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Abstract

:

One of the central issues that must be resolved for a metaheuristic optimization process to work well is the dilemma of the balance between exploration and exploitation. The metaheuristics (MH) that achieved this balance can be called balanced MH, where a Q-Learning (QL) integration framework was proposed for the selection of metaheuristic operators conducive to this balance, particularly the selection of binarization schemes when a continuous metaheuristic solves binary combinatorial problems. In this work the use of this framework is extended to other recent metaheuristics, demonstrating that the integration of QL in the selection of operators improves the exploration-exploitation balance. Specifically, the Whale Optimization Algorithm and the Sine-Cosine Algorithm are tested by solving the Set Covering Problem, showing statistical improvements in this balance and in the quality of the solutions.
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1. Introduction


In approximate methods, the guarantee of finding global optimum solutions is sacrificed due to the computational complexity of hard optimization problems. Approximate algorithms can be classified as specific heuristics and MH. Heuristics are techniques specifically designed to solve a particular problem. On the contrary, MH are defined as upper-level general methodologies (templates), which can be used as guiding strategies for the design of underlying heuristics for solving a problem [1]. Then, MH extends basic heuristic methods by including them in an iterative framework, augmenting their exploration and exploitation capabilities. Notice that exploration is the process of visiting new regions of a search space (solutions), whereas exploitation is the process of visiting those regions within the neighborhood of previously visited solutions. Thus, MH needs to establish a good ratio between exploration and exploitation to be successful. That means that designing and applying good MH is to make a proper trade-off between these two “forces” [2,3]. Unfortunately, the proper handling of this trade-off is an open question in the literature [4,5,6,7,8,9]. A comprehensive review about MH can be found in [1,10].



Optimization problems can be classified depending on the domain of the decision variables in discrete and continuous problems. In recent years, discrete optimization problems have become more and more frequent in the industry with problems as Set Covering Problem (SCP) [11,12], Knapsack Problem [13], Software Project Scheduling Problem [14,15] and Feature Selection [16]. The No-Free-Lunch Theorem (NFLT) [17] tells us that there is no universal optimization algorithm for all existing optimization problems. This means that, despite the existence of algorithms designed to solve discrete problems, none of them are good for all combinatorial optimization problems and there will always be a better one for a specific problem. This best algorithm can be one designed for discrete problems as well as an algorithm designed for continuous problems adapted to discrete problems. However, there are many MH (most of them are swarm intelligence) designed to work in the continuous domain, meaning that binarization techniques are required [18]. Among the most commonly used binarization operators, two-step techniques are the most common [18] and its performance has been improved by the use of ml-based techniques [13,19].



Several variations of MH are proposed in the literature to improve MH algorithms. Among the most relevant trends, hybrid MH represent a class of algorithms that combine MH with other applicable algorithms. The resulting algorithms take advantage of the strengths of algorithms composing the hybridization, finding better results while keeping complexity low. According to the taxonomy defined in [1] for hybrid MH, MH are usually combined with MH with exact mathematical programming algorithms (resulting in matheuristics [20]), with simulation (resulting in simheuristics [21]) and with machine learning (ML) (resulting in learnheuristics [22,23,24]). This work focuses on proposing a learnheuristic.



Focusing on ML, these techniques have become popular in recent years with many applications, from industrial to everyday applications [25,26]. Usually, ML techniques are divided in supervised, unsupervised, semi-supervised and Reinforcement Learning. Supervised techniques learn from labeled data to infer future samples in the form of classification or regression [27]. Unsupervised techniques consider unlabeled data to find clusters or patterns with usual algorithms as k-means [28], dbscan [29] or BIRCH [30]. Semi-supervised techniques share features of supervised and unsupervised learning, resulting in a hybrid approach in which labeled data are managed in a supervised manner while unlabeled data are managed in an unsupervised manner [31]. Reinforcement Learning techniques are based on the notion of cumulative reward, where the system received a positive or negative reward after each decision, adjusting the behavior of the system according to this feedback. Thus, instead of learning from labeled data, as supervised techniques, the system learns from the experience of making decisions [32].



Based on the existing difficulties in applying binarization techniques in MH algorithms designed for solving continuous problems, the main contribution in this paper consists in a novel binarization scheme powered by the QL algorithm, which is a Reinforcement-Learning technique. The authors apply this binarization scheme in conjunction with two MH to solve the SCP, resulting in two hybrid MH. As a result, the authors verified that the hybrid approach including the novel binarization scheme outperforms the regular MH with a usual fixed binarization approach from the literature.



The reminder of this paper is organized as follows. Section 2 presents the related work. In Section 3, the classical binarizarion techniques are described. Section 4 describes the QL based binarization scheme proposed in this paper. Section 5 explains the two implemented MH. Section 6 presents SCP. Section 7 details the statistical methodology and the experimental results. Finally, Section 8 concludes the work with some final remarks.




2. Related Work


This section discusses related work along two lines. First, works in which metaheuristics are improved by applying ML techniques and, second, works in which Q-Learning is applied together with MH, resulting in hybrid MH.



2.1. Metaheuristics Enhanced by Machine Learning


Regarding ML techniques supporting MH, the work of García et al. [19] reviewed two lines of research. The first one consists in the integration of ML as a replacement for an operator (e.g., population management, solution initialization, local search, disturbance of solutions and parameter tuning, among others). The second one consists in the use of ML as a selection tool for a set of MH, choosing the most appropriate for solving an specific instance of a problem.



Regarding the first line, the authors may cite the work of Veček et al. [33], where they performed a parameter tuning for the chess rating system problem. In the work of Ries et al. [34], a similar implementation was performed but using fuzzy logic and Decision Trees. Deng et al. [35] proposed a clustering-based initial solution generation for the Traveling Salesman Problem. Within this line, the binarization operator was also of considerable interest. Some examples are observed in [13] by solving the Multidimensional Knapsack Problem by unsupervised learning techniques, in [36] by using the concept of percentile and in [37] where they implemented the framework of Apache Spark for large combinatorial problems.



When considering ML as a selection tool to obtain a MH among a set of these, this task is divided into three groups. The first one is the algorithm selection that chooses among a set of techniques and characteristics of each problem in order to obtain better performance for a set of similar instances [38]. The second one is the hyperheuristic strategies, which aims at automating the design of the MH to address a set of problems [39]. The third group is composed of cooperative strategies, which combine algorithms in a sequential and parallel manner to improve robustness, sharing a part of the solution or its totality [40].



Reinforcement Learning is often used for the intelligent selection of operators [41]. An example of this is the work of Zhang et al. [42] where they proposed an adaptive evolutionary programming algorithm. For each individual, an optimal mutation operator was selected based on immediate performance.




2.2. Metaheuristics Enhanced by Q-Learning


Reviewing the literature, it is possible to find various implementations of QL supporting MH to solve a wide range of problems. Among the first works are those made by Gambardella and Dorigo, where they incorporate QL replacing pheromone behavior in Ant Colony Optimization [43] to solve Travelling Salesman Problem [44] and its asymmetric version. In [45], QL is used as an heuristic selector inside an hyperheuristic scheme to solve the Cutting Stock Problem. The same strategy is used in [46,47] in order to solve the cross-domain heuristic search challenge [48] and Stochastic mixed-model assembly line sequencing problem. In [42,49], a hybridization is proposed where QL is an intelligent selector of mutation operators in Genetic Algorithms. In [50], QL and SARSA are implemented for League Championship Algorithm to strengthen the search power of each individual in the algorithm to extract better stock trading rules for various types of trading conditions. In [51,52], parameters of the Firefly Algorithm [53] and a version Sine Cosine Algorithm combined with Cuckoo Search are dynamically controlled to improve the search and to avoid falling into local optima. There are also several implementations in the literature where QL supports MH, such as Particle Swarm Optimization [54,55], Cuckoo Search [56], Bat Algorithm [57] and Meta-RaPS [58].



Summarizing what has been found in the literature, two models of conceptual interaction between QL and a MH are shown and these two major interest groups are: (1) how QL can support within the MH; and (2) how QL can support from outside the MH (with a hyperheuristic approach).



The interaction model shows that QL can support learning from the behavior of operators associated with the MH for the problem in the search of solutions, i.e., it is an additional element to the layer of the MH.



On the other hand, QL can be a component of a higher-level layer called Hyperheuristics (HH), which is given back to operators at a lower level with each iteration of the MH addressing the problem. The operators from the lower level problem form part of the problem to be solved at the top layer where any MH learning from QL can take place.



The literature review shows the contribution of ML works to improve the performance of metaheuristics as well as the contribution of metaheuristics to improve the performance of ML. However, in an essential topic in the behavior of a MH, such as the exploration-exploitation balance, there is an area of research that is interesting to work on in order to find better solutions that are applicable to the industry.





3. Continuous Metaheuristics Working in Binary Domains


The binary techniques for continuous MH consist of transferring the values of continuous domain of the MH to a binary domain, this is conducted to preserve the quality movements that possess continuous MH and, thus, generate quality binary solutions.



Although there are MH that work in binary domains without the need to incorporate a binary scheme, the continuous MH together with a binary scheme have presented great performance in diverse combinatorial NP-Hard problems for which they have called the interest of the scientific community. Some examples include Particle Swarm Optimization [59], Binary Salp Sawrm Algorithm [60], Binary Dragonfly [61] and Binary Magnetic Optimization Algorithm [62], among others [63,64,65,66].



Among the binary schemes, two large groups can be defined: First, the operators that do not alter the operation of the other elements of the MH where the two-step techniques stand out, as they are the most used previously [18] and the Angle Modulation technique [67]. The second group consists of the methods that alter the normal functioning of MH, which are Quantum Binary [68] and Set-Based Approaches in addition to the techniques based on clustering [13,19].



3.1. Two-Step Binarization Scheme


Two-step binary schemes are of great relevance for various types of problems [69]. This binarization scheme is composed by two steps, the first one is the transfer function, which transfers the values generated by the continuous MH to a continuous interval between 0 and 1, while the second step is the binarization, which consists in transferring the real number in a binary value. This is best exemplified in Figure 1.



3.1.1. Transfer Functions


Transfer functions were introduced by Kennedy et al. in 1997 [70]. Having as main advantage the delivery of a probability between 0 and 1 at a low computational cost. There are two types of functions, the S-Shaped [63] and the V-Shaped [71] where each has four variations presented for both the S-Shape and for the V-Shape. The variations for the S-Shape functions,    T  S i    (  d w j  )    for   i ∈ { 1 , 2 , 3 , 4 }   are defined as follows:


   T  S 1    (  d w j  )  =  1  1 +  e  − 2  d w j      ,  



(1)






   T  S 2    (  d w j  )  =  1  1 +  e  −  d w j      ,  



(2)






   T  S 3    (  d w j  )  =  1  1 +  e   −  d w j   2     ,  



(3)




and


   T  S 4    (  d w j  )  =  1  1 +  e   −  d w j   3     ,  



(4)




where   d w j   denotes the discrete value in the individual   w ∈ { 1 , 2 , ⋯ , n }   in dimension   j ∈ { 1 , 2 , ⋯ , l }   and n and l are the number of individuals and dimensions, respectively. The variations for the V-Shape functions,    T  V i    (  d w j  )    for   i = 1 , 2 , 3 , 4  , are defined as follows:


   T  V 1    (  d w j  )  =  e r f    π  2   d w j    ,  



(5)






   T  V 2    (  d w j  )  =  t a n h (  d w j  )  ,  



(6)






   T  V 3    (  d w j  )  =    d w j    1 +   (  d w j  )  2      ,  



(7)




and


   T  V 4    (  d w j  )  =   2 π  a r c t a n   π 2   d w j    .  



(8)




The results of plotting the tuples   (  d w j  ,  T  S i    (  d w j  )  )   and   (  d w j  ,  T  V i    (  d w j  )  )   for   i ∈ { 1 , 2 , 3 , 4 }   are shown in Figure 2.




3.1.2. Binarization


The second step is binarization, which has the function of discretizing the probability obtained from the transfer function   T (  d w j  )   calculated according to Section 3.1.1 by delivering a binary value.



For this step, there are different techniques in the literature such as Standard, Complement, Static Probability, Elitist and Elitist Roulette. The values for the binarization obtained by using different methods are defined as follows.



Let   X  n e w , s d  j   be the binarization value obtained by using the Standard method. Then,   X  n e w , s d  j   is defined as the following:


   X  n e w , s d  j  =      1     if   r a n d ≤ T (  d w j  )      0    otherwise      ,  



(9)




where   r a n d  , for   0 ≤ r a n d ≤ 1  , is a random value generated following a uniform distribution   U ( 0 , 1 )  ,   T (  d w j  )   denotes the discrete value in the individual   w ∈ { 1 , 2 , ⋯ , n }   in dimension   j ∈ { 1 , 2 , ⋯ , l }   and n and l are the number of individuals and dimensions, respectively.



Let   X  n e w , c  j   be the binarization value obtained by using the Complement method. Then,   X  n e w , c  j   is defined as the following:


   X  n e w , c  j  =      C o m p l e m e n t (  X w j  )     if   r a n d ≤ T (  d w j  )      0    otherwise      ,  



(10)




where   C o m p l e m e n t (  X w j  )   denotes the complementary binary value of   X w j   in the individual w for dimension j, i.e., if the value of   X w j   is 0, the complement corresponds to 1.



Let   X  n e w , s p  j   be the binarization value obtained by using the Static Probability method. Then,   X  n e w , s p  j   is defined as the following:


   X  n e w , s p  j  =      0     if   T (  d w j  ) ≤ α       X  w  j     if   α < T  (  d w j  )  ≤  1 2   ( 1 + α )       1    if   T  (  d w j  )  >  1 2   ( 1 + α )       ,  



(11)




where   X  w  j   denotes the value of the dimension   j ∈ { 1 , 2 , ⋯ , l }   in the individual   w ∈ { 1 , 2 , ⋯ , n }  , l and n are the number of dimensions and individuals, respectively, and  α  corresponds to a parameter determined by the user.



Let   X  n e w , e  j   be the binarization value obtained by using the Elitist method. Then,   X  n e w , e  j   is defined as the following:


   X  n e w , e  j  =       X  B e s t  j      if   r a n d < T (  d w j  )      0    otherwise      ,  



(12)




where   X  B e s t  j   denotes the value of the dimension j in the individual   b e s t  , which has obtained the best fitness so far, and l and n are the number of dimensions and individuals, respectively.



Let   X  n e w , e r  j   be the binarization value obtained by using the Elitist Roulette method [72]. Then,   X  n e w , e r  j   is defined as follows.


   X  n e w , e r  j  =      P  [  X  n e w , e r  j  =  ζ j  ]  =    f (  ζ j  )    ∑  δ ∈  Q g    f  ( δ )         if   r a n d < T (  d w j  )       P [  X  n e w , e r  j  = 0 ] = 1     otherwise      ,  



(13)










4. Binarization Scheme Selector Proposal


Nowadays, combinatorial problems in the binary domain are becoming increasingly complex and frequent in the industry. Solving them in reasonable a reasonable time period with high quality solutions is a priority for both academia and the industry.



This work proposes an intelligent selector of binarization schemes where the existing binarization methods in the literature are integrated to control the exploration and exploitation balance, thus, avoiding local optimizations. This is because several authors [5,8,73,74,75] propose that for a metaheuristic to work well, it must have a good balance between exploration and exploitation. Exploration or diversification consists of visiting unexplored regions of the search space to ensure that the search is performed in biased regions [1]. In contrast, exploitation or intensification and promising regions with good solutions are further explored in hopes of finding better solutions [1].



This new binarization strategy is inspired by the behavior of hyperheuristics and techniques that have performed well for various types of problems [39,76,77,78]. This method consists in using an intelligent operator to determine which type of binarization is most appropriate at the iteration level, i.e., based on the information of the problem and the results obtained in previous iterations, the binarization scheme that is most likely to obtain the best quality results can be used.



4.1. Q-Learning as a Smart Operator


In the present work, QL is implemented as the intelligent operator of the proposal, which chooses the two-step binarization technique to be used according to a reward system, with which it learns in a deterministic way. The structure of the implemented proposal is exemplified in Figure 3.




4.2. Q-Learning


Within Reinforcement Learning (RL) techniques there are Time Difference (TD) algorithms, which are characterized by exploring the environment and by using this information to update the current state [32]. The TD algorithms show the difference between the current estimation of the value of a state, the discounted value of the next state and the reward. It focuses on state-to-state transitions and learned values of states.



Prominent among the TD algorithms is QL [79], which provides agents with the ability to learn to act in the best way through the consequences of their actions taken. There are different “states” and different possible “actions” where the working “environment” is the current state in which the agent is in and must select and execute an action which affects the “environment” by changing its state. Actions are punished or rewarded by “rewards”, which are judged by the consequence obtained by applying an action in a particular state. Rewards are delayed, allowing the agent to learn from the system. In order to solve the problem, the agent tries to learn the best course of actions that will maximize the accumulated reward. The learning process lies in a set of episodes, where in each episode the agent selects and executes an action in a particular state. For the new episode, the agent’s learning is given by Equation (14):


   Q  n e w    (  s t  ,  a t  )  =  ( 1 − α )  ·  Q  o l d    (  s t  ,  a t  )  + α ·  [  r t  + γ · m a x Q  (  s  t + 1   ,  a  t + 1   )  ]   



(14)




where    Q  n e w    (  s t  ,  a t  )    is called Q-value and represents the cumulative quality or reward of the action taken   a t   in state   s t   at time t;   r t   is the reward or punishment received when action   a t   is taken in state   s t   at time t;   Q  o l d    is the Q-value for the previous iteration for action   a t   in state   s t  ;   m a x Q (  s  t + 1   ,  a  t + 1   )   is the maximum Q-value of the action for the next state, i.e., the best action the agent can take in the next state;  α  is the learning factor for which its value must be   0 ≤ α ≤ 1  ; and  γ  is the discount factor for which its value must be   0 ≤ γ ≤ 1  . If  α  is close to 0, the historical information learned becomes more relevant, whereas if  α  is close to 1 the information received immediately becomes more relevant. If  γ  equals 0, only the immediate reward is taken into account, while, as it approaches 1, the future reward receives greater emphasis relative to the immediate reward. The procedure of this algorithm is reflected in Algorithm 1.






	Algorithm 1 Q-Learning Algorithm.



	
	1:

	
Initialize   Q  v a l u e s   ,  α ,  γ 




	2:

	
whilet < Maximum number of iterations do




	3:

	
    Choose   a t   base on   Q  v a l u e s   




	4:

	
    Execute action   a t   and get immediate reward or punishment   r t  




	5:

	
    Observe the next state   s  t + 1   




	6:

	
       Q  n e w    (  s t  ,  a t  )  =  ( 1 − α )  ·  Q  o l d   ·  (  s t  ,  a t  )  + α ·  [  r t  + γ · m a x Q  (  s  t + 1   ,  a  t + 1   )  ]   




	7:

	
      t ←  t  + 1    




	8:

	
end while




	9:

	
Return    Q  n e w    (  s t  ,  a t  )   















4.3. Rewards


The reward in the RL algorithm is fundamental for a correct performance of these same algorithms; that is why, in the literature, there are several methods to calculate the rewards. The type of reward from the chosen metrics determine the value   R t   for the general QL equation, as detailed in Figure 4.



For the implementation of this work, five forms of rewards were used where two of them are among the simplest in the literature. The first is the one used in [46,54], where it is increased by a fixed value for the action that generated an improvement in the overall fitness of the problem and a decrease in the same fixed value if no improvement was generated. This fixed value is detailed in Equation (15). The second type of reward is a variation of the previous one used in the Q-table, where there is no penalty on the Q-table values, as presented in Equation (16). The last three rewards are collected by Nareyek in [80], which are detailed in Equations (17)–(19), respectively:


  w i t h P e n a l t y 1 =      + 1     if   there   is   a   fitness   improvement       − 1     otherwise      ,  



(15)






  w i t h O u t P e n t a l t y 1 =      + 1     if   there   is   a   fitness   improvement      0    otherwise      ,  



(16)






  g l o b a l B e s t =        W  B e s t F i t n e s s        if   there   is   a   fitness   improvement      0    otherwise      ,  



(17)






  r o o t A d a p t a t i o n =        B e s t F i t n e s s       if   there   is   a   fitness   improvement      0    otherwise      ,  



(18)




and


  e s c a l a t i n g M u l t i p l i c a t i v e A d a p t a t i o n =      W · B e s t F i t n e s s     if   there   is   a   fitness   improvement      0    otherwise      ,  



(19)




where W and   B e s t F i t n e s s   are defined as a constant of value 10 and the best fitness found so far, respectively.




4.4. Actions   A t  


As mentioned above, the main objective of Q-Learning is to find an optimal policy within a set of actions. Therefore, it is important to define which actions the agent will take during its learning process. In the present work, the actions taken by the agents are the combinations between the transfer functions and the binarization functions extracted from the Two-Step Technique. Thus, we obtain 40 possible actions to be selected in the learning process.




4.5. Obtaining Metrics (getMetric)


The reward or punishment is judged by the consequence obtained by the performance of the action. Therefore, it is important to define what the comparison metrics will be to discriminate the consequence. In the present work, the comparison metric is the fitness obtained in each iteration of the optimization process and it is compared with the best fitness obtained. If fitness improves, action is rewarded, while if fitness worsens, action is punished.




4.6. State Determination (getState)


As QL carries out its learning process through the state transition, it is important to define which states to use and how it will transition between them.



In the present work, two states were defined which refer to the phases of a metaheuristic: exploration and exploitation. These states were not chosen at random since, as mentioned above, the objective of this work is to improve the balance of exploration and exploitation of metaheuristics to obtain better results.



In the literature, different authors [81,82,83,84,85] propose metrics that allow us to quantify the diversity of individuals in population algorithms where Hussain’s Dimensional Diversity [85] stands out.



Let   D i v   be the diversity of the population at a particular time where Hussain et al. [85] stands out. In order to the calculate   D i v  , the following equation is used:


  D i v =  1  l · n    ∑  d = 1  l   ∑  i = 1  n   |   x ¯  d  −  x i d  |   



(20)




where    x ¯  d   denotes the mean of the individuals in the dimension d,   x i d   is the the i-th individual value of the d-th dimension, n is the number of individuals in the population and l is the dimension size of individuals.



One of the methods to estimate exploration and exploitation is the one proposed by Morales-Castañeda et al. in [4] who, based on the quantification of the diversity of a population, proposed a method to estimate exploration and exploitation in terms of percentages. The percentage of exploration (XPL %) and exploitation (XPT %) are calculated as follows:


  X P L % =   D i v   D i  v  m a x     · 100  



(21)




and


  X P T % =    | D i v − D i   v  m a x    |    D i  v  m a x     · 100  



(22)




where   D i v   is the determination of the diversity state given by Equation (20) and   D i  v  m a x     denotes the maximum value of the diversity state found in the entire optimization problem.



Equations (21) and (22) are generic, so it is possible to use any other metric that calculates the diversity of a population.



Thus, the transition of states will be determined by the following method.


  n e x t  s t a t e =      E x p l o r a t i o n     if  X P L % ≥ X P T %       E x p l o i t a t i o n     if  X P L % < X P T %       



(23)









5. Instantiated Metaheuristics


In this section we describe the MH to be used, which include the Sine-Cosine Algorithm [86] and the Whale Optimization Algorithm [87]. Both have different implementations for solving combinatorial problems, basing the choice of these MH over others on the no free lunch theorem [17,88], which leaves all MH with the same probability of success until their performance in each specific problem has been demonstrated by experimentation.



5.1. Sine-Cosine Algorithm


To the best of our knowledge, the Sine-Cosine Algorithm (SCA) was first defined by Mirjalili [89] in 2016. It is based on sine and cosine trigonometric functions. As all iteration-based optimization techniques, this one starts with a random population. Let   r 1  ,   r 2  ,   r 3   and   r 4   be the four parameters of the motion equations. Thus, let   r 1   be the parameter that determines the direction of the motion relative to the best solution and it is given by the following:


   r 1   =  a  −  t  a T   



(24)




where T represents the total number of iterations that will be performed, t is the current iteration of the optimization process and a is a constant. In the first iterations, the motion consists in moving away from the best solution (exploration) and, in the last iterations, the motion consists of moving closer to the best solution (exploitation).



Let   r 2   be the parameter which defines the magnitude of the motion and it is given by the following:


   r 2   =  2  · π  ·  r a n d  



(25)




where   0 ≤ r a n d ≤ 1   and   r 2   represent the domain of the sine and cosine functions   [ 0 , 2 π ]  .



Let   r 3   be the parameter which integrates the motion randomness and it is given by the following:


   r 3   =  2  ·  r a n d  



(26)




where   0 ≤ r a n d ≤ 1  . If    r 3  > 1  , the motion will be more stochastic.



Finally, let   r 4   be the parameter which determines if the motion will be performed with the sine or cosine function in the same proportion defined as follows:


   r 4   =  r a n d  



(27)




where   0 ≤ r a n d ≤ 1  . Then, the motion equation definition depends on the value of   r 4  . Let   X i  t + 1    be the i-th component of the general solution in the iteration   t + 1  . The value of   X i  t + 1    depends on the value of the parameter   r 4  ; thus, the following is the case:


   X i  t + 1   =       X i t  +  r 1  · s i n  (  r 2  )  ·  |  r 3  ·  X B  e s  t t  −  X i t  |      if  r 4  < 0.5        X i t  +  r 1  · c o s  (  r 2  )  ·  |  r 3  ·  X B  e s  t t  −  X i t  |      if  r 4  ≥ 0.5       



(28)




where   X i t   denotes the i-th component of the general solution in the iteration t and    X B  e s  t t    denotes the Best i-th component of the general solution in the iteration t. The procedure of MH is explained in Algorithm 2.






	Algorithm 2 Sine-Cosine Algorithm.



	
	1:

	
Initialize a set of search agents (Solutions) (X)




	2:

	
while  t ≤   Maximum number of iterations do




	3:

	
    Evaluate each of the search agents by objective function




	4:

	
    Update the best solution obtained so far (  X  B e s t   )




	5:

	
    Update   r 1  ,   r 2  ,   r 3   and   r 4  




	6:

	
    Update the position of the search agents using the Equation (28)




	7:

	
      t ←  t  + 1    




	8:

	
end while




	9:

	
Return the best solution obtained (  X  B e s t   )















5.2. Whale Optimization Algorithm


The Whale Optimization Algorithm (WOA) is inspired by the hunting behavior of humpback whales, specifically, how they make use of a strategy known as “bubble netting”. This strategy consists of locating the prey and, by means of moving in spiral turns that are similar to a “9”, enclosing in on the prey. This algorithm was invented by Mirjalili and Lewis in 2015 [90].



The WOA metaheuristic starts with a set of random solutions. At each iteration, the search agents update their positions with respect to a randomly chosen search agent or the best solution obtained so far. There is a parameter a that is reduced from 2 to 0 to provide changes between exploration and exploitation. When the equation vector (29) has value:   ∣  A →  ∣  ≥ 1  , a new random search agent is chosen. On the other hand, when   ∣  A →  ∣  < 1  , the best solution is selected; the point of this is to be able to update the position of the search agents.



On the other hand, the value of the parameter p (random number between 0 and 1) allows the algorithm to switch between a spiral or circular motion. In order to assimilate this, there are three movements that are crucial when working with the metaheuristic:




	
Searching for prey (  p < 0.5   and   | A | ≥ 1  ): The whales search for prey randomly based on the position of each prey. When the algorithm determines that   ∣  A →  ∣ ≥ 1  , then we can say that it is exploring and allows WOA to perform a global search. We represent this first move with the following mathematical model:


      X i  t + 1   →     =     X  r a n d  t  →  −  A →  ·  D →        D →      =   |   C →  ·   X  r a n d  t  →  −   X i t  →   |      



(29)




where t denotes the current iteration,   A →   and   C →   are coefficient vectors and    X  r a n d   →   is a random position vector (i.e., a random whale) chosen from the current population. The vectors   A →   and   C →   can be computed according to the following Equation (30):


         A →  = 2  a →  ·  r →  −  a →            C →  = 2 ·  r →      



(30)




where,   a →   decreases linearly from 2 to 0 over iterations (both in the exploration and exploitation phases) and   r →   corresponds to a random vector of values between   [ 0 , 1 ]  .



	
Encircling the prey (  p < 0.5   and   | A | < 1  ): Once the whales have found and recognized their prey, they begin to encircle them. Since the position of the optimal design in the search space is not known in the first instance, the metaheuristic assumes that the current best solution is the target prey or is close to the optimum. Therefore, once the best search agent is defined, the other agents will attempt to update their positions toward the best search agent. Mathematically, it is modeled in Equation (31):


      X i  t + 1   →     =      X *  i t  →  −  A →  ·  D →        D →      =   |   C →  ·    X *  i t  →  −   X i t  →   |      



(31)




where    X *  →   is the position vector of the best solution obtained so far and   X →   is the position vector. The vector   A →   and   C →   are calculated in Equation (30). It is worth mentioning that   X →   must be updated at each iteration if a better solution exists.



	
Bubble net attack (  p ≥ 0.5  ): For this attack, the “shrinking net mechanism” is presented and this behavior is achieved by decreasing the value of a in the Equation (30). Thus, as the whale spirals, it shrinks the bubble net until it finally catches the prey. This motion is modeled with the following Equation (32):


      X i  t + 1   →     =     D ′  →  ·  e  b l   · cos  ( 2 π l )  +    X *  i t  →         D ′  →      =   |     X *  i t  →  −   X i t  →   |      



(32)




where    D ′  →   is the distance of the i-th whale from the prey (the best solution obtained so far), b is a constant for defining the shape of the logarithmic spiral and l is a random number between   [ − 1 , 1 ]  .








It is worth mentioning that humpback whales simultaneously swim around the prey within a shrinking circle and along a spiral trajectory. In order to model this simultaneous behavior, there is a 50% probability of choosing between the encircling prey mechanism (2) or the spiral model (3) to update the position of the whales during optimization. The mathematical model is as follows:


          X i  t + 1   →  =         X *  i t  →  −  A →  ·  D →      If   p < 0.5          D ′  →  ·  e  b l   · cos  ( 2 π l )  +    X *  i t  →      If   p ≥ 0.5           



(33)







We include the pseudo-code (Algorithm 3) of the metaheuristic [91] for a better understanding of what was previously stated.






	Algorithm 3: Whale Optimization Algorithm.



	
	1:

	
Initialize the whale population   X i   (  i = 1 , 2 , ⋯ , n  )




	2:

	
Calculate the fitness of each search agent




	3:

	
   X *  =   The best search agent




	4:

	
while  t ≤   Maximum number of iterations do




	5:

	
    for each search agent do




	6:

	
        Update   a , A , C , l   and p




	7:

	
        if (  p < 0 , 5  ) then




	8:

	
           if (  | A | < 1  ) then




	9:

	
               Update the position of the current search agent using of Equation (31).




	10:

	
           else(  | A | ≥ 1  )




	11:

	
               Select a random search agent (   X  R a n d    )   




	12:

	
               Update the position of the current search agent using Equation (29).




	13:

	
           end if




	14:

	
        else(  p ≥ 0 , 5  )




	15:

	
           update the position of the current search agent using Equation (32).




	16:

	
        end if




	17:

	
    end for




	18:

	
    Check if any search agent goes beyond the search space and we modify it.




	19:

	
    Calculate the fitness of each search agent




	20:

	
    Update   X *   if there is a better solution




	21:

	
      t ←  t  + 1    




	22:

	
end while




	23:

	
Return (  X *  )
















6. Set Covering Problem


SCP is defined as a binary matrix (A), where    a  i , j   ∈   0 , 1     is the value of each cell in the matrix A and i and j are the size m-rows and n-columns, respectively:


  A =      a 11     a 12    ⋯    a  1 n        a 21     a 22    ⋯    a  2 n       ⋯   ⋯   ⋯   ⋯      a  m 1      a  m 2     ⋯    a  m n        



(34)







Defining the column j satisfies a row i if   a  i j    is equal to 1 and this will be the contrary case if this is 0. In addition, it has an associated cost   c ∈ C  , where   C =    c 1  ,  c 2  , ⋯ ,  c n      together with   i ∈ { 1 , 2 , ⋯ , m }   and   j ∈ { 1 , 2 , ⋯ , n }   are the sets of rows and columns, respectively.



The problem results in the following objective: to minimize the cost of the subset   S ⊆ J  , with the constraint that all rows   i ∈ I   are covered by at least one column   j ∈ J  . It is taken into consideration that when the column j is in the subset of solution S, this is equal to 1 and 0 otherwise.



The SCP can be defined as the following.


        Minimize  Z =  ∑  j = 1  n   c j   x j           Subject  to     



(35)






         ∑  j = 1  n   a  i j    x j  ≥ 1  ∀ i ∈ I     



(36)






         x j  ∈  { 0 , 1 }   ∀ j ∈ J     



(37)








7. Experimental Results and Performance Evaluation


In order to determine if the integration of QL as a binary scheme selector improves the results of the MH, five versions of QL have been implemented with different fixes, which have been named as indicated in the Table 1.



The five implementations of QL have been compared in a subset of instances of Set Covering Problem for each metaheuristic against two recommendations of binary schemes presented in the literature, which are presented in Table 2.



Both the code and the results obtained can be reviewed in the github repository.



7.1. Statistical Test


Given the increasing use of MH applied to different combinatorial problems, there is a natural interest in comparing which one performs better because, sometimes, it is not so obvious as to which one is better. In this sense, statistical techniques provide a real alternative to compare results.



In order to determine the difference between the results obtained by different algorithms, it is necessary to use a statistical technique to establish whether the difference exists [92,93]. The most appropriate test to compare our algorithms is the Wilcoxon–Mann–Whitney test. This test is specifically used when two samples are independent and we cannot assume normality of at least one of them. The hypotheses used for this test are as follows:


      H 0  :  μ A  ≥  μ B         H 1  :  μ A  <  μ B      








where   μ A   and   μ B   denotes the average value provided by Algorithms A and B, respectively. We assume that if a p-value   < 0.05   is obtained,   H 0   will be rejected and   H 1   will be accepted.




7.2. Experimental Results


In order to demonstrate the results obtained by WOA and SCA, Table 3 and Table 4 are arranged. In the contents of both tables, the best values obtained from each row are highlighted. Experiments solving the SCP with Beasley’s OR-Library instances totaled 45 instances. For both metaheuristics (WOA and SCA), instances were run with a population consisting 40 individuals and 1000 iterations were performed per run. With this, the stopping condition is at 40,000 evaluations of the objective function, as used in [92]. The implementation was developed in Python 3.8.5 and processed using the free Google Colaboratory service [94]. The parameter settings for the SARSA and QL algorithms are as follows:   γ = 0.4   and   α = 0.1  . These tables are composed of the following: the first column corresponds to the name of the instance, the second column is the optimum known to date, the next four columns (Best, Avg, Sec and RPD) present the best value and the averages obtained from the 31 independent runs, the average time of its executions and, finally, the Relative Percentage Deviation defined in Equation (38). These three columns mentioned above are repeated for all versions (BCL1, MIR2, QL1, QL2, QL3, QL4 andQL5). Finally, the last row is the sum of each column. We can denote that the adaptations and versions of QL are produce effects on the chosen metaheuristics, obtaining better results than their counterparts without QL.


  RPD =   100 ·  B e s t − O p t    O p t   .  



(38)







In Figure 5, Figure 6, Figure 7 and Figure 8, a comparison of the best results obtained in 31 independent runs of the chosen schemes is presented, showing less dispersion in the results for the versions with QL, which supports the robustness of the proposal compared to fixed binarization schemes, since, in addition to obtaining better results, these vary in smaller magnitude in independent runs.



Figure 9, Figure 10, Figure 11, Figure 12, Figure 13, Figure 14, Figure 15 and Figure 16, show the exploration and exploitation balance obtained by the algorithm. The x-axis represents the total number of iterations, the y-axis shows the percentage of exploration and exploitation, measured by Equations (20)–(22).



By observing the behavior of the exploration and exploitation percentages in the figures, it can be clearly observed that there are two different behaviors. In the case of Figure 10 and Figure 12, there is a clear beginning of exploration in the first iterations, while the exploitation increases until maintaining high values during the rest of the iterations. This behavior is the one recommended by [4], while for the case of Figure 14 and Figure 16, the exploration percentage remains at high values during all iterations and similar behavior is observed when random searches occur. For the versions with QL, the expected exploration and exploitation behavior is observed, where exploration predominates at the beginning and gradually changes to exploitation. However, in this one, variations in the percentages are observed given by the dynamic change of the binarization scheme in each iteration, which in turn has been reflected in better quality results.



These variations in exploration and exploitation percentages open the discussion about the implications of changing real-time binarization schemes, quantifying these percentage variations and the question of how to assess the quality of these changes.





8. Conclusions


Today, Machine Learning techniques are increasingly used in most areas of research, as data capture has been steadily increasing in recent years. MH have not been the exception, where these ML techniques have supported MH from various approaches in order to improve their performance. This is one of the main motivations for this proposal, since MH generate a large amount of data that is not always used for their operation. In the brief review of QL implementations, it is shown how this technique improves the performance of MH, managing to identify two methods of implementation: (1) as a selector of low-level heuristics in the context of hyperheuristics; (2) as a selector of a certain operator among a set of operators, as is the example of the choice of a mutation operator among different mutation operators. On the other hand, it is noted that the size of the Q-Table tends to take small sizes, since the sets of operators to be selected are usually small compared to other techniques of Machine Learning that address large amounts of input variables. The use of enhancements and combinations of QL with other Temporal Difference techniques such as SARSA (State-Action-Reward-State-Action) is also identified.



The algorithms presented in this work have shown that the choice of binarization schemes affects the balance of exploration and exploitation turning them into balanced metaheuristics [95], used in [96,97,98]. The balance achieved by our method shows an improvement in the quality of solutions, obtaining statistically significant better results.



Under the results obtained, it can be concluded that the versions that have incorporated QL in the selection of binarization schemes obtained variations in the percentages of exploration and exploitation, which are reflected in improvements in the quality of the solutions and in the techniques that do not present these disturbances in their static versions. These perturbations can be associated with better quality movements that will present a greater probability of finding better values when presenting variations in the percentages of exploration and exploitation, meaning that the solutions will have a greater rate of movement in the search space.



On the other hand, when observing the comparison between the average execution times (“Sec” column in Table 3 and Table 4), a great increase in time is observed for the versions that incorporate the binarization scheme selector, which are approximately around 447% in WOA and 223% for SCA; this is justifiable since the incorporation of QL to the iterative process of the MH, means a greater demand of calculation, since in each iteration the decision of which binarization scheme to use must be taken. However, this difference in time when comparing against a single binarization scheme, among the 40 combinations that were already explained in Section 3, produces an unequal comparison. Moreover, by not having a selector of binarization schemes, the 40 combinations of binarization schemes presented in this work should be tested, but since this would involve too much computation time, recommendations presented in the literature are usually used; however, they do not ensure to be the best binarization scheme for the problem and techniques implemented. Consequently, our proposal of a binarization scheme selector is of greater relevance since the high computational costs for the choice of binarization schemes are often not affordable; thus, under this scenario our proposal excels when compared with fixed binarization schemes.



In terms of future work, the option of evaluating other MH with exploration and exploitation behaviors similar to those presented will be contemplated, as well as other more established MH such as Differential Evolution (DE) and Particle Swarm Optimization (PSO) in order to verify that the incorporation of QL generates the same effect on them. We also consider the evaluation of other Temporal Difference techniques to compete with QL, the inclusion of other existing transfer functions in the literature, such as O-Shapes, and the evaluation of other methods of rewarding in addition to the five we have evaluated in the present work.
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Figure 1. Two-step Binarization Scheme. 
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Figure 2. S-shape (a) and V-shape (b) transfer functions. 
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Figure 3. Proposed structure for binarization scheme with Q-Learning. 
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Figure 4. Q-Learning scheme for different rewards. 
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Figure 5. SCA Violin chart of instance 53. 
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Figure 6. SCA Violin chart of instance c5. 
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Figure 7. WOA Violin chart of instance 53. 
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Figure 8. WOA Violin chart of instance c5. 
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Figure 9. SCA—Exploration and Exploitation Graphic of instance 53 version QL5. 
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Figure 10. SCA—Exploration and Exploitation Graphic of instance 53 version BCL1. 
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Figure 11. SCA—Exploration and Exploitation Graphic of instance c5 version QL5. 
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Figure 12. SCA—Exploration and Exploitation Graphic of instance c5 version BCL1. 
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Figure 13. WOA—Exploration and Exploitation Graphic of 58 version QL5. 
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Figure 14. WOA—Exploration and Exploitation Graphic of 58 version MIR2. 
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Figure 15. WOA—Exploration and Exploitation Graphic of instance d4 version QL5. 
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Figure 16. WOA—Exploration and Exploitation Graphic of instance d4 version MIR2. 
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Table 1. Q-Learning Implementation Name.
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	Reward Type
	Name





	withPenalty1 (Equation (15))
	QL1



	withOutPenalty1 (Equation (16))
	QL2



	globalBest (Equation (17))
	QL3



	rootAdaptation (Equation (18))
	QL4



	escalatingMultiplicativeAdaptation (Equation (19))
	QL5
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Table 2. Recommended binarization schemes in the literature.
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	Cite
	Binarization
	Transfer Function
	Name





	[92]
	Elitist (Equation (12))
	V4 (Equation (8))
	BCL1



	[59]
	Complement (Equation (10))
	V4 (Equation (8))
	MIR2
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Table 3. SCA Results.
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Inst.

	
Opt.

	
BCL

	
MIR

	
QL1

	
QL2

	
QL3

	
QL4

	
QL5




	
Best

	
Avg

	
Sec

	
RPD

	
Best

	
Avg

	
Sec

	
RPD

	
Best

	
Avg

	
Sec

	
RPD

	
Best

	
Avg

	
Sec

	
RPD

	
Best

	
Avg

	
Sec

	
RPD

	
Best

	
Avg

	
Sec

	
RPD

	
Best

	
Avg

	
Sec

	
RPD






	
41

	
429

	
557

	
580.0

	
292.0

	
29.84

	
545

	
734.48

	
2883.0

	
27.04

	
533

	
538.0

	
2397.0

	
24.24

	
530

	
537.83

	
2414.0

	
23.54

	
534

	
537.5

	
2411.0

	
24.48

	
533

	
536.83

	
2455.0

	
24.24

	
530

	
535.17

	
2466.0

	
23.54




	
42

	
512

	
573

	
605.78

	
300.0

	
11.91

	
550

	
725.1

	
863.0

	
7.42

	
548

	
552.89

	
1929.0

	
7.03

	
537

	
551.11

	
1860.0

	
4.88

	
547

	
552.67

	
1866.0

	
6.84

	
552

	
556.89

	
2012.0

	
7.81

	
537

	
552.37

	
1928.0

	
4.88




	
43

	
516

	
557

	
598.83

	
306.0

	
7.95

	
559

	
766.84

	
994.0

	
8.33

	
548

	
552.67

	
1839.0

	
6.2

	
543

	
554.44

	
1886.0

	
5.23

	
540

	
555.0

	
1793.0

	
4.65

	
535

	
550.22

	
1864.0

	
3.68

	
536

	
547.05

	
1907.0

	
3.88




	
44

	
494

	
533

	
557.06

	
304.0

	
7.89

	
547

	
688.48

	
1127.0

	
10.73

	
519

	
531.22

	
2104.0

	
5.06

	
530

	
533.78

	
2045.0

	
7.29

	
518

	
531.33

	
2046.0

	
4.86

	
512

	
532.56

	
2111.0

	
3.64

	
511

	
532.84

	
2056.0

	
3.44




	
45
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563

	
591.5

	
294.0

	
9.96

	
565

	
751.35

	
1030.0

	
10.35

	
540

	
549.22

	
1904.0

	
5.47

	
537

	
551.67

	
2065.0

	
4.88

	
544

	
552.56

	
2057.0

	
6.25

	
541

	
552.67

	
1959.0

	
5.66

	
542

	
549.79

	
2126.0

	
5.86




	
46

	
560

	
594

	
635.22

	
270.0

	
6.07

	
591

	
840.42

	
793.0

	
5.54

	
578

	
587.33

	
1923.0

	
3.21

	
577

	
589.89

	
1890.0

	
3.04

	
577

	
588.22

	
1890.0

	
3.04

	
584

	
592.56

	
1873.0

	
4.29

	
568

	
589.3

	
1819.0

	
1.43




	
47

	
430

	
449

	
483.44

	
312.0

	
4.42

	
456

	
586.97

	
1829.0

	
6.05

	
440

	
448.11

	
2308.0

	
2.33

	
442

	
448.25

	
2242.0

	
2.79

	
447

	
450.5

	
2383.0

	
3.95

	
447

	
452.88

	
2185.0

	
3.95

	
439

	
451.95

	
2236.0

	
2.09




	
48

	
492
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565.67

	
322.0

	
4.67

	
518

	
727.23

	
1052.0

	
5.28

	
507

	
514.6

	
1990.0

	
3.05

	
512

	
516.0

	
2011.0

	
4.07

	
509

	
513.0

	
2086.0

	
3.46

	
508

	
515.83

	
1836.0

	
3.25

	
507

	
515.04

	
1948.0

	
3.05




	
49

	
641

	
713

	
759.75

	
319.0

	
11.23

	
698

	
964.68

	
918.0

	
8.89

	
689

	
695.67

	
2054.0

	
7.49

	
696

	
700.83

	
1882.0

	
8.58

	
692

	
696.83

	
1877.0

	
7.96

	
688

	
694.83

	
1907.0

	
7.33

	
684

	
698.48

	
1850.0

	
6.71




	
410

	
514

	
557

	
580.0

	
292.0

	
8.37

	
545

	
734.48

	
2883.0

	
6.03

	
533

	
538.0

	
2397.0

	
3.7

	
530

	
537.83

	
2414.0

	
3.11

	
534

	
537.5

	
2411.0

	
3.89

	
533

	
536.83

	
2455.0

	
3.7

	
530

	
535.17

	
2466.0

	
3.11




	
51

	
253

	
289

	
303.33

	
297.0

	
14.23

	
282

	
396.55

	
1561.0

	
11.46

	
276

	
281.0

	
2586.0

	
9.09

	
279

	
282.17

	
2022.0

	
10.28

	
277

	
282.5

	
2274.0

	
9.49

	
278

	
282.33

	
2099.0

	
9.88

	
274

	
282.39

	
2064.0

	
8.3




	
52

	
302

	
346

	
366.92

	
297.0

	
14.57

	
335

	
486.87

	
1210.0

	
10.93

	
333

	
334.5

	
1618.0

	
10.26

	
334

	
336.0

	
1578.0

	
10.6

	
332

	
336.5

	
1577.0

	
9.93

	
328

	
334.5

	
1582.0

	
8.61

	
329

	
336.28

	
1604.0

	
8.94




	
53

	
226

	
246

	
258.17

	
265.0

	
8.85

	
238

	
331.74

	
1067.0

	
5.31

	
233

	
235.5

	
1822.0

	
3.1

	
231

	
235.67

	
2010.0

	
2.21

	
235

	
236.17

	
1830.0

	
3.98

	
236

	
236.83

	
2015.0

	
4.42

	
230

	
236.13

	
1857.0

	
1.77




	
54

	
242

	
257

	
276.5

	
297.0

	
6.2

	
253

	
338.84

	
1183.0

	
4.55

	
255

	
256.0

	
1860.0

	
5.37

	
253

	
255.67

	
1870.0

	
4.55

	
253

	
255.17

	
2166.0

	
4.55

	
252

	
256.17

	
1943.0

	
4.13

	
251

	
254.96

	
1915.0

	
3.72




	
55

	
211

	
227

	
237.92

	
324.0

	
7.58

	
226

	
289.03

	
2449.0

	
7.11

	
216

	
221.0

	
2329.0

	
2.37

	
218

	
221.0

	
2218.0

	
3.32

	
218

	
222.33

	
2338.0

	
3.32

	
221

	
222.0

	
2388.0

	
4.74

	
217

	
221.09

	
2240.0

	
2.84




	
56

	
213

	
244

	
258.58

	
307.0

	
14.55

	
234

	
324.77

	
1725.0

	
9.86

	
223

	
230.67

	
2023.0

	
4.69

	
221

	
230.17

	
2076.0

	
3.76

	
231

	
232.8

	
2380.0

	
8.45

	
228

	
233.2

	
2089.0

	
7.04

	
224

	
231.2

	
2060.0

	
5.16




	
57

	
293

	
323

	
342.75

	
306.0

	
10.24

	
313

	
427.1

	
1318.0

	
6.83

	
317

	
319.6

	
1878.0

	
8.19

	
310

	
314.4

	
2081.0

	
5.8

	
313

	
317.33

	
2085.0

	
6.83

	
317

	
321.17

	
1905.0

	
8.19

	
314

	
317.84

	
1918.0

	
7.17




	
58

	
288

	
320

	
333.3

	
302.0

	
11.11

	
302

	
444.35

	
773.0

	
4.86

	
298

	
299.33

	
1873.0

	
3.47

	
300

	
301.8

	
1952.0

	
4.17

	
298

	
301.83

	
1718.0

	
3.47

	
298

	
300.0

	
1769.0

	
3.47

	
297

	
301.39

	
1754.0

	
3.12




	
59

	
279

	
312

	
326.92

	
335.0

	
11.83

	
298

	
414.26

	
1156.0

	
6.81

	
290

	
293.67

	
1779.0

	
3.94

	
291

	
294.4

	
1757.0

	
4.3

	
289

	
293.5

	
1796.0

	
3.58

	
292

	
293.67

	
1781.0

	
4.66

	
286

	
293.17

	
1818.0

	
2.51




	
510

	
265

	
289

	
303.33

	
297.0

	
9.06

	
282

	
396.55

	
1561.0

	
6.42

	
276

	
281.0

	
2586.0

	
4.15

	
279

	
282.17

	
2022.0

	
5.28

	
277

	
282.5

	
2274.0

	
4.53

	
278

	
282.33

	
2099.0

	
4.91

	
274

	
282.39

	
2064.0

	
3.4




	
61

	
138

	
152

	
165.2

	
283.0

	
10.14

	
348

	
369.8

	
189.0

	
152.17

	
141

	
145.77

	
1407.0

	
2.17

	
144

	
148.16

	
372.0

	
4.35

	
144

	
148.42

	
377.0

	
4.35

	
146

	
148.29

	
389.0

	
5.8

	
146

	
148.65

	
385.0

	
5.8




	
62

	
146

	
170

	
196.17

	
226.0

	
16.44

	
161

	
484.97

	
202.0

	
10.27

	
157

	
159.83

	
313.0

	
7.53

	
158

	
159.83

	
310.0

	
8.22

	
157

	
159.17

	
307.0

	
7.53

	
155

	
158.0

	
407.0

	
6.16

	
154

	
158.26

	
361.0

	
5.48




	
63

	
145

	
156

	
179.75

	
257.0

	
7.59

	
151

	
436.71

	
212.0

	
4.14

	
149

	
151.33

	
290.0

	
2.76

	
150

	
151.67

	
324.0

	
3.45

	
151

	
151.83

	
312.0

	
4.14

	
150

	
151.67

	
310.0

	
3.45

	
149

	
151.65

	
305.0

	
2.76




	
64

	
131

	
139

	
155.25

	
216.0

	
6.11

	
137

	
303.0

	
193.0

	
4.58

	
135

	
136.33

	
423.0

	
3.05

	
136

	
136.17

	
474.0

	
3.82

	
134

	
135.67

	
414.0

	
2.29

	
135

	
136.2

	
590.0

	
3.05

	
134

	
136.52

	
416.0

	
2.29




	
65

	
161

	
193

	
215.25

	
251.0

	
19.88

	
185

	
450.06

	
255.0

	
14.91

	
177

	
183.17

	
521.0

	
9.94

	
178

	
183.67

	
416.0

	
10.56

	
182

	
183.67

	
354.0

	
13.04

	
179

	
183.17

	
377.0

	
11.18

	
175

	
182.96

	
403.0

	
8.7




	
a1

	
253

	
286

	
302.8

	
411.0

	
13.04

	
272

	
596.8

	
899.0

	
7.51

	
262

	
267.13

	
6795.0

	
3.56

	
266

	
269.42

	
1862.0

	
5.14

	
263

	
268.81

	
1950.0

	
3.95

	
263

	
268.9

	
2025.0

	
3.95

	
265

	
269.68

	
1876.0

	
4.74




	
a2

	
252

	
289

	
304.2

	
489.0

	
14.68

	
281

	
577.52

	
463.0

	
11.51

	
271

	
273.83

	
2045.0

	
7.54

	
272

	
273.67

	
2567.0

	
7.94

	
273

	
275.0

	
2223.0

	
8.33

	
271

	
272.83

	
2315.0

	
7.54

	
270

	
274.33

	
2096.0

	
7.14




	
a3

	
232

	
266

	
283.44

	
423.0

	
14.66

	
250

	
555.52

	
390.0

	
7.76

	
245

	
248.6

	
2085.0

	
5.6

	
246

	
249.0

	
2010.0

	
6.03

	
249

	
252.0

	
2067.0

	
7.33

	
251

	
251.33

	
1998.0

	
8.19

	
242

	
248.74

	
2264.0

	
4.31




	
a4

	
234

	
271

	
289.3

	
458.0

	
15.81

	
256

	
544.71

	
519.0

	
9.4

	
250

	
253.0

	
1845.0

	
6.84

	
248

	
253.6

	
1823.0

	
5.98

	
249

	
252.2

	
1832.0

	
6.41

	
250

	
252.2

	
1832.0

	
6.84

	
247

	
253.5

	
1995.0

	
5.56




	
a5

	
236

	
266

	
286.86

	
462.0

	
12.71

	
253

	
513.9

	
796.0

	
7.2

	
249

	
250.67

	
1973.0

	
5.51

	
248

	
252.83

	
1962.0

	
5.08

	
245

	
250.33

	
2005.0

	
3.81

	
247

	
251.5

	
1995.0

	
4.66

	
248

	
251.22

	
1934.0

	
5.08




	
b1

	
69

	
81

	
108.6

	
400.0

	
17.39

	
527

	
585.0

	
364.0

	
663.77

	
70

	
71.74

	
1652.0

	
1.45

	
71

	
72.68

	
484.0

	
2.9

	
72

	
72.9

	
456.0

	
4.35

	
72

	
72.87

	
439.0

	
4.35

	
72

	
73.03

	
420.0

	
4.35




	
b2

	
76

	
93

	
110.33

	
449.0

	
22.37

	
81

	
529.32

	
383.0

	
6.58

	
78

	
80.33

	
430.0

	
2.63

	
80

	
82.0

	
490.0

	
5.26

	
80

	
81.5

	
484.0

	
5.26

	
78

	
80.67

	
468.0

	
2.63

	
78

	
81.39

	
414.0

	
2.63




	
b3

	
80

	
90

	
117.08

	
426.0

	
12.5

	
84

	
687.06

	
371.0

	
5.0

	
82

	
83.33

	
517.0

	
2.5

	
83

	
83.83

	
432.0

	
3.75

	
82

	
83.67

	
443.0

	
2.5

	
82

	
84.0

	
580.0

	
2.5

	
81

	
83.35

	
497.0

	
1.25




	
b4

	
79

	
96

	
116.42

	
445.0

	
21.52

	
84

	
582.87

	
445.0

	
6.33

	
83

	
84.0

	
524.0

	
5.06

	
83

	
84.83

	
433.0

	
5.06

	
82

	
84.33

	
457.0

	
3.8

	
83

	
84.83

	
473.0

	
5.06

	
84

	
85.26

	
469.0

	
6.33




	
b5

	
72

	
83

	
104.09

	
451.0

	
15.28

	
75

	
573.1

	
356.0

	
4.17

	
74

	
75.0

	
469.0

	
2.78

	
75

	
75.33

	
385.0

	
4.17

	
74

	
74.83

	
436.0

	
2.78

	
74

	
75.0

	
475.0

	
2.78

	
74

	
74.78

	
419.0

	
2.78




	
c1

	
227

	
269

	
302.8

	
751.0

	
18.5

	
254

	
536.6

	
2061.0

	
11.89

	
240

	
245.55

	
10072.0

	
5.73

	
241

	
251.32

	
2096.0

	
6.17

	
244

	
251.03

	
2120.0

	
7.49

	
239

	
251.0

	
2044.0

	
5.29

	
244

	
250.94

	
2257.0

	
7.49




	
c2

	
219

	
264

	
284.0

	
794.0

	
20.55

	
243

	
715.52

	
1153.0

	
10.96

	
235

	
242.5

	
1935.0

	
7.31

	
241

	
244.17

	
1867.0

	
10.05

	
241

	
243.33

	
1857.0

	
10.05

	
236

	
241.8

	
3034.0

	
7.76

	
236

	
242.17

	
1872.0

	
7.76




	
c3

	
243

	
273

	
306.25

	
727.0

	
12.35

	
265

	
745.74

	
1659.0

	
9.05

	
261

	
263.17

	
2145.0

	
7.41

	
259

	
263.17

	
2352.0

	
6.58

	
260

	
262.8

	
1703.0

	
7.0

	
259

	
262.83

	
2088.0

	
6.58

	
256

	
263.87

	
1635.0

	
5.35




	
c4

	
219

	
251

	
280.67

	
735.0

	
14.61

	
235

	
669.42

	
1326.0

	
7.31

	
236

	
237.0

	
2187.0

	
7.76

	
233

	
235.83

	
1830.0

	
6.39

	
236

	
237.83

	
1824.0

	
7.76

	
234

	
236.67

	
2455.0

	
6.85

	
234

	
237.13

	
2049.0

	
6.85




	
c5

	
215

	
239

	
271.17

	
693.0

	
11.16

	
232

	
569.45

	
1992.0

	
7.91

	
228

	
232.33

	
2266.0

	
6.05

	
233

	
234.33

	
2507.0

	
8.37

	
232

	
233.83

	
2181.0

	
7.91

	
227

	
231.83

	
2197.0

	
5.58

	
226

	
233.62

	
2276.0

	
5.12




	
d1

	
60

	
89

	
93.2

	
625.0

	
48.33

	
67

	
701.4

	
692.0

	
11.67

	
62

	
64.42

	
2312.0

	
3.33

	
64

	
66.0

	
673.0

	
6.67

	
64

	
66.0

	
659.0

	
6.67

	
64

	
65.81

	
686.0

	
6.67

	
63

	
66.06

	
643.0

	
5.0




	
d2

	
66

	
81

	
105.83

	
625.0

	
22.73

	
69

	
802.45

	
698.0

	
4.55

	
69

	
70.33

	
729.0

	
4.55

	
69

	
69.5

	
716.0

	
4.55

	
69

	
69.8

	
680.0

	
4.55

	
69

	
70.0

	
630.0

	
4.55

	
68

	
70.13

	
682.0

	
3.03




	
d3

	
72

	
81

	
109.75

	
671.0

	
12.5

	
79

	
845.29

	
739.0

	
9.72

	
78

	
78.67

	
690.0

	
8.33

	
78

	
79.0

	
797.0

	
8.33

	
78

	
79.0

	
678.0

	
8.33

	
78

	
79.33

	
705.0

	
8.33

	
78

	
79.09

	
673.0

	
8.33




	
d4

	
62

	
68

	
91.42

	
639.0

	
9.68

	
64

	
675.35

	
840.0

	
3.23

	
63

	
64.0

	
620.0

	
1.61

	
63

	
64.5

	
632.0

	
1.61

	
63

	
63.83

	
628.0

	
1.61

	
64

	
64.4

	
744.0

	
3.23

	
63

	
64.3

	
612.0

	
1.61




	
d5

	
61

	
77

	
101.0

	
630.0

	
26.23

	
67

	
767.1

	
592.0

	
9.84

	
65

	
66.6

	
669.0

	
6.56

	
66

	
67.0

	
615.0

	
8.2

	
64

	
66.17

	
733.0

	
4.92

	
65

	
65.83

	
745.0

	
6.56

	
64

	
66.35

	
629.0

	
4.92




	

	

	
284.16

	
307.68

	
412.78

	
13.94

	
290.16

	
581.97

	
1025.87

	
26.03

	
269.16

	
273.08

	
1913.62

	
5.55

	
269.67

	
273.92

	
1527.2

	
6.01

	
277

	
273.86

	
1520.84

	
6.08

	
269.6

	
273.89

	
1562.84

	
5.94

	
267.36

	
273.58

	
1503.96

	
5.1
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Table 4. WOA Results.






Table 4. WOA Results.





	
Inst.

	
Opt.

	
BCL

	
MIR

	
QL1

	
QL2

	
QL3

	
QL4

	
QL5




	
Best

	
Avg

	
Sec

	
RPD

	
Best

	
Avg

	
Sec

	
RPD

	
Best

	
Avg

	
Sec

	
RPD

	
Best

	
Avg

	
Sec

	
RPD

	
Best

	
Avg

	
Sec

	
RPD

	
Best

	
Avg

	
Sec

	
RPD

	
Best

	
Avg

	
Sec

	
RPD






	
41

	
429

	
543

	
582.82

	
186.0

	
26.57

	
664

	
751.74

	
2869.0

	
54.78

	
521

	
529.17

	
3063.0

	
21.45

	
530

	
532.4

	
3094.0

	
23.54

	
524

	
530.0

	
3084.0

	
22.14

	
530

	
532.5

	
3230.0

	
23.54

	
526

	
531.64

	
3088.0

	
22.61




	
42

	
512

	
554

	
581.72

	
195.0

	
8.2

	
699

	
762.29

	
668.0

	
36.52

	
543

	
548.67

	
2503.0

	
6.05

	
538

	
546.44

	
2454.0

	
5.08

	
543

	
548.0

	
2453.0

	
6.05

	
534

	
544.44

	
2577.0

	
4.3

	
524

	
547.0

	
2508.0

	
2.34




	
43

	
516

	
565

	
597.22

	
207.0

	
9.5

	
717

	
798.68

	
898.0

	
38.95

	
539

	
546.89

	
2518.0

	
4.46

	
537

	
543.78

	
2620.0

	
4.07

	
533

	
540.33

	
2476.0

	
3.29

	
535

	
540.78

	
2626.0

	
3.68

	
536

	
544.11

	
2610.0

	
3.88




	
44

	
494

	
541

	
559.89

	
192.0

	
9.51

	
635

	
694.42

	
1084.0

	
28.54

	
513

	
522.89

	
2729.0

	
3.85

	
519

	
526.33

	
2788.0

	
5.06

	
516

	
524.11

	
2654.0

	
4.45

	
513

	
524.22

	
2804.0

	
3.85

	
517

	
525.55

	
2854.0

	
4.66




	
45

	
512

	
565

	
591.0

	
203.0

	
10.35

	
700

	
773.87

	
894.0

	
36.72

	
535

	
541.43

	
2690.0

	
4.49

	
537

	
541.89

	
2728.0

	
4.88

	
540

	
545.78

	
2801.0

	
5.47

	
537

	
544.78

	
2801.0

	
4.88

	
531

	
545.0

	
2577.0

	
3.71




	
46

	
560

	
593

	
626.22

	
205.0

	
5.89

	
745

	
874.68

	
670.0

	
33.04

	
579

	
584.44

	
2602.0

	
3.39

	
573

	
580.33

	
2635.0

	
2.32

	
577

	
583.11

	
2520.0

	
3.04

	
577

	
584.78

	
2410.0

	
3.04

	
573

	
582.35

	
2526.0

	
2.32




	
47

	
430

	
455

	
482.17

	
194.0

	
5.81

	
540

	
613.32

	
1733.0

	
25.58

	
444

	
446.29

	
2831.0

	
3.26

	
440

	
445.29

	
2916.0

	
2.33

	
444

	
447.14

	
2825.0

	
3.26

	
438

	
444.67

	
2835.0

	
1.86

	
438

	
445.0

	
2737.0

	
1.86




	
48

	
492

	
536

	
566.67

	
190.0

	
8.94

	
732

	
779.1

	
886.0

	
48.78

	
505

	
509.5

	
2724.0

	
2.64

	
505

	
507.83

	
2596.0

	
2.64

	
506

	
510.17

	
2516.0

	
2.85

	
505

	
509.0

	
2411.0

	
2.64

	
504

	
508.91

	
2507.0

	
2.44




	
49

	
641

	
717

	
751.42

	
205.0

	
11.86

	
946

	
1013.35

	
720.0

	
47.58

	
680

	
689.0

	
2633.0

	
6.08

	
686

	
690.8

	
2552.0

	
7.02

	
680

	
684.25

	
2775.0

	
6.08

	
680

	
690.0

	
2460.0

	
6.08

	
672

	
689.04

	
2631.0

	
4.84




	
410

	
514

	
543

	
582.82

	
186.0

	
5.64

	
664

	
751.74

	
2869.0

	
29.18

	
521

	
529.17

	
3063.0

	
1.36

	
530

	
532.4

	
3094.0

	
3.11

	
524

	
530.0

	
3084.0

	
1.95

	
530

	
532.5

	
3230.0

	
3.11

	
526

	
531.64

	
3088.0

	
2.33




	
51

	
253

	
288

	
298.33

	
209.0

	
13.83

	
369

	
416.77

	
1423.0

	
45.85

	
276

	
277.0

	
2766.0

	
9.09

	
277

	
278.33

	
2825.0

	
9.49

	
276

	
279.33

	
2798.0

	
9.09

	
274

	
278.0

	
2731.0

	
8.3

	
273

	
277.48

	
2738.0

	
7.91




	
52

	
302

	
346

	
368.33

	
219.0

	
14.57

	
456

	
521.03

	
1075.0

	
50.99

	
329

	
332.83

	
2248.0

	
8.94

	
326

	
332.17

	
2366.0

	
7.95

	
330

	
332.83

	
2454.0

	
9.27

	
327

	
331.33

	
2340.0

	
8.28

	
325

	
331.96

	
2347.0

	
7.62




	
53

	
226

	
240

	
251.42

	
201.0

	
6.19

	
323

	
351.81

	
878.0

	
42.92

	
232

	
233.67

	
2380.0

	
2.65

	
232

	
233.5

	
2385.0

	
2.65

	
233

	
234.5

	
2453.0

	
3.1

	
231

	
233.67

	
2459.0

	
2.21

	
231

	
233.96

	
2458.0

	
2.21




	
54

	
242

	
267

	
275.67

	
208.0

	
10.33

	
330

	
362.45

	
947.0

	
36.36

	
251

	
252.67

	
2588.0

	
3.72

	
250

	
252.5

	
2824.0

	
3.31

	
246

	
250.0

	
2503.0

	
1.65

	
250

	
251.5

	
2712.0

	
3.31

	
249

	
252.35

	
2536.0

	
2.89




	
55

	
211

	
223

	
236.92

	
173.0

	
5.69

	
274

	
294.9

	
2347.0

	
29.86

	
217

	
218.33

	
2933.0

	
2.84

	
216

	
218.83

	
2788.0

	
2.37

	
218

	
219.33

	
2712.0

	
3.32

	
217

	
218.33

	
2955.0

	
2.84

	
215

	
218.22

	
2816.0

	
1.9




	
56

	
213

	
237

	
255.08

	
196.0

	
11.27

	
311

	
343.97

	
1626.0

	
46.01

	
224

	
228.33

	
2528.0

	
5.16

	
227

	
229.0

	
2725.0

	
6.57

	
225

	
227.0

	
2630.0

	
5.63

	
228

	
229.5

	
2681.0

	
7.04

	
223

	
228.04

	
2652.0

	
4.69




	
57

	
293

	
330

	
337.75

	
182.0

	
12.63

	
403

	
450.94

	
1207.0

	
37.54

	
306

	
311.83

	
2541.0

	
4.44

	
311

	
313.2

	
2481.0

	
6.14

	
307

	
310.2

	
2479.0

	
4.78

	
303

	
311.0

	
2530.0

	
3.41

	
307

	
311.81

	
2569.0

	
4.78




	
58

	
288

	
306

	
328.43

	
201.0

	
6.25

	
408

	
445.03

	
705.0

	
41.67

	
298

	
298.5

	
2346.0

	
3.47

	
298

	
299.33

	
2444.0

	
3.47

	
297

	
298.0

	
2413.0

	
3.12

	
295

	
297.83

	
2592.0

	
2.43

	
294

	
297.87

	
2440.0

	
2.08




	
59

	
279

	
307

	
322.82

	
197.0

	
10.04

	
403

	
443.06

	
951.0

	
44.44

	
287

	
289.8

	
2445.0

	
2.87

	
284

	
287.4

	
2557.0

	
1.79

	
284

	
289.17

	
2326.0

	
1.79

	
287

	
290.5

	
2480.0

	
2.87

	
284

	
289.57

	
2440.0

	
1.79




	
510

	
265

	
288

	
298.33

	
209.0

	
8.68

	
369

	
416.77

	
1423.0

	
39.25

	
276

	
277.0

	
2766.0

	
4.15

	
277

	
278.33

	
2825.0

	
4.53

	
276

	
279.33

	
2798.0

	
4.15

	
274

	
278.0

	
2731.0

	
3.4

	
273

	
277.48

	
2738.0

	
3.02




	
61

	
138

	
161

	
170.4

	
177.0

	
16.67

	
336

	
368.0

	
188.0

	
143.48

	
143

	
147.23

	
1558.0

	
3.62

	
144

	
146.68

	
747.0

	
4.35

	
144

	
146.74

	
809.0

	
4.35

	
142

	
146.39

	
781.0

	
2.9

	
143

	
146.61

	
795.0

	
3.62




	
62

	
146

	
164

	
193.55

	
181.0

	
12.33

	
415

	
506.68

	
177.0

	
184.25

	
155

	
156.17

	
698.0

	
6.16

	
154

	
155.83

	
634.0

	
5.48

	
152

	
156.0

	
694.0

	
4.11

	
156

	
157.33

	
712.0

	
6.85

	
154

	
156.65

	
655.0

	
5.48




	
63

	
145

	
172

	
194.5

	
194.0

	
18.62

	
390

	
474.71

	
157.0

	
168.97

	
149

	
150.33

	
722.0

	
2.76

	
149

	
150.4

	
677.0

	
2.76

	
148

	
149.17

	
646.0

	
2.07

	
149

	
150.33

	
659.0

	
2.76

	
147

	
149.96

	
661.0

	
1.38




	
64

	
131

	
136

	
151.0

	
221.0

	
3.82

	
262

	
318.9

	
156.0

	
100.0

	
134

	
134.83

	
787.0

	
2.29

	
132

	
134.17

	
874.0

	
0.76

	
134

	
134.67

	
785.0

	
2.29

	
131

	
134.5

	
807.0

	
0.0

	
133

	
135.04

	
827.0

	
1.53




	
65

	
161

	
188

	
209.17

	
215.0

	
16.77

	
379

	
514.0

	
170.0

	
135.4

	
178

	
181.83

	
807.0

	
10.56

	
180

	
181.5

	
757.0

	
11.8

	
176

	
179.5

	
857.0

	
9.32

	
177

	
179.17

	
725.0

	
9.94

	
175

	
180.0

	
733.0

	
8.7




	
a1

	
253

	
284

	
300.8

	
351.0

	
12.25

	
583

	
626.6

	
343.0

	
130.43

	
261

	
268.38

	
6741.0

	
3.16

	
263

	
266.84

	
3320.0

	
3.95

	
264

	
266.97

	
3309.0

	
4.35

	
264

	
266.87

	
3422.0

	
4.35

	
264

	
267.22

	
3308.0

	
4.35




	
a2

	
252

	
284

	
306.12

	
329.0

	
12.7

	
553

	
615.9

	
285.0

	
119.44

	
271

	
271.67

	
3349.0

	
7.54

	
266

	
269.83

	
3765.0

	
5.56

	
265

	
270.4

	
3505.0

	
5.16

	
269

	
271.0

	
3516.0

	
6.75

	
266

	
270.83

	
3430.0

	
5.56




	
a3

	
232

	
276

	
284.75

	
343.0

	
18.97

	
505

	
568.9

	
299.0

	
117.67

	
242

	
246.5

	
3323.0

	
4.31

	
244

	
245.6

	
3274.0

	
5.17

	
242

	
246.0

	
3198.0

	
4.31

	
243

	
245.5

	
3527.0

	
4.74

	
240

	
246.17

	
3172.0

	
3.45




	
a4

	
234

	
282

	
308.67

	
328.0

	
20.51

	
518

	
568.48

	
308.0

	
121.37

	
245

	
249.0

	
3125.0

	
4.7

	
251

	
251.8

	
3061.0

	
7.26

	
246
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