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Abstract: Morphological operators are nonlinear transformations commonly used in image process-
ing. Their theoretical foundation is based on lattice theory, and it is a well-known result that a large
class of image operators can be expressed in terms of two basic ones, the erosions and the dilations. In
practice, useful operators can be built by combining these two operators, and the new operators can
be further combined to implement more complex transformations. The possibility of implementing a
compact combination that performs a complex transformation of images is particularly appealing
in resource-constrained hardware scenarios. However, finding a proper combination may require
a considerable trial-and-error effort. This difficulty has motivated the development of machine-
learning-based approaches for designing morphological image operators. In this work, we present
an overview of this topic, divided in three parts. First, we review and discuss the representation
structure of morphological image operators. Then we address the problem of learning morphological
image operators from data, and how representation manifests in the formulation of this problem as
well as in the learned operators. In the last part we focus on recent morphological image operator
learning methods that take advantage of deep-learning frameworks. We close with discussions and a
list of prospective future research directions.

Keywords: mathematical morphology; lattice theory; image operator; erosion; dilation; boolean
function; deep learning; image-to-image transformation; deep morphological network

1. Introduction

Images are a rich source of information. To extract useful information, images are
usually carefully processed to highlight or segment objects or other information of interest.
In the context of cyber-physical systems (CPS) [1,2], the ability to efficiently process image
data and act according to the extracted information would enable the development of
many useful applications. However, running complex and heavy computing code such
as those required in typical image analysis in hardware constrained devices is still a
challenge. To cope with processing limitations of these devices, a traditional approach
is to rely on centralized data centers with processing servers, such as cloud computing
platforms, for data processing. This arrangement enables devices to relocate most of the
heavy processing to these centers. However, latency is a critical drawback, especially when
large amounts of data need to be transmitted back and forth between the devices and these
processing centers. Due to this drawback, the concept of edge computing, i.e., bringing
data and computation closer to where they are needed, is gaining increasing attention [3].
Edge computing pushes to the surface the need for boosting computing capabilities and
intelligent processing in hardware constrained devices [4]. Obviously, these limitations can
be mitigated by improving processing capabilities on the hardware side, but at the same
time improvements can be sought on the software side, by developing well designed and
customized algorithms that take advantage of specific characteristics of the hardware as
well as are efficient in terms of memory usage and processing.
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Theoretical models for image processing algorithms are divided into linear and non-
linear approaches. Both offer a range of techniques and tools for building image processing
pipelines. Although linear models are well studied and understood, there are a few theo-
ries for modeling nonlinear transformations [5]. Mathematical morphology is one of the
nonlinear models and its fundamentals are based on lattice theory [6,7].

In general, the complexity of building image processing pipelines has motivated the
use of machine-learning techniques. Recent developments in machine-learning and deep-
learning techniques brought huge advances in Image Processing and Computer Vision.
The core processing units in a Convolutional Neural Network (CNN)—the basic deep
neural network model used in image processing—are linear functions, popularly called
convolutions, followed by nonlinear activations [8]. These networks are trained end-to-end
for a diversity of Computer Vision tasks such as image classification, image segmentation,
object detection, and scene description, and convolution kernel weights are learned from
data. One of the characteristics that explains the success of deep-learning algorithms is their
ability to learn discriminative representation of data, in a data-driven fashion, enabling
easier adaptation of the algorithms for each use-case scenario. Current state of the art
methods in image processing to perform image-to-image transformations such as the ones
shown in Figure 1 are based on fully convolutional neural networks [9,10]. These networks
have many parameters and are usually run on GPU for efficient processing. Compressing
deep network models is also an active research field [11-13].

(a) Vessel segmentation
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(c) Document image binarization

(d) Text segmentation

Figure 1. Examples of image-to-image transformations. (a) [14], (b) synthetic data, (c) Synchromedia
Multispectral Ancient Document Images Dataset-SMADI [15,16], (d) EvaLady ©Miyone Shi, from
Mangal09 dataset [17,18].

In morphological image processing, one can build pipelines that perform complex im-
age transformations by composing two basic operators, erosions and dilations, and others
built from them [6,19,20]. Some degree of success has been achieved by machine-learning-
based design methods, in restricted situations such as in binary image processing [21,22],
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in learning subfamilies of operators [23], or in specific applications [24]. However, design-
ing optimal processing pipelines consisting of sequential composition of operators is an
unsolved problem, as they usually lead to large combinatorial problems. More recently,
deep morphological neural networks (DMNN), built by replacing the standard “linear
convolution+nonlinear activation” layers of deep neural networks with erosion or dilation
layers, started to emerge [25-28]. This is enabling the optimization of sequential composi-
tions of morphological operators. Among other potential benefits associated with DMNNS,
interpretability (morphological operators provide insights as they probe geometrical and
topological information) and reduced size (morphological operators are nonlinear and thus
more expressive) are often cited. The latter is particularly appealing to CPS applications.

The aim of this paper is to gather information about morphological image operator
learning regarding image transformations much like the ones shown in Figure 1, and
present a comprehensive panorama of the subject. In Section 2, mathematical morphology is
revisited, with focus on representation related issues, and pointers to relevant literature. We
review basic concepts and properties of morphological image operators, initially restricted
to binary images to highlight common structural constructs between them and logical
functions. We also briefly recall the extension of the same concepts and properties to gray-
level images and the connections to lattice computing. In Section 3, we first characterize
the problem of learning morphological operators from training data, and then we examine
some existing learning methods, with particular interest in aspects related to underlying
morphological representation and connections to machine-learning techniques. Then, in
Section 4 we survey recently proposed image processing deep morphological networks,
where the elementary morphological operators and their parameters are optimized using
the standard gradient descent backpropagation algorithm. In Sections 5 and 6 we present
some discussions, directions for future research, and conclusions.

2. Morphological Representations

Morphological operators were first developed for binary images, based on a set
theoretic formulation [6,29]. Later it has been extended for gray-level images, and then
their lattice-theoretical foundation has been established [7,30]. From a strict mathematical
point of view, Mathematical Morphology is concerned with lattice operators. The relevant
point to be noted here is that images and several other types of signals can be modeled
as lattice elements. Thus, image transformations can be formally modeled and examined
using the tools provided by Mathematical Morphology. The characterization of the lattice of
images and the lattice of image operators are extensively reported in the literature [7,31,32].
In this section, we recall some results related to image operator representation, restricting
the scope to discrete images. We start with a focus on binary morphology, defining erosion
and dilation, their role in the decomposition structure of translation-invariant operators,
and highlighting the connections with logical functions. At the end of the section, we
comment on the extension of these representations to grayscale images.

2.1. Binary Image Processing

Let E = Z? be the image domain, and let 0 denote its origin. A binary image on E isa
function I : E — {0,1}, and it can be seen as the characteristic (indicator) function of a set.
Conversely, any set S C E can be represented by its indicator function. Thus, both {0, 1}F
and P(E) (the power set of E) can be used to denote the set of all binary images defined
on E. For convenience, we will use the same symbol for the function and set notation
of an image, i.e., given a binary image I, we write interchangeably I(p) = lorp € I to
indicate that p is a foreground pixel of I. Given a set S € P(E), S¢ is the complement of S,
S ={—p:p € S}isthereflection of S,and S; = {p+q : p € S} is the translation of S by
vector 4.
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Let I be a binary image, and B a structuring element (usually a small set located at the
origin of E). Erosion (¢5(I)) and dilation (d5(I)) are the two building block operators used
to define many other operators, and are defined as:

ep(I) = {p € E:B, C I} )

sg()={p€E:B,NI+#Q} )

A third basic operator is the hit-or-miss (HMT), characterized by a pair (A, B) of
structuring elements such that A N B = @, defined as:

Hopp (D) ={p €E: Ay CI}N{p € E: B, C I} = ea(I) Nep(I). 3)

Related to this, there is the interval (also, wedge [7]) operator parameterized by an
interval [A,B] = {X : A C X C B}, with A C B, defined as:

Aapy(I)={p€E:A, CICB,} 4)

It can be shown that A4 g) = H(4 pc) [7]. They are related to template matching.

For these operators, the output value of the transformed image at a given point p
does not depend on p; it depends only on the image values on a finite support region W,
around p (W = B for ey, W = B for 65, and W = (A U B) for the hit-or-miss operators). By
cascading erosions and dilations, as well as composing them by means of set operations
(union, intersection and complementation), new operators can be built [19,20]. In these
composed operators, the invariance with respect to location p is preserved, although with
possibly larger support region W. For example, Figure 2 illustrates the support region of
an opening (yg(I) = dg(ep(I))) on the 1-D domain.

0 0)J1f10f1 1 1 1|0 O0f1 1]0 0 O

es(1) 000001 1/00000000

s (1) = 3p(es (D)) 0000[1/111[0000000

p

Figure 2. Let B = {—1,0,1} C Z. At the top is the input signal. At the middle is its erosion by B, and
at the bottom is the opening. As it can be seen, the value of the opening [y5(I)](p) is determined
from the values of I(p —2),1(p — 1), I(p), I(p + 1), I(p + 2).

2.1.1. Translation Invariance and Local Definition

If only finite structuring elements and only a finite number of operators are used in the
composition, the support region W is of finite size. Therefore, these operators are locally
defined, meaning that [¥(I)](p) = 1 < [Y(INW})](p) = 1 for any W' O W. Moreover,
since they are invariant with respect to p, these operators are translation-invariant, meaning
that [¥(I)], = ¥(I,), VI € P(E), Vp € E. In particular, translation-invariance implies that
p can be dropped and the operator can be characterized in terms of its behavior at the
origin. More specifically, translation-invariant operators can be described in terms of their
kernel and bi-kernel [7,33]. The kernel of ¥ : P(E) — P(E) is defined as K(¥) = {I €
P(E) : 0 € ¥(I)} and the bi-kernel is defined as K(¥) = {(A,B) € P(E) x P(E) : A C
B,[A,B] € K(¥)}. Two important decomposition results are the following.
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Theorem 1 ([34]). Let Y be a translation-invariant increasing set operator (ie., X C Y —
¥ (X) CY¥(Y)). Then
Y(I)= |J eall) ©)

Aek(Y)
Theorem 2 ([33]). Let ¥ be a translation-invariant set operator. Then

Y= U  Aws) (6)
(A,B)EK(Y)

These two theorems state that a translation-invariant set operator can be characterized
in terms of its kernel elements. See a proof in [7]. The first is actually a particular case of
the second, since for increasing operators it holds that B = E and thus the interval operator
can be characterized in terms of its lower extreme only. Later, a compact representation
was proposed initially for increasing operators [31], and then extended for non-necessarily
increasing operators [33], in terms of the basis of an operator defined as B(Y) = {[A, B] C
P(E) : [A, B] is a maximal interval contained in /C(¥)}. In terms of its basis, a translation-
invariant operator can be expressed as

Y= U A @)

[A,B|eB(¥)

Another important result, as a consequence of translation invariance and local defini-
tion properties, is the characterization of these operators in terms of a local function. More
specifically, any binary image operator ¥ : P(E) — P(E) satisfying translation invariance
and local definition with respect to W can be uniquely characterized by a local function
Y : P(W) — {0,1}, as follows [7]:

peY¥() < p(l,NnW)=1. ®)

The argument I, N W of function ¢ is an element of P(W), the set of all binary
images defined on W. The local functions are precisely the set of Boolean (logic) functions
on n = |W| (cardinality of W) variables [7], as detailed next.

2.1.2. Connection with Boolean Functions

The correspondence between image operators and logic functions can be established
as follows. Let us suppose that W = {wq, w», ..., wy } and let us assign a binary variable
x; for w;, i = 1,...,n. Then, for any image I and position p € E, to compute the value
P(x1,x2,...,x,) of alogic function, weset x; =1 <= w; +p € W, NI (or, equivalently,
I(w; + p) = 1). For instance, the logic function 1, that characterizes an erosion is one that
outputs 1 only when B, C I, i.e., when B, NI = B,,. Thus, if we set W = B, this means
e outputs 1 only when x; = xp = ... = x, = 1. Thus, ¢e(x1,...,%,) = x1X2...x,. For
the dilation to output 1, one point in B, N I is sufficient. Thus, the logic function that
characterizes the dilation is ¢s(x1,...,X,) = x1 + X2 + ... + x,,. For the hit-or-miss, we
have a logic product where variables assigned to A appear uncomplemented (x;, meaning
that it hits the foreground) and those assigned to B appear complemented (X;, meaning
that it hits the background and therefore it misses the foreground). Please note that there is
no harm if we consider a larger support W, W C W, for operators that are locally defined
with respect to W, since it is always possible to define a logic function on |W’| variables in
such a way that those variables assigned to points in W'\ W will have no relevance in the
logic function computation.

2.1.3. The Lattice of Translation-Invariant and Locally Defined Binary Image Operators

Besides the characterization by a local function (Equation (8)), an important conse-
quence of translation invariance and local definition properties is the fact that the kernel
and the basis as defined before can be restricted to the finite domain W: the kernel becomes
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K(Y)={I€P(W):¢(I) =1} and the basis is formed by all maximal intervals contained
in C(¥).

The set P(W) with the usual set inclusion C is a Boolean lattice. The set {0,1}"
equipped with the partial order relation < defined as, for any x,y € {0,1}", x <y <=
x; <y;,Vi=1,...,n, and the operations x +y, x - y, X, point-wise extension of the binary
logic operations +, -, and 7, is also a Boolean lattice. It is well known that any non-null
element in {0,1}" can be expressed uniquely as a join (component-wise logical sum) of a
subset of the atomic elements (1,0,...,0,0),(0,1,...,0,0),...,(0,0,...,1,0),(0,0,...,0,1),
just like any set can be expressed as a union of unitary sets corresponding to each of its
elements. The set of all Boolean functions of the form f : {0,1}" — {0, 1} with operations
and partial order relation inherited from ({0,1}, <) is also a complete lattice, isomorphic
to the lattice (P(P(W)), C).

Figure 3 shows the lattice of all Boolean functions on two variables, x; and x,. Please
note that the atomic functions are X1 X, X1 x2, x1X2 and x7 . Any non-null Boolean
function on 2 variables can be written as a sum of these atomic functions. Moreover,
supposing W = {wy, w;,}, we have P(W) = {{}, {w }, {w2}, {w1, w2} }, which is equiva-
lent to {0,1}2 = {00,10,01,11}. Function f3(x1,x) = ¥; ¥, + X1 X = ¥y, corresponds to
the operator with kernel {00,01}, which corresponds to the basis consisting of only one
interval, [00,01] (or, equivalently, [, {w;}]).

fO(xlf Xz) =0
filx, ) =%%
f(x,02) =17 X+ % X+ X1+ % x1+ X2
f3(x11x2) =X +Xn=x
fa(x1,2) =01 7%
(xl,xz) = xl Xz +X1 Xy = XZ
fé(xlz X2) =¥+ x1 %
f7EX1,X2):JC]XQ+X1X2+X]XZ7X]+X2 _ _

f8 1 xz) —x % X1 X9 X1 X2 4+ X1 X2 X1 X2+ X1 X2 X2 X1
fo(x1,x2) = %1 %2+ x1 22

fro(xr,x2) =X xo + X130 = %2

fu(xy,x) =X X+ X1 x2 +x1 %2 = X + 22

fra(x1,x2) = x1 % +x1 X2 = X1 _ _ _

fia(r,x2) =F X+ x1 X2+ X200 = X1 + X 12 1% 112 1%
fra(xy, x2) =T xo +x1 X+ x100 = x1 + X2

fis(x,x2) =X X+ X0+ X+xxn=1

0

Figure 3. Lattice of all binary functions f : {0,1}? — {0, 1}, which corresponds to the binary image
morphological operators locally defined with respect to a window with two points.

2.1.4. Representation Structures

As discussed above, there is a one-to-one relation between the elements in K('¥)
and the product terms in the canonical sum-of-products form of the logic function that
characterizes ¥. Moreover, the intervals in B(¥) correspond to the irreducible product
terms of the logic expression, when it is expressed in a minimal sum-of-products form. We
note that Boolean functions can be expressed in canonical sum-of-products as well as in
canonical product-of-sums forms. Similarly, image operators can be expressed as union of
intervals operators or as intersection of dual interval operators. However, in this paper we
consider only the sum-of-products form. See more details, for instance, in [33].

Before proceeding, we examine another example that illustrates the relation between
image operators and its corresponding characteristic logic function. The median filter
is a sliding window operator that, for each pixel p, computes the median value of the
set of values of an image I under W,. If we suppose W = {wy, wp, w3} and x1, x2, x3 the
corresponding binary variables, the logic function that characterizes the median filter is
given by f(x1, X2, x3) = x1x2 + x1x3 + x2x3. It is easy to see that this function will output 1
only if at least two of the three observed values are equal to 1, agreeing with the definition
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of median value. Median filters are increasing operators, and thus they can be expressed
as a union of erosions. As it can be seen, the Boolean function is positive and each of the
product terms corresponds to an erosion.

In the field of Boolean functions, this representation as a sum of products is formally
well characterized [35]. On the other hand, as we have already discussed, image operators
can be expressed as a sequential composition of simpler operators. Thus, it is interesting to
have a look into sequential compositions of Boolean functions. Let us take the previously
discussed opening yg(I) = Jp(ep(I)) as an example. The standard way to compute
openings is to first compute I’ = ¢g(I) and then y5(I) = 6p(I’). This means that first
. is applied pixel-by-pixel on I and then s is applied, also pixel-by-pixel, on I'. As
discussed above, supposing B consists of n points, we have (x1,...,X,) = x1X2... %y,
and 5(x1,...,%n) = X1 + X2+ ... + x,,. The logic function that characterizes the opening
operator can be calculated as the composition of these two logic functions. For instance,
letting B = {—1,0, 1}, the opening 7 will correspond to a logic function ¢, on 5 variables
(see also Figure 2):

Py (X1, X2, X3, X4, X5) = Ps(Pe(X1, X2, X3), Pe (X2, X3, X4), Pe(X3, X4, X5)) = X1X2X3 + X2X3X4 + X3X4X5 )

Each of the variables is assigned to the respective point in the support region of the
opening operator.

Equation (9) means that the opening can be computed by applying ¢, pixel-by-
pixel on I. Roughly speaking, we may say that the first definition (yg(I) = dg(ep(I)))
is a sequential (deep) representation while the second one (Equation (9)) is a paral-
lel (shallow) representation. For this example, there is exactly 2° possible images de-
fined on W. Among them, the opening outputs value 1 for eight images, as shown
in Figure 4. A Boolean function, on five variables in its canonical sum-of-products
form, which outputs 1 for these, and only for these input, can be written straightfor-
wardly as f(x1,x2, X3, X4, X5) = X1X2X3X4X5 + X1X2X3X4X5 + X1XpX3X4X5 + X1X2X3X4X5 +
X1X2X3X4X5 + X1X2X3X4X5 + X1X2X3X4X5 4+ X1X2X3X4Xs5. This corresponds to the kernel rep-
resentation of the opening. This logic function can be reduced to f,(x1, X2, 3, x4, x5) =
X1X2X3 + X2X3X4 + X3X4X5 as shown before (Equation (9)), and this reduced form corre-
sponds to the minimal basis decomposition. Again, we have a positive function, meaning
that the corresponding image operator is increasing, which is the case of openings.

Loafafafr] [afofafafr] [afafafofx] [Ex]aTao]
[ofofafufn] [ofafafafo] [afafafo]o]
Figure 4. Images on W = {-2,-1,0,1,2} that are in the kernel of yp (with B =

{=1,0,1}). We have K(y5) = {00111,01110,11100,01111,10111,11101, 11110, 11111} and B(y5) =
{[00111,11111], [01110,11111], [11100, 11111]}.

2.2. Grayscale Image Processing

Grayscale images are functions of the form f : E — K, where K = {0,1,...,k—1}
is the set of grayscales. Binary images are just a particular case with k = 2. In the same
way the set inclusion C is a partial order relation, the relation < defined as f < ¢ <=
f(p) < g(p),Vp € E, is also a partial order relation. To model grayscale images as lattice
elements, a common approach is to consider an extended set R=RU {—00, +00}, which
is a complete lattice, and consider images as functions from E to R, which inherits the
lattice structure of R. For the case of a finite set of grayscales, we may consider the set
KU {—o00, 400}, and then formulas involving —co and +oo should be defined accordingly
(see for instance [31,32] for more details). The translation of an image f by vector g is
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denoted f,; and defined as f;(p) = f(p — q), Vp € E. The vertical shift of an image f by a
constant d is denoted f + d, and defined as (f +d)(p) = f(p) +d,Vp € E.

The erosion and dilation of an image f by structuring function b : B — K are defined
respectively as:

leo(f)](p) = min{f(p+4q)—b(q) : q € B} (10)
[65(f)](p) = max{f(p —q) +b(q) : g € B} (11)

Please note that b is a function with support B, thus sometimes it is called non-flat
structuring element. Grayscale erosions and dilations are also commonly defined for flat
structuring elements. A structuring function corresponding to a flat structuring element B

. | —oo ifp ¢ B,

can be expressed by setting b(p) = { 0 ifpc B,
Thus, erosions and dilations with a flat structuring element B reduce respectively to:
les(f)1(p) = min{f(p+4q) :q € B} (12)
65 (f)I(p) = max{f(p—q):q € B} (13)

There are different definitions for grayscale HMT operators [36]. The underlying idea
is similar to the template-matching behavior of binary HMT. In the grayscale case two
structuring functions, one that fits the image from below and another that fits from above,
are considered. One way to unify the different models is to think them as consisting of a
fitting and a valuation steps, where fitting defines when a signal fits the pair of structuring
functions and the valuation defines which value is output when fitting occurs [36].

In an analogous way as in the binary case, erosions, dilations and their compositions
are translation-invariant and locally defined with respect to a support region W. Thus, they
are also characterized by a local function ¢ : K" — K, where K" denotes all images with
values in K, defined on a support region W:

Y (OIp) = 9(f-plw) - (14)

With respect to decomposition, much like binary operators have a canonical decom-
position as a union of interval operators, extensions of these decomposition structures
for mappings between grayscale images are also possible [37]. However, its practical
implementation is prohibitive if one considers the number of required intervals.

In this lattice context, beyond image processing, the definition of a positive valuation
real function v : £ — R in a mathematical lattice £ has enabled the rigorous introduction
of useful mathematical tools including parametric metric distances as well as parametric
fuzzy order functions [38]; where the latter functions enable reasoning. Furthermore,
the Lattice Computing (LC) information processing paradigm has been introduced for
rigorous mathematical modeling in Cyber-Physical System (CPS) applications based on
both numerical data and non-numerical data including semantics [39].

3. Machine-Learning Morphological Image Transformations

In the previous section, we recalled morphological representation of translation-
invariant and locally defined operators. They are operators uniquely characterized by a
function that maps images defined on a finite support W to the set of values K. In terms
of representation, one can show that these functions (and therefore, the corresponding
operators) can be expressed as a maximum of interval operators. It is also possible to
build operators by combining erosions and dilations through image operations (such as
minimum, maximum, and negation) and compositions. In this case, however, there is no
theoretical result that provides a constructive way to build such combinations. From a
practical point of view, specifying and implementing these functions would be sufficient
for image processing; they must be applied pixel by pixel, just like linear filters.

Machine-learning-based approaches could help the specification of such functions.
In this section, we examine how machine-learning techniques have been employed for



Mathematics 2021, 9, 1854

9 of 22

learning these functions. To that end, we first state the image operator learning problem
and then list some of the existing approaches. In the limit, when explicit morphological
representation requirements are dropped, any machine-learning algorithms can be em-
ployed. Thus, we separate the exposition into two parts: one where the morphological
representation is explicitly learned and other where morphological representation is not
a concern.

3.1. The Morphological Image Operator Learning Problem

We assume that images to be processed and respective expected transformed ones are
realizations of a pair of random processes I x T with joint distribution P(I, T). Given an
image operator ¥, one can measure how well ¥ can compute the target image T from an
input image I by means of a loss function L('¥(I), T). The goal in image operator learning
is to find an operator ¥ that minimizes the expected loss E[L('¥(I), T)], where expecta-
tion is computed with respect to distribution P. In practice, we assume that processes
I x T are jointly stationary and the expected target image T of an input image I can be
approximated reasonably well by some translation-invariant operator. Thus, the problem
of designing image operators can be formulated as a problem of designing its characteristic
function, defined on a support region W. Concerning binary images, in this formulation
the observations are of the form (I, "W, T(p)), while for grayscale images they are of the
form (f_p|w, T(p)). To simplify notation, from now on these observations will be denoted
simply as (xp,yp), without distinguishing whether they are binary or grayscale images.
With this assumption, the relevant distribution is P(x, yp). It is commonly assumed that
the same distribution holds for all locations p, and a single underlying distribution P(x, i)
is then adopted. Thus, the loss of ¥ is expressed in terms of the loss of its characteristic
function ¢, with respect to distribution P(x, y).

Commonly used losses are the zero-one loss E[((x) # y], the mean absolute error
(MAE) E[|¢(x) — y|], and the mean-square error (MSE) E[(¢(x) — y)?]. The estimator that
minimizes the zero-one, MAE and MSE losses are, respectively, $*(x) = arg max P(y|x),

yeK
$*(x) = median of y|x, and ¢*(x) = E[y|x]. For binary images (i.e., K = {0, 1}), these are
all equivalent and thus the optimal operator is given by [21]:

v |1, if P(y=1|x) > 0.5,
P (x) _{ 0, otherwise. (15)

When the conditional probabilities P(y = 1|x) are known, one could write down the
interval operator for each or groups of patterns x and then express the local function as a
maximum of these interval operators.

3.2. Learning Methods That Preserve Morphological Representation

Although one can formally characterize the optimal operator as discussed above, in
practice the conditional probabilities P(y|x) are not known. Therefore, they are estimated
by pooling data gathered from the training images. Training images are pairs as the
ones shown in Figure 1. The target images usually need to be prepared manually. Initial
approaches based on this statistical estimation setting were proposed by Dougherty [40,41],
restricted to increasing operators, and then a general approach for increasing and non-
increasing operators was proposed in [21]. From a machine-learning point of view, the
method proposed in [21] can be seen as a two-step process. The first step is a fitting
step, where optimal values § = *(x) for observed patterns x, according to the chosen
loss function, are computed based on the estimated probabilities P(y|x). The second
step consists of a generalization step, when output values for non-observed patterns are
defined. In [21], which deals with binary images only, a Boolean function minimization
algorithm [42] is employed in the generalization step. More specifically, non-observed
patterns are regarded as don’t-cares in the minimization process, and the resulting set of
product terms (each corresponding to an interval) is such that it covers all patterns that
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satisfy § = ¢*(x) = 1, does not cover any patterns that satisfy § = ¢*(x) = 0, and may
cover some of the don’t-cares. Please note that the resulting minimal sum-of-products
expression corresponds to a basis representation of an operator. For grayscale images,
decision-trees have been used [43]. In this case, each leaf node (that corresponds to an
axis-parallel box) can be associated with an interval operator and the resulting estimator
be understood as a maximum of interval operators, although representation minimization
has not been addressed in the work.

The approach delineated above quickly becomes computationally prohibitive as the
support region W increases. To circumvent this limitation, iterative training approaches [44]
as well as a method [22] inspired in stacked generalization [45] have been proposed. In [22],
a multi-level approach, based on a greedy optimization strategy, in which several first-level
operators are optimized individually, then their outputs are used as input for the second-
level operators, which are again optimized individually, and so on for the successive
levels, has been proposed. The combination of multiple operators has resemblance to
ensemble methods used in machine learning. In the same way some ensemble methods
use classifiers trained on different sets of features, the multi-level operator training method
uses slightly distinct support region for individual operators. The catch is to use moderate
size individual windows whose union is a larger region. Therefore, in this case, the ultimate
representation learned by the method is a cascade of functions, each one represented as a
sum-of-products form, and such that effectively, the final operator is defined on a larger
support region.

Earlier, with roots in signal processing, median, order statistic [46], and stack filters [47]
became popular in the 1980s due to their property of commuting with the threshold
decomposition. It has been shown that these filters are particular cases of increasing
morphological operators [48]. In fact, stack filters are the family of increasing morphological
operators with flat structuring elements [7], and thus they are also expressed as a supremum
of erosions. The threshold decomposition property refers to the fact that to compute the
result of these filters, one can apply the filter to each of the binary cross-sections obtained by
thresholding the input signal at different gray levels, and then stacking the results to obtain
the same result as when the filter is applied on the original signal. This property allowed
performing the filtering of grayscale signals through binary signal filtering. For instance,
median filtering is a particular case of order statistic filtering, in which the observed values
are ordered and the median rather than a specific order k element is chosen as the output.
Using the stacking approach, one can compute order statistics on the binary cross-sections
relying only on counting and avoiding the need to sort the observations to compute the
output. This technique was particularly interesting at a time when available computing
capacity was limited. Many algorithms have been proposed in the past for the design of
these filters from training data [23,49-51], most based on heuristic algorithms. Training
data (x,y) are collected from binary cross-sections and pooled together to compute the
optimal increasing binary operator, which is applied on the individual cross-sections.

The above-described methods produce results that can be associated with the “shal-
low” representation structures (maximum of intervals or maximum of erosion) of operators.
Another approach that has been employed in morphological image operator learning is
based on genetic algorithms [52,53] or genetic programming [54] that generate morpho-
logical image operators with “deeper” representations. Genetic algorithm is a heuristic
method employed to perform searches in non-structured search spaces. Typically, solutions
of interest are modeled as chromosomes, encoding for instance a sequence of n erosions
and/or dilations with structuring elements of size up to m x m. In this case, a chromosome
can be modeled as a binary vector with n + # % m * m components, where the first n compo-
nents indicate the type of the n operators (erosion or dilation) and the remaining 7 * m * m
components describe the respective n flat structuring elements of size m x m. Then, an
initial family of these type of vectors are created and, through mutation and crossover
operations, new valid vectors are generated, evolving to a new generation of operators.
This process is repeated in such a way that the best fit individuals survive (measured by a
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fitness or loss function) from one generation to another, improving the overall population
fitness along the iterations. After several iterations, the best fit individual is chosen at
the end. Fitness is usually defined as some performance measure of the operator coded
in the chromosome with respect to validation images. In genetic programming, possible
solutions are built by composing building blocks according to pre-established rules. Thus,
if one chooses a rich set of building blocks and composition rules, the space of all possible
solutions may become very large. In [54], the authors employ binary erosions and dilation
with a predefined set of possible structuring elements as the building blocks, and logical
operations as composition rules.

3.3. Links to Standard Machine Learning and Deep Learning

The characteristic function of an image operator is simply a function from K" to K.
One can view the input images x in K" as a set of |W| features and the output values in K
as class labels, as in standard classification problems. Therefore, if one is not concerned
with representation aspects of such functions, in principle any classification algorithm can
be used to learn these functions. In fact, the decision tree cited above is a popular algorithm
used in general classification problems. In this section, we discuss learning approaches that
have been developed completely detached from mathematical morphology. The general
formulation, where the problem of learning image-to-image transformation is reduced to a
simple pixel classification problem, can be summarized as illustrated in Figure 5. At the
top part of the diagram is the standard approach of processing a vector representation of
an image patch to predict the output value at its central pixel. Alternatively, as shown at
the bottom part of the figure, rather than using the raw pixel intensities, one can create
feature maps and extract a feature vector for each pixel. Along the years, a large effort was
employed to extract discriminative features from the images, related to diverse cues such
as gradients, texture, shape, among others [55-58]. The local region that effectively is used
in the first case is defined by the image patch size, and in the second case it depends on the
nature of the feature computation algorithm, and could be as large as the image size.

X

Reshapig ol L0 My Ly ctassifier | 9

' B ) X (feature vector)

Input 1 é ——> —X  classifier |7

Feature maps

Figure 5. Classifier acting as a local function. Raw image patch used as input of the classifier
(top pipeline). Feature vector extracted from feature maps as input of the classifier (bottom pipeline).

With modern deep neural networks, a significative advance was achieved regarding
data representation learning. The origins of modern convolutional neural networks can be
traced back to the 1980s [59,60]. The idea of shared weight neural networks was proposed
in [60] and used for handwritten zip code recognition. While a standard feedforward net-
work consists of a sequence of fully connected layers, a basic convolutional neural network
(CNN) is a feedforward neural network consisting of convolutional layers, each followed by
an activation function, possibly interspersed with pooling layers, and with fully connected
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layers at the end [60,61]. A convolutional layer is composed of neurons that compute a
local computation commonly referred to as convolutions (although strictly speaking the
implemented operations are cross-correlations, sum of point-wise multiplication), and
characterized by a kernel. A same kernel is used to process every pixel in the input map,
thus the connection between two adjacent layers is established only locally (meaning that
the value of the output map at a given pixel depends only on the neighborhood of that
pixel in the input map, delimited by the kernel size). In other words, each kernel in the
convolutional layers of a CNN is applied on each pixel of the input map just as is the case
of sliding window methods, but the processing is performed in parallel, based on efficient
implementations using multidimensional arrays. The network is trained end-to-end and
all weights of the network, including those of the kernels, are optimized during training
using the gradient backpropagation algorithm [60,61].

In recent years, different architectures of CNN have been proposed for image clas-
sification tasks. Convolutional layers of CNNs are also used as backbone in network
architectures designed for other types of tasks such as object recognition and semantic
segmentation. As they process raw input images, it is commonly accepted that the convo-
lutional layers work as feature extractors. This is paving modern machine learning, where
efforts for manually crafting rich data representations is becoming non-essential.

In the context of image operator learning, two approaches that use CNNs have been
proposed in the literature. The first consists of processing raw input image patches [62,63],
as illustrated in the top part of the diagram in Figure 6. This can be compared to the bottom
part of Figure 5, where classifiers are applied on extracted features. Here, with CNNSs,
feature extraction is learned during the training process. The second approach (bottom
path in Figure 6) consists of fully convolutional networks. Networks of this type have no
fully connected layers, allowing the processing of images of arbitrary size. These types of
networks were initially proposed for semantic segmentation tasks [9,64] and later extended
to image translations [65,66]. They usually consist of an encoding part (for instance a CNN)
and a decoding part that takes care of restoring the original image size, as in U-Net [9].

sliding window, pixel by pixel

INW, )

s } ..... > CNN classifier |+ > /AR, .
x
m [£]
Fully
E——) convolutional B
network
end-to-end, dense prediction

Input I Output

Figure 6. Image transformation using deep-learning techniques. A pixel-wise classifier based on
CNN (top) and an image-to-image fully convolutional network (bottom).

These image-to-image networks have the advantage of computing the output image in
a single forward pass. Nevertheless, the output value of a pixel is determined in terms of a
receptive field, the region of the input image that is effectively used to compute the output
value of that pixel, which can be understood as the support region of a local function.
Therefore, ultimately these networks implicitly implement a nonlinear local function, and
in this sense there is a connection to the morphological image operator learning problem
discussed in this work.

4. Morphological Networks

Most recent advances regarding morphological image operator learning are related to
deep morphological networks [25-28]. The key point of morphological neural networks
(MNN) are neurons that compute erosions and dilations, which are nonlinear functions,
in contrast to nodes of standard networks that typically compute a linear combination
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followed by a nonlinear activation. It is important to observe that there are two moments
in MNN development. First, it was introduced in the 1990s as universal function approxi-
mation machines [67], just as the standard neural networks, and since then MNNs have
been mostly used in general classification and regression problems. More recently, MNNs
have been extended in the same way standard fully connected neural networks have been
extended into convolutional neural networks (CNN). More specifically, in the extended
MNNSs, which hereafter will be called DMNN (Deep Morphological Neural Network), the
morphological layers work as image feature extractors just like convolutional layers of
CNNs [27,28].

4.1. Morphological Neural Networks

A neuron of a standard neural network computes a weighted linear combination of its
input values. Let i be the index of a node in a given layer and suppose the output of the
previous layer are a;, j = 1,...,n. The computation performed by node i is:

n
zi = () ajwij) + b; (16)
=

where w;; (j = 1,...,n) are weights and b; is a threshold also known as a bias. Typically,
a nonlinear activation function 6 generates the output of the neuron, 2; = 6(z;), which is
sent to every node in the next layer.

Morphological neural networks (MNN) share a similar node structure, with the differ-
ence that the computation performed in the neurons is either an erosion or a dilation [67]:

n

zi= aj+wj; (erosion) (17)
j=1
n
zi=\/ a;+w;; (dilation) (18)
j=1

While in standard neural networks the output z; is processed by a nonlinear activation
function, in morphological neural networks there is no need for such processing because
morphological operators are already nonlinear. Since its introduction, MNNs have been
mostly employed as associative-memory machines or as binary or multiclass classifiers. For
training these networks, most proposed methods are based on constructive algorithms [68].
An overview of the main developments of MNNs can be found in [69]. Methods based
on standard stochastic gradient descent algorithm for training these networks have been
discussed recently in [69,70].

Please note that in principle, MNNSs could be also employed as classifiers in the learn-
ing scheme shown in Figure 5. Application of MNNSs for image processing is not common,
being mostly restricted to classification problems, applied on vector representation of the
images. For instance, in [68] MNNSs are used to classify pixels represented by a set of
19 features to solve an image segmentation problem. There are some exceptions, such
as in [71] where morphological neural networks are applied to learn binary dilations, or
in [72] where, inspired by convolutional layers of [60], the authors propose a neuron model
that implements a gray-level hit-or-miss transform, and present an application in object
detection, formulated as a template-matching problem.

4.2. Deep Morphological Networks

With recent advances in deep learning [73], pushed forward by the availability of
large amounts of data, GPU-based efficient processing hardware, and open-source neural
network libraries, there is a renewed interest in morphological neural networks in image
processing. Next we present an overview of these recent models, the DMNNSs (Deep Mor-
phological Neural Networks), which take advantage of modern deep-learning frameworks
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to implement morphological layers (in a similar way convolutional layers are implemented
in CNNs).

4.2.1. Morphological Neuron Modeling

To take advantage of existing deep-learning frameworks, an important detail is to have
neurons implementing differentiable functions. Let us denote a general morphological
neuron as M, which receives as input a signal x = (x1,x, ..., X,) and has a weight vector
w = (wy,wy,...,wy) as a parameter. Its output is a scalar value M(x; w). In this case,
the loss function to be optimized in the network training process must be differentiable
with respect to each of the parameters w;, so that gradient descent-based methods can be
employed to learn these weights. We review next, how this issue is addressed in three
recent works. To that end, we use the notation just introduced. We use the 1-D notation for
the sake of simplicity, but the same principles hold for the 2-D formulation used in image
processing. In our notation, in the first morphological layer, input (xq, xp, . .., x,) would
correspond to an image patch f|, at some pixel p and, in subsequent morphological
layers, it would correspond to a patch (of same size of W) in a feature map resulting from
the previous layer computation. Parameters (wq, w», ..., wy) correspond to the structuring
function defined on a support region W, and M(x; w) can be either the output of an erosion
ew(x) or of a dilation dw (x) (actually M implements the characteristic function of an erosion
or of a dilation).

Masci et al. [25] propose the use of the counter-harmonic mean as a function to
compute approximations of erosions and dilations. The morphological neuron has an
additional parameter P. Denoting x” the component-wise power to P of x, and assuming
W is positive, a neuron is defined as:

P+1

X * W

M(x;w,P) = (19)

xP xw
where * is the standard convolution operation of CNNs. When P = 0, the equation
reduces to the usual convolution operation. When P tends to infinite, the right-hand side
of the equation approaches the maximum of x (thus, dilation), and when P tends to minus
infinite, it approaches the minimum of x (thus, erosion). Both parameters are learned
during training, using the stochastic gradient descent algorithm. Then log(w) can be
interpreted as a flat structuring function (in asymptotic sense).

Mondal et al. [27,70] and Franchi et al. [28] explore the fact that both erosion (mini-
mum) and dilation (maximum) can be seen as piece-wise differentiable functions. The key
point is to note that there is one input component x; that determines the output of node M
and affects forward processing. Thus, during backpropagation, the gradient need to be
back propagated only towards that input component.

In [27,28], the morphological formulation used is the same as the ones defined in
Equations (10) and (11), which translated to the notation used in this section, is expressed
as follows:

M (x; w) = min(x; — w;) (20)

1

M;s(x; w) = ml.ax(xnfz#l + w;) (21)

A dilation node M;(x; w) with input x and structuring function w affects the loss
L through its output z*, Thus, the derivative of loss L with respect to w is computed

as follows:

oL oL ozt
w9zt ow (22)
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where aaTL+ is the gradient backpropagated from the subsequent node and % is computed
component-wise, fori =1,...,n, as

0zT B { 1, if M(s(X;W) = Xp—iy1 + W, (23)

ow; | 0, otherwise.

That is, there is one component of x (the maximum) that affects the loss L and therefore
only its corresponding weight is updated.

Similar reasoning holds for the erosion nodes. Due to the difference in the definition
of erosion and dilation, the component-wise derivative of erosion is either 0 or —1, while of
the dilation is either 0 or 1. We also note that similar formulation is used in [72], to compute
the gradient with respect to the weights of a hit-or-miss operator.

4.2.2. Types of Tasks and Architectures

Similarly to standard CNNs commonly used in classification tasks and fully convolu-
tional networks in image-to-image transformation tasks, applications of DMNNSs are also
observed in these types of tasks.

A first natural idea to be explored in classification tasks would be to simply replicate
some simple CNN architecture by replacing its convolutional layers with morpholog-
ical layers. This is done in [26], where the morphological neuron modeling based on
counter-harmonic-mean (Equation (19)) is used for classifying digits of the MNIST [8] and
SVHN [74] datasets. For instance, for a simple CNN architecture consisting of one convo-
lutional /morphological layer with 64 filters followed by a max pooling layer and a fully
connected layer, authors show that the accuracy achieved on MNIST with standard CNN
(P = 0in Equation (19)) is 98.7% while with morphological layers (P = 2 in Equation (19))
is 99.07%. In [28], experiments regarding classification of images in MNIST [60] and
CIFAR [75] datasets are described. However, in this second work the purpose is to demon-
strate the potentials of morphological pooling layers used in place of conventional max
pooling layers. The rationale for this replacement is based on the fact that max pooling
can be interpreted as a dilation (since it computes the maximum) and therefore, rather
than using a fixed pooling mask, it can be learned through a dilation operator. The authors
report that by replacing the conventional pooling layers of common CNN architectures
with morphological pooling layers, a slightly better result is achieved on MNIST [60] and
CIFAR [75] datasets. These examples demonstrate that morphological neurons can be
successfully trained using existing deep-learning frameworks. They also indicate that
layers consisting of erosions or dilation nodes are effective in extracting representations
that lead to good classification results. However, there is still no systematic comparison
between standard CNNs and DMNN s for classification tasks reported in the literature.

With respect to image-to-image transformations, results regarding proof-of-concept
tasks as well as some simple real image processing tasks are found in the literature. Proof-
of-concept tasks consist of generating training images by applying relatively simple mor-
phological operators, composed or not, with varying shapes for structuring functions,
and then training deep morphological networks to learn these operators. In [25], a single
layer single node network, with structuring function 11 x 11, is used to learn erosions and
dilations computed with structuring elements contained in the 5 x 5 square. Additionally,
an architecture with two layers, each with a single node, is used to learn openings and
closings. Due to the approximation nature of the morphological nodes (Equation (19)),
results are slightly blurry although the shape of the learned structuring elements resembles
those of the original structuring elements. The non-symmetric behavior of the approxima-
tions regarding parameter P is pointed as an issue, especially for learning erosions. These
proof-of-concept experiments show that simple known morphological operators can be
learned from data, although it should be noted that the network architecture definition
may have been influenced by a prior knowledge of the target operator.

Regarding general image-to-image processing tasks as the ones illustrated in Figure 1,
we summarize in Table 1 some of the tasks tackled using deep morphological networks
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in recent works. For details, we refer to the references listed in the table. These examples
are still restricted to relatively simple processing and so far no systematic evaluation or
comparison with CNNs has been reported. Nevertheless, the results indicate the potential
of DMNN:s for learning image transformations.

Table 1. Summary of deep morphological network applications in image processing tasks. At the current moment, they are
still mostly at the proof-of-concept level.

Task

Architecture Details

Remarks

Defect detection in steel surface
images [25].

Two morphological layers with two
nodes each, followed by a convolutional
layer and an absolute difference (with
respect to input image). Morphological
nodes are the ones defined in
Equation (19) and thus only an
approximation of erosions and dilations
are computed.

The ground-truth images were generated
by applying white top-hat with a disk of
size 5 and a black top-hat with a line of
size 10 that have been verified to be
useful to detect bright small spots as well
as dark line-like structures that
characterize possible defects.

Noise filtering [25] (1) Binomial noise (2)
Salt-and-pepper (3) Additive Gaussian
noise

(1) Two morphological layers with single
node each (filter size 5 x 5). (2) 4
morphological layers with single node
each. (3) Two morphological layers with
two filters each plus an averaging layer.
Same observation of the above cell,
regarding morphological nodes.

Network results are compared with: (1) A
2 x 2 opening; (2) a closing followed by
an opening by a 2 x 2 structuring
element; (3) the total variation restoration.
The trained networks performed better
than the hand-crafted operators, except
for case (3).

Noise filtering [28] Salt-and-pepper noise

A sequence of morphological layers with
single node each, corresponding to the
sequence opening-closing-opening.

Results indicate that the filtering task can
be learned.

Edge detection [28]

A convolutional neural network with one
learnable morphological pooling layer,
thus a hybrid network.

An edge enhancing pre-processing is
performed on the input images. The
example showcases the use of
morphological pooling layers.

Detraining [27]

Architectures with two branches, each
consisting of a sequential composition of
erosion and dilation nodes. The two
branches are linearly combined at the
end.

The networks are trained and tested on a
synthetic rainy image dataset made
available in [76]. One of the networks,
with 16,780 parameters, presents a similar
performance to the one obtained with a
U-Net with 6,110,773 parameters.

Document binarization [77]

Erosion and dilation nodes on
multi-channel inputs are defined
considering a multi-channel structuring
function that generates a one-channel
feature map. Then a morphological block
is defined as consisting of ¢; dilation and
¢y erosion nodes, followed by A linear
combination nodes of the ¢ + ¢
channels. A network is a sequence of
such blocks, with sigmoid activation at
the end.

Competitive results, for instance, with
those of runners-up in the ICDAR2017
Competition on Document Image
Binarization are achieved.

5. Discussion

With the current deep-learning frameworks, we are already able to build deep morpho-
logical neural network architectures (i.e., DMNNSs) consisting of layers of morphological
processing units, more precisely erosions and dilations, and take advantage of automatic
gradient computation and weight optimization to learn the shape of the structuring func-
tions. Concretely, this enables training of sequential compositions of morphological opera-
tors. Most of the experiments with DMNNS, reported in the literature, however, use hybrid
architectures mixing morphological and convolutional layers, and so far experiments have
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been designed aiming for proof of concept rather than effectively solving image processing
tasks. On the one hand, it is relatively simple to understand morphological layers as simple
feature extractors, a role similar to that of convolutional layers. On the other hand, for
image-to-image transformations, we still do not know very well how to specify and train
a purely morphological network; for instance, it is not clear how multi-channel inputs
should be handled or how to relate network size (number of layers and number of nodes
in each layer) and its expressiveness.

Besides accuracy, interpretability and computational efficiency are two desirable
characteristics of machine-learning algorithms. DMNNs have potential to fulfill these char-
acteristics. In fact, if a neuron learns a structuring element, examination of the structuring
element together with the operator type should be sufficient to provide an intuitive under-
standing of the processing performed by that particular node. For simple transformations
such as opening or closing, some experiments reported in the literature show that DMNN
can learn structuring functions with shape similar to the expected ones [25]. The fact that
morphological operators are nonlinear functions creates an expectation that relatively small
networks might be sufficient to learn complex image transformations. However, so far the
number of reported results is not sufficient to draw conclusions regarding interpretability
and computational efficiency.

Based on this discussion, we foresee some promising directions to be explored in
future research regarding DMNN and its application in image processing problems.

*  Neurons that implement other morphological operators: Erosions and dilations are
largely regarded as the building blocks of Mathematical Morphology. However, as
we have seen, interval (hit-or-miss) operator is also a fundamental building block.
This and possibly other operators could be implemented as morphological neurons,
especially aiming more compact and expressive networks.

. Development of standard architecture modules: Linear combination seems to be, so
far, the most common way to compose the results regarding multiple input channels
or multiple branches into a single result. Another possibility would be to perform
composition using lattice operations such as supremum, infimum and negation. Such
possibilities should be further investigated and developed. In particular, if we employ
only morphological processing units and lattice operations, the whole network would
correspond to a morphological expression, possibly improving its interpretability and
further handling.

*  Hybrid networks: An obvious way to build hybrid networks is to use both convolu-
tional as well as morphological layers in a single network, as already done in some
of the reported experiments. However, there might be an optimal way of composing
them, possibly, as distinct branches or modules within the architecture. In princi-
ple, there is no reason to assume that purely convolutional or purely morphological
networks are preferable against the hybrid ones for a given task.

*  Systematic evaluation and comparison: Once some standard architectures become
available, systematic evaluation and comparison should be performed among them
as well as with convolution-based deep neural networks. This should include for
instance networks of different sizes and multiple processing tasks.

¢ Prior knowledge and regularization: In machine learning, the ability to constrain the
space of predictor functions to a smaller space, without ruling out good predictors, is
an important issue to improve generalization. Subfamilies of morphological image op-
erators can be characterized based on properties such as idempotence, increasingness,
anti-extensivity, and others. They can be also characterized in terms of representation;
for instance, by limiting the number of intervals in the decomposition or constraining
the structuring element shape. Thus, a challenging issue is how to translate prior
knowledge about the task to be solved into appropriate constraints and how to enforce
these constraints in the definition of the network architecture, as well as during the
training process.
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e lterative operators: Many useful morphological image operators such as thinning [20]
are iterative applications of simpler operators, until convergence. Would recurrent
network be the right approach to learn such operators?

¢ Feature extraction process: On the one hand, there is an expectation that morphologi-
cal neurons will reveal the nature of its processing more clearly than convolutional
networks. On the other hand, they may end up just being an efficient data transforma-
tion function, not necessarily producing visually meaningful features. In this sense, it
would be interesting to compare features extracted by convolutional layers and those
extracted by morphological layers.

¢ AutoML: Morphological pipelines designed heuristically to solve real image process-
ing problems consist of a complex composition of multiple morphological operators.
For learning such pipelines, rather than using a fixed network architecture, it may
make more sense to experiment a variety of composition structures, much like the
way genetic programming algorithms perform. In the deep-learning field, architecture
search approaches are known as AutoML. For instance, approaches such as the one
in [78] could be employed to build complex processing architectures, by combining
morphological building block operators.

6. Conclusions

We presented a panorama on learning morphological image operators from training
data. The fact that the definition of these operators is based on a solid theoretical foundation
allows one to understand and explore their representations and properties (Section 2). In
particular, many image transformations can be modeled by translation-invariant and locally
defined operators, and thus the learning problem can be reduced to the problem of learning
a local function defined on a small support region (Section 3).

Some learning approaches to design morphological image operators, and especially
the earliest ones, explicitly keep the canonical morphological representation, and this facili-
tates interpretation or further manipulation of the learned operator (Section 3.2). However,
as the optimization performed in the learning process involves solving combinatorial
problems, for large support regions the optimization process becomes computationally
intractable. To circumvent this, the local functions started to be treated as classifiers and
standard machine-learning algorithms started to be employed. By doing so, one no longer
has the explicit morphological representation. Moreover, if one uses CNNSs as classifiers,
not only there is no explicit morphological representation, but feature transformation is
included in the learning process. Going one step further, instead of CNNs one can employ
fully convolutional networks and then compute the output pixel values for the entire
image in parallel (Section 3.3). Since image transformations computed by modern deep
neural networks such as CNNs and fully convolutional networks are also translation-
invariant and locally defined, there is a connection between morphological operators and
convolution-based deep networks, but this connection is not explicit nor clear yet. On the
other hand, deep neural networks implement compositions of simpler functions, which
are jointly optimized. In morphological operator learning, before DMNNs there were no
effective methods to jointly optimize structuring elements of a sequential composition of
basic operators.

An important advance, thanks to deep-learning frameworks, is thus the possibility of
optimizing the whole processing pipeline jointly, end-to-end, rather than step-by-step in a
greedy fashion as done before. Although so far only relatively simple image processing
tasks have been tackled with DMNNSs, reported results provide evidence that they can be
trained successfully. Systematic performance analysis of DMNNSs or comparisons with
CNN:s are, however, still lacking in the literature. We still do not know the effort required
for training these DMNNs in terms of processing time as well as amount of training data,
or how training will work for larger networks or for more complex image transformations.

In summary, progress on morphological image operator learning along the years shows
us a process that started strongly based on morphological representations (Section 3.2) and
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evolved to meet modern deep-learning techniques (Section 3.3), where no explicit trace
of the morphological representation is seen. Currently, with DMNNSs, we are witness-
ing the first steps of explicitly modeling morphological representations in the context of
deep-learning techniques (Section 4). Some promising research directions in the context
of DMNNSs is listed in the previous section. Advances toward these directions should
lead us to a better understanding with respect to expressiveness of compact DMNNS,
interpretability, and potential of use in CPS applications.

Author Contributions: Conceptualization, N.S.T.H.; investigation, N.S.T.H. and G.A.P,; resources,
N.S.T.H.; data curation, G.A.P,; writing-original draft preparation, N.S.T.H.; writing—review and
editing, N.S.T.H. and G.A.P; visualization, G.A.P,; supervision, N.S.T.H.; project administration,
N.S.T.H.; funding acquisition, G.A.P. All authors have read and agreed to the published version of
the manuscript.

Funding: This project has received funding from (a) the General Secretariat for Research and Tech-
nology (GSRT) of Greece by the “matching funds” of 2019 and (b) the European Union’s Horizon
2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No
777720. This work was also supported in part by the Sdo Paulo Research Foundation (FAPESP) under
grants number 2017/25835-9 and 2015/22308-2.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References

1.  Baheti, R.; Gill, H. Cyber-physical systems. Impact Control Technol. 2011, 12, 161-166.

2. Sharma, A.B; Ivanti¢, F; Niculescu-Mizil, A.; Chen, H.; Jiang, G. Modeling and Analytics for Cyber-Physical Systems in the Age
of Big Data. Sigmetr. Perform. Eval. Rev. 2014, 41, 74-77. [CrossRef]

3. Garcia Lopez, P; Montresor, A.; Epema, D.; Datta, A.; Higashino, T.; lamnitchi, A.; Barcellos, M.; Felber, P.; Riviere, E. Edge-Centric
Computing: Vision and Challenges. Sigcomm Comput. Commun. Rev. 2015, 45, 37-42. [CrossRef]

4. Merenda, M.; Porcaro, C.; Iero, D. Edge Machine Learning for Al-Enabled IoT Devices: A Review. Sensors 2020, 20, 2533.
[CrossRef] [PubMed]

5. Maragos, P. Chapter Two—Representations for Morphological Image Operators and Analogies with Linear Operators. In Advances
in Imaging and Electron Physics; Elsevier: Amsterdam, The Netherlands, 2013; Volume 177, pp. 45-187.

6.  Serra, ]. Image Analysis and Mathematical Morphology; Academic Press: Cambridge, MA, USA, 1982.

7. Heijmans, H.].A.M. Morphological Image Operators; Academic Press: Boston, MA, USA, 1994.

8. Lecun, Y,; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998,
86,2278-2324. [CrossRef]

9.  Ronneberger, O.; Fischer, P,; Brox, T. U-Net: Convolutional networks for biomedical image segmentation. In International Confer-
ence on Medical Image Computing and Computer-Assisted Intervention; Springer: Berlin/Heidelberg, Germany, 2015; pp. 234-241.

10. Isola, P; Zhu, J.; Zhou, T.; Efros, A.A. Image-to-Image Translation with Conditional Adversarial Networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21-26 July 2017; pp. 5967-5976.

11. Wen, W,; Wu, C.; Wang, Y.; Chen, Y,; Li, H. Learning Structured Sparsity in Deep Neural Networks. In Proceedings of the 30th
Annual Conference on Neural Information Processing Systems 2016, Barcelona, Spain, 5-10 December 2016.

12.  Sze, V,; Chen, Y.; Yang, T.; Emer, ].S. Efficient Processing of Deep Neural Networks: A Tutorial and Survey. Proc. IEEE 2017,
105, 2295-2329. [CrossRef]

13. Frankle, J.; Carbin, M. The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks. In Proceedings of the Seventh
International Conference on Learning Representations (ICLR: 2019), New Orleans, LA, USA, 6-9 May 2019.

14. DRIVE: Digital Retinal Images for Vessel Extraction. Available online: https://drive.grand-challenge.org/ (accessed on
9 May 2021).

15. Hedjam, R.; Cheriet, M. Historical document image restoration using multispectral imaging system. Pattern Recognit. 2013,
46,2297-2312. [CrossRef]

16. Hedjam, R.; Cheriet, M. Ground-Truth Estimation in Multispectral Representation Space: Application to Degraded Document

Image Binarization. In Proceedings of the 12th International Conference on Document Analysis and Recognition, Washington,
DC, USA, 25-28 August 2013; pp. 190-194.


http://doi.org/10.1145/2627534.2627558
http://dx.doi.org/10.1145/2831347.2831354
http://dx.doi.org/10.3390/s20092533
http://www.ncbi.nlm.nih.gov/pubmed/32365645
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1109/JPROC.2017.2761740
https://drive.grand-challenge.org/
http://dx.doi.org/10.1016/j.patcog.2012.12.015

Mathematics 2021, 9, 1854 20 of 22

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.
29.

30.
31.

32.
33.
34.
35.
36.
37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

Aizawa, K; Fujimoto, A.; Otsubo, A.; Ogawa, T.; Matsui, Y.; Tsubota, K.; Ikuta, H. Building a Manga Dataset “Mangal09” with
Annotations for Multimedia Applications. IEEE Multimed. 2020, 27, 8-18. [CrossRef]

Matsui, Y.; Ito, K.; Aramaki, Y.; Fujimoto, A.; Ogawa, T.; Yamasaki, T.; Aizawa, K. Sketch-based Manga Retrieval using Manga109
Dataset. Multimed. Tools Appl. 2017, 76, 21811-21838. [CrossRef]

Soille, P. Morphology Image Analysis, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2003.

Dougherty, E.R.; Lotufo, R.A. Hands-on Morphological Image Processing; SPIE Press: Bellingham, WA, USA, 2003.

Barrera, J.; Dougherty, E.R.; Tomita, N.S. Automatic Programming of Binary Morphological Machines by Design of Statistically
Optimal Operators in the Context of Computational Learning Theory. Electron. Imaging 1997, 6, 54—67.

Hirata, N.S.T. Multilevel Training of Binary Morphological Operators. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 31, 707-720.
[CrossRef] [PubMed]

Dellamonica, D., Jr.; Silva, PJ.S.; Humes, C., Jr.; Hirata, N.S.T.; Barrera, J]. An Exact Algorithm for Optimal MAE Stack Filter
Design. IEEE Trans. Image Process. 2007, 16, 453-462. [CrossRef]

Montagner, 1.S.; Hirata, N.S.T.; Hirata, R., Jr. Staff removal using image operator learning. Pattern Recognit. 2017, 63, 310-320.
[CrossRef]

Masci, J.; Angulo, J.; Schmidhuber, J. A Learning Framework for Morphological Operators Using Counter—Harmonic Mean.
In Mathematical Morphology and Its Applications to Signal and Image Processing; Hendriks, C.L.L., Borgefors, G., Strand, R., Eds.;
Springer: Berlin/Heidelberg, Germany, 2013; pp. 329-340.

Mellouli, D.; Hamdani, T.M.; Sanchez-Medina, J.J.; Ayed, M.B.; Alimi, A.M. Morphological Convolutional Neural Network
Architecture for Digit Recognition. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 2876-2885. [CrossRef] [PubMed]

Mondal, R.; Purkait, P; Santra, S.; Chanda, B. Morphological Networks for Image De-raining. In Discrete Geometry for Computer
Imagery; Couprie, M., Cousty, J., Kenmochi, Y., Mustafa, N., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 262-275.
Franchi, G.; Fehri, A.; Yao, A. Deep morphological networks. Pattern Recognit. 2020, 102, 107246. [CrossRef]

Matheron, G.; Serra, J. The birth of mathematical morphology. In Proceedings of the VIth International Symposium on
Mathematical Morphology, Sydney, Australia, 3-5 April 2002; Talbot, H., Beare, R., Eds.; pp. 1-16.

Serra, J. Image Analysis and Mathematical Morphology. Volume 2: Theoretical Advances; Academic Press: Cambridge, MA, USA, 1988.
Maragos, P. A Representation Theory for Morphological Image and Signal Processing. IEEE Trans. Pattern Anal. Mach. Intell.
1989, 11, 586-599. [CrossRef]

Maragos, P. Morphological Signal and Image Processing. In Digital Signal Processing Handbook; Madisetti, V., Williams, D., Eds.;
CRC Press: Boca Raton, FL, USA, 1998; pp. 74:1-74:30.

Banon, G.J.E; Barrera, ]. Minimal Representations for Translation-Invariant Set Mappings by Mathematical Morphology. SIAM ].
Appl. Math. 1991, 51, 1782-1798. [CrossRef]

Matheron, G. Random Sets and Integral Geometry; John Wiley: Hoboken, NJ, USA, 1975.

Ross, K.A.; Wright, C.R.B. Discrete Mathematics, 3rd ed.; Prentice Hall: Hoboken, NJ, USA, 1992.

Naegel, B.; Passat, N.; Ronse, C. Grey-Level Hit-or-Miss Transforms-Part I: Unified Theory. Pattern Recogn. 2007, 40, 635-647.
[CrossRef]

Ronse, C. A Lattice-Theoretical Morphological View on Template Extraction in Images. J. Vis. Commun. Image Represent. 1996,
7,273-295. [CrossRef]

Kaburlasos, V.G. Towards a Unified Modeling and Knowledge-Representation Based on Lattice Theory. In Computational
Intelligence and Soft Computing Applications (Studies in Computational Intelligence); Springer: Berlin/Heidelberg, Germany, 2006;
Volume 27.

Kaburlasos, V.G. The Lattice Computing (LC) Paradigm. In Proceedings of the 15th International Conference on Concept Lattices
and Their Applications (CLA), Tallinn, Estonia, 29 June-1 July 2020.

Dougherty, E.R. Optimal Mean-Square N-Observation Digital Morphological Filters I. Optimal Binary Filters. CVGIP Image
Underst. 1992, 55, 36-54. [CrossRef]

Dougherty, E.R. Optimal Mean-Square N-Observation Digital Morphological Filters II. Optimal Gray-Scale Filters. CVGIP Image
Underst. 1992, 55, 55-72. [CrossRef]

Hirata, N.S.T.; Barrera, J.; Terada, R.; Dougherty, E.R. The Incremental Splitting of Intervals Algorithm for the Design of Binary
Image Operators. In Proceedings of the 6th International Symposium: ISMM 2002, Sydney, Australia, 3-5 April 2002; Talbot, H.,
Beare, R., Eds.; pp. 219-228.

Hirata, R., Jr.; Dougherty, E.R.; Barrera, ]. Aperture Filters. Signal Process. 2000, 80, 697-721. [CrossRef]

Hirata, N.S.T.; Dougherty, E.R.; Barrera, J. Iterative Design of Morphological Binary Image Operators. Opt. Eng. 2000,
39, 3106-3123.

Wolpert, D.H. Stacked Generalization. Neural Netw. 1992, 5, 241-259. [CrossRef]

Pitas, I.; Venetsanopoulos, A.N. Order statistics in digital image processing. Proc. IEEE 1992, 80, 1893-1921. [CrossRef]

Wendt, P.D.; Coyle, E.J.; Gallagher, N.C., Jr. Stack Filters. IEEE Trans. Acoust. Speech Signal Process. 1986, ASSP-34, 898-911.
[CrossRef]

Maragos, P.; Schafer, R.W. Morphological Filters: Part II: Their Relations to Median, Order Statistic, and Stack-Filters. IEEE Trans.
Acoust. Speech Signal Process. 1987, ASSP-35, 1170-1184. [CrossRef]


http://dx.doi.org/10.1109/MMUL.2020.2987895
http://dx.doi.org/10.1007/s11042-016-4020-z
http://dx.doi.org/10.1109/TPAMI.2008.118
http://www.ncbi.nlm.nih.gov/pubmed/19229085
http://dx.doi.org/10.1109/TIP.2006.888358
http://dx.doi.org/10.1016/j.patcog.2016.10.002
http://dx.doi.org/10.1109/TNNLS.2018.2890334
http://www.ncbi.nlm.nih.gov/pubmed/30676985
http://dx.doi.org/10.1016/j.patcog.2020.107246
http://dx.doi.org/10.1109/34.24793
http://dx.doi.org/10.1137/0151091
http://dx.doi.org/10.1016/j.patcog.2006.06.004
http://dx.doi.org/10.1006/jvci.1996.0024
http://dx.doi.org/10.1016/1049-9660(92)90005-N
http://dx.doi.org/10.1016/1049-9660(92)90006-O
http://dx.doi.org/10.1016/S0165-1684(99)00162-0
http://dx.doi.org/10.1016/S0893-6080(05)80023-1
http://dx.doi.org/10.1109/5.192071
http://dx.doi.org/10.1109/TASSP.1986.1164871
http://dx.doi.org/10.1109/TASSP.1987.1165254

Mathematics 2021, 9, 1854 21 of 22

49.

50.

51.

52.

53.

54.

55.

56.

57.
58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

Coyle, E.J. Rank order operators and the mean absolute error criterion. IEEE Trans. Acoust. Speech Signal Process. 1988, 36, 63-76.
[CrossRef]

Coyle, EJ.; Lin, J.LH. Stack Filters and the Mean Absolute Error Criterion. IEEE Trans. Acoust. Speech Signal Process. 1988,
36, 1244-1254. [CrossRef]

Yoo, J.; Fong, K.L.; Huang, ].].; Coyle, E.J.; Adams, G.B., III. A Fast Algorithm for Designing Stack Filters. IEEE Trans. Image
Process. 1999, 8, 1014-1028. [PubMed]

Harvey, N.R.; Marshall, S. The Use of Genetic Algorithms in Morphological Filter Design. Signal Process. Image Commun. 1996,
8, 55-71. [CrossRef]

Yoda, I.; Yamamoto, K.; Yamada, H. Automatic Acquisition of Hierarchical Mathematical Morphology Procedures by Genetic
Algorithms. Image Vis. Comput. 1999, 17, 749-760. [CrossRef]

Quintana, M.L; Poli, R.; Claridge, E. Morphological algorithm design for binary images using genetic programming. Genet.
Program. Evolvable Mach. 2006, 7, 81-102. [CrossRef]

Haralick, R.M.; Shanmugam, K_; Dinstein, I. Textural Features for Image Classification. IEEE Trans. Syst. Man Cybern. 1973,
SMC-3, 610-621. [CrossRef]

Viola, P; Jones, M. Rapid object detection using a boosted cascade of simple features. In Proceedings of the 2001 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, Kauai, HI, USA, 8-14 December 2001; Volume 1.

Lowe, D.G. Distinctive Image Features from Scale-Invariant Keypoints. Int. |. Comput. Vis. 2004, 60, 91-110. [CrossRef]

Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR), San Diego, CA, USA, 20-25 June 2005; Volume 1, pp. 886-893.
Fukushima, K.; Miyake, S. Neocognitron: A Self-Organizing Neural Network Model for a Mechanism of Visual Pattern
Recognition. In Competition and Cooperation in Neural Nets; Amari, S.I., Arbib, M.A., Eds.; Springer: Berlin/Heidelberg, Germany,
1982; pp. 267-285.

LeCun, Y.; Boser, B.; Denker, J.S.; Henderson, D.; Howard, R.E.; Hubbard, W.; Jackel, L.D. Backpropagation Applied to
Handwritten Zip Code Recognition. Neural Comput. 1989, 1, 541-551. [CrossRef]

CS5231n: Convolutional Neural Networks for Visual Recognition. Available online: https://cs231n.github.io/ (accessed on
29 July 2020).

Julca-Aguilar, FED.; Hirata, N.S.T. Image operator learning coupled with CNN classification and its application to staff line
removal. In Proceedings of the 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), Kyoto,
Japan, 9-15 November 2017; pp. 53-58.

Ciresan, D.C,; Giusti, A.; Gambardella, L.M.; Schmidhuber, ]. Deep Neural Networks Segment Neuronal Membranes in Electron
Microscopy Images. In Proceedings of the International Conference on Neural Information Processing Systems, Lake Tahoe, NV,
USA, 3-6 December 2012; pp. 2843-2851.

Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7-12 June 2015; pp. 3431-3440.

Chen, Q.; Xu, J.; Koltun, V. Fast Image Processing with Fully-Convolutional Networks. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV), IEEE Computer Society, Venice, Italy, 22-29 October 2017; pp. 2516-2525.

Wang, C.; Xu, C.; Wang, C.; Tao, D. Perceptual Adversarial Networks for Image-to-Image Transformation. IEEE Trans. Image
Process. 2018, 27, 4066-4079. [CrossRef]

Ritter, G.X.; Sussner, P. An introduction to morphological neural networks. In Proceedings of the 13th International Conference
on Pattern Recognition, Washington, DC, USA, 25-29 August 1996; Volume 4, pp. 709-717.

Sussner, P.; Esmi, E.L. Constructive Morphological Neural Networks: Some Theoretical Aspects and Experimental Results in
Classification. In Constructive Neural Networks; Franco, L., Elizondo, D.A., Jerez, ].M., Eds.; Springer: Berlin/Heidelberg, Germany,
2009; pp. 123-144. [CrossRef]

Zamora, E.; Sossa, H. Dendrite morphological neurons trained by stochastic gradient descent. Neurocomputing 2017, 260, 420-431.
[CrossRef]

Mondal, R.; Santra, S.; Chanda, B. Dense Morphological Network: An Universal Function Approximator. arXiv 2019,
arXiv:abs/1901.00109.

Davidson, J.L.; Hummer, F. Morphology neural networks: An introduction with applications. Circuits Syst. Signal Process. 1993,
12,177-210. [CrossRef]

Won, Y.; Gader, P.D.; Coffield, P.C. Morphological shared-weight networks with applications to automatic target recognition.
IEEE Trans. Neural Netw. 1997, 8, 1195-1203. [PubMed ]

Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.

Netzer, Y.; Wang, T.; Coates, A.; Bissacco, A.; Wu, B.; Ng, A.Y. Reading Digits in Natural Images with Unsupervised Feature
Learning. In Proceedings of the NIPS 2011 Workshop on Deep Learning and Unsupervised Feature Learning, Granada, Spain,
16-17 December 2011.

Krizhevsky, A. Learning Multiple Layers of Features from Tiny Images; Technical Report; University of Toronto: Toronto, ON,
Canada, 2009.

Fu, X.; Huang, ].; Ding, X; Liao, Y.; Paisley, J. Clearing the Skies: A Deep Network Architecture for Single-Image Rain Removal.
IEEE Trans. Image Process. 2017, 26, 2944-2956. [CrossRef] [PubMed]


http://dx.doi.org/10.1109/29.1489
http://dx.doi.org/10.1109/29.1653
http://www.ncbi.nlm.nih.gov/pubmed/18267517
http://dx.doi.org/10.1016/0923-5965(95)00033-X
http://dx.doi.org/10.1016/S0262-8856(98)00151-6
http://dx.doi.org/10.1007/s10710-006-7012-3
http://dx.doi.org/10.1109/TSMC.1973.4309314
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
http://dx.doi.org/10.1162/neco.1989.1.4.541
https://cs231n.github.io/
http://dx.doi.org/10.1109/TIP.2018.2836316
http://dx.doi.org/10.1007/978-3-642-04512-7_7
http://dx.doi.org/10.1016/j.neucom.2017.04.044
http://dx.doi.org/10.1007/BF01189873
http://www.ncbi.nlm.nih.gov/pubmed/18255721
http://dx.doi.org/10.1109/TIP.2017.2691802
http://www.ncbi.nlm.nih.gov/pubmed/28410108

Mathematics 2021, 9, 1854 22 of 22

77.  Mondal, R.; Chakraborty, D.; Chanda, B. Learning 2D Morphological Network for Old Document Image Binarization. In Proceed-
ings of the International Conference on Document Analysis and Recognition (ICDAR), Sydney, Australia, 20-25 September 2019;
pp- 65-70.

78. Real, E; Liang, C.; So, D.R.; Le, Q.V. AutoML-Zero: Evolving Machine Learning Algorithms From Scratch. arXiv 2020,
arXiv:cs.LG/2003.03384.



	Introduction
	Morphological Representations
	Binary Image Processing
	Translation Invariance and Local Definition
	Connection with Boolean Functions
	 The Lattice of Translation-Invariant and Locally Defined Binary Image Operators 
	 Representation Structures 

	 Grayscale Image Processing 

	 Machine-Learning Morphological Image Transformations 
	 The Morphological Image Operator Learning Problem 
	 Learning Methods That Preserve Morphological Representation 
	 Links to Standard Machine Learning and Deep Learning 

	Morphological Networks
	Morphological Neural Networks
	Deep Morphological Networks
	Morphological Neuron Modeling
	 Types of Tasks and Architectures 


	Discussion
	Conclusions
	References

