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Abstract: We consider the scalar autonomous initial value problem as solved by an explicit Runge–
Kutta pair of orders 6 and 5. We focus on an efficient family of such pairs, which were studied
extensively in previous decades. This family comes with 5 coefficients that one is able to select
arbitrarily. We set, as a fitness function, a certain measure, which is evaluated after running the
pair in a couple of relevant problems. Thus, we may adjust the coefficients of the pair, minimizing
this fitness function using the differential evolution technique. We conclude with a method (i.e.
a Runge–Kutta pair) which outperforms other pairs of the same two orders in a variety of scalar
autonomous problems.

Keywords: initial value problem; scalar autonomous; Runge–Kutta; differential evolution; function-
ally fitted methods

MSC: 65L05; 65L06; 90C26; 90C30

1. Introduction

The Initial Value Problem (IVP) is given as

x′ = f (t, x),
x(t0) = x0

(1)

with t, t0 ∈ I·R, x, x′ ∈ I·Rm and f : I·R× I·Rm → I·Rm.
Amongst the most celebrated numerical methods for dealing with (1) are Runge–Kutta

(RK) pairs. The following Butcher tableau [1,2] characterizes these methods.

a B
c
ĉ
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with cT , ĉT , a ∈ I·Rsand B ∈ I·Rs×s. In the above case, the pair shares s stages that are
evaluated explicitly when B is strictly lower triangular. The approximation of the solution,
forwards from (tn, xn) to tn+1 = tn + hn is furnished by two estimations of x(tn+1). These
are xn+1 and x̂n+1, which are given by

xn+1 = xn + hn ·
i=s

∑
i=1

ciki

with

x̂n+1 = xn + hn ·
i=s

∑
i=1

ĉiki

and

ki = f (tn + aihn, xn + hn ·
j=i−1

∑
j=1

bijk j),

for i = 1, 2, · · · , s. The approximations xn+1 and x̂n+1 are of algebraic orders p and q < p,
respectively. Thus, a local error estimation

εn = hp−q−1
n · ‖xn+1 − x̂n+1‖,

is formed in every step. This helps in forming the following step changing algorithm

hn+1 = d · hn · (
σ

εn
)1/p,

where σ is a tolerance, chosen by the user, and d = 0.9 is a safety factor. In the case that
εn < σ, the above formula is used as the next step–length. On the contrary, we also use this
formula, but the approximate solution is not forwarded and hn+1 is used as new version of
hn. Details of this issue can be retrieved from [3] or even [4] (pg. 167–168). These methods
are usually abbreviated as RKp(q) pairs.

Runge–Kutta methods first appeared in the late nineteenth century [5,6], while pairs
were introduced after 1960. The first-celebrated such pairs, of orders 5(4), 6(5) and 8(7), were
presented by Fehlberg [7,8]. Then, in the early 1980’s, Dormand and Prince followed [9,10].
In addition, our research group has derived a number of such pairs [11–14].

Runge–Kutta pairs are well suited for efficiently approximating the solution of non-
stiff problems of the form in (1). Such problems arise, for example, when creating digital
twins of clean-energy production technologies, for which functionally fitted finite element
methods, with one-step and multi-step forms and improved dispersive and dissipative
properties, have become critically important [15]. The precision demanded explains the
wide diversity of pairs. As a result, the lower the accuracy on demand, the more efficient the
lower RK pairs are. In reverse, a higher-order pair should be used for stringent accuracies
at quadruple precision. [16]. The effort to construct better pairs is the subject of current
research [17,18].

Here, we focus on RK6(5) pairs, which are used for high to modest accuracies. We are
especially interested in problems (1) of the form

x′ = f (x), x(t0) = x0, (2)

with f : I·R → I·R. These problems are called scalar autonomous, and we will derive a
particular RK6(5) pair tuned specially for this type of problem.

The paper is organized into sections as follows:

1. Introduction;
2. Theory of Runge–Kutta Pairs of Orders 6(5);
3. Training the coefficients;
4. Numerical Tests;
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5. Conclusion.

2. Theory of Runge–Kutta Pairs of Orders 6(5)

Runge–Kutta pairs of orders six and five are, almost, the most-used ones. Their coeffi-
cients have to satisfy 54 order conditions, and families of solutions have been discovered
through the years. We have selected the Verner-DLMP [19,20] family, which has the advan-
tage of being solved linearly. This is an FSAL (First Stage As Last) family. Although s = 9,
the pairs use only eight stages each step, since the last (the 9th) stage is used as the first
stage of the next step.

Then we choose freely the coefficients a2, a4, a5, a6, a7 and ĉ9. This family’s pairs have
been shown to perform the best in a variety of problems [21].

We may proceed by evaluating explicitly the remaining coefficients.
In the following algorithm ai is the vector with the components of a raised to the i-th

power and e = [1, 1, · · · , 1]T ∈ I·Rs. (B · a)5 is the 5-th component of B · a. See [22,23] for
more details. A = diag(a) and I is the identity matrix of proper dimension.

ALGORITHM: The free parameters are a2, a4, a5, a6, a7, ĉ9. It is known that for this family
c2 = c3 = ĉ2 = ĉ3 = 0 and bi2 = 0, i = 4, 5, 6, 7, 8. Consecutively execute the following
instructions.

1. Solve c · e = 1, c · a = 1
2 , c · a2 = 1

3 , c · a3 = 1
4 , c · a4 = 1

5 , c · a5 = 1
6 , for c2, c4, c5, c6, c7, c8.

2. Put a3 =
2

3c4
, b43 =

a2
4

2a3
, b32 =

a2
3

2a2
.

3. Solve (b · a)5 =
a2

5
2

and (b · a2)5 =
a3

5
3

for b53, b54

4. Substitute b87 from (c · (A + B− I))7 = 0.

5. Since (c · (A− I) · B)3 = 0 find b76 from

c · (A− I) · B · (A− a4 I) · (A− a5 I) · a− (c(A− I)B)3 =
∫ 1

0
(x− 1)

∫ x

0
(y− c4)(y− c5)ydydx.

6. b86 is given from (c · (B + A− I))6 = 0

7. Solve simultaneously for ĉ1, ĉ4, ĉ5, ĉ6, ĉ7, ĉ8, b63, b73, and b83 the equations:

ĉ · e = 1, ĉ · a = 1
2 , ĉ · a2 = 1

3 , ĉ · a3 = 1
4 , ĉ · a4 = 1

5 , (c · (B + A− I))3 = 0, (ĉ · B)3 = 0,

c · (A− I) · B · (A− a4 I) · (A− a5 I) · a =
∫ 1

0
(x− 1)

∫ x

0
(y− a5)(y− a4)ydydx,

ĉ · B · (A− a5 I) · (A− a4 I) · a =
∫ 1

0

∫ x

0
(y− a5)(y− a4)ydydx.

8. From (B · a)6 =
a2

6
2

, (B · a2)6 =
a3

6
3

evaluate b64 and b65.

9. From (B · a)7 = c2
7/2, (B · a2)7 = c3

7/3 evaluate b74 and b75.
10. From (B · a)8 = c2

8/2, (B · a2)8 = c3
8/3 evaluate b84 and b85.

11. From B · e = a evaluate b21, b31, · · · , b81.
12. Finally, using FSAL (First Stage As Last) property, substitute b9j = cj, j = 1, 2, · · · , 8.

All equations are solved explicitly and straightforwardly. No back substitutions or
implicit equations are present.

The question now raised is how to select the free parameters. Traditionally, we attempt
to reduce the norm of the principal term of the local truncation error, i.e., the coefficients of
h7 in the residual of Taylor error expansions corresponding to the sixth order method of
the underlying RK pair [11].
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Another choice is examined in [24], where we dealt with a class of seven stages, as well
as FSAL pairs of orders six and four, that are specially tuned for addressing the problems of
interest here. We presented the reduced set of order conditions for the case of interest; then
we solved it in order to furnish a certain pair ST6(4). We didn’t considered this case, since
there are only two free parameters that are non-linearly dependent and it is not expected
to make serious improvement. However, we will include this pair in our numerical tests.

3. Training the Coefficients

Here, our approach is to train the coefficients of a method. In this view, we say that
we are utilizing a Neural Network technique. We consider, as input, the free parameters of
the Runge–Kutta pair. Then, the steps taken for solving an Initial Value Problem can be
seen as internal layers, while the output is a particular efficiency measure of the results.

We intend to derive a particular RK6(5) pair belonging to the studied family above.
The resulting pair has to perform best on scalar autonomous problems (2). First, let us say
that some pair was run in a certain problem (2) for some tolerance.

We then record the number µ of function evaluations (stages) needed and the global
error ε observed over the whole mesh (grid-points) in the interval of integration. Then, we
form the efficiency measure

r = µ · ε1/6. (3)

Here we choose the following couple of scalar autonomous problems.

1st problem : x′ = e−x, x(0) = 1, t ∈ [0, 20],

with theoretical solution x(t) = log(e + t), and

2nd problem : x′ = x1/3, x(0) = 1, t ∈ [0, 20],

with theoretical solution x(t) = 2
3

√
2
3 · x3/2.

After using as tolerance σ = 10−11, we ran DLMP6(5) for the above problems. We
recorded

µ1 = 369, ε1 ≈ 1.9 · 10−12, 1rDLMP65 = 4.09,

for the first problem and

µ2 = 433, ε2 ≈ 7.6 · 10−11, 2rDLMP65 = 8.92,

for the second problem.
Let us suppose that any new pair NEW6(5) furnishes corresponding efficiency mea-

sures 1rNEW65 and 2rNEW65 for the same runs. We then form, as a fitness function, the
sum

r̂ =
1rDLMP65
1rNEW65

+
2rDLMP65
wrNEW65

, (4)

and try to maximize it. That is, the compound fitness function is actually two whole runs of
Initial Value Problems. The value r̂ changes according to the selection of the free parameters
a2, a4, a5, a6, a7 and ĉ9.

The original idea is based on [25]. For the minimization of r̂ we used the differential
evolution technique [26]. We have already tried this approach and previously acquired
some interesting results when producing Numerov-type methods for integrating orbits [27].
In that work, we trained the coefficients of a Numerov-type method on a Kepler orbit. We
then observed excellent results over a set of Kepler orbits, as well other known orbital
problems.

Software [28] was used for implementing our approach. As the objective (i.e. fitness)
function we added (4). Actually, 1rDLMP65 and 2rDLMP65 were found in advance; 1rNEW65
and 2rNEW65 were adjusted according to the selection of the free parameters.
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Finally, we derived an optimal method, named hereafter the NEW6(5) pair, sharing
the following free parameters

a2 = 0.010190841992960, a4 = 0.119497020307147,

a5 = 0.4156202137620401, a6 = 0.574431750193581,

a7 = 0.802904404563573, ĉ9 = 0.010038977481306

We ran this pair for tolerance σ = 10−11, and we recorded,

µ1 = 305, ε1 ≈ 4.4 · 10−16, 1rNEW65 = 0.84,

for the first problem and

µ2 = 297, ε2 ≈ 8.5 · 10−14, 2rNEW65 = 1.97,

for the second problem; i.e.,

r̂ =
4.09
0.84

+
8.92
1.97

= 4.86 + 4.53.

The above means that DLMP6(5) is about 386% and 353% more expensive than
NEW6(5) for the problems under consideration, respectively (for σ = 10−11 in the specified
interval). In reverse, NEW6(5) furnishes for the same costs

log10 4.866 ≈ 4.12, and log10 4.536 ≈ 3.94,

more digits of accuracy, respectively.
The resulting pair is presented in Table 1.

Table 1. Coefficients of the here-proposed NEW6(5) pair, accurate for double precision computations.

a2 = 0.010190841992960, a3 = 0.079664680204765, a4 = 0.119497020307147,
a5 = 0.4156202137620401, a6 = 0.574431750193581, a7 = 0.802904404563573,
a8 = a9 = 1, c1 = 0.0271498589320027, c2 = c3 = 0,
c4 = 0.219287409614054, c5 = 0.3291830326685719, c6 = 0.0671726795393684,
c7 = 0.2983955751678166, c8 = 0.058811444078187, c9 = 0,
ĉ1 = 0.04405860112075145, ĉ2 = ĉ3 = 0, ĉ4 = 0.179304147231661,
ĉ5 = 0.4167401045500195, ĉ6 = −0.028810314749226, ĉ7 = 0.338870205765215,
ĉ8 = 0.039798278600273, ĉ9 = 0.010038977481306,
b21 = 0.010190841992960, b31 = −0.231715933708755, b32 = 0.311380613913519,
b41 = 0.029874255076787, b42 = 0, b43 = 0.089622765230360,
b51 = 1.122557183457524, b52 = 0, b53 = −4.289151529341307,
b54 = 3.582214559645822, b61 = −1.943165983475119, b62 = 0,
b63 = 7.4677564003897048, b64 = −5.495873107952286, b65 = 0.545714441231281,
b71 = −2.803379493731238, b72 = 0, b73 = 10.105223718871366,
b74 = −7.165351732976296, b75 = 0.058381490301930, b76 = 0.6080304220978117,
b81 = 10.510126812245035, b82 = 0, b83 = −36.1276707396443543,
b84 = 25.865046568980085, b85 = 2.3514136197972213, b86 = −2.598933426151360,
b87 = 1.000017164773373, b9j = cj, j = 1, 2, · · · , 8.

The norm of the principal truncation error coefficients is ‖T(7)‖2 ≈ 1.00 · 10−4,
which is much greater than the corresponding value ‖T(7)‖2 ≈ 3.91 · 10−5 for DLMP6(5).
The interval of absolute stability is (−4.7, 0), which is of the same magnitude as that of
DLMP6(5), being (−4.2, 0). We also mention that the corresponding principal truncation
error norm for ST6(4) is ‖T(7)‖2 ≈ 7.69 · 10−4, while this pair shares a small stability interval
of (−3.3, 0). All truncation errors were measured in the reduced set valid for problems of
the form (2); see [24].
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In conclusion, no extra property seems to hold. The pair given in Table 1 does not
provide anything interesting. No extended interval of stability is observed, no minimal
truncation error exists, nor anything else. It is hard to believe its special performance after
seeing its traditional characteristics.

4. Numerical Tests

We tested the following pairs chosen from the family studied above.

1. DLMP6(5) 9-stages FSAL pair given in [19].
2. ST6(4) 7-stages FSAL pair given in [24].
3. NEW6(5) 9-stages FSAL presented here.

All the pairs were run for tolerances 10−6, 10−7, · · · , 10−11, in the interval [0, 20],
except the last one which was run in the interval

[
π
6 , π

3
]
. The efficiency measures (3) were

recorded.
The problems we tested are listed in Table 2. We can verify that some of them describe

real life problems, e.g., problem 1 demonstrates radioactivity decay. These problems cover
various cases. Thus, we have included problems with slowly varying solutions, e.g., see
problems 4 and 5. On the contrary, problems 7 and 8 share solutions that are constantly
and clearly increasing. Problems with periodic solutions also exist, such as problem 9.

Table 2. Problems tested.

Problem Solution

1 x′ = −x, x(0) = 1 x(t) = e−t

2 x′ = cos x, x(0) = 0 x(t) = 2 arctan(tanh(t/2))

3 x′ = −x(1− x/20)/4, x(0) = 1 x(t) = 20/(19et/4 + 1)

4 x′ = x2 − x, x(0) =
1
2

x(t) =
(
1 + e−t)−1

5 x′ = e−x, x(0) = 1 x(t) = log(e + t)

6 x′ = sin x, x(0) = 1
10 x(t) = 2 cot−1(e−t cot 0.05

)
7 x′ = x1/3, x(0) = 1 x(t) = 2

3

√
2
3 · x3/2

8 x′ = tanh 2x, x(0) = 2 x(t) = 1
2 arcsin h

(
e2t sinh 4

)
9 x′ =

√
|1− x2|, x(π

6 ) =
1
2 x = sin t

We estimated 54 (i.e. 9 problems times 6 tolerances) efficiency measures for each pair.
We set NEW65 as a reference pair. Then, we divided each efficiency measure of DLMP6(5)
with the corresponding efficiency measure of NEW6(5). The results can be found in Table 3.
The figures underlined for problems 5 and 7 are the numbers we found in the original
training (in the previous section) with tolerance 10−11. It is obvious that our results are in
favor of the second pair. On average, we observed a ratio of 1.75, meaning that DLMP6(5)
is about 75% more expensive. This is quite remarkable, since much effort has been spent
over the years to achieve 10− 20% efficiency [23,29]. In reverse, this means that about
log10 1.756 ≈ 1.46 digits were gained on average, for the same costs.
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Table 3. Efficiency measures ratios of DLMP6(5) vs NEW6(5).

Tolerances
Problem 10−6 10−7 10−8 10−9 10−10 10−11

1 1.74 1.53 1.61 2.33 2.27 2.31
2 1.53 1.69 1.69 1.55 1.54 1.42
3 1.66 1.92 2.35 2.04 1.88 1.82
4 1.43 1.51 1.47 1.57 1.41 1.40
5 0.91 1.18 1.06 0.98 3.81 4.86
6 1.68 1.67 1.70 1.71 1.44 1.31
7 0.97 1.24 1.27 1.54 2.22 4.53
8 1.35 1.25 1.28 1.41 1.46 1.40
9 1.85 1.75 1.79 1.82 1.97 1.51

In Table 4, we present the ratios of efficiency measures of ST6(4), with the correspond-
ing efficiency measures of NEW6(5). On average, we observed a ratio of 1.76 meaning that
ST6(4) is about 76% more expensive. In reverse, this means that about log10 1.766 ≈ 1.47
digits were gained on average, with the same costs. The result is remarkable. ST6(4) was
specially designed to address problems of the form (2). NEW6(5) outperformed the other
pairs even in clearly non-linear problems. Finally, we highlight that we achieved more or
less similar results for longer integrations.

Table 4. Efficiency measures ratios of ST6(4) vs NEW6(5).

Tolerances
Problem 10−6 10−7 10−8 10−9 10−10 10−11

1 1.59 1.54 1.56 2.37 2.28 2.48
2 1.58 1.44 1.51 1.42 1.49 1.33
3 1.49 1.65 2.30 2.08 1.92 1.91
4 1.51 1.62 1.52 1.61 1.43 1.44
5 1.55 2.09 2.12 1.77 5.91 5.42
6 1.57 1.35 1.50 1.60 1.41 1.30
7 0.93 1.17 1.19 1.38 1.68 2.61
8 0.95 0.87 0.89 0.84 0.88 0.80
9 2.35 1.86 1.97 2.05 1.99 1.73

For illustration purposes we have included a couple of efficiency plots for Problems 1
and 6 in Figures 1 and 2, respectively. In these figures, we record the stages used by each
pair vs the accuracy achieved. By drawing horizontal lines, we may justify the efficiency
ratios for the corresponding problems in the tables above.

The results are very promising. Some future research may use optimization on a
wider range of tolerances and model problems. Perhaps a seven-stage pair, that is specially
constructed after solving the reduced set of order conditions for problems (2), and then
trained properly, would furnish even more interesting results.
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Figure 1. Efficiency plots for Problem–1.
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Figure 2. Efficiency plots for Problem–6.

5. Conclusions

The training of the coefficients of a Runge–Kutta pair, for addressing a particular
kind of problem, is considered. We concentrated on scalar autonomous problems and an
extensively studied family of Runge–Kutta pairs of orders 5 and 6. After optimizing the
free parameters (coefficients) of the pair with a couple of runs on certain scalar autonomous
problems, we proposed a new pair. This pair was found to outperform other representatives
from this family in a wide range of relevant problems.
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The topic we presented in this paper may expand into many other cases. It can be
easily applied to all kinds of Runge–Kutta methods and many other types of Initial Value
Problems, such as Hamiltonian problems, Oscillatory problems, and more.
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