport system
(31 out of 49 airports are tested). The airport sample includes fully privatized airports
and mixed regimes (public and private). The authors of [3] analyze the rotation on capital
with the total of passengers and the private or partially private status. Their results
proved that most of the Italian Airports are highly efficient, with differences between those
that are privately owned and those that are under a mixed regime. The authors of [25]
use different DEA models (CRS DEA, VRS DEA, and Hull DEA models) to evaluate the
operational performances of 20 major airports around the world. The results indicate
that some airports are optimal, while others have the worst self and peer appraisal. In
this study, the number of runways and number of parking slots are the most important
input variables to improve airport TE, the number of PAX contribute more to airport
performance than to ATMS, and airport TE is related to the existence of an airport hub
and to the economic growth. The authors of [18] analyze the productivity of 18 Italian
airports operatively and financially. They use the CRS-OO DEA model. Their results
show that airports operational efficiency declined in 2001, but financially, they mostly
improved in the aeronautical revenue considering the labor cost of each 10,000 m2 as the
input variable. The probable cause is the introduction of an aeronautical service price that
provoked a bad investment in service capacity, affecting the TE in operational services.
The author of [26] studies the efficiency and productivity of 10 airports in East Asia from
2009 to 2013 by applying a network DEA model. The results indicate that the number of
carriers, the number of routes, non-aeronautical revenues, and service levels are variables
that increase the productivity of an airport. The reason is because as the number of carriers
that operate the airport and the number of routes that the airport operates increase, its
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productivity grows. The increment in non-aeronautical services or commercial services
increases efficiency because airports earn more streams of revenue. Airport service quality
is an indication of the good performance of an airport. The author of [15] proposes to
evaluate the performance of international airports across the world. This study indicates
that the productivity of an airport is influenced by exogenous variables such as shifts
in government policies and technological advances rather than endogenous variables
driven by improvements in managerial practices. The authors of [20] also evaluate the
operating efficiency and productivity changes of the Greek airports during the economic
crisis (2010–2014) using DEA and the Malmquist Productivity index (MPI). In [20], the
author’s main goal is to determine whether the total productivity improved during the
Greek economic crisis. Their results indicate that despite the economic crisis, airport
efficiency and productivity improved due to exogenous variables such as international
tourism growth. In [14], the authors apply a Graphical Gaussian Model to CRS and VRS
DEA models to estimate the financial performance of the most important regional airports
in Italy. The results indicate that their return on investment and their return on equity
improve due to ATMS in each airport. The author of [35] use DEA models to study the
operational efficiency of three Brazilian airports. The aim of this paper is to find the efficient
variables of each airport. The results indicate that these Brazilian airports are mostly basing
their operations to concession fees and mandatory investments. In the same year, Ref. [51]
also uses DEA models to study the potential costs of airports inefficiency. They study 12
airports in Pakistan. They conclude that the technical inefficiencies of Pakistan airports
are caused by overstaffing and over-investing in capacity. The author of [52] evaluates
the TE of 14 Iranian airlines. They add undesirable outputs and uncertainty to a DEA
model. They found that any of the airlines analyzed are TE. The authors of [53] study the
TE of 11 airports in New Zealand. They propose a two-stage methodology: In the first
stage, they use the Slack-Based Measure DEA-Window model. In the second stage, they
use a Tobit model with an instrumental variable to solve the endogeneity problem. Their
results confirm the economic variables that have a positive impact and negative impact
on the efficiency of the New Zealand Airports. The author of [37] presents a slacks-based
measure network data envelopment analysis (SBM-NDEA) model with quasi-fixed inputs
of runway, terminal, apron areas, and free linking capacity provisions. Airport operations
efficiency is decomposed in production and service efficiency. Their results indicate that
the efficiency of airport production does not imply efficiency in the service of domestic
airports in Taiwan, and vice versa. The author of [12] applies the network DEA approach
that considers the system as composed by distinct stages with its own inputs and outputs
and with intermediate flows among the stages. They applied it to analyze 39 Spanish
airports and conclude that network DEA models have a greater discriminant power than
conventional. The main drawbacks are the need for more detailed data and the greater
complexity of the models. The authors of [24] develop a multi-period two-stage DEA
model, which can measure the overall and period efficiencies at the same time. The non-life
insurance industry in Taiwan is used to verify the proposed model. In [28], the application
of the weak disposability to modeling network DEA with undesirable products is studied,
which, in this paper, is studied as final outputs or as intermediate measures. The proposed
approaches has been illustrated in a real case on 39 Spanish Airports in 2008. The author
of [27] uses the multi-period network data envelopment analysis to analyze how internal
operating sub-processes and annual operations of airports influence the overall efficiency
for East Asia airport companies. The results indicate that the overall efficiencies are affected
by the system and the sub-processes’ efficiencies in individual periods during a specific
period. The author of [29] considered sustainability of airports through a multi-perspective,
multi-system, and multi-process operation. They explore an extension of fuzzy dynamic
network performance measurement approach to determine the efficiency of an Iranian
airport system. Ref. [33] uses DEA models to measure the efficiency of Italian airports and
it is evaluated at cost, operations, and revenue stages, while network-slack based measure
DEA (NSBM-DEA) is adopted to generate efficiency measurements for the airports at each
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stage. Their results indicates that this model performs better than the traditional DEA
model. The author of [9] evaluates airport performance for eight Chinese airports and
four representative Asian airports from 2014 to 2021 with actual and forecasted data to
plan airport sustainability. The performance of airports is evaluated from the process level
to the airport level using the Network DEA with forecasted data obtained from the gray
model. The results indicate that HKG has been and will be efficient for the entire study
period. Finally, Scheme 1 resumes the input and output variables most analyzed in the
literature review.

This paper is organized as follows: in Section 1, a literature review about DEA
models applied to analyze the air transportation industry is presented; Section 2 details
the proposed approach that evaluates the expected efficiency and performance of future
airport infrastructure. In Section 3, the empirical application is presented, and the results
are analyzed. Finally, Section 4 concludes this paper and provides future works.

2. Materials and Methods

In this paper, a three-step approach is proposed to evaluate the expected efficiency
and the performance of future airport infrastructure. In the first step, an airport sampling
method is proposed to select airports that can be compared. In the second step, the ARIMA-
GARCH-Bootstrap forecasting method is applied to forecast the selected outputs (PAX
and ATMS), and the selected inputs (Cities, Gates, Runaways, Airport Size, Pax carriers,
and Num. of employees) remain constant. Finally, in the third step, the VRS-OO and the
CRS-OO DEA models are used to evaluate the performance of the airports in the sample in
the current and future years.

2.1. Step 1: Airport Sampling Method

The objective of the airport sampling method is to select airports that are similar and,
therefore, can be comparable. In this paper, we propose to select the airports in the sample
based on four characteristics: market size through time, the size of the economy of the
metropolitan area where the airports are located, airport competition, and the airports
competitiveness index.
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.

Literature Inputs Outputs Reference

Performance evaluation of Italian airports: Labor costs, capital invested and operational Number of planes, PAX, cargo, aeronautical (Barros and Dieke, 2007)

A data envelopment analysis costs (excluding labor costs), private status. receipts, handling receipts and commercial receipts

Operational performance evaluation of international major airports: Ownership of airport, airport size, hub airport, location of the airport Operational performance from efficiency frontier (Lin and Hong, 2006)

An application of data envelopment analysis and economic growth rate of country. (efficient/inefficient)

An empirical study of Iranian regional airports using robust Number employees, Terminal Area, Length of runway. ATMS, PAX, (Roghanian and Foroughi, 2010)

data envelopment analysis amount of cargo, revenue

Measuring airport quality from the airlines’ viewpoint: Quality: Airport amenities (restaurants, transport of passengers, Efficiency and quality of airports (Adler and Berechman, 2001)

An application of data envelopment analysis processing time)

Efficiency: Delay data, runway capacity, local labor force cost

and reliability of airport traffic control

Airport Economic Efficient Frontier Runway length, passenger terminal area, number of employees and apron area Number of airplanes, PAX, revenues and cargo (Yoshimoto, Pinto Alves and Caetano, 2018

Environmental efficiency assessment of U.S. transport sector: Btu of energy consumption, number of employees, production carbon efficiency (CE), potential carbon reduction (PCR) (Park et al.,2018)

A slack-based data envelopment analysis approach in transportation GDP and emission of CO2

Applying the data envelopment analysis to discuss performance All costs for introducing customer relationship management, Response time to customer needs or complaints. (Chen et al., 2018)

evaluation of customer relationship management in shipping industry manpower cost Operation performance of a company

Developing measures of airport productivity and performance: Airline prices, fees and retail prices, income, PAX Profit, revenue (Gillen, 1997)

An application of data envelopment analysis

A distance friction minimization approach in data envelopment analysis: Runways, terminal space (m2), gates, PAX and ATMS (Suzuki, Nijkamp, Rietveld and Pels, 2010)

A comparative study on airport efficiency number of employees

Human resource rightsizing using centralized data envelopment analysis: Number of workers, time of production, total number of operations Manpower cost, production cost (Yu et al., 2013)

Evidence from Taiwan’s airports per worker, number of regular and periodic time workers

Evaluating the multi-period operating efficiency of international airports Land Area, Length of runway, passenger terminal, Cargo terminal Number of flights, PAX, ( Ahn and Min, 2014)

using data envelopment analysis and the Malmquist productivity index annual cargo throughput

Operational and financial performance of Italian airport companies: PAX, ATMS Return on investment, return on equity, return on sales, (Abruzzo et al., 2016)

A dynamic graphical model overall number of cargo movements, %low cost carrier passenger Equity-Debt ratio, Asset turnover ratio

Productivity efficiency analysis of the airlines in China after deregulation Labor, fuel, number of aircrafts Total flights, revenues of passenger and freight (Cao et al., 2015)

Disentangling the European Airlines efficiency puzzle: Number of aircrafts, labor, supplies and outside services Revenue (Duygyn et al., 2016)

A network data envelopment analysis approach

Efficiency and productivity changes in Greek airports Runway length, apron size, passenger terminal size PAX, ATMS (Fragoudaki et al., 2016)

during the crisis years 2010-2014 tons of cargo handled

New evidence on the efficiency of Italian airports: Number of employees, runways, apron size, airport size, ATMS, PAX, amount of cargo, (Curi et al., 2011)

A bootstrapped DEA analysis labour costs, other costs aeronautical revenue, non-aeronautical revenue

Assessment of airport performance using the ATMS, domestic cargo, PAX Labor, runway area, apron area, terminal area (Yu, 2010)

SBM-NDEA model

Network DEA models in transportation. Runway area, number of stands, number of boarding gates ATMS and Cargo (Lozano et al., 2009)

Application to airports number of check-in counters, number of baggage belts

Multi-period efficiency and Malmquist productivity Operating expenses, insurance expenses Underwriting profit, investment profit (Kao and Hwang, 2014)

index in two-stage production systems

Two-stage network structures with undesirable outputs: Runway area, apron capacity, number of boarding gates, number of baggage belts ATMS, cargo landed (Maghbouli, Amirteimoori and Kordrostami, 2014)

a DEA based approach number of check-in counters

Measuring aeronautical service efficiency and commercial service efficiency Runway area, staff costs, other operating costs ATMS, PAX, cargo, (Liu, 2016)

of East Asia airport companies: An application of Network operating revenues

Data Envelopment Analysis

Evaluating the multi-period efficiency of East Asia airport companies. Runway area, staff costs, other operating costs ATMS, PAX, cargo, (Liu, 2017)

non-aeronautical revenues

A dynamic network efficiency measurement of Policy making based on sustainable development concept, budget Non-aviation income, sollutions levels, satisfaction (Olfat et al., 2016)

airports performance considering sustainable development

concept: a fuzzy dynamic network-DEA approach

The analysis of the cost-revenue production cycle efficiency of the Soft operating expenditures, labor cost, terminal size, apron size, area of runways ATMS, PAX, cargo, aviation revenues (Storto, 2018)

Italian airports: a NSBM DEA approach number of employees non-aviation revenues

Sustainable airport development with performance evaluation forecasts: Runway area, passenger terminal area Airport total revenues, airport net income, ATMS, (Wang and Song, 2020)

A case study of 12 Asian airports PAX, cargo

1

Scheme 1. Literature review input and output variables.
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• First characteristic: select similar airports by market sizes. Airports can be classified
according with the total number of enplanement passengers per year. For example,
The United States Federal Aviation Administration (FAA) categories airports by the
percentage of their U.S. annual commercial enplanements per year. In this paper, we
propose to select the airports in the sample according to their PAX demand through
time. To do so, we propose to select airports using the Airports Council International
world database.

• Second characteristic: select similar airports by the size of the economy of the metropoli-
tan area where they are located. In this paper, we propose to select the airports in the
sample according with the gross domestic product (GDP) of the metropolitan area
where they are located. To do so, we propose to cluster the airports in the sample by
the size of the GDP of the metropolitan areas where they are located using the OECD
and the World Bank databases (data.oecd.org and data.worldbank.org) (accessed on 4
August 2021).

• Third characteristic: select similar airports by the existence of airport competition. A
metropolitan area has a multi-airport system when they have two or more airports
serving commercial traffic, and consequently, they compete for passengers and airlines.
In multi-airport systems, the behavior of the airports is influenced by passengers and
airlines because they have the possibility of taking airport traffic elsewhere if fees
and quality of services are not satisfactory. So, PAX demand depends on region,
population, economic activity, airline management, and airport management [54]. On
the contrary, in a single airport system, PAX demand depends on region, population,
and economic activity [54]. For these reasons, we propose to classify the airports in
the sample as part of a multi-airport system or not to consider if the airports in the
sample have a certain level of local competition or not. It is important to say that
multi-airport systems do not have the same level of competition; some have a higher
level of competition than others.

• Fourth characteristic: select similar airports by their airport competitiveness index
(ACI). The airport competitiveness index proposed by [55] evaluates whether the
airports in the sample are similar in terms of their level of competition. ACI is
composed of 13 indicators and a safety factor (SAF). The indicators are used to
calculate four subindexes that measure: market potential, accessibility, airport fees,
and previous traffic results. The market potential index (Im) is the average of five
indicators related to the metropolitan area where the airport is located: population size
(POP), GDP per capita (GDPppp), tourism (TRS), airport hub (HUB), and liberalization
of air transport (LIB). The accessibility index (Ii) is the average of three indicators
related to the airport ground and air access infrastructure: road infrastructure (RDS),
public transport systems (PTS), and airport delays (DEL). The airport fees index (Ich)
is the average of two indicators related to airports aeronautical charges: airport fees
for services and facilities (CHA) and curfews (CUR). The previous traffic results index
(It) is the average of three indicators related to airports latest performances: PAX
demand, the number of airlines operating flights at the airport (ARL), and the number
of destinations or city connections (DES). Scheme 2 explains how the 13 indicators
and the safety factors are determined and the database they were obtained. Equation
(1) calculates the airport competitiveness index [55].

ACI = 0.25SAF[Im + Ii + Ich + It] (1)

data.oecd.org
data.worldbank.org
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.

ACI Source Note

Indicator

POP Airport Council International Database Grancay (2009) sets an upper limit to 3 million people. All the

metropolitan areas above this limit get the highest score 1; and all the

metropolitan areas under this limit get the direct proportion from the

upper limit.

GDP data.oecd.org and data.worldbank.org Grancay (2009) sets an upper limit to 35000 usd in 2009, today is worth

approx. 42675 usd. All the metropolitan areas above this limit get the

highes score 1; and all the metropolitan areas under this limit get the

direct proportion from the upper limit.

TRS Global Destination Cities Index by Master In this paper, we decided that any city ranked in top 20 in its world region

Card gets scored 1, if not gets score 0.

HUB Airports websites Grancay (2009) indicates that all airports serving as a hub of a full-service

carrier get scored 1; airports with strong presence of low-cost airlines get

0.7; airports that serve more than 10 million pax per year, but they are not

hub of any full-service carrier get 0.4; airports serving as a hub of a

small-service carrier get 0.4; and all others get score 0.

LIB European Commission, Mobility and Grancay (2009) determines the degree of liberalization of air transport

Transport, Status of aviation relations by based in the open sky agreements signed between the country where the

country; and US Department of State, Civil airport is located and the two largest air transport markets (US and EU).

Air Transport Agreements, Open Skies Hence, the US and EU airports get score 1. Airports located in other

Partners, Division of Transport Affairs countries get 0.5 for having signed an open sky agreement with the US

and 0.5 for having signed an open sky agreement with the EU.

RDS All the busiest airports in the world have Grancay (2009) determines that airports that have multi-lane highways

multi-lane highways, which is probably not connecting them with the metropolitan area where they are located score

the case for small and regional airports 1, if not score 0.

located in Asia and Africa (Grancay, 2009). Grancay (2009) distinguishes between four transport modes: high-speed

PTS Airports websites train score 1, regular train score 0.75, subway score 0.5, and shuttle or

bus service score 0.25.

DEL www.flightradar24.com/data/airports In this paper, we decided to use the airport rating reported by my

flightradar24 because the Bureau of transport statistics only publishes US

airports delay data

CHA Airports annual reports and financial In this paper, we decided to calculate the average annual airport revenue

statements per enplaned pax. The airport with the max average annual airport

revenue per enplaned pax (upper limit) gets the highest score 1, and the

other airports get the direct proportion from the upper limit.

CUR www.boeing.com/commercial/noise/list.page Grancay (2009) decides that airport with imposed curfews get score 0,

others get score 1.

PAX Airport Council International Database For each airport, Grancay (2009) analysis PAX growth rates for the last

five consecutive years. Airports get score 0 if PAX growth decline or

stagnation between years. Airports get score 1 if PAX growth rates are

over 100%. Finally, the score of airports is equal to the last annual growth

rate if PAX growth between 0 and 100%.

ARL www.flightsfrom.com/ Grancay (2009) decides that an airport serving 20 or more airlines gets

score 1, otherwise gets score 0.

DES www.flightsfrom.com/ In this paper, airports get score 1 if the number of destinations (city

connections) they serve is equal or greater than 200, otherwise their score

is equal to the direct proportion from the upper limit of 200.

SAF Fragile States Index Annual Report Grancay (2009) establishes that Airports located in countries with a fragile

published by the Fund for Peace (FFP) state index ranked as ”very sustainable”, ”sustainable”, ”very stable”, and

”more stable” get score 1. Airports located in countries with a fragile state

index ranked as ”warning”, ”elevated warning”, and ”high warning” get

score 0.8. Finally, Airports located in countries with a fragile state index

ranked as ”alert”, ”high alert”, and ”very high alert” get scored 0.5.

1

Scheme 2. Airport competitiveness index indicators and safety factor.
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2.2. Step 2: ARIMA-GARCH-Bootstrap Forecasting Method

We assume that PAX and ATMS structure can be represented by the next models

PAXt = µ1
t + σ1

t ε1
t (2)

ATMSt = µ2
t + σ2

t ε2
t (3)

where µi
t is the conditional mean, σi

t the conditional standard deviation, and εi
t is the error

term with zero mean and unit variance. We estimate each element of the model using the
ARIMA-GARCH-Bootstrap forecasting method proposed by [44].

µ1
t is estimated using a SARIMA method as follows

µ1
t =

(
φ1B + ... + φpBp)(φSBS + ... + φPSBPS

)
PAXt +

(
−θ1B− ...− θqBq)(−θSBS − ...− θQSBQS

)
σ1

t ε1
t (4)

where B is a lag operator (BPAXt = PAXt−1), and p, q, P, and Q are SARIMA model orders.
A similar equation is set for µ2

t .
σ1

t is estimated using a GARCH(1,1) model as follows

σ12
t = α0 + α1σ12

t−1ε12
t−1 + β1σ12

t−1 (5)

where α0 > 0, α1 > 0 and (α1 + β1) < 1.
Finally, the Bootstrap method is applied to estimate the behavior of ε1

t at the same
time using the procedure proposed by [56]. Similar equations are set for µ2

t , σ2
t and ε2

t .

2.3. Step 3: Data Envelopment Analysis Models

Data envelopment analysis models are vast. We apply the CRS DEA and the VRS DEA
models. DEA models measure the efficiency and productivity with different orientations.
Output-oriented DEA models maximize outputs for given inputs, indicating how much a
firm can increase its outputs for given inputs. In this paper, we analyze how much outputs
(PAX and ATMS) can change given the infrastructure of the analyzed airports.

The aim is to measure the efficiency and productivity of n units DMU1, DMU2, . . . ,
DMUn. Each unit produces a vector y of s outputs, y ∈ Rs

+, while consuming a vector x of
m inputs, x ∈ Rm

+ . Let us write an input matrix X =
[
xij, i = 1, ..., m, j = 1, ..., n

]
and an

output matrix Y =
[
yrj, r = 1, ..., s, j = 1, ..., n

]
.

The shape of the efficient frontier is different depending on the scale. Two scale as-
sumptions are the most widely implemented in the literature: CRS and VRS. Productive units
employ CRS if a change in inputs results in a change on outputs in the same proportion. Under
the VRS assumption, the efficient frontier is convex, which means that the average productivity
varies along the frontier. Hence, marginal productivity always diminishes.

2.4. Output Oriented CRS DEA Model

The technology production possibility set for an Output Oriented CRS (CRS-OO) DEA
model is T = {(x, y)|x > Xλ, y 6 Yλ, λ > 0}. We can estimate the efficiency score solving
the following linear program for each DMU:

max
θ,λ

θ (6)

s.t
Xλ ≤ x
θy ≤ Yλ
λ ≥ 0

where λ is the optimization variable, which is a variable that measures the relationship
importance between the DMU’s and the DMU under analysis. The optimum θ∗ is such that,
(x, θ∗y) ∈ T. The next step is to use the optimum to calculate the slack variables s+ and s− ,
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where s− = x− Xλ and s+ = Yλ− θ∗y. If θ∗ = 1 and all slacks are zero, a DMU is TE. If
the results indicate that θ∗ > 1 and nonzero slacks, then a DMU is inefficient [38].

2.5. Output Oriented VRS DEA Model

The technology production possibility set for an Output Oriented VRS (VRS-OO) DEA
model is T =

{
(x, y)|x > Xλ, y 6 Yλ, λ > 0, ∑n

j=1 λj = 1
}

. We can estimate the efficiency
score solving the following linear program for each DMU:

max
φ,λ

φ (7)

s.t
Xλ ≤ x
φy ≤ Yλ
λ ≥ 0

The optimum φ∗ is such that (x, φ∗y) ∈ T. The next step is to use the optimum to
calculate the slack variables s+ and s− , where s− = x− Xλ and s+ = Yλ− φ∗y. If φ∗ = 1
and all slacks are zero, a DMU is PTE. If the results indicate that φ∗ > 1 and nonzero slacks,
then a DMU is inefficient [39].

2.6. Bootstrapping DEA

Bootstrap techniques are applied to correct the uncertainty in point estimations of
DEA efficiency scores calculated previously [57]. Bootstrap distributions of the efficiency
scores can be approximated to derive statistical inference for each DMU, for example, the
correction of the efficiency by the estimation bias and confidence intervals.

The estimation bias of the CRS-OO DEA model can be calculated as follows:

Bias(θ∗) =

B
∑

b=1
θ∗i,b

B
− θ∗i , i = 1, ..., n (8)

where θ∗i,b is the efficiency score for bootstrap replicate b. Thus, the efficiency correction is
obtained by subtracting the Bias from θ∗i .

An approximation of the confidence intervals for the efficiency score is calculated
using the bootstrap distribution of θ∗i

P
[
q∗α ≤ θi ≤ q∗1−α

]
= 1− α (9)

where q∗α and q∗1−α are the quartiles of the bootstrap distribution.
Similarly, the estimation bias and confidence intervals can be calculated for the VRS-

OO efficiency scores.

3. Results

The proposed approach is applied to evaluate the future airport infrastructure perfor-
mance of the new Mexico City Airport against 19 representative worldwide airport hubs:
ATL, IAH, MIA, LAX, DFW, SFO, LGA, JFK, EWR, BOG, ORD, DXB, LHR, HKG, CDG,
AMS, FRA, SIN, and DEN. Airport management strategies to reach efficiency are proposed
based on the results. We select these airports using the proposed airports sampling method
presented in Section 3.1.

First characteristic: select similar airports by market sizes. MEX and 18 of the selected
airports in the sample belong to the list of the top 35 busiest airports measure by PAX since
2000 according with the Airports Council International database. We choose the busiest
airports in the world because MEX belongs to this list since 2000, and this paper aims to
evaluate the future airport infrastructure performance of the new Mexico City Airport
against similar airports hubs. However, as all these airports are located mainly in USA,
Europe, and Asia, we decide to also include BOG. We find important to include another
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airport hub from Latin-America apart from MEX even if it is not a top 35 busiest airport
measure by PAX. However, BOG is the third biggest airport in Latin America following
MEX and Sao Paulo (GRU), which is not included in the sample because of a lack of data.

Second characteristic: select similar airports by the size of the economy of the metropoli-
tan area where they are located. The selected airports in the sample belong to the list of the
top 50 richest cities and urban areas by GDP in the world, except of BOG, according with
data.oecd.org and data.worldbank.org.

Third characteristic: select similar airports by the existence of airport competition.
All the airports in the sample are in metropolitan areas where multiple airports serve
commercial traffic forming a multi-airport system.

Fourth characteristic: select similar airports by their ACI index. Scheme 3 shows the
four characteristics for each airport in the sample. The airports in the sample have a similar
ACI index. The sources or databases used to calculate the ACI index of the airports in the
sample are shown in Scheme 2. The sample ACI index mean is 0.80, the median is 0.82, and
the standard deviation is 0.09. The most competitive airports are ATL and IAH with an ACI
index of 0.94 and 0.91, respectively. The less competitive airports are BOG and MEX with
an ACI index of 0.65 and 0.67, respectively. The country safety factor (SAF) hardly affects
the airport competitiveness index of MEX and BOG because, after calculating the same
index without considering SAF, the airports in the sample competitive index mean is 0.82,
the median is 0.84, and the standard deviation is 0.06; and MEX airport competitiveness
index is 0.84, which is slightly over the mean of the sample and equal to the median of
the sample, whilst BOG airport competitiveness index is 0.81, which is slightly under
the mean of the sample. This characteristic confirms that the airports in the sample are
quite similar in terms of competitiveness. Scheme 4 shows the market potential index, the
accessibility index, the airport fees index, the previous traffic result index, and the SAF
for each airport in the sample. The airport with the worst market potential index is FRU.
Most of the airports in the sample have a market potential index equal to 1. The market
potential index of MEX is 0.93, which is slightly under the mean of the sample (0.94) and
under the sample median (1.00). The airports with the worsts accessibility index are LGA
and LAX with 0.64 and 0.67, respectively. The airports with the best accessibility index are
AMS and DXB with 0.96, followed by FRA and LHR with 0.94. The accessibility index of
MEX is 0.73, which is less than one standard deviation (0.10) under the mean of the sample
(0.81) and under the sample median (0.79). The airports with the worsts airport fees index
are LHR and CDG with 0.00 and 0.02, respectively. In general, the European airports have
low airport fees index because their airport charges are the most expensive of the sample
and all of them have curfews. LAX is the only American airport with a curfew according
to www.boing.com. The airports with the best airport fees index are ATL, BOG, DEN, and
LGA with 0.92. The airport fees index of MEX is 0.86, which is over the mean of the sample
(0.64) and over the sample median (0.76). Finally, the airports with the worst previous
traffic results index are LGA and BOG with 0.81 and 0.82, respectively. Most of the airports
in the sample have a previous traffic results index equal to 1. The market potential index
of MEX is 0.85, which is more than one standard deviation (0.06) under the mean of the
sample (0.96) and under the sample median (0.99).

data.oecd.org
data.oecd.org
data.worldbank.org
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Airport Global top 35 busiest Global top 50 richest cities Cities with a multi- ACI ACI index

airports and urban areas by GDP airport system index without SAF

AMS Yes Yes Yes 0.81 0.81

ATL Yes Yes No 0.91 0.91

BOG No No No 0.62 0.78

CDG Yes Yes Yes 0.76 0.76

DEN Yes Yes No 0.82 0.82

DFW Yes Yes Yes 0.83 0.83

DXB Yes Yes Yes 0.88 0.88

EWR Yes Yes Yes 0.81 0.81

FRA Yes Yes Yes 0.74 0.74

HKG Yes Yes Yes 0.64 0.80

IAH Yes Yes Yes 0.88 0.88

JFK Yes Yes Yes 0.77 0.77

LAX Yes Yes Yes 0.75 0.75

LGA Yes Yes Yes 0.75 0.75

LHR Yes Yes Yes 0.74 0.74

MEX Yes Yes Yes 0.65 0.81

MIA Yes Yes Yes 0.81 0.81

ORD Yes Yes Yes 0.77 0.77

SFO Yes Yes Yes 0.80 0.80

SIN Yes Yes No 0.83 0.83

1

Scheme 3. Characteristics of the airports in the sample.

Airport Im Ii Ich It SAF Airport Im Ii Ich It SAF

AMS 0.98 0.96 0.28 1.00 1.00 IAH 1.00 0.77 0.89 0.98 1.00

ATL 1.00 0.86 0.92 1.00 1.00 JFK 1.00 0.76 0.73 0.98 1.00

BOG 0.81 0.68 0.92 0.82 0.80 LAX 1.00 0.67 0.19 1.00 1.00

CDG 1.00 0.91 0.02 1.00 1.00 LGA 1.00 0.64 0.92 0.81 1.00

DEN 0.80 0.80 0.92 1.00 1.00 LHR 1.00 0.94 - 1.00 1.00

DFW 0.80 0.86 0.90 1.00 1.00 MEX 0.93 0.73 0.86 0.85 0.80

DXB 0.99 0.96 0.58 1.00 1.00 MIA 1.00 0.77 0.80 0.94 1.00

EWR 1.00 0.74 0.79 0.98 1.00 ORD 0.80 0.85 0.68 1.00 1.00

FRA 0.78 0.94 0.25 1.00 1.00 SFO 1.00 0.77 0.78 0.90 1.00

HKG 0.90 0.76 0.72 0.93 0.80 SIN 1.00 0.82 0.70 0.92 1.00

1

Scheme 4. ACI subindexes and the SAF.

3.1. Experimental Data

The infrastructure of an airport can be divided into airside and terminal side. Airside
infrastructure limits the capacity of airport operations measured as ATMS [1]. ATMS is a
productivity output variable of an airport airside infrastructure. ATMS accounts to the numbers
of landings and take offs in a certain period [58]. The number of landings and take offs are
restricted to the number of runways (Runways) that can be operated simultaneously, the size of
the airport (Airport Size), and the number of gates (Gates). Moreover, the Airport Size and Gates
are also restricted by the capacity of the airport to handle a certain number of airline passenger
carriers (Pax Carriers). Therefore, in this paper, the airports airside infrastructure productivity
or ATMS is measured analyzing the relation among these input variables. Scheme 5 shows the
airside infrastructure productivity variables studied in this paper.

The level of service is the most important measure for an airport terminal infrastruc-
ture. The level of service is calculated with PAX during a certain period. Then, PAX is a
productivity output variable of an airport terminal side infrastructure. PAX is restricted
to the airport size (Airport Size) because this input variable is related to the capacity of
an airport to handle PAX [1]. Cities variable is the total number of cities connecting with
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the airport in direct flights and defines its level of connection and shows how big is the
airport network. Cities is a connectivity indicator that allows measuring the connection
quality of an airport, which is related to the level of service that the airport terminal infras-
tructure can provide. This variable is related to airport terminal infrastructure because the
infrastructure of an airport is highly influenced by the kind of destinations it operates, i.e.,
international or national connections. Finally, labor productivity is measured dividing the
total output over the number of employees (Employees). Scheme 5 also shows the terminal
side infrastructure productivity variables studied in this paper.

Scheme 5 also shows the input and output variables for the four scenarios studied in
this paper. Scenario 1 studies the TE and PTE of the airside and terminal side infrastructure
together. Scenario 2 studies the TE and PTE of airside and terminal side infrastructure
productivity measures. Scenario 3 only studies the TE and the PTE of the terminal side
infrastructure productivity measures. Scenario 4 only studies the TE and the PTE of the
airside infrastructure productivity measures. These scenarios are proposed in this paper
based on the variables studied in the literature review.

Scenario Data

1 Inputs: Cities Gates Runways Airport size (m2) Pax Carriers Num. of employees

Outputs: Pax (millions) ATMS

2 Inputs: Cities Gates / Runways Airport size (m2) Pax carriers Employees / Gates Gates

Outputs: Pax (millions) ATMS

3 Inputs: Cities Airport size (m2) Pax Carriers Employees / Gates

Outputs: Pax (millions)

4 Inputs: Gates Gates / Runways Airport size (m2) Pax Carriers

Outputs: ATMS

1

Scheme 5. Productivity measures and scenarios under study.

3.2. DEA Models Results

The authors of [59] demonstrate that DEA models should be applied to study one
input and one output variables rather than multiple inputs and multiple outputs variables
because reducing the dimensionality of the sample provides better efficiencies estimates.
Therefore, they suggest developing one input or one output factor called proxy, which are
linear combinations of input and output variables. An input proxy must satisfy a positive
correlation with input variables, and in a similar way, an output proxy must satisfy a
positive correlation with output variables. The authors of [60] explain in detail how to
calculate the proxy. In this study, Appendix A shows linear correlations among variables
and the proxy variables calculated for DEA implementation.

In 2019, the input proxy calculated for scenario 1 indicates that 94.42% of variability
is explained by the linear combination of four input variables (Cities, Gates, Runways,
and Airport Size) from the six under study (Scheme 1). Two are found to be irrelevant
(Employees and Pax Carriers) because they do not add additional information. The output
proxy calculated for scenario 1 indicates that 98.44% of variability is explained by the linear
combination of two output variables (PAX and ATMS).

The number of connections (Cities) operated by the airports is the most relevant input
variable because it adds most of the information to proxy (Appendix A, Table A1) since
it is the most correlated variable with the proxy. This means, when airports increase the
number of connections by opening operations with more cities, the proxy explains more
variability, and vice versa. PAX and ATMS are equally relevant to the output proxy because
both are equally correlated to the proxy (Appendix A, Table A2).

This result is important to analyze because, in this study, DEA methodologies are
applied using the proxy as the unique input parameter. The results of the application of
DEA methodologies to scenario 1 indicate the TE airports and the technical inefficient
airports, with these results it is possible to calculate by how much the proxy must be
increased to the inefficient airports to become efficient (Scheme 6a).
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DEA MODEL CRS-OO VRS-OO

TE 1/TE PTE 1/PTE

ATL 1.63 0.61 1.10 0.91

IAH 2.97 0.34 2.04 0.49

MIA 2.73 0.37 1.96 0.51

LAX 1.67 0.60 1.18 0.85

DFW 2.70 0.37 1.56 0.64

SFO 2.26 0.44 1.63 0.61

LGA 1.74 0.57 1.83 0.55

JFK 2.31 0.43 1.64 0.61

EWR 2.44 0.41 1.79 0.56

MEX 1.32 0.75 1.38 0.72
BOG 1.09 0.92 1.28 0.78

ORD 1.93 0.52 1.21 0.82

DXB 1.85 0.54 1.33 0.75

LHR 2.46 0.41 1.67 0.60

HKG 1.10 0.91 1.15 0.87

CDG 2.39 0.42 1.62 0.62

AMS 2.82 0.35 1.80 0.56

FRA 2.43 0.41 1.65 0.61

SIN 2.08 0.48 1.58 0.63

DEN 2.74 0.37 1.71 0.59

1

(a)

DEA MODEL CRS-OO VRS-OO

TE 1/TE PTE 1/PTE

ATL 2.05 0.49 1.12 0.90

IAH 4.93 0.20 3.20 0.31

MIA 4.54 0.22 3.52 0.28

LAX 2.71 0.37 1.97 0.51

DFW 4.58 0.22 2.16 0.46

SFO 3.28 0.30 2.56 0.39

LGA 2.97 0.34 2.89 0.35

JFK 2.41 0.41 1.79 0.56

EWR 3.85 0.26 3.02 0.33

MEX 1.45 0.69 1.38 0.72
BOG 1.11 0.90 1.38 0.73

ORD 3.23 0.31 1.65 0.61

DXB 1.43 0.70 1.12 0.89

LHR 2.73 0.37 1.65 0.61

HKG 1.22 0.82 1.16 0.86

CDG 3.00 0.33 1.80 0.56

AMS 2.47 0.40 1.28 0.78

FRA 3.33 0.30 2.01 0.50

SIN 1.99 0.50 1.58 0.63

DEN 2.56 0.39 1.30 0.77

1

(b)

Scheme 6. (a) Scenario 1 DEA methodologies results for 2019. (b) Scenario 1 DEA methodologies
results for 2030.

Scheme 6a shows the TE and the PTE for all the airports in the sample in scenario
1. The TE and the PTE of MEX are 1.32 and 1.38 for the CRS-OO and VRS-OO DEA
models, respectively. These results indicate that MEX output variables (PAX and ATMS)
must be increased by 1.32 for the CRS-OO DEA model or by 1.38 for the VRS-OO DEA
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model to reach TE = 1.00 and PTE = 1.00 because 1/TE is 0.75 for the CRS-OO and 1/PTE
is 0.72 for the VRS-OO. We propose different strategies to achieve so: one, increase the
number of connections (Cities); two, increase the total number of gates (Gates); three,
increase the number of runways (Runways); and four, to expand the airport size (Airport
Size). However, in the case of MEX, only the first strategy can be applied, but during non-
peak hours, because the airport infrastructure cannot be expanded by any means (Gates,
Runways, and Airport Size). In this scenario, MEX unique opportunity to become efficient
is by increasing the number of connections (Cities) or to build a new airport (Airport Size)
in another site (the new Mexico City Airport). According to these results, in 2019, MEX
needed to handle 1.32 times the output proxy variable (PAX and ATMS) for the CRS-OO
and 1.38 times the output proxy variable (PAX and ATMS) for the VRS-OO. This extra
capacity (0.32 for the CRS-OO and 0.38 for the VRS-OO) could had been covered only if the
new Mexico City airport would have been built and operating.

In 2030, the input proxy calculated for scenario 1 is the same as in 2019 (Appendix A,
Table A1). Contrary, the output proxy changes because, in this paper, PAX and ATMS
are forecasted in the mid-term for 2030 applying the ARIMA + GARCH + Bootstrap
method [44]. It is important to understand that any forecasting method could not consider
the pandemic effect. Moreover, the 2020 data are not considered in the sample. PAX and
ATMS forecasts grow for the 20 airports in the sample. The output proxy calculated for
scenario 1 indicates that 93.66% of variability is explained by the linear combination of two
output variables (PAX and ATMS). In this case, PAX is more relevant than ATMS to the
output proxy because PAX is more correlated to proxy than ATMS (Appendix A, Table A3).

Scheme 6b shows the DEA methodologies results for 2030 scenario 1. In the case
of MEX, the TE and the PTE are 1.45 and 1.38 for the CRS-OO and VRS-OO models,
respectively. These results indicate that MEX output variables (PAX and ATMS) have to
be increased by 1.45 for the CRS-OO DEA model or by 1.38 for the VRS-OO DEA model
to reach TE = 1.00 and PTE = 1.00 because, if inputs do not change, the expected 1/TE is
0.69 for the CRS-OO and the 1/PTE is 0.72 for the VRS-OO. The strategies proposed for
2019 can also be applied in 2030 for this scenario, but in this case, the effect of the proposed
strategies in the output would show a bigger impact in PAX than in ATMS. This allows
proposing another strategy where airlines should operate aircrafts with more capacity
to increase PAX in a bigger proportion than ATMS. According to these results, in 2030,
MEX airport and the new Mexico City airport would need to handle the 1.45 times the
output proxy variable (PAX and ATMS) for the CRS-OO and 1.38 times the output proxy
variable (PAX and ATMS) for the VRS-OO. This suggests that the new Mexico City airport
infrastructure would need to handle at least 0.45 times the output proxy variable (PAX
and ATMS) for the CRS-OO and 0.38 times the output proxy variable (PAX and ATMS) for
the VRS-OO. It is possible to conclude that the new Mexico City airport needs to operate
aircrafts with high PAX capacity, which requires big facilities in terminal side infrastructure
and also in air side infrastructure.

In 2019, the input proxy calculated for scenario 2 indicates that 94.02% of variability
is explained by the linear combination of four input variables (Cities, Gates, Pax Carriers,
and Gates/Runways) from the six under study (Scheme 5). Two are found to be irrelevant
(Employees/Gates and Airport Size) because they do not add additional information. The
output proxy calculated for scenario 2 indicates that 98.44% of variability is explained by
the linear combination of two output variables (PAX and ATMS).

The number of gates (Gates) at airports is the most relevant input variable because
it adds most of the information to proxy since it is the most correlated variable with the
proxy (Appendix A, Table A4). This means airports need to invest in airport infrastructure
adding more gates to their terminals. PAX and ATMS are equally relevant to output proxy
because both are equally correlated to proxy (Appendix A, Table A5).

The results of the application of DEA methodologies to scenario 2 indicate the TE
and the PTE airports and the inefficient airports, and using these results, it is possible to
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calculate how much the proxy must be increased for the inefficient airports to become
efficient (Scheme 7a).

DEA MODEL CRS-OO VRS-OO

TE 1/TE PTE 1/PTE

ATL 1.50 0.67 1.11 0.90

IAH 2.53 0.39 1.90 0.53

MIA 2.98 0.34 2.19 0.46

LAX 1.87 0.53 1.38 0.72

DFW 2.07 0.48 1.53 0.65

SFO 2.43 0.41 1.79 0.56

LGA 2.15 0.46 1.89 0.53

JFK 2.58 0.39 1.90 0.53

EWR 2.76 0.36 2.04 0.49

MEX 1.59 0.63 1.39 0.72
BOG 1.11 0.90 1.31 0.76

ORD 1.76 0.57 1.22 0.82

DXB 2.64 0.38 1.67 0.60

LHR 3.75 0.27 1.78 0.56

HKG 1.57 0.64 1.28 0.78

CDG 2.79 0.36 1.72 0.58

AMS 2.77 0.36 1.79 0.56

FRA 2.83 0.35 1.77 0.57

SIN 2.62 0.38 1.93 0.52

DEN 1.98 0.51 1.47 0.68

1

(a)

DEA MODEL CRS-OO VRS-OO

TE 1/TE PTE 1/PTE

ATL 1.87 0.53 1.09 0.92

IAH 4.20 0.24 2.59 0.39

MIA 4.94 0.20 2.93 0.34

LAX 3.04 0.33 1.78 0.56

DFW 3.51 0.28 2.05 0.49

SFO 3.52 0.28 2.11 0.47

LGA 3.67 0.27 2.89 0.35

JFK 2.69 0.37 1.58 0.63

EWR 4.35 0.23 2.59 0.39

MEX 1.75 0.57 1.37 0.73
BOG 1.13 0.89 1.34 0.75

ORD 2.95 0.34 1.66 0.60

DXB 2.04 0.49 1.10 0.91

LHR 4.17 0.24 1.68 0.59

HKG 1.75 0.57 1.23 0.81

CDG 3.51 0.28 1.85 0.54

AMS 2.43 0.41 1.32 0.76

FRA 3.88 0.26 2.07 0.48

SIN 2.50 0.40 1.47 0.68

DEN 1.85 0.54 1.12 0.90

1

(b)

Scheme 7. (a) Scenario 2 DEA methodologies results for 2019. (b) Scenario 2 DEA methodologies
results for 2030.
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Scheme 7a shows the TE and the PTE for all the airports in the sample in scenario 2.
The TE and the PTE of MEX are 1.59 and 1.39 for the CRS-OO and VRS-OO DEA models,
respectively. These results indicate that MEX output variables (PAX and ATMS) must be
increased by 1.59 for the CRS-OO DEA model or by 1.39 for the VRS-OO DEA model to
reach TE = 1.00 and PTE = 1.00 because MEX 1/TE is 0.63 for the CRS-OO and 1/PTE is 0.72
for the VRS-OO. We propose different strategies to achieve so: one, increase the number of
connections (Cities); two, increase the total number of gates (Gates); three, increase the Pax
Carriers operating at MEX; and four, increase the Gates/Runaways proportion. The results
of this scenario are consistent with the results of scenario 1 (2019), indicating the actual
necessity of building the new airport to serve more PAX and ATMS. According to these
results, in 2019, MEX needed to handled 1.59 times the output proxy variable (PAX and
ATMS) for the CRS-OO and 1.39 times the output proxy variable (PAX and ATMS) for the
VRS-OO. This extra capacity (0.59 for the CRS-OO and 0.39 for the VRS-OO) could have
been covered if the new Mexico City airport would have been built by adding more gates
to the airport system (MEX and the new Mexico City Airport).

In 2030, the input proxy calculated for scenario 2 is the same as in 2019 (Appendix A,
Table A4), and the output proxy calculated for scenario 2 is the same as in the 2030 for
scenario 1 (Appendix A, Table A6). Scheme 7b shows the DEA methodologies results for
2030. In the case of MEX, the TE and the PTE of MEX are 1.75 and 1.37 for the CRS-OO
and VRS-OO models, respectively. These results indicate that MEX output variables (PAX
and ATMS) have to be increased by 1.75 for the CRS-OO DEA model or by 1.37 for the
VRS-OO DEA model to reach TE = 1.00 and PTE = 1.00 because, if inputs do not change,
the expected 1/TE is 0.57 for the CRS-OO and the 1/PTE is 0.73 for the VRS-OO. The
strategies proposed for 2019 can also be applied in 2030 for this scenario, but in this case,
the effect of the proposed strategies in the output would show a bigger impact in PAX than
in ATMS. In this scenario, the proposed strategy where the new Mexico City airport adds
more gates to the airport system allows airlines to increase the city connections expanding
the airport system network. According to these results, in 2030, MEX airport and the
new Mexico City airport need to handle 1.75 times the output proxy variable (PAX and
ATMS) for the CRS-OO and 1.37 times the output proxy variable (PAX and ATMS) for the
VRS-OO. This suggests that the new Mexico City airport infrastructure would need to add
enough gates to handle at least 0.75 times the output proxy variable (PAX and ATMS) for
the CRS-OO and 0.37 times the output proxy variable (PAX and ATMS) for the VRS-OO. It
can be concluded that the new Mexico City airport must increase the airside infrastructure
to the airport system by adding enough gates to the airport system.

Scenario 3 is planned to only study the variables related to the terminal side. The input
proxy calculated indicates that 95.65% of variability is explained by the linear combination
of two input variables (Pax Carriers and Cities) from the four under study (Scheme 5).
However, two variables are found to be irrelevant (Employees/Gates and Airport Size)
because they do not add additional information to proxy, and the relevant input variables
are more related to airport accessibility and attractiveness. In this scenario, an output proxy
is not calculated because the scenario only considers one output variable (PAX).

The number of connections (Cities) operated by the airports is the most relevant input
variable (Appendix A, Table A7). Like in scenarios 1 and 2, this input variable must be
considered by the airports to develop new strategies that enable them to become efficient.

Scheme 8a shows the TE and the PTE for all the airports in the sample in scenario 3.
The TE and the PTE of MEX are 1.92 and 1.99 for the CRS-OO and VRS-OO DEA models,
respectively. These results indicate that MEX output variable (PAX) must be increased by
1.92 for the CRS-OO DEA model or by 1.99 for the VRS-OO DEA model to reach TE = 1.00
and PTE = 1.00 because the 1/TE is 0.52 for the CRS-OO and the 1/PTE is 0.50 for the VRS-
OO. This could be achieved by developing strategies to increase the number of connections
(Cities) operated by MEX and to attract more Pax Carriers to increase its accessibility and
attractiveness. According to these results, in 2019, MEX needs to handle 1.92 times the
output variable (PAX) for the CRS-OO and 1.99 times the output variable (PAX) for the
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VRS-OO. This extra capacity (0.92 for the CRS-OO and 0.99 for the VRS-OO) could had
been covered if the new Mexico City airport would had been built by 2019 to attract airlines
and fly to new cities, thus increasing the airport system (MEX and the New Mexico City
Airport) network.

DEA MODEL CRS-OO VRS-OO

TE 1/TE PTE 1/PTE

ATL 1.28 0.78 1.14 0.87

IAH 3.03 0.33 2.71 0.37

MIA 3.39 0.29 2.62 0.38

LAX 2.31 0.43 1.46 0.69

DFW 2.36 0.42 1.67 0.60

SFO 2.95 0.34 1.99 0.50

LGA 2.12 0.47 1.53 0.65

JFK 2.81 0.36 1.85 0.54

EWR 3.45 0.29 2.53 0.39

MEX 1.92 0.52 1.99 0.50
BOG 1.88 0.53 1.32 0.76

ORD 2.01 0.50 1.39 0.72

DXB 1.98 0.50 1.23 0.81

LHR 2.72 0.37 1.55 0.65

HKG 1.13 0.89 1.25 0.80

CDG 3.34 0.30 1.49 0.67

AMS 2.97 0.34 1.58 0.63

FRA 3.27 0.31 1.61 0.62

SIN 2.38 0.42 1.79 0.56

DEN 2.08 0.48 1.86 0.54

1

(a)

DEA MODEL CRS-OO VRS-OO

TE 1/TE PTE 1/PTE

ATL 1.08 0.93 1.16 0.86

IAH 3.65 0.27 3.90 0.26

MIA 3.83 0.26 3.57 0.28

LAX 2.42 0.41 1.83 0.55

DFW 2.71 0.37 2.30 0.43

SFO 2.96 0.34 2.40 0.42

LGA 2.53 0.40 2.52 0.40

JFK 2.02 0.50 1.59 0.63

EWR 3.71 0.27 3.29 0.30

MEX 1.36 0.73 1.42 0.70
BOG 1.28 0.78 1.38 0.73

ORD 2.47 0.41 2.04 0.49

DXB 2.43 0.41 1.81 0.55

LHR 2.12 0.47 1.45 0.69

HKG 1.13 0.88 1.18 0.85

CDG 3.17 0.32 1.70 0.59

AMS 1.71 0.59 1.09 0.92

FRA 3.31 0.30 1.95 0.51

SIN 1.68 0.60 1.52 0.66

DEN 1.21 0.83 1.30 0.77

1

(b)

Scheme 8. (a) Scenario 1 DEA methodologies results for 2019. (b) Scenario 1 DEA methodologies
results for 2030.
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In 2030, the input proxy calculated for scenario 3 is the same as in 2019 (Appendix A,
Table A7). In contrast, the PAX forecast for 2030 is used as an output variable. PAX forecasts
grow for all airports in the sample. Scheme 8b shows the DEA methodologies results for
2030. In the case of MEX, the TE and the PTE are 1.36 and 1.42 for the CRS-OO and VRS-OO
models, respectively. These results indicate that MEX output variable (PAX) have to be
increased by 1.36 for the CRS-OO DEA model or by 1.42 for the VRS-OO DEA model to
reach TE = 1.00 and PTE = 1.00 because, if inputs do not change, the expected 1/TE is 0.73
for the CRS-OO and the 1/PTE is 0.70 for the VRS-OO. Contrary to the results of scenarios
1 and 2, in this scenario, MEX TE and PTE are expected to increase in the future. The
results indicate that if the number of carriers (Pax Carriers) operating at the airport and the
number of connections (Cities) remain the same, the TE and the PTE of MEX would improve
meaning that PAX could be attended by the carriers that were operating at MEX in 2019.
Therefore, these results oppose the strategies proposed to increase MEX TE and PTE in
scenarios 1 and 2 because, in this scenario, the results indicate that it would not be necessary
to increase the number of connections (Cities) and the number of carriers (Pax Carriers) in
2030 to reach efficiency. In scenario 1 and 2, the inputs variables include airport size, and
the results indicate that in 2030 MEX would become more inefficient. In this scenario, the
effect of the airport size input variable is not considered, and therefore, the conclusion is
that, if the terminal side infrastructure do not change, MEX would become more efficient.
Finally, this suggests that MEX future efficiency depends mainly on airport size.

In 2019, the input proxy calculated for scenario 4 indicates that 93.20% of variability
is explained by the linear combination of three input variables (Gates, Pax Carriers, and
Gates/Runways) from the four under study (Scheme 5). However, one variable is found to
be irrelevant (Airport Size) because it did not add additional information to the proxy. In
this scenario, an output proxy is not calculated because the scenario only considers one
output variable (ATMS).

The number of gates (Gates) is the most relevant input variable (Appendix A, Table A8).
The airport hubs in the sample should focus and develop strategies mainly in this input
variable to become efficient.

Scheme 9a shows the TE and the PTE for all the airports in the sample in scenario 4.
The TE and the PTE of MEX are 1.97 and 1.53 for the CRS-OO and VRS-OO DEA mod-
els, respectively. These results indicate that the MEX output variable (ATMS) must be
increased by 1.97 for the CRS-OO DEA model or by 1.53 for the VRS-OO DEA model to
reach TE = 1.00 and PTE = 1.00 because the 1/TE is 0.51 for the CRS-OO and the 1/PTE
is 0.65 for the VRS-OO. This could be achieved by developing strategies to increase: the
number of gates (Gates); the ratio between the number of gates and the number of run-
aways (Gates/Runways); and the number of pax carriers (Pax Carriers) operating at MEX.
According to these results, in 2019, MEX needed to handle 1.97 times the output variable
(ATMS) for the CRS-OO and 1.53 times the output variable (ATMS) for the VRS-OO. This
extra capacity (0.97 for the CRS-OO and 0.53 for the VRS-OO) could had been covered if
the new Mexico City airport would had been built by 2019 adding more gates to the airport
system (MEX and the new Mexico City Airport).
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DEA MODEL CRS-OO VRS-OO

TE 1/TE PTE 1/PTE

ATL 1.92 0.52 1.10 0.91

IAH 2.74 0.36 1.73 0.58

MIA 3.92 0.26 2.27 0.44

LAX 2.39 0.42 1.37 0.73

DFW 2.21 0.45 1.32 0.76

SFO 3.55 0.28 2.05 0.49

LGA 2.83 0.35 2.00 0.50

JFK 3.72 0.27 2.14 0.47

EWR 3.11 0.32 1.87 0.53

MEX 1.97 0.51 1.53 0.65
BOG 1.15 0.87 1.35 0.74

ORD 2.06 0.49 1.09 0.92

DXB 5.32 0.19 2.40 0.42

LHR 6.64 0.15 2.04 0.49

HKG 3.25 0.31 1.98 0.51

CDG 3.83 0.26 1.97 0.51

AMS 3.87 0.26 1.98 0.51

FRA 3.84 0.26 1.91 0.52

SIN 4.66 0.21 2.56 0.39

DEN 2.28 0.44 1.39 0.72

1

(a)

DEA MODEL CRS-OO VRS-OO

TE 1/TE PTE 1/PTE

ATL 3.52 0.28 2.25 0.44

IAH 4.87 0.21 3.40 0.29

MIA 8.45 0.12 5.45 0.18

LAX 5.78 0.17 3.70 0.27

DFW 4.83 0.21 3.20 0.31

SFO 7.15 0.14 4.58 0.22

LGA 5.16 0.19 4.03 0.25

JFK 5.93 0.17 3.79 0.26

EWR 6.02 0.17 4.02 0.25

MEX 3.03 0.33 2.61 0.38
BOG 1.24 0.81 1.58 0.63

ORD 3.65 0.27 2.33 0.43

DXB 1.98 0.50 1.29 0.77

LHR 11.87 0.08 5.27 0.19

HKG 3.36 0.30 2.27 0.44

CDG 6.25 0.16 3.99 0.25

AMS 6.53 0.15 4.18 0.24

FRA 6.71 0.15 4.31 0.23

SIN 6.63 0.15 4.23 0.24

DEN 3.37 0.30 2.29 0.44

1

(b)

Scheme 9. (a) Scenario 1 DEA methodologies results for 2019. (b) Scenario 1 DEA methodologies
results for 2030.

In 2030, the input proxy calculated for scenario 4 is the same as 2019 (Appendix A,
Table A8). On the contrary, the ATMS forecast for 2030 is used as an output variable. ATMS
forecasts growth for all airports in the sample. Scheme 9b shows the DEA methodologies
results for 2030. In the case of MEX, the TE and the PTE are 3.03 and 2.61 for the CRS-OO
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and VRS-OO models, respectively. These results indicate that MEX output variable (ATMS)
has to be increased by 3.03 for the CRS-OO DEA model or by 2.61 for the VRS-OO DEA
model to reach TE = 1.00 and PTE = 1.00 because, if inputs do not change, the expected
1/TE is 0.33 for the CRS-OO and the 1/PTE is 0.38 for the VRS-OO. These results are
consistent with the results of scenarios 1 and 2. In this scenario, TE and PTE are expected
to decrease in the future. The results indicate that MEX airside infrastructure would need
to expand to attend the ATMS in 2030. The natural strategy would be to increase the
number of gates (Gates) and the number of runways (Runways). However, MEX does not
have the possibility to expand its terminal side infrastructure or its airside infrastructure.
Therefore, the unique possible strategy is to increase airport size by building the new
airport in the Santa Lucia Base as it is currently being built. According to these results, in
2030, MEX airport and the new Mexico City airport would need to handle 3.03 times the
output variable (ATMS) for the CRS-OO and 2.61 times the output variable (ATMS) for
the VRS-OO. This suggests that the new Mexico City airport infrastructure needs to add
enough airside infrastructure (Gates/Runways and Gates) to handle at least 2.03 times the
output variable (ATMS) for the CRS-OO and 1.61 times the output variable (ATMS) for the
VRS-OO. Therefore, it can be concluded that the new Mexico City airport must increase the
airside infrastructure to the airport system. The results suggest to increase Gates because it
is the variable that impact the input proxy the most. It is important to assure that the variable
Gates/Runways is in equilibrium because if the number of gates increases too much and the
number of runways does not change, operatively, the efficiency could not increase, but it may
actually decrease. The reason is because the capacity of the runways become the bottleneck, and
the number of ATMS could not increase even if the airport has more gates. Therefore, increasing
the number of gates, at some point, requires increasing runways.

The TE is a point estimation of the real TE. It is important to analyze the uncertainty
of this estimation using confidence intervals because this limits the range of values of TE.
Figure 1 shows the TE and the Bootstrap confidence intervals for the CRS-OO of each
airport in the sample for 2019 (left panel) and for 2030 (right panel). In general, Figure 1
shows that airports are more efficient in 2019 than they are expected to be in 2030. However,
at the same time, the uncertainty due to the lengths of the confidence intervals is greater
in 2019 than they are expected to be in 2030. It means that the estimated TE vary among
a wide range. Hence, the probability that airports could be more efficient exists, but the
probability that airports could be more inefficient also exists. Figure 1 also shows that the
distances between the lower bound (dotted line) and the estimated TEs’ (continuous line)
are closer than the distances between the upper bound (dashed line) and the estimated TEs.
Therefore, it is more likely to be inefficient than efficient.

The results of Figure 1 indicate that the 20 airports of the sample are expected to
become inefficient. Therefore, airport companies and governments must invest in infras-
tructure and develop strategies to assure the efficiency. In particular, the calculated TEs’ of
scenario 4 have more uncertainty than in the other scenarios. In this scenario, the output
and inputs estimate TEs’ with a greater margin of errors. This result is more evident for
2030 than for 2019.
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Figure 1. TE and Bootstrap confidence intervals for 2019 and 2030.

Figure 2 shows the PTE and the Bootstrap confidence intervals for the VRS-OO of
each airport for 2019 (left panel) and for 2030 (right panel). In general, Figure 1 shows
that the airport hubs in the sample are more efficient in 2019 than they are expected to be
in 2030. However, at the same time, the uncertainty due to the lengths of the confidence
intervals is greater in 2019 than they are expected to be in 2030. It means that the estimated
PTE vary among a wide range. Hence, the probability that airports could be more efficient
exists, but the probability that airports could be more inefficient also exists. Figure 2 also
shows that the distances between the lower bound (dotted line) and the estimated PTEs’
(continuous line) are closer than the distances between the upper bound (dashed line) and
the estimated PTEs. Therefore, it is more likely to be inefficient than efficient.

Technical inefficiencies are greater when using the CRS-OO DEA than the VRS-OO
DEA. This is because TEs are greater than PTEs for some DMUs except for those DMUs
with optimum TE and PTE.
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Figure 2. PTE and Bootstrap confidence intervals for 2019 and 2030.

4. Conclusions

The main contribution of this paper is an approach that evaluates the expected effi-
ciency and performance of future airport infrastructure and establishes airport management
strategies to reach efficiency with the results. The proposed approach can be applied to
evaluate the expected efficiency and performance of any airport in the world. The proposed
approach consists of three steps. In the first step, an airport sampling method to select
similar airports is developed based on socioeconomic and operational airport variables that
are summarized in a proxy variable. In the second step, the ARIMA-GARCH-Bootstrap
forecasting method is applied to forecast the selected outputs, whilst the infrastructure
input variables remain constant. Finally, in the third step, the VRS-OO and the CRS-OO
DEA models are used to evaluate the performance of the airports in the sample in current
and future years. The CRS model is used from an output orientation because the selected
inputs (Cities, Gates, Runaways, Airport Size, Pax carriers, and Num. of employees) and
the selected outputs (PAX and ATMS) can be classified as physical levels because these
measures are actual amounts of products that are often assumed to be proportional to
resources, and therefore, they satisfy the assumption of proportionality; and the VRS model
is used for comparison purposes.

The proposed approach is applied to Mexico because it is currently building a new
airport with the purpose of satisfying the increasing demand of ATMS and PAX and
enhancing economic growth. This new airport is part of the metropolitan area of Mexico
City multi-airport system, which is going to provide air transport services. The results of
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our analysis indicate the required infrastructure that should be built to assure efficiency in
comparison with 19 of the most important airport hubs worldwide, and based on these
results, we propose different strategies to become efficient by analyzing four scenarios
developed based on the literature review. Therefore, the second contribution of this paper
is to the air transport management industry, in particular, to the Mexican air transport
industry. The general conclusion is that the Mexico City airport system would require
mostly airside infrastructure.

In this paper, Bootstrap DEA models are applied to study the current and future TE
and PTE of MEX against 19 international airports hubs worldwide. To study the future
TE and PTE of MEX, the ARIMA + GARCH + Bootstrap is applied to forecast PAX and
ATMS for 2030. The forecasts indicate that ATMS and PAX are going to grow. The results
indicate that MEX was operating at medium levels of efficiency in 2019, and if the new
airport would not be built, MEX is expected to perform worse in 2030.

The third contribution of this paper is the productivity measures proposed for the
study of airport terminal side TE and PTE (Employees/Gates) and for the study of airport
airside TE and PTE (Gates/Runways). These productivity measures are based on a litera-
ture review of research that studies the efficiency and productivity of air transport systems,
such as airlines and airports. The fourth contribution of this paper is the development
of input and output proxy variables to ensure the DEA models robustness because one
input and one output variables reduce the dimensionality of the mathematical problem
providing better estimates. The fifth contribution are the four scenarios proposed to study
the required infrastructure of the airport hubs. These scenarios are proposed in this paper
based on the literature review. Finally, the sixth contribution is the proposition of different
management strategies to assure that the level of efficiency of Mexico City multi-airport
system will be greater than or at least equal to the most important airport hubs worldwide.

Analyzing the results of Scenarios 1, 2, 3, and 4, it is possible to conclude that MEX’s
future efficiency depends mainly on increasing airport size infrastructure, and the management
strategies could be that airlines should operate aircrafts with more capacity (big aircrafts) to
serve more PAX per ATM and airlines must open new connections to increase the airport
system network. These results indicate that MEX requires airside infrastructure in 2019, which
validates the model estimations because the current congestion of MEX is in the airside.

The advantage of applying the proposed approach is the capacity of analyzing the
infrastructure of future airports by looking outward and inwards, which allows planning
strategies that can significantly affect the performance of the airports and increase their
level of efficiency. The disadvantage of applying DEA models through a proxy variable
is the fact that these methods can only indicate the expected impact but not quantify the
exact changes in the input variables to achieve efficiency. If this is the case, instead of using
proxy, the input variables are directly used. However, the risk of having multiple input and
multiple output variables is the possibility of calculating wrong efficient estimates. In this
paper, we prefer to calculate better efficiency estimates and propose strategies to improve
efficiencies rather than propose strategies to calculate the change of the input variables
based on wrong efficiency estimates.

The first limitation of the proposed methodology is the availability and reliability
of the data needed to build the airport sample as proposed in this paper. The second
limitation is that the efficiency and productivity measures provided by a DEA model
depend on the airports in the sample. For this reason, building a representative airport
sample is critical because if airports are not comparable according to their socioeconomic
and operational variables, the results can be biased, and the forthcoming strategies can
lead airports managers and governments to bad decisions.

Future research will focus on mathematically validating the proposed approach.
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Appendix A

Linear correlations among variables and proxy for DEA implementation.

Table A1. Input variables Scenario 1 (2019 and 2030).

Cities Gates Runaways Airport Size (m2)

0.8958 0.8460 0.8227 0.5685

Table A2. Output variables Scenario 1 (2019).

PAX ATMS

0.8884 0.8981

Table A3. Output variables Scenario 1 (2030).

PAX ATMS

0.8580 0.6889

Table A4. Input variables Scenario 2 (2019 and 2030).

PAX Carriers Cities Gates Gates / Num of Runaways

0.6159 0.8147 0.8851 0.5836

Table A5. Output variables Scenario 2 (2019).

PAX ATMS

0.8884 0.8981

Table A6. Output variables Scenario 2 (2030).

PAX ATMS

0.8580 0.6889

Table A7. Input variables Scenario 3 (2019 and 2030).

PAX Carriers Cities

0.7714 0.8741

Table A8. Input variables Scenario 4 (2019 and 2030).

Gates Gates / Num of Runaways PAX Carriers

0.8334 0.7656 0.6589
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