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Abstract: Two collocation-based methods utilizing the novel Bessel polynomials (with positive
coefficients) are developed for solving the non-linear Troesch’s problem. In the first approach, by
expressing the unknown solution and its second derivative in terms of the Bessel matrix form along
with some collocation points, the governing equation transforms into a non-linear algebraic matrix
equation. In the second approach, the technique of quasi-linearization is first employed to linearize
the model problem and, then, the first collocation method is applied to the sequence of linearized
equations iteratively. In the latter approach, we require to solve a linear algebraic matrix equation
in each iteration. Moreover, the error analysis of the Bessel series solution is established. In the
end, numerical simulations and computational results are provided to illustrate the utility and
applicability of the presented collocation approaches. Numerical comparisons with some existing
available methods are performed to validate our results.

Keywords: Bessel functions; collocation method; error bound; Troesch’s problem; quasi-linearization
technique

1. Introduction

Mathematical modeling through differential equations is of great importance in dif-
ferent branches of science and engineering with their ability to provide more realistic
simulations to real life phenomenons. The non-linear Troesch’s model problem has been
used in the investigation of the theory of gas porous electrodes [1,2]. This model, as a
two-point boundary value problem (BVP) has also found application in the confinement of
a plasma column by radiation pressure [3]. To be more precise, the following two-point
non-linear BVP is known as Troesch’s problem [4,5]

ψ′′(τ) = α sinh(αψ(τ)), (1)

with the following boundary conditions

ψ(0) = 0, ψ(1) = 1. (2)

Here, the constant parameter α is positive. In the closed-form, the exact solution
of (1) has been obtained with the help of the elliptic function Sc(·|·) of Jacobian type [6] in
the form

ψ(τ) =
2
α

sinh−1 [ψ′(0)
2

Sc(α τ|1− 1
4
(ψ′(0))2)

]
. (3)

Here, the derivative of ψ at 0 is given by ψ′(0) = 2(1− x)
1
2 such that x is the solution of

the transcendental equation sinh( α
2 ) = (1− x)

1
2 Sc(α|x). The elliptic function Sc(α|x) is
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defined as Sc(α|x) = sin β
cos β , where β and α are related through the integral representation

α =
∫ β

0
dt

1−x sin2 t
. For α > 1, Troesch’s problem is known to be an unstable two-point BVP

due to existence of a pole, which is located approximately at τs = ln(8/ψ′(0))/α [4]. These
singularities hinder most of the numerical methods to capture the solutions of the Troesch’s
problem, especially for large values of the parameter α.

Over the past decades, a considerable attention has been drawn to the numerical
solutions of (1). Among other existing approaches, let us mention the following methods:
the shooting schemes [5–9], the embedding technique [10], the combined approach based
on modified decomposition and Laplace transform [11], the modified homotopy perturba-
tion algorithm [12], the finite element method based on B-splines [13], the sinc-Galerkin
methods [14,15], the discontinuous Galerkin finite element scheme [16], the stochastic
algorithm based on artificial neural network [17], the shifted Jacobi–Gauss collocation
scheme [18], the finite difference scheme based on a Shishkin mesh [19], the shifted Bessel
Tau method [20], the iterative method based on Green’s function and optimal homotopy
analysis technique [21], the one-step hybrid block method [22], and the wavelet-homotopy
analysis method [23].

In this manuscript, an efficient and reliable method based on the quasi-linearization
technique combined with Bessel functions is proposed to obtain an accurate approximate
series solution of Troesch’s model problem (1). Additionally, the direct Bessel collocation
approach is also developed for this model problem. In the former method, we solve the
original model via converting it into a sequence of linearized subproblems in conjunction
with an iteration parameter r, which will be set at most 5. In the latter approach, we
solve it directly via the Bessel matrix algorithm, which converts the governing differential
equation into a system of non-linear algebraic equations. The Bessel polynomials first
appeared in the study of the solution of classical wave equation and were systematically
introduced in [24]. However, they are recently adapted to solve differential equations
through a collocation procedure [25–28]. The main feature of the novel Bessel polynomials
is that all coefficients are positive integers. It is also worth mentioning that the Bessel
functions used here are different from the Bessel functions of the first kind, which were
previously considered in the literature, see cf. [29–32]. Collocation-based approaches along
with (orthogonal) basis functions are very common in solving differential and integral
equations due to their simplicity and efficiency. Among many different bases used in the
literature, let us consider the methods based on the Legendre, Chebyshev, Jacobi, Genocchi,
and Hermit functions reported in [33–38].

The rest of this paper is organized as follows: in Section 2, a brief discussion on the
Bessel polynomials is given. Hence, the technique of quasi-linearization for the model prob-
lem is discussed. Section 3 is devoted to the methodology of the direct Bessel-collocation
procedure for the Troesch model problem. Converting the boundary conditions into a
matrix form is also done afterwards. The second and efficient Bessel collocation approach
based on the quasi-linearlization technique is given in Section 4. An error analysis of
the Bessel solution is given in Section 5. Numerical experiments and discussions of the
presented methods are reported in Section 6. Finally, a conclusion is made in the last section.

2. Basic Facts
2.1. Bessel Functions

Let us assume that k is a positive integer. The Bessel polynomials are known to be the
solutions of the following second-order differential equation

τ2 y′′(τ) + (2τ + 2) y′(τ) = k(k + 1) y(τ), (4)
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which has naturally appeared in the study of classical wave equation [24], see also [25].
The first two Bessel polynomials are B0(τ) = 1 and B1(τ) = 1 + τ. The remaining Bessel
polynomials can be determined via the following recurrence formula

Bk+1(τ) = Bk−1(τ) + (2k + 1)τ Bk(τ), k = 1, 2, . . . . (5)

In an explicit form, we can write these polynomials as

Bk(τ) =
k

∑
`=0

(k + `)!
2` `!(k− `)!

τ`, k = 0, 1, . . . . (6)

Obviously, all coefficients of each Bk(τ) are positive and the constant term for each
one is 1. It can be proved that the set of these polynomials forms an orthogonal system on
the unit circle. The corresponding weighting function is ω(τ) = e−

2
τ .

The key of the presented method is that the unknown solution ψ(τ) and its second-
order derivative in (1) are expressed in terms of a truncated series of Bessel polynomials
with expansion coefficients as

ψM(τ) =
M

∑
k=0

dk Bk(τ), 0 ≤ τ ≤ 1. (7)

Hence, our aim will be reduced to find the expansion coefficients dk for k = 0, 1, . . . , M.
Let us introduce the vector of unknown as DDDM = [d0 d1 . . . dM]t. Thus, we may write
the relation (7) in the following representation form

ψM(τ) = ΩΩΩM(τ)DDDM, (8)

being ΩΩΩM(τ) the vector of Bessel basis defined as

ΩΩΩM(τ) = [B0(τ) B1(τ) . . . BM(τ)].

It can be easily shown that ΩΩΩM(τ) in (8) is expressed as a product of the monomial
basis functions with a lower-triangular matrix as

ΩΩΩM(τ) = ΠΠΠM(τ)CCCt, (9)

where ΠΠΠM(τ) =
[
1 τ τ2 . . . τM] and CCC can be represented as

CCCt =



1 1 1 . . . 1 1

0 1 3 . . . M!
2(M−2)! 1!

(M+1)!
2(M−1)! 1!

0 0 3 . . . (M+1)!
22 (M−3)! 2!

(M+2)!
22 (M−2)! 2!

...
...

. . . . . . . . .
...

0 0 0 . . . (2M−2)!
2M−1 0! (M−1)!

(2M−1)!
2M−1 1! (M−1)!

0 0 0 . . . 0 (2M)!
2M 0! M!


(M+1)×(M+1)

.

By utilizing (8) and (9), we may represent the approximated solution ψM(τ) in (7)
as follows

ψM(τ) = ΩΩΩM(τ)DDDM = ΠΠΠM(τ)CCCt DDDM. (10)

2.2. Quasi-Linearization Approach

The technique of quasi-lineraization aims to transform the original model problem (1)
into a sequence of linear equations. Afterwards, we will apply the Bessel collocation
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procedure to the resultant linearized models. In this respect, the basic ideas underlying
the solutions of our model problems via quasi-linearization method (QLM) are briefly
described, see [39–41] for more detailed discussions and applications.

By defining
G(τ, ψ) := α sinh(αψ(τ)),

one can rewrite the general form of our model problem (1) as

ψ′′(τ) = G(τ, ψ), τ ∈ [0, 1]. (11)

The non-linear form (11) will also be accompanied with the boundary conditions (2). Let
assume that the initial approximation ψ0(τ) to the solution ψ(τ) of (1) is given. Hence,
the QLM iteration for (11) is defined as

ψ′′r+1(τ) = G(τ, ψr) +
(
ψr+1(τ)− ψr(τ)

)
Gψ(τ, ψr),

for r = 0, 1, . . . and with the same boundary conditions as given in (2). Here, Gψ is the
functional derivative of G(τ, ψ) with respect to ψ. By applying the QLM technique on the
non-linear model problem (1), the following linearized model form is obtained

ψ′′r+1(τ)−
[
α2 cosh(αψr(τ))

]
ψr+1(τ) = −α2 ψr(τ) cosh(αψr(τ)) + α sinh(αψr(τ)), (12)

for r = 0, 1, . . .. To each lineraized equation, the following boundary conditions are
supplemented

ψr+1(0) = 0, ψr+1(1) = 1. (13)

Consequently, we solve the quasilinear model problem (12) together with boundary
conditions (13) via the Bessel collocation approach rather than applying it to the original
Equation (1) directly. The latter approach is referred to as the QLM-Bessel.

3. Direct Approach

To proceed, we partition the domain [0, 1] uniformly into M subdomains. Below,
the following collocation points are used

τi =
i

M
, i = 0, 1, . . . , M. (14)

We next substitute the collocation points (14) into (10), we arrive at

ΨΨΨ = ∆∆∆ CCCt DDDM, ∆∆∆ =


ΠΠΠM(τ0)
ΠΠΠM(τ1)

...
ΠΠΠM(τM)

, ΨΨΨ =


ψM(τ0)
ψM(τ1)

...
ψM(τM)

. (15)

Our next aim is to represent the second-order derivatives of ψ(τ) at the collocation
points in a matrix representation form. For this purpose, we need to calculate d2

dτ2 ΠΠΠM(τ). It
can be easily checked that

d
dτ

ΠΠΠM(τ) = ΠΠΠM(τ)EEEt, (16)
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where the matrix EEE denotes the operational matrix of differentiation and is defined as

EEEt =



0 1 0 . . . 0
0 0 2 . . . 0
...

... 0
...

...

0 0 0
. . . M

0 0 0 . . . 0


(M+1)×(M+1)

.

By applying differentiation on (16), we obtain

d2

dτ2 ΠΠΠM(τ) = ΠΠΠM(τ) (EEEt)2. (17)

Lemma 1. The matrix representation form of d2

dτ2 ψM(τ) at the collocation points (14) is given by

ΨΨΨ(2) = ∆∆∆ (EEEt)2 CCCt DDDM, (18)

where the matrix EEE and the vector ∆∆∆ are defined in (16) and (15), respectively, and

ΨΨΨ(2) =


ψ′′M(τ0)
ψ′′M(τ1)

...
ψ′′M(τM)

.

Proof. We differentiate (10) two times with respect to τ to obtain

d2

dτ2 ψM(τ) =
d2

dτ2 ΠΠΠM(τ)CCCt DDDM. (19)

We combine relations (17) and (19) to obtain

d2

dτ2 ψM(τ) = ΠΠΠM(τ) (EEEt)2CCCt DDDM. (20)

Now, it is sufficient to insert the collocation points (14) into (20). By considering the
definitions of ∆∆∆ and ΨΨΨ(2) the proof is concluded.

We now proceed by placing the collocation points (14) into the model problem to obtain

d2

dτ2 ψM(τi)− α sinh(αψM(τi)) = 0, i = 0, 1, . . . , M. (21)

In the matrix notation form, we are able to write the preceding equations as

ΨΨΨ(2) + AAAΨ̂ΨΨΨΨΨΨΨΨ = ZZZ. (22)

where the matrix AAA and the right-hand-side vector ZZZ are

AAA =


α 0 . . . 0
0 α . . . 0
...

...
. . .

...
0 0 . . . α

, ZZZ =


0
0
...
0

,

and the matrix Ψ̂ΨΨΨΨΨΨΨΨ takes the form sinh(−AAAΨΨΨ) or, equivalently, Ψ̂ΨΨΨΨΨΨΨΨ = 1
2 (e
−AAAΨΨΨ − eAAAΨΨΨ).
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Suppose that the approximate solution of (1) can be written as (7) or (10). By placing
the relations (15) and (18) into (22), we obtain the following fundamental matrix equation

∆∆∆ (EEEt)2 CCCt DDDM + AAA sinh
(
−AAA ∆∆∆ CCCt DDDM

)︸ ︷︷ ︸
ΣΣΣ

= ZZZ, or [ΣΣΣ; ZZZ]. (23)

It can be clearly seen that the relation (23) is a non-linear matrix equation, which can be
solved for the vector of unknowns DDDM as the Bessel coefficients by using, e.g., Newton-type
solvers. However, we are left with the task of entering the boundary conditions (2) into the
fundamental matrix equation.

Boundary Conditions in the Matrix Forms

To obtain the approximated solution of our model problem (1) by solving the funda-
mental matrix Equation (23), we need to take into account the boundary conditions (2).
First, we consider the initial condition ψ(0) = 0. For this purpose, we let τ → 0 in (10)
to obtain

Σ̂ΣΣ0 := ΠΠΠM(0)CCCt DDDM = 0, or [Σ̂ΣΣ0; 0].

For the end condition ψ(1) = 1, we tend τ → 1 in (10) to arrive at

Σ̂ΣΣ1 := ΠΠΠM(1)CCCt DDDM = 1, or [Σ̂ΣΣ1; 1].

Remark 1. We note that the computational complexity of evaluating d2

dτ2 ΠΠΠM(τ) at the collocation
points via (17) is on the order O((M + 1)2). In the following, we propose an alternative to reduce
the involved complexity within O(M + 1). The following algorithm will be invoked to calculate the
second-order derivative of the basis functions ΠΠΠM(τ) directly. Indeed, Algorithm 1 takes ΠΠΠM(τ) as
input and the output is ΠΠΠ(s)

M (τ) for s = 1, 2, . . .. For instance, by calling Algorithm 1 with s = 2
and M = 5, we obtain

ΠΠΠ(2)
5 (τ) =

[
0 0 2 6τ 12τ2 20τ3

]
.

Algorithm 1 The computation of s-derivative of the vector ΠΠΠM(τ)

procedure [ΠΠΠ(s)
M ]= compute_DerPro(M, s)

ΠΠΠ(s)
M [1] := 0;

for j := 1, . . . , M do
if (j− s < 0) then

ΠΠΠ(s)
M [j + 1] := 0;

else
ΠΠΠ(s)

M [j + 1] :=
j!

(j− s)!
τ j−s;

end;

We are now able to enter the boundary conditions (2) into the fundamental matrix
Equation (23). In this respect, we replace the first row as well as the last row of the
augmented matrix [ΣΣΣ; ZZZ] in (23) by the row matrices [Σ̂ΣΣ0; 0] and [Σ̂ΣΣ1; 1]. Therefore,
the resultant modified fundamental matrix becomes [Σ̂ΣΣ; ẐZZ]. After solving this modified
matrix equation, the unknown coefficients dk, k = 0, 1, . . . , M will be computed and,
therefore, the approximate solution ψM(τ) for the model problem in (1) will be determined.

4. QLM-Bessel

Our goal is to solve the two-point BVP (1)–(2) approximately such that the desired
solution is represented in terms of the truncated Bessel series (10). Unlike the direct
Bessel-collocation approach described in the last section, this task is accomplished for the
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corresponding approximated quasilinear model problem (12). For this purpose, let us
assume that an approximated solution ψ

(r)
M (τ) is known for the model problems (12) in the

iteration r = 0, 1, . . .. In the next iteration, we consider

ψ
(r+1)
M (τ) =

M

∑
k=0

d(r)k Bk(τ), 0 ≤ τ ≤ 1. (24)

Here, d(r)k , k = 0, 1, . . . , M are the unknown coefficients that have to be sought. Let us define

DDD(r)
M =

[
d(r)0 d(r)1 . . . d(r)M

]t
.

Utilizing (10), we can rewrite the finite series (24) in a matrix representation form

ψ
(r+1)
M (τ) = ΠΠΠM(τ)CCCt DDD(r)

M , (25)

where the vector of basis function ΠΠΠM(τ) and the matrix CCC are defined in (9). Calling
Algorithm 1, we calculate the second-order derivative of the vector of basis functions
ΠΠΠM(τ) as

d2

dτ2 ψ
(r+1)
M (τ) = ΠΠΠ(2)

M (τ)CCCt DDD(r)
M = ΠΠΠM(τ) (EEEt)2 CCCt DDD(r)

M . (26)

We then proceed by placing the collocation points (14) into (25) and (26) to write

ΨΨΨr+1 = ∆∆∆ CCCt DDD(r)
M , ΨΨΨr+1 =


ψ
(r+1)
M (τ0)

ψ
(r+1)
M (τ1)

...
ψ
(r+1)
M (τM)

, ∆∆∆ =


ΠΠΠM(τ0)
ΠΠΠM(τ1)

...
ΠΠΠM(τM)

, (27)

Ψ̈ΨΨr+1 = ∆∆∆ (EEEt)2 CCCt DDD(r)
M , Ψ̈ΨΨr+1 =


d2

dτ2 ψ
(r+1)
M (τ0)

d2

dτ2 ψ
(r+1)
M (τ1)

...
d2

dτ2 ψ
(r+1)
M (τM)

. (28)

We now are aiming to find an approximate solution represented as (24) for the quasi-
linear model problem (12) through the Bessel-collocation approach. By collocating (12) at
the collocation points (14), we obtain

ψ′′r+1(τi)−
[
α2 cosh(αψr(τi))

]
ψr+1(τi) = −α2 ψr(τi) cosh(αψr(τi)) + α sinh(αψr(τi)),

for r = 0, 1, . . .. To proceed, we define

pr(t) = −α2 cosh(αψr(t)), fr(t) = pr(t)ψr(t) + α sinh(αψr(t)).

Now, by using the matrix notations defined in (27) and (28), we may write the preceding
equations as compactly as

Ψ̈ΨΨr+1 + PPPr ΨΨΨr+1 = FFFr. (29)

In (29), the matrix PPPr as well as the vector FFFr can be written in the following forms

PPPr =


pr(τ0) 0 . . . 0

0 pr(τ1) . . . 0
...

...
. . .

...
0 0 . . . pr(τM)


(M+1)×(M+1)

, FFFr =


fr(τ0)
fr(τ1)

...
fr(τM)


(M+1)×1

.
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Lemma 2. Suppose that the approximate solution of (12) can be written as (25). Then, we obtain
the following fundamental linear matrix equation(

∆∆∆ (EEEt)2 + PPPr ∆∆∆
)

CCCt︸ ︷︷ ︸
ΣΣΣr

DDD(r)
M = FFFr, or [ΣΣΣr; FFFr]. (30)

Proof. By inserting the relations (27) and (28) into (29), we obtain the fundamental matrix
equation as desired.

It can be obviously seen that, unlike Equation (22), the fundamental matrix equa-
tion (30) is a set of (M + 1) linear equations in terms of (M + 1) unknown coefficients
d(r)0 , d(r)1 , . . . , d(r)M to be determined. In each iteration, one requires to take into consideration
the boundary conditions (13). The matrix representations of the boundary conditions (13)
can be similarly done as for the non-linear counterpart. Besides, to begin the computation,
we need to prescribe the initial guess ψ0(τ) as an approximation for the solution.

In a similar manner as the direct approach, the first and last rows of the augmented
matrix [ΣΣΣr; FFFr] are replaced by the row matrices [Σ̂ΣΣr,0; 0] and [Σ̂ΣΣr,1; 1]. The resulting
algebraic system of linear equations becomes

Σ̂ΣΣr DDD(r)
M = F̂FFr, (31)

which can be solved by any classical linear solver. Consequently, the unknown Bessel
coefficients in (24) will be determined once we solve this system of equations.

5. Error Analysis

In this section, we make an investigation on error analysis for the Bessel series solution.
In this respect, we present a theorem giving an upper boundary of errors.

Theorem 1 (Upper Boundary of Errors). Let ψ(τ) and ψM(τ) = ΩΩΩM(τ)DDDM be the exact
solution and the Bessel polynomial solution with M-th degree of (1). In addition, we assume that
ψMac

M (τ) = ΠΠΠM(τ)D̃DDM is the expansion of the Maclaurin series by M-th degree of ψ(τ). Then,
the error of the Bessel polynomial solution is bounded as follows

‖ψ(τ)− ψM(τ)‖∞ ≤
∥∥∥ ∞

∑
m=M+1

ψ(m)(0)
m!

τm
∥∥∥

∞
+ ‖D̃DDM‖∞ + ‖CCCt

M‖∞ ‖DDDM‖∞, (32)

where ΠΠΠM(τ) =
[
1 τ τ2 . . . τM], ΩΩΩM(τ) = [B0(τ) B1(τ) . . . BM(τ)] and the ma-

trix CCCt
M represents the coefficient matrix CCCt of size (M + 1)× (M + 1) as defined in the Section 2.

Proof. Utilizing the triangle inequality after adding and subtracting the Maclaurin expan-
sion ψMac

M (τ) by M-th degree, we write the following expression

‖ψ(τ)− ψM(τ)‖∞ = ‖ψ(τ)− ψMac
M (τ) + ψMac

M (τ)− ψM(τ)‖∞

≤ ‖ψ(τ)− ψMac
M (τ)‖∞ + ‖ψMac

M (τ)− ψM(τ)‖∞. (33)

According to (10), the Bessel polynomial solution ψM(τ) = ΩΩΩM(τ)DDDM can be written
in the matrix form ψM(τ) = ΠΠΠM(τ)CCCt

MDDDM. Since the expansion of the Maclaurin series of
ψ(τ) by M-th degree is ψMac

M (τ) = ΠΠΠM(τ)D̃DDM, we can write

‖ψMac
M (τ)− ψM(τ)‖∞ = ‖ΠΠΠM(τ)D̃DDM −ΠΠΠM(τ)CCCt

MDDDM‖∞

≤ ‖ΠΠΠM(τ)‖∞

(
‖D̃DDM‖∞ + ‖CCCt

M‖∞‖DDDM‖∞

)
. (34)

Due to the fact that ‖ΠΠΠM(τ)‖∞ ≤ 1 for τ ∈ [0, 1], we can arrange Equation (34)
as follows



Mathematics 2021, 9, 1841 9 of 16

‖ψMac
M (τ)− ψM(τ)‖∞ ≤ ‖D̃DDM‖∞ + ‖CCCt

M‖∞‖DDDM‖∞. (35)

On the other hand, since the remainder term of the Maclaurin series ψMac
M (τ) by M-th

degree is
∞
∑

m=M+1

ψ(m)(0)
m! τm, we can write

‖ψ(τ)− ψMac
M (τ)‖∞ ≤

∥∥∥ ∞

∑
m=M+1

ψ(m)(0)
m!

τm
∥∥∥

∞
. (36)

Combining Equations (33), (35), and (36), the proof of the theorem is completed.

Remark 2. The upper bound obtained in Theorem 1 can be slightly modified. In fact, according to
the remainder of the Taylor’s theorem, there exist cτ ∈ (0, 1) such that

∞

∑
m=M+1

ψ(m)(0)
m!

τm ≤ 1
(M + 1)!

‖ψ(M+1)(cτ)‖∞.

Thus, we obtain

‖ψ(τ)− ψM(τ)‖∞ ≤
1

(M + 1)!
‖ψ(M+1)(cτ)‖∞ + ‖D̃DDM‖∞ + ‖CCCt

M‖∞ ‖DDDM‖∞. (37)

The Accuracy of Methods

The exact analytical solution of the non-linear model problem (1) is not known explic-
itly and only available in a closed-form. In this case, it is important to check the accuracy of
the presented collocation methods. Let us assume that EM(τ) and E (r+1)

M (τ) be the residual
error functions, which are obtained by substituting the truncated Bessel series solutions (7)
and (24) into (1). Thus, we obtain for τ ∈ [0, 1]

EM(τ) :=
∣∣∣ d2

dτ2 ψM(τ)− α sinh(α ψM(τ))
∣∣∣, (38a)

E (r+1)
M (τ) :=

∣∣∣ d2

dτ2 ψ
(r+1)
M (τ)− α sinh(α ψ

(r+1)
M (τ))

∣∣∣. (38b)

6. Graphical and Computational Results

Here, we are going to illustrate the effectiveness of the presented direct Bessel col-
location as well as QLM-Bessel collocation method for the non-linear model problem (1)
through numerical experiments. All experimental computations have been carried out
via the MATLAB R2017a software. For validation, comparisons with available existing
numerical models are also performed.

6.1. Test Case 1: α = 0.5

Let us first consider the number of basis function M = 5. The approximate solution
ψ5(τ) for this test problem utilizing the Bessel basis functions via the direct approach (23)
on 0 ≤ τ ≤ 1 is obtained as follows

ψ5(τ) = 0.001168476209 τ5 − 0.0003266315336 τ4 + 0.04016903692 τ3

− 0.00006340663721 τ2 + 0.959052525 τ + 3.427137656× 10−17.

The corresponding approximate solution obtained via the QLM-Bessel approach (30)
using the iteration parameter r = 5 is

ψ
(6)
5 (τ) = 0.001168476128 τ5 − 0.0003266313634 τ4 + 0.0401690368 τ3

− 0.00006340659959 τ2 + 0.959052525 τ.
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The initial guess in the latter approach is taken as ψ0(τ) = 0. Clearly, the outcomes
of both approaches are the same while the direct collocation scheme takes more time,
especially when M is increased and may be not be convergent at all. The above approxi-
mations along with the exact solutions are visualized in Figure 1. Note, the exact solution
at some points τ ∈ [0, 1] is taken from [11]. These values are obtained via solving the
closed-form solution (3). In Figure 1, on the right panel, we depict the computed residual
error functions (38a) and (38b). Besides M = 5, the results corresponding to M = 8 are
further visualized for both direct and QLM-Bessel collocation approaches.
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Figure 1. The graphs of exact and approximated solutions (left) and the related residual error functions (right) for M = 5, 8,
and r = 5 in Test case 1.

Our results with M = 8 using both direct and linearization approaches are similar up
to ten digits as follows

ψ
(6)
8 (τ), ψ8(τ) = 8.2519× 10−6 τ8 + 1.8235× 10−5 τ7 + 1.9425× 10−5 τ6

+ 9.4595× 10−4 τ5 + 5.3536× 10−6 τ4 + 0.03995880813 τ3

+ 1.9691× 10−7 τ2 + 0.9590437817 τ − 6.276852× 10−17.

The residual errors achieved via the QLM-Bessel method for Test case 1 using
M = 5, 10, 15, and M = 20 are graphically visualized in Figure 2. It can be seen that
the approximate solutions are convergent exponentially when M is increased.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10´25

10´22

10´19

10´16

10´13

10´10

10´7
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τ -axis

Ep6
q

M
pτ

q

QLM-Bessel pM “ 5q
QLM-Bessel pM “ 10q
QLM-Bessel pM “ 15q
QLM-Bessel pM “ 20q

Figure 2. Comparison of residual error functions in QLM-Bessel for various M = 5, 10, 15, 20,
and r = 5 in Test case 1.
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Finally, for this value of α, we justify our results by comparing to other existing
available numerical models. In this respect, we employ M = 9 and report the numerical
results in Table 1. We compare our computed solutions with the outcomes of the shifted
Bessel Tau (SBT) method [20], the B-spline approach (BSA) [13], the double exponential sinc-
Galerkin (DESG) method [15], and the modified non-linear shooting method (MNLSM) [9].

Table 1. Comparison of numerical solutions in Bessel/QLM-Bessel for Test case 1 using M = 9 and
various τ ∈ [0, 1].

τ Bessel QLM-Bessel SBT [20] BSA [13] DESG [15] MNLSM [9]

0.1 0.0959443493 0.0959443493 0.095944350620621 0.095944 0.09594434932 0.09597247
0.2 0.1921287476 0.1921287477 0.192128750320282 0.192128 0.19212874768 0.19218506
0.3 0.2887944008 0.2887944009 0.288794404891654 0.288793 0.28879440094 0.28887905
0.4 0.3861848462 0.3861848464 0.386184851707410 0.386183 0.38618484638 0.38629807
0.5 0.4845471645 0.4845471648 0.484547171441282 0.484546 0.48454716477 0.48441684
0.6 0.5841332482 0.5841332485 0.584133256467667 0.584132 0.58413324848 0.58428140
0.7 0.6852011480 0.6852011483 0.685201157498259 0.685200 0.68520114831 0.68525684
0.8 0.7880165223 0.7880165227 0.788016532411673 0.788015 0.78801652269 0.78807945
0.9 0.8928542158 0.8928542162 0.892854224345211 0.892853 0.89285421616 0.89292601

6.2. Test Case 2: α = 1

In this case, we first utilize M = 7 in the Bessel-collocation method to obtain

ψ7(τ) = 0.0050297787 τ7 − 0.0082098988 τ6 + 0.020709825 τ5 − 0.0049530270 τ4

+ 0.142486485 τ3 − 0.0002918546382 τ2 + 0.8452286916 τ.

In fact, using M = 10, the direct algorithm gives no reliable results. In the QLM-Bessel
method, the corresponding approximate solution for 0 ≤ τ ≤ 1 is

ψ
(6)
10 (τ) = 5.9125× 10−4 τ10 − 0.001726998 τ9 + 0.0032385917 τ8 − 0.001625926 τ7

+ 0.0020372912 τ6 + 0.011214379 τ5 + 2.4030× 10−4 τ4 + 0.140824035 τ3

+ 4.6403× 10−6 τ2 + 0.8452024383 τ − 5.267094243× 10−109.

Figure 3 shows the residual error functions achieved via the QLM-Bessel method for
Test case 2. In these experiments, we utilize M = 5, 10, 15, and M = 20. The validation
includes a comparison with existing available numerical and experimental results, reported
for the methods used in Table 1, and is listed in Table 2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10´25

10´21

10´17

10´13

10´9

10´5

10´1

τ -axis

Ep6
q

M
pτ

q

QLM-Bessel pM “ 5q
QLM-Bessel pM “ 10q
QLM-Bessel pM “ 15q
QLM-Bessel pM “ 20q

Figure 3. Comparison of residual error functions in QLM-Bessel for various M = 5, 10, 15, 20,
and r = 5 in Test case 2.
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Table 2. Comparison of numerical solutions in QLM-Bessel for Test case 2 using M = 8, 10 and
various τ ∈ [0, 1].

τ M = 8 M = 10 LDM [11] BSA [13] DESG [15] PSO [17]

0.1 0.0846611308 0.0846612523 0.0846630897 0.084655 0.084661256642 0.0846685241
0.2 0.1701712882 0.1701713557 0.1701750442 0.170160 0.170171358273 0.1701736494
0.3 0.2573938770 0.2573939070 0.2573994845 0.257377 0.257393908175 0.2573894393
0.4 0.3472228668 0.3472228555 0.3472303763 0.347201 0.347222855224 0.3472184871
0.5 0.4405998884 0.4405998371 0.4406093753 0.440575 0.440599835276 0.4406021957
0.6 0.5385344936 0.5385344015 0.5385460046 0.538508 0.538534398177 0.5385424242
0.7 0.6421287494 0.6421286141 0.6421421393 0.642103 0.642128609348 0.6421341068
0.8 0.7526082754 0.7526081005 0.7526226886 0.752586 0.752608094135 0.7526041759
0.9 0.8713627684 0.8713625283 0.8713748860 0.871349 0.871362519949 0.8713530059

Let us examine the impact of utilizing various values of parameter α on the obtained
results. To this end, we fix M = 10 and let α vary as 0.125, 0.25, 0.5, 1, 2, 3, 4. The residual
errors calculated via (38b) for τ ∈ [0, 1] are presented in Figure 4. It can be concluded
that the error function E (6)10 (τ) is a decreasing function with respect to α < 1, while it is
inherently an increasing function with regard to α ≥ 1. In all cases, the maximum value of
the errors occurred at τ = 1. Indeed, as investigated by Troesch [4], there exists a pole for
the model problem (1), which is located at

τs =
1
α

ln
(

8
ψ′(0)

)
.

The values of τs approach to τ = 1 if one increases α > 1. The solution profiles
at diverse α = 0.125, 0.25, 0.5, 1, 2, 3, 4, and α = 5 are presented in Figure 5. Finally, we
validate our results by comparing our results with an optimal iterative scheme, which is
based on the homotopy analysis method and the Green’s function technique (HAMG) [21].
In this respect, the residual errors E (6)M (τ) using various α = 1, 1.5, 2, and α = 2.5 by the
QLM-Bessel with M = 8, 12, 15 computed at some points τ ∈ [0, 1] are presented in Table 3.
Looking at Table 3, one can infer that by increasing α the magnitude of errors achieved by
our approach are getting smaller compared to the HAMG.
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Figure 4. Comparison of residual error functions in QLM-Bessel for M = 10, r = 5, and various α.
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Figure 5. Numerical solutions in QLM-Bessel for M = 10, r = 5, and various α.

Table 3. Comparison of numerical results in QLM-Bessel for α = 1, 1.5, 2, 2.5, M = 8, 12, 15, and some
τ ∈ [0, 1].

α = 1 α = 1.5 α = 2 α = 2.5

τ E (6)
8 (τ) Res8 [21] E (6)

8 (τ) Res8 [21] E (6)
12 (τ) Res12 [21] E (6)

15 (τ) Res15 [21]

0.1 7.56−06 2.52−9 2.59−4 8.80−6 v3.99−05 8.68−5 5.90−05 8.39−5
0.2 2.26−06 6.36−9 7.93−5 1.79−5 6.25−06 1.98−4 2.05−18 1.84−4
0.3 8.47−07 1.23−8 3.05−5 2.69−5 1.58−06 3.49−4 6.30−07 3.09−4
0.4 3.13−07 1.99−8 1.16−5 3.38−5 4.78−07 5.30−4 7.71−16 4.52−4
0.5 9.31−65 2.66−8 0.00+0 3.50−5 1.89−35 7.00−4 2.16−07 5.87−4
0.6 3.53−07 2.65−8 1.40−5 2.45−5 6.11−07 7.96−4 5.59−14 6.75−4
0.7 1.08−06 9.43−9 4.48−5 6.35−6 2.59−06 7.63−4 1.14−06 6.96−4
0.8 3.26−06 4.30−8 1.43−4 7.46−5 1.34−05 5.91−4 4.13−13 6.67−4
0.9 1.23−05 1.73−7 5.75−4 2.35−4 1.15−04 3.17−4 2.18−04 7.46−4

6.3. Test Case 3: α = 5

Let us consider the QLM-Bessel approach with M = 10. Thus, the following approxi-
mation is achieved for 0 ≤ τ ≤ 1

ψ
(6)
10 (τ) = 158.9257704 τ10 − 698.6514572 τ9 + 1338.269086 τ8 − 1461.238116 τ7

+ 1000.941419 τ6 − 445.5093877 τ5 + 129.3704291 τ4 − 23.60162081 τ3

+ 2.580220777 τ2 − 0.08634442224 τ − 2.180075438× 10−106.

Due to difficulties that arise in the Troesch’s model problem for large values of α,
the approximate solution ψ

(6)
10 (τ) may be not so accurate as for the smaller values of α.

To this end, we need to take M sufficiently large to obtain the desired approximations.
The impacts of diverse M on the numerical solutions as well as the residual errors are
shown in Figure 6. We use M = 10, 15, and M = 20 in the QLM-Bessel collocation method.
Obviously, all approximated solutions are very close together while the corresponding
residual errors are decreasing with respect to M.

Next, we compare the results obtained via the QLM-Bessel approach for this test
case. In this respect, we employ M = 15, 25, and M = 35. In Table 4, comparisons have
been made with the results of the Fortran code called TWPBVP [13] as well as with the
B-spline approach (BSA) [13], the double exponential sinc-Galerkin (DESG) method [15],
and the shifted Jacobi–Gauss collocation method (SJGCM) [18]. The behavior of numer-
ical solutions obtained by the QLM-Bessel taking various (large) values of parameter
α = 1, 3, 5, 8, 10, 15, 20, 30, 40, 50, and α = 100 are depicted in Figure 7. Due to difficulties
arising in the approximate solutions for the larger values of α, we take M = 50 to keep the
accuracy at some acceptable level.
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Table 4. Comparison of numerical solutions in QLM-Bessel for Test case 3 using M = 15, 25, 35 and
various τ ∈ [0, 1].

τ M = 15 M = 25 M = 35 TWPBVP [13] BSM [13] DSEG [15] SJGCM [18]

0.2 0.01124607 0.01083911 0.01076289 0.01075342 0.01002027 0.01075340 0.01078872
0.4 0.03372042 0.03328128 0.03322919 0.03320051 0.03099793 0.03320049 0.03338672
0.8 0.26145305 0.25868755 0.25845438 0.25821664 0.24170496 0.25821648 0.25956596
0.9 0.46159871 0.45601002 0.45554150 0.45506034 0.42461830 0.45506002 0.45706638
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Figure 6. Comparison of numerical solutions in QLM-Bessel (left) and the related residual error functions (right) for
M = 10, 15, 20, and r = 5 in Test case 3.
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Figure 7. Numerical solutions in QLM-Bessel for M = 50, r = 5, and various α.

7. Conclusions

An efficient collocation method based on the Bessel matrix representation combined
with the quasi-linearization technique has been presented to find the solution of the
two-point non-linear Troesch’s problem arising in the modeling of a plasma confinement
problem and gas porous electrodes. In addition, a direct Bessel collocation method has
been developed for the underlying model problem. The error analysis of Bessel functions
was established theoretically and the related convergence verified experimentally through
numerical simulations on diverse values of the sensitive parameter α. Moreover, the com-
parisons of numerical solutions on different well-established schemes were performed to
validate our presented approximation algorithms. It is found that the simulation results



Mathematics 2021, 9, 1841 15 of 16

agree quite well in general with outcomes of existing schemes. The present QLM-Bessel
method is broadly applicable and can be applied to solve diverse nonlinear model problems
in engineering and science.
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and editing, M.I., Ş.Y. and S.N. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Markin, V.S.; Chernenko, A.A.; Chizmadehev, Y.A.; Chirkov, Y.G. Aspects of the theory of gas porous electrodes. In Fuel Cells:

Their Electrochemical Kinetics; Bagotskii, V.S., Vasilev, Y.B., Eds.; Consultants Bureau: New York, NY, USA, 1966; pp. 21–33.
2. Gidaspow, D.; Baker, B.S. A model for discharge of storage batteries. J. Electrochem. Soc. 1973, 120, 1005–1010. [CrossRef]
3. Weibel, E.S. On the confinement of a plasma by magnetostatic fields. Phys. Fluids 1959, 2, 52–56. [CrossRef]
4. Troesch, B.A. Intrinsic Difficulties in the Numerical Solution of a Boundary Value Problem; Internal Report NN-142; TRW, Inc.: Redondo

Beach, CA, USA, 1960.
5. Troesch, B.A. A simple approach to a sensitive two-point boundary value problem. J. Comput. Phys. 1976, 21, 279–290. [CrossRef]
6. Roberts, S.; Shipman, J. On the closed form solution of Troesch’s problem. J. Comput. Phys. 1976, 21, 291–304. [CrossRef]
7. Jones, D.J. Solution of Troesch’s and other two point boundary value problems by shooting techniques. J. Comput. Phys. 1973,

12, 42–434. [CrossRef]
8. Chang, S. Numerical solution of Troesch’s problem by simple shooting method. Appl. Math. Comput. 2010, 216, 3303–3306.

[CrossRef]
9. Alias, N.; Manaf, A.; Ali, A.; Habib, M. Solving Troesch’s problem by using modified nonlinear shooting method. J. Teknolog.

2016, 78, 45–52. [CrossRef]
10. Scott, M. On the conversion of boundary-value problems into stable initial-value problems via several invariant imbedding

algorithms. In Numerical Solutions of Boundary-Value Problems for Ordinary Differential Equations; Aziz, A.K., Ed.; Academic Press:
New York, NY, USA, 1975; pp. 89–149.

11. Khuri, S.A. A numerical algorithm for solving the Troesch’s problem. Int. J. Comput. Math. 2003, 80, 493–498. [CrossRef]
12. Feng, X.; Mei, L.; He, G. An efficient algorithm for solving Troesch’s problem. Appl. Math. Comput. 2007, 189, 500–507. [CrossRef]
13. Khuri, S.A.; Sayfy, A. Troesch’s problem: A B-Spline collocation approach. Math. Comput. Model. 2011, 54, 1907–1918. [CrossRef]
14. Zarebnia, M.; Sajjadian, M. The sinc-Galerkin method for solving Troesch’s problem. Math. Comput. Model. 2012, 56, 218–228.

[CrossRef]
15. Nabati, M.; Jalalvand, M. Solution of Troesch’s problem through double exponential Sinc-Galerkin method. Comput. Methods

Differ. Equ. 2017, 5, 141–157.
16. Temimi, H. A discontinuous Galerkin finite element method for solving the Troesch’s problem. Appl. Math. Comput. 2012,

219, 521–529. [CrossRef]
17. Raja, M.A.Z. Stochastic numerical treatment for solving Troesch’s problem. Infor. Sci. 2014, 279, 860–873. [CrossRef]
18. Doha, E.H.; Baleanu, D.; Bahrawi, A.H.; Hafez, R.M. A Jacobi collocation method for Troesch’s problem in plasma physics. Proc.

Rom. Acad. A 2014, 15, 130–138.
19. Temimi, H.; Ben-Romdhane, M.; Ansari, A.R.; Shishkin, G.I. Finite difference numerical solution of Troesch’s problem on a

piecewise uniform Shishkin mesh. Calcolo 2017, 54, 225–242. [CrossRef]
20. Parand, K.; Ghaderi, A.; Delkhosh, M.; Pourgholi, R. A matrix formulation of the Tau method for the numerical solution of

non-linear problems. arXiv 2017, arXiv:1708.06941.
21. Singh, R. An iterative technique for solving a class of local and nonlocal elliptic boundary value problems. J. Math. Chem. 2020,

58, 1874–1894. [CrossRef]
22. Rufai, M.A.; Ramos, H. One-step hybrid block method containing third derivatives and improving strategies for solving Bratu’s

and Troesch’s problems. Numer. Math. Theor. Meth. Appl. 2020, 13, 946–972.
23. Sahlan, M.N.; Afshari, H. Three new approaches for solving a class of strongly nonlinear two-point boundary value problems.

Bound. Value Probl. 2021, 1, 1–21.
24. Krall, H.L.; Frink, O. A new class of orthogonal polynomials: The Bessel polynomials. Trans. Am. Math. Soc. 1949, 65, 100–115.

[CrossRef]
25. Izadi, M.; Cattani, C. Generalized Bessel polynomial for multi-order fractional differential equations. Symmetry 2020, 12, 1260.

[CrossRef]
26. Izadi, M.; Srivastava, H.M. An efficient approximation technique applied to a non-linear Lane-Emden pantograph delay

differential model. Appl. Math. Comput. 2021, 401, 1–10.

http://doi.org/10.1149/1.2403617
http://dx.doi.org/10.1063/1.1724391
http://dx.doi.org/10.1016/0021-9991(76)90025-5
http://dx.doi.org/10.1016/0021-9991(76)90026-7
http://dx.doi.org/10.1016/0021-9991(73)90165-4
http://dx.doi.org/10.1016/j.amc.2010.04.056
http://dx.doi.org/10.11113/jt.v78.8295
http://dx.doi.org/10.1080/0020716022000009228
http://dx.doi.org/10.1016/j.amc.2006.11.161
http://dx.doi.org/10.1016/j.mcm.2011.04.030
http://dx.doi.org/10.1016/j.mcm.2011.11.071
http://dx.doi.org/10.1016/j.amc.2012.06.037
http://dx.doi.org/10.1016/j.ins.2014.04.036
http://dx.doi.org/10.1007/s10092-016-0184-1
http://dx.doi.org/10.1007/s10910-020-01159-6
http://dx.doi.org/10.1090/S0002-9947-1949-0028473-1
http://dx.doi.org/10.3390/sym12081260


Mathematics 2021, 9, 1841 16 of 16

27. Izadi, M. Numerical approximation of Hunter-Saxton equation by an efficient accurate approach on long time domains. UPB Sci.
Bull. Ser. A 2021, 83, 291–300.

28. Izadi, M.; Cattani, C. Solution of nonlocal fractional-order boundary value problems by an effective accurate approximation
method. Appl. Ana. Optim. 2021, 5, 29–44.
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30. Yüzbaşi, Ş. A collocation method based on the Bessel functions of the first kind for singular perturbated differential equations
and residual correction. Math. Meth. Appl. Sci. 2015, 38, 3033–3042. [CrossRef]

31. Izadi, M.; Srivastava, H.M. Numerical approximations to the nonlinear fractional-order Logistic population model with fractional-
order Bessel and Legendre bases. Chaos Solitons Fract. 2021, 145, 1–11. [CrossRef]
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