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Abstract: In this paper, we study possibilities of eradication of populations at an early stage of a
patient’s infection in the framework of the seven-order Stengel model with 11 model parameters
and four treatment parameters describing the interactions of wild-type and mutant HIV particles
with various immune cells. We compute ultimate upper bounds for all model variables that define
a polytope containing the attracting set. The theoretical possibility of eradicating HIV-infected
populations has been investigated in the case of a therapy aimed only at eliminating wild-type HIV
particles. Eradication conditions are expressed via algebraic inequalities imposed on parameters.
Under these conditions, the concentrations of wild-type HIV particles, mutant HIV particles, and
infected cells asymptotically tend to zero with increasing time. Our study covers the scope of
acceptable therapies with constant concentrations and values of model parameters where eradication
of infected particles/cells populations is observed. Sets of parameter values for which Stengel
performed his research do not satisfy our local asymptotic stability conditions. Therefore, our
exploration develops the Stengel results where he investigated using the optimal control theory
and numerical dynamics of his model and came to a negative health prognosis for a patient. The
biological interpretation of these results is that after a sufficiently long time, the concentrations of
wild-type and mutant HIV particles, as well as infected cells will be maintained at a sufficiently low
level, which means that the viral load and the concentration of infected cells will be minimized. Thus,
our study theoretically confirms the possibility of efficient treatment beginning at the earliest stage of
infection. Our approach is based on a combination of the localization method of compact invariant
sets and the LaSalle theorem.

Keywords: HIV ultimate dynamics; localization; ω-limit set; local stability; global stability; equiva-
lence; invariant plane; LaSalle theorem

1. Introduction

Human immunodeficiency virus (HIV) infection as the cause of AIDS has attracted
the attention of many researchers from various fields around the world since the 1980s.
In particular, the interest of many scientists has been focused on the elaboration and studies
of mathematical models which describe the immunological response to infection with HIV.
There are different types of such dynamical models that characterize interactions of HIV
with CD4-expressing cells including helper T cells, macrophages, and natural killer cells.
The basic studies in this area are contained in seminal works of [1–5]. The mentioned
researches were continued in papers [6–14] where various dynamical issues related to
HIV models are explored, such as positive invariance properties, boundedness of positive
half trajectories of this model, stability analysis of equilibrium points, the existence of an
orbitally asymptotically stable periodic solution, and bifurcations. These articles did not
address the propensity of viral mutations to replicate HIV. Taking HIV mutations into
account gives a more realistic picture of the human infectious process. This leads to more
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complete and complex models. However, as far as the authors know, HIV models with
mutant infection have not been sufficiently studied yet [15–22].

In [16], Stengel constructed the seven-order model of HIV mutant infection and
discussed the feasibility and effectiveness of the optimal therapies for his model in which
virtual therapies for wild-type infections are incorporated:

ẋ1 =−a1x1− a2(1−u2)x1x2 + a3a4(1− a10)(1−u1)x4;
ẋ2 =

a5
1+x1+x5

− a2(1−u2)(1−u4)x1x2− a6x2− a2a11x2x5 + a7(1+u3)q(x)x2;
ẋ3 = a2(1−u2)(1−u4)x1x2− (a6 + a9)x3;
ẋ4 = a9x3− a4x4;
ẋ5 = a3a4a10x4− a1x5− a2a11x2x5 + a3a4x7;
ẋ6 = a2a11x2x5− (a6 + a9)x6;
ẋ7 = a9x6− a4x7,

(1)

where the notation
q(x) = 1− x2 + x3 + x4 + x6 + x7

a8

is utilized. The model (5) has been obtained from 4D equations in [3] by adding equations
describing the dynamics of the mutant HIV strain. The four state variables of the initial
model of [3] represent concentrations of free, wild-type HIV particles (x1), uninfected
Th cells (x2), latently infected Th cells (x3), and productively infected Th cells (x4) in both
the periphery and lymphoid organs. Other state variables of (1) represent concentrations of
the mutant HIV strain (x5), proviral Th cells infected by the mutant strain (x6), and Th cells
productively infected by the new strain (x7).

Parameters have the following biological meanings: a1 is the death rate of free virions;
a2 is the rate at which CD4+ T cells become infected by free virions; a3 is the number of
free virions produced by x4 cells; a4 is the death rate of the actively infected CD4+ T cell
population; a5 is the source term for uninfected CD4+ T cells; a6 is the death rate of the
uninfected CD4+ T cell population; a7 is the growth rate for the CD4+ T cell population; a8
is the maximum CD4+ T cell population level; a9 is the rate at which x3 cells convert to
actively infected cells; a10 is the mutation rate; a11 is the fitness of the mutant strain.

In [23], it is indicated that the main damage to the immune system occurs in the first
weeks of infection, when the diversity of virions is low. The model in [16] describes the
interaction of the HIV-immune system only at an early stage of infection, when wild-type
virions and virions of the first mutant strain attack the patient, but new mutant strains
have not yet appeared.

Treatment or control parameters ui are supposed to be constant, ui ∈ [0, 1), and are
defined as follows: they are concentrations of protease inhibitor (u1), fusion inhibitor (u2),
Th cell enhancer (u3), and reverse transcription inhibitor (u4). According to Equation (1),
applied therapy can affect wild HIV particles, but do not possess direct effects on the mutant
HIV strain. Stengel raised the question of whether the complex interactions described
in the upper three equations of (1), as well as the presence of the mutant HIV strain
variable in the second equation, may have a “good effect” on the patient’s health. Based on
clinical practice, according to which “HIV infection is never cured, and requires continuous
treatment to maintain a state in remission”, Stengel studied the possibility of optimal
therapy for treating HIV infection at certain parameter values. Mathematically, his research
is based on the steepest descent algorithm and Pontryagin’s maximum principle.

The purpose of our work is to investigate some qualitative features of the model (1).
Our research provides a positive answer to Stengel’s question for certain ranges of param-
eter values within the broad framework of the rigorous dynamic analysis (1) carried out
in this article. With this goal, we find equilibrium points and provide local asymptotic
stability (LAS) conditions for the infection-free equilibrium point, prove the existence of
the attracting set, and calculate ultimate upper bounds for the polytope containing the
attracting set. Further, we show that the dynamics of the model (1) theoretically makes it
possible to eradicate the infection by an appropriate choice of treatment parameters if the
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model parameters satisfy a number of algebraic inequalities. Namely, we find the curious
dynamic property of (1), which is that the LAS conditions of the infection-free equilibrium
point imply its global asymptotic stability (GAS) conditions, that is, these GAS conditions
cannot be improved. Another interesting issue found here is that these conditions do not
depend on controls u3 and u4. Moreover, we describe the case when these conditions do
not depend on rest controls u1 and u2 as well.

The ranges of parameters at which the cure is achieved in the studied model can
be considered as target ranges for real biomedical problems, as well as when choosing
parameter control. The biological feasibility issues of numerical values are not the focus of
this study.

Biologically, the global asymptotic eradication of infection (GAS) property means
that after a sufficiently long observation period, concentrations of wild and mutant HIV
particles and infected cells are maintained at a fairly low level. Thus, the results of our
study may be applicable in subsequent studies in the case of early initiation of therapy for
the patient, when the time period after infection is short.

Our research is based on the localization method of compact invariant sets (LMCIS) [24],
and the LaSalle theorem. It should be noted that earlier, the LMCIS was effectively used in
the study of many models taken from chaos theory, see, for example [25], cosmology [26],
mathematical oncology [27,28], mathematical inclusions [29], and others.

The structure of this paper is the following. In Section 2 we describe the LMCIS
which is utilized in combination with the LaSalle theorem for obtaining conditions for
the locations of ω-limit sets in coordinate planes. Section 3 contains preliminary remarks.
In Section 4, formulas for equilibrium points and LAS conditions for the infection-free
equilibrium point E0 are provided. In Section 5 we derive ultimate upper bounds for all
state variables; these bounds define the localization polytope containing the attracting set.
Section 6 contains main results of this paper: we present the GAS conditions, and, besides,
we concern two other issues of ultimate dynamics of (1). Finally, concluding remarks are
given in Section 7.

2. On the Localization Problem of Compact Invariant Sets

For the reader’s convenience, we give reminders on a few helpful notions. We consider a
nonlinear system

ẋ = F(x), (2)

where x ∈ Rn, F(x) = (F1(x), . . . , Fn(x))T ∈ C1(Rn). Let h(x) ∈ C1(Rn) be a function.
This function is used in the solution of the localization problem of compact invariant sets,
and is called a localizing function. Suppose that the function h is not the first integral of the
system (2). By h|U , we denote the restriction of h on a set U ⊂ Rn.

By S(h) we denote the set {x ∈ Rn | LFh(x) = 0}, where LFh(x) is the Lie derivative
of h(x) with respect to the vector field F. Let us define

hinf(U) := inf{h(x) | x ∈ U ∩ S(h)}; hsup(U) := sup{h(x) | x ∈ U ∩ S(h)}.

Assertion 1 (see [24]). For any h(x) ∈ C1(Rn), all compact invariant sets of the system (2)
located in U are contained in the set

K(U; h) = {x ∈ U | hinf(U) ≤ h(x) ≤ hsup(U)}

as well.

3. Preliminary Remarks

The system (1) is defined in

R7
+,0 = {x ∈ R7 | xi ≥ 0, i = 1, 7}

which is the positively invariant domain.
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In order to simplify computations, we introduce the following notations:

b1 = a2(1− u2), b2 = a2(1− u2)(1− u4), b3 = a7(1 + u3), b4 = a3a4(1− a10)(1− u1),
c1 = a2a11, c2 = a3a4a10, c3 = a3a4,

for which we have
b2 ≤ b1, c2 + b4 ≤ c3. (3)

Utilizing these notations, we come to the system

ẋ1 = −a1x1 − b1x1x2 + b4x4;
ẋ2 = a5

1+x1+x5
− a6x2 − b2x1x2 − c1x2x5 + b3q(x)x2;

ẋ3 = b2x1x2 − (a6 + a9)x3;
ẋ4 = a9x3 − a4x4;
ẋ5 = c2x4 − a1x5 − c1x2x5 + c3x7;
ẋ6 = c1x2x5 − (a6 + a9)x6;
ẋ7 = a9x6 − a4x7.

(4)

We note that (4) is the extension of the four-dimensional system from [3], in which the
resistant virus modification is included. The latter system has the form

ẋ1 = −a1x1 − a2(1− u2)x1x2 + a3a4(1− u1)x4,

ẋ2 = a5
1+x1

− a2(1− u2)(1− u4)x1x2 − a6x2 + a7(1 + u3)
(

1− x2+x3+x4
a8

)
x2,

ẋ3 = a2(1− u2)(1− u4)x1x2 − (a6 + a9)x3,
ẋ4 = a9x3 − a4x4,

or after using notations introduced above,
ẋ1 = −a1x1 − b1x1x2 + b4x4,

ẋ2 = a5
1+x1

− b2x1x2 − a6x2 + b3

(
1− x2+x3+x4

a8

)
x2,

ẋ3 = b2x1x2 − (a6 + a9)x3,
ẋ4 = a9x3 − a4x4.

(5)

Below by f , we denote the vector field corresponding to (4).
Next, we point to several properties of system dynamics of (4).

(1) Any solution of (5) can be extended on [0, ∞), see Section 6.
(2) This system possesses the invariant plane x1 = x3 = x4 = 0; this is the case when

there are no wild-type HIV particles and no Th cells infected by them. The subsystem
defined on this plane is explored in Section 7.

(3) Suppose that a5 is a source term for uninfected CD4+ T cells that is zero, the concentra-
tion of uninfected Th cells (x2) is zero as well, and between the death rate and growth
rate of the uninfected CD4+ T cell population, the following inequalities are fulfilled:
a6 > a7 and u3 < a6a−1

7 − 1. Then the system (4) becomes a linear asymptotically
stable system for which free, wild-type HIV particles and all other cell populations
vanish after a sufficiently long observation time.

4. Equilibrium Points

Firstly, in order to find equilibrium points, we eliminate variables x3, x4, x6, x7 using
equations fi(x) = 0, i = 3, 4, 6, 7. As a result, we get the system:

b1(d1 − 1)x1x2 − a1x1 = 0,
a5

1+x1+x5
− (a6 − b3)x2 − b3

a8
x2

2 − x2(1 + d3x2)(b2x1 + c1x5) = 0,

c1(d2 − 1)x2x5 +
c2b1d1

b4
x1x2 − a1x5 = 0,

(6)
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with

d1 =
a9b4b2

b1a4(a6 + a9)
, d2 =

a9c3

a4(a6 + a9)
, d3 =

b3(a4 + a9)

a4a8(a6 + a9)
. (7)

Then we come to two cases: (1) x1 = 0; (2) x1 6= 0. In the first case, we obtain
the system { a5

1+x5
− (a6 − b3)x2 − b3

a8
x2

2 − c1(1 + d3x2)x2x5 = 0,

c1(d2 − 1)x2x5 − a1x5 = 0.

It follows from the second equation that either x5 = 0 or x2 = x21 = a1
c1(d2−1) . If x5 = 0, then

a5 − (a6 − b3)x2 −
b3

a8
x2

2 = 0,

and we obtain the equilibrium point

E0 = (0, x20, 0, 0, 0, 0, 0),

with

x20 =
a8(b3 − a6) +

√
a2

8(b3 − a6)2 + 4a5b3a8

2b3
> 0.

If x5 6= 0 then x2 = x21 = a1
c1(d2−1) and we get the equation respecting x5:

a5

1 + x5
= (a6 − b3)x21 +

b3

a8
x2

21 + c1(1 + d3x21)x21x5.

Its maximal root is given by

x50 =
−(d5 + d6) +

√
(d5 − d6)2 + 4d6a5

2d6
,

where
d5 = (a6 − b3)x21 +

b3

a8
x2

21, d6 = c1(1 + d3x21)x21.

We notice that x50 ≥ 0, provided a5 ≥ d5.
As a result, we come to the equilibrium point E1 given by the formula

E1 =
(

0,
a1

c1(d2 − 1)
, 0, 0, x50,

a1x50

(d2 − 1)(a6 + a9)
,

a1a9x50

a4(d2 − 1)(a6 + a9)

)
;

E1 ∈ R7
+,0 if d2 > 1 and a5 > d5.

In the second case x1 > 0, we derive that

x2 = x22 =
a1

b1(d1 − 1)
.

In that way, we come to the system of equations{
a5

1+x1+x5
− (a6 − b3)x22 − b3

a8
x2

22 − x22(1 + d3x22)(b2x1 + c1x5) = 0,
c1(d2 − 1)x22x5 − a1x5 +

c2b1d1
b4

x1x22 = 0

with respect to x1, x5. Eliminating x5

x5 = r3x1, r3 =
c2b1d1x22

b4(a1 − c1(d2 − 1)x22)
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we obtain the first equation in the form

a5

1 + (1 + r3)x1
= r4 + r5x1,

where
r4 = (a6 − b3)x22 +

b3

a8
x2

22, r5 = (b2 + c1r3)(1 + d3x22)x22.

We come to the equation

(1 + r3)r5x2
1 +

(
(1 + r3)r4 + r5

)
x1 − (a5 − r4) = 0.

This equation has the unique positive root of the form

x10 =
−(1 + r3)r4 − r5 +

√(
(1 + r3)r4 − r5

)2
+ 4(1 + r3)r5a5

2(1 + r3)r5
.

This solution gives us the equilibrium point

E2 =
(

x10, x22,
b2x10x22

a6 + a9
,

a9b2x10x22

a4(a6 + a9)
, r3x10,

c1r3x10

a6 + a9
,

c1a9r3x10

a4(a6 + a9)

)
.

The equilibrium point E2 ∈ R7
+,0 if conditions

d1 > 1, d2 < 1 +
a1

c1x22
, a5 ≥ (a6 − b3)x22 +

b3

a8
x2

22

are fulfilled.

Example 1. Let us select the following set of parameters:

a1 = a4 = a5 = a6 = a8 = a9 = 1, b1 = b2 = b3 = 1, b4 = 5,
c1 = 0.4, c2 = 1, c3 = 8.

Then the system (6) has three equilibrium points:

E0 = (0, 1, 0, 0, 0, 0, 0), E1 = (0, 0.5769, 0, 0, 0.4124, 0.03172, 0.06344),

E2 = (0.01018, 0.4286, 0.001455, 0.002909, 1.131, 0.06465, 0.1293).

Now we find the stability condition of E0. The Jacobian matrix taken at E0 has the
following form:

J0 =



−(a1 + b1x20) 0 0 b4 0 0 0
∗ (b3− a6)− 2b3

a8
x20 ∗ ∗ ∗ ∗ ∗

b2x20 0 −(a6 + a9) 0 0 0 0
0 0 a9 −a4 0 0 0
0 0 0 c2 −(a1 + c1x20) 0 c3

0 0 0 0 c1x20 −(a6 + a9) 0
0 0 0 0 0 a9 −a4


where by ∗ we denote non-essential elements of J0.
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The spectrum of the matrix J0 contains one evident eigenvalue λ1 = (b3 − a6) −
2b3
a8

x20 < 0 and eigenvalues of the matrix Ĵ0 which has the block-triangular form:

Ĵ0 =



−(a1 + b1x20) 0 b4 0 0 0
b2x20 −(a6 + a9) 0 0 0 0

0 a9 −a4 0 0 0
0 0 c2 −(a1 + c1x20) 0 c3
0 0 0 c1x20 −(a6 + a9) 0
0 0 0 0 a9 −a4

.

Therefore, the spectrum of Ĵ0 is the union of spectra of matrices

A1 =

−(a1 + b1x20) 0 b4

b2x20 −(a6 + a9) 0
0 a9 −a4

, A2 =

−(a1 + c1x20) 0 c3

c1x20 −(a6 + a9) 0
0 a9 −a4

.

Both matrices A1 and A2 are matrices of the following special type

A =

−α1 0 β3
β1 −α2 0
0 β2 −α3

,

where all αi and βi are positive. The characteristic polynomial (with an opposite sign) of
the matrix A has the form

ξA(t) = (t + α1)(t + α2)(t + α3)− β1β2β3.

One can show (for instance, using the Hurwitz criterion) that roots of ξA(t) are negative if,
and only if

α1α2α3 > β1β2β3. (8)

Hence, the condition (8) is the stability condition of the matrix A.
Coming back to matrices A1, A2 we write the stability condition of E0 in the form:

a4(a6 + a9)(a1 + b1x20) > b2b4a9x20, a4(a6 + a9)(a1 + c1x20) > c1c3a9x20,

or in notations (7) we obtain the condition

d1 < 1 +
a1

b1x20
, d2 < 1 +

a1

c1x20
. (9)

In particular, E0 is LAS with d1 < 1, d2 < 1, which means that E1, E2 are contained in the
half-space x2 < 0.

5. Ultimate Upper Bounds

In this section, we derive upper bounds for the dynamics of the system (4) in non-
negative orthant. Upper bounds give us ultimate maximal values for all cell populations
involved into the model. We construct a polytope containing all compact invariant sets
in R7

+,0. This polytope is a positively invariant set and, therefore, limits biologically sig-
nificant bounded dynamics. Moreover, the polytope turns out to be globally attractive,
so all semi-trajectories are bounded as t → +∞, and their ω-limit sets are contained in
the polytope.

Now we demonstrate that this polytope can be constructed by using linear localiz-
ing functions.

1. Firstly, we apply the function h1(x) = x2. Then

L f h1 =
a5

1 + x1 + x5
− a6x2 − b2x1x2 − c1x2x5 + b3x2

(
1− x2 + x3 + x4 + x6 + x7

a8

)
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(we recall that L f h is the Lie derivative of h with respect to f ) and the set S(h1) is defined by

a5

1 + x1 + x5
− a6x2 − b2x1x2 − c1x2x5 + b3x2

(
1− x2 + x3 + x4 + x6 + x7

a8

)
= 0.

The last formula can be rewritten as

a5

1 + x1 + x5
− q0x2 −

b3

a8
x2

2 = 0, (10)

where
q0 = (a6 − b3) + b2x1 + c1x5 +

b3

a8
(x3 + x4 + x6 + x7).

The Equation (10) is quadratic, respecting x2, and its larger root increases while q0
decreases and the left summand increases. Thus,

h1,sup = x2,max = x20 =
a8(b3 − a6) +

√
a2

8(b3 − a6)2 + 4a5b3a8

2b3
. (11)

The value of h1,inf is reached at the maximum values of the variables x1, x3, x4, x5, x6,
x7. We see that h1,inf = 0. Thus, we get the localizing set {x ∈ Rn | 0 ≤ x2 ≤ x2,max}.

2. Let us take the next function h2(x) = x2 + x3. Then

L f h2 =
a5

1 + x1 + x5
− a6x2 − c1x2x5 + b3x2

(
1− x2 + x3 + x4 + x6 + x7

a8

)
− (a6 + a9)x3.

Applying the change x3 = h2 − x2 in the equation L f h2 = 0, describing the set S(h1), we
get that

a5
1 + x1 + x5

− (a6 − b3)x2 − c1x2x5 −
b3
a8

x2(x4 + x6 + x7)−
b3
a8

x2h2 − (a6 + a9)(h2 − x2) = 0.

Solving this linear equation respecting h2, we obtain that

h2 =

a5
1+x1+x5

− q2x2

a6 + a9 + r3x2
, (12)

with
q2 = c1x5 + r3(x4 + x6 + x7)− b3 − a9, r3 =

b3

a8
.

It follows from (12) that h2,inf = 0 and

h2,sup = max
x2

a5 + (b3 + a9)x2

a6 + a9 + r3x2
. (13)

The fractional linear function (13) is monotonic within (0, ∞) and we derive that

h2,sup = max
{

a5

a6 + a9
,
(b3 + a9)a8

b3

}
.

This estimate can be improved if we use the value x2 max in (13) instead of x2 → +∞.
Thus, we get the localization set {x ∈ Rn | x2 + x3 ≤ h2,sup}. Therefore, we come to

the estimate
x3 ≤ x3,max = h2,sup.

3. Let us apply the localization function h3(x) = x4. In this case, the set S(h3) is
given by

a9x3 − a4x4 = 0,
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that entails
h3 = x4 =

a9

a4
x3.

Hence, we obtain the localization set defined by

0 ≤ x4 ≤ x4,max =
a9

a4
x3,max.

4. Let us employ the localization function h4(x) = x1. The set S(h4) is defined by

x1 =
b4x4

a1 + b1x2
.

Thus, we obtain the localization set defined by

0 ≤ x1 ≤ x1,max =
b4

a1
x4,max =

b4a9

a1a4
h2,sup.

5. Next, let us utilize the localization function h5(x) = x2 + x6. Then

L f h5 =
a5

1 + x1 + x5
− a6x2 − b2x1x2 + b3x2

(
1− x2 + x3 + x4 + x6 + x7

a8

)
− (a6 + a9)x6.

The set S(h5) is defined by

a5

1 + x1 + x5
− q3x2 − h5(a6 + a9 + r3x2) = 0,

where
q3 = b2x1 + r3(x3 + x4 + x7)− b3 − a9.

Consequently, we have on S(h5) that

h5 =

a5
1+x1+x5

− q3x2

a6 + a9 + r3x2
.

As a result, we derive that

h5,inf = 0, h5,sup = max
x2

a5 + (b3 + a9)x2

a6 + a9 + r3x2
= max

{
a5

a6 + a9
,
(b3 + a9)a8

b3

}
= h2,sup.

Therefore, we have the localization set {x ∈ Rn | x2 + x6 ≤ h5,sup} which provides the
bound for x6:

x6 ≤ x6,max = h5,sup.

6. Now we take the localization function h6(x) = x7. Then the set S(h6) is given by

a9x6 − a4x7 = 0.

Taking into account the bound for x6, we get that

x7 ≤ x7,max =
a9

a4
h5,sup.

7. Now we take the localization function h7(x) = x5. The set S(h7) is defined by
the equation

h7 = x5 =
c2x4 + c3x7

a1 + c1x2
.
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Using bounds x4,max; x7,max, we get the localizing set

x5 ≤ x5,max =
c2

a1
x4,max +

c3

a1
x7,max =

a9c2

a4a1
h2,sup +

a9c3

a4a1
h5,sup.

Remark 1. The formula x2 max = x20 provides the best upper bound for the concentration of
uninfected Th cells. Indeed, it was established that x20 = h1,sup and, at the same time, x20 is the
coordinate of an equilibrium point. We see that the bound h1,sup is not refinable.

To summarize all these results, we arrive at:

Theorem 1. All compact invariant sets of the system (4) located in R7
+,0 are contained in the polytope

Π = [0, x1,max]× [0, x2,max]× [0, x3,max]× [0, x4,max]× [0, x5,max]× [0, x6,max]× [0, x7,max],

as well. Here,

x2,max =
a8(b3 − a6) +

√
a2

8(b3 − a6)2 + 4a5b3a8

2b3
,

x3,max = x6,max = max
{

a5

a6 + a9
,
(b3 + a9)a8

b3

}
, x1,max =

b4a9

a1a4
x3,max,

x4,max =
a9

a4
x3,max, x5,max =

c2a9

a4a1
x3,max +

c3a9

a4a1
x6,max, x7,max =

a9

a4
x6,max.

Remark 2. Based on this theorem, we obtain the lower bound for x2:

x2,min =
1

2b3

(
−a8qmax +

√
q2

maxa2
8 +

4b3a5a8

1 + x1,max + x5,max

)

with

qmax = a6 − b3 + b2x1,max + c1x5,max +
b3

a8

(
x3,max + x4,max + x6,max + x7,max

)
.

6. On the Location of ω-Limit Sets

It follows from Theorem 1 that all ω-limit sets are located in Π. Generally speaking,
this polytope is not a positive invariant domain. Let us take a smaller polytope Π0
defined by 

0 ≤ x1 ≤ x1,max,
0 ≤ x2 ≤ x2,max,
0 ≤ x2 + x3 ≤ x3,max,
0 ≤ x4 ≤ x4,max,
0 ≤ x5 ≤ x5,max,
0 ≤ x2 + x6 ≤ x6,max,
0 ≤ x7 ≤ x7,max.

We recall that this polytope is the localization set obtained as a result of applying the
iterative procedure using localizing functions h1, . . . , h7. Herewith, we note that L f hi(x) <
0, with x taken from the domain hi(x) > hi,sup and other inequalities are satisfied. Indeed,
L f hi(x) in this domain keeps its sign, and one can verify that for large values of hi(x), the
Lie derivative L f hi(x) is negative. This conclusion means that the vector field f is directed
inward Π0 on the boundary of Π0, and this polytope is positively invariant.
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Actually, one can prove a stronger assertion. Arguing as above, we conclude that for
any C > 0, the polytope Π0(C) defined by inequalities

0 ≤ x1 ≤ x1,max + C,
0 ≤ x2 ≤ x2,max + C,
0 ≤ x2 + x3 ≤ x3,max + C,
0 ≤ x4 ≤ x4,max + C,
0 ≤ x5 ≤ x5,max + C,
0 ≤ x2 + x6 ≤ x6,max + C,
0 ≤ x7 ≤ x7,max + C,

is positively invariant. It follows from this fact that a trajectory exiting a point M0 ∈ R7
+,0,

remains in the polytope Π0(C) for sufficiently large C. However, Π0(C) is a compact set.
Therefore, the ω-limit set of the trajectory is a compact set belonging to Π0. We conclude
that Π0 is a globally attracting set.

Theorem 2. If conditions (9) hold for the system (4), then the equilibrium point E0 attracts all
trajectories in R7

+,0.

Proof. Let us take the function

h8(x) = η1x1 + η2x3 + x4 + η3x5 + η4x6 + η5x7

with positive parameters ηi, i = 1, . . . , 5. Then we compute that

L f h8(x) = [−η1a1 − η1b1x2 + η2b2x2]x1 + [−η2(a6 + a9) + a9]x3 +
+[η1b4 − a4 + η3c2]x4 + [−η3a1 − η3c1x2 + η4c1x2]x5 +

+ [−η4(a6 + a9) + η5a9]x6 + [η3c3 − η5a4]x7.

The condition L f h8(x) ≤ 0 holds if the system of inequalities

η2b2x2 < η1(a1 + b1x2),
η2(a6 + a9) > a9,
η1b4 + η3c2 < a4,
η4c1x2 < η3(a1 + c1x2),
η5a9 < η4(a6 + a9),
η3c3 < η5a4

(14)

holds in this polytope, that is, under the condition 0 ≤ x2 ≤ x2,max = x20.
Excluding parameters η2, η5, we come to the system

a9
a6 + a9

< η1
b1
b2

(
1 + a1

b1x20

)
,

η1b4 + η3c2 < a4,
η4c1x2 < η3(a1 + c1x2),

η3
c3
a4

< η4
a6 + a9

a9
.

(15)

Next, we exclude η4: 
a9

a6 + a9
< η1

b1
b2

(
1 + a1

b1x20

)
,

η1b4 + η3c2 < a4,
a9c3

a4(a6 + a9)
<
(

1 + a1
c1x20

)
.

(16)
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Finally, we come to the inequalities

a9

a6 + a9
<

a4

b4

b1

b2

(
1 +

a1

b1x20

)
,

a9c3

a4(a6 + a9)
< 1 +

a1

c1x20
,

which are equivalent to inequalities (9).
Thus, if inequalities (9) hold, then the system (14) has a solution η∗i , i = 1, . . . , 5. Taking

these values, we have L f h8(x) ≤ 0 in polytope Π1 and h8(x) = 0 if

x1 = x3 = x4 = x5 = x6 = x7 = 0,

that is, on the axis Ox2. The unique compact invariant contained in the half axis Ox2 is the
equilibrium point E0. Now our assertion is followed from the LaSalle theorem.

Remark 3.

1. Conditions of Theorem 2 do not depend on controls u3 and u4.
2. If the condition d2 < 1 holds, then Theorem 2 is true. Indeed, taking into account (3), we get

that this condition implies the condition d1 < 1 and, consequently, conditions (9). Note that
the condition d2 < 1 does not depend on controls, that is, it is satisfied with zero values of
controls.

Theorem 3. Suppose that
d1 < 1 +

a1

b1x2,max
. (17)

Then all ω-limit sets in R7
+,0 are located in the invariant plane x1 = x3 = x4 = 0.

Proof. We take h10 = η1x1 + η2x3 + x4. Then

L f h10 = (−η1a1 − η1b1x2 + η2b2x2)x1 + (−η2(a6 + a9) + a9)x3 + (η1b4 − a4)x4.

We obtain L f h10 ≤ 0 in Π1 if the following conditions hold:

(η2b2 − η1b1)x2 < η1a1, η2 >
a9

a6 + a9
, η1 <

a4

b4
.

These inequalities have a solution with respect to η1, η2 if the following condition holds:

a9

a6 + a9
<

a4b1

b2b4

(
1 +

a1

b1x2,max

)
.

Since the last inequality is satisfied in virtue of (17), then for the corresponding choice
of parameters η1, η2, we have that L f h10 ≤ 0 in Π1 and L f h10 = 0 if x1 = x3 = x4 = 0.
Similarly, arguing as in the previous result, we get the desirable conclusion.

Theorem 4. If d2 > 1, then
0 < x2,min ≤

a1

c2(d2 − 1)
. (18)

Proof. Let us suppose that

x2,min >
a1

c2(d2 − 1)
(19)

and take the localizing function h9 = η1x4 + η2x5 + η3x6 + η4x7 with some positive param-
eters ηi, i = 1, 2, 3, 4. We calculate that

L f h9 = η1b4x3 + x4[−η1a4 + η2c3)] + x5(−η2a1 − η2c2x2 + η3c2x2)

+x6(η4a9 − η3(a6 + a9)) + x7(η2c4 − η4a4)
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and estimate this expression within the positively invariant set Π1 = {x2 ≥ x2 min} ∩Π0.
In order to have L f h6 ≥ 0 in Π1, we should claim that

η1 > 0;
−η1a4 + η2c3 > 0;
η3c2x2,min > η2(a1 + c2x2,min);
η4a9 − η3(a6 + a9) > 0;
η2c4 − η4a4 > 0.

(20)

Conditions (20) are met with the appropriate choice of ηi if the condition (19) is true.
Therefore, choosing the proper parameters ηi, we have that L f h9 ≥ 0 within Π1 and
L f h6 = 0 if x3 = x4 = x5 = x6 = x7 = 0 therein. Next, all trajectories eventually go into
Π1 and remain there. Utilizing the LaSalle theorem with respect to the domain Π1, we get
that all ω-limit sets of the system trajectories lie in the plane x1x2.

However, there is only one compact invariant set in the plane x1x2—the equilibrium
point E0. We conclude that this point is GAS. However, this condition contradicts the
condition (9) of LAS of E0. This means that the assumption (19) is not true, and we have
the condition (18).

7. Concluding Remarks

In this work, we carry out an analysis of ultimate dynamics of the seven-order Stengel
model as mentioned below:

• Calculate equilibrium points;
• Present local stability conditions;
• Find ultimate upper bounds for all variables of this model that define the polytope

containing all ω-limit sets.

Our principal contribution is the exploration of wild-type and the possibility of mutant
HIV particle eradication, as well as infected cells in the model (1) at the early stage of HIV
infection provided the treatment affects only wild-type HIV viruses.

In particular, we establish that the LAS condition to the infection-free equilibrium
point E0 implies the GAS condition to E0. These conditions do not depend on control
parameters u3, u4 and under the additional assumption that d2 < 1, the GAS conditions to
E0 do not depend on controls ui, i = 1, . . . , 4, thus, they can be chosen as equal to zero.

To summarize, the system (4) may possess complex behaviour only when conditions (9)
are violated. In this case, the location of the attracting set is described in Theorem 1. How-
ever, analysis of other features of ultimate dynamics of (4) remains a very difficult task.
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