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Abstract: Semi-Markov processes are typical tools for modeling multi state systems by allowing
several distributions for sojourn times. In this work, we focus on a general class of distributions
based on an arbitrary parent continuous distribution function G with Kumaraswamy as the baseline
distribution and discuss some of its properties, including the advantageous property of being closed
under minima. In addition, an estimate is provided for the so-called stress–strength reliability
parameter, which measures the performance of a system in mechanical engineering. In this work,
the sojourn times of the multi-state system are considered to follow a distribution with two shape
parameters, which belongs to the proposed general class of distributions. Furthermore and for a
multi-state system, we provide parameter estimates for the above general class, which are assumed to
vary over the states of the system. The theoretical part of the work also includes the asymptotic theory
for the proposed estimators with and without censoring as well as expressions for classical reliability
characteristics. The performance and effectiveness of the proposed methodology is investigated via
simulations, which show remarkable results with the help of statistical (for the parameter estimates)
and graphical tools (for the reliability parameter estimate).

Keywords: censoring; multi-state systems; semi-Markov processes; G-class of distributions;
Kumaraswamy distribution; reliability parameter; parameter estimation

1. Introduction

The Kumaraswamy distribution is a well-known distribution, especially to those
familiar with the hydrological literature [1]. Kumaraswamy’s densities are unimodal and
uniantimodal and, depending on the parameter values chosen, are either increasing or
decreasing or constant functions. Note that most if not all of the above characteristics are
shared by both Kumarasawmy and Beta distributions (see [2–4]). In fact, Kumarasawmy
and Beta distributions share numerous characteristics, although some of them are much
more readily available, from the mathematical point of view, for the Kumaraswamy distri-
bution. Kumaraswamy distribution is appropriate for the modeling of bounded natural
and physical phenomena, such as atmospheric temperatures or hydrological measure-
ments [5,6], record data, such as tests, games or sports [7], economic observations [8],
or for empirical data with failure rate with an increasing prior [9]. It is also appropriate
in situations where one considers a distribution with infinite lower and/or upper bounds
to fit data, when, in fact, the bounds are finite, which makes Kumaraswamy useful in
preventive maintenance. Some specific examples discussed in the literature include failure
and running times of devices [10] and deterioration or fatigue failure [11]. Furthermore,
due to the closed form of both its distribution as well as its quantile function (inverse
cumulative distribution), Kumaraswamy appears advantageous when it comes to the
quantile modeling perspective [12,13]. These characteristics make Kumaraswamy useful
and easily applicable in reliability theory.
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A general class of distributions with Kumaraswamy as a baseline distribution is
considered in this work by using a parent continuous distribution function: G(·). The
Kumaraswamy distribution is viewed as the baseline distribution of the proposed G-
class because it arises in the trivial case associated with G(x) being the identity function,
which corresponds to the U(0, 1) parent distribution. For an arbitrary continuous parent
distribution, one can generate a general subclass of distributions with the support that is
different from the support of the baseline distribution (i.e., the Kumaraswamy distribution),
distribution that is defined like the Beta distribution, in [0, 1]. The general form of the
G-class of distributions based on an arbitrary parent cdf G(·), with Kumaraswamy as the
baseline distribution, is defined by the following (see [2,14–16]):

F(t; a) = 1− (1− G(t)c)a, c, a > 0, (1)

where both parameters c and a are considered shape parameters associated with the
skewness and a tail weight of F(·). Note that additional structural parameters associated
with F(·) (such as the shape parameter c) and/or distributional parameters associated with
the parent distribution G(·) may also be involved in (1). Due to the fact that the distribution
function in (1) is written in a closed form, it can be effectively used for both uncensored
and censored data in reliability theory as well as in survival analysis.

The statistical inference, including parameter estimation in the context of reliability
modeling, is of vital importance. In addition to the use of a proper distribution, such as (1),
for modeling purposes, one may also be interested in evaluating the performance of the
reliability system involved. Indeed, for instance, the problem of performance of a system is
of great importance in mechanical engineering and refers to a component of strength X,
which is subject to stress Y. The system stays in operation as long as the stress is less than
the strength, so the system performance is associated with the probability of exceedance,
usually denoted by R. The quantity of interest in such cases is the stress–strength reliability
or reliability parameter which is a measure of reliability defined by the following:

R = P(Y < X) = E[P(Y < X)|X]. (2)

The concept of stress–strength reliability has been investigated extensively in the lit-
erature for various lifetime distributions. The reliability parameter has been obtained
for several distributions that typically appear in reliability analyses, such as Exponential,
Gamma, Weibull, Burr, Marshall–Olkin extended Lomax distribution and inverse Rayleigh
distribution. Such distributions were considered for at least one of the two variables of
interest, namely X and Y (see [17–21]).

In this work, we focus on the general class of distributions of the form (1), using a
parent continuous distribution function, and discuss some of its properties, including the
stress–strength reliability. In addition, and for a multi-state system, we provide parameter
estimates for the class given in (1), which are assumed to vary over the states of the system.
The theoretical part of the work also includes the asymptotics for the proposed estimators.
The performance of the proposed methodology is investigated with simulated results.

The paper is organized as follows: In Section 2, we propose and discuss the G-class of
distributions (1). In Sections 3 and 4, the semi-Markov setting and the parameter estimation
are provided. Reliability characteristics are discussed in Section 5, while applications are
analyzed in the final section.

2. The G-Class of Distributions

Consider the family of distributions with shape parameter a and distribution function,
given by the following:

F(t; a) := 1− (1− F(t; 1))a, (3)
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which is absolutely continuous w.r.t. the Lebesgue measure, with density function f (t; a)
and with F(t; 1) being the standard family member when a = 1. Classical reliability
distributions, such as Exponential, Rayleigh and Weibull distributions are members of (3).
One of the special features of (3) is that the distribution of the minimum, i.e., of the ordered
statistic X(1) of a random sample X1, X2, . . . , Xn from (3), falls within this class (see [22,23]).

Notice that the general G-class of distributions in (1) with a parent continuous distribu-
tion G(·) builds a new general class of distributions with each member lying within the
class given in (3), with

F(t; 1) = Gc(t)

and Kumaraswamy as the baseline distribution of the entire class. It should be noted that
the baseline (Kumaraswamy) distribution is obtained for the Uniform distribution in [0, 1],
i.e., for the identity function G(x) = x, with cdf provided by the following expression:

FK(t; a) := 1− (1− tc)a, t ∈ (0, 1). (4)

Note that the Kumaraswamy distribution is a member of the G-class (1) with FK(t; 1) = tc.
Kumaraswamy distribution, which, due to the form of the function G, can be viewed as
a Generalized Uniform distribution, is an easy to handle distribution in the sense that
it has simple explicit expressions for the distribution and quantile functions as well as
the L-moments and the moments of order statistics [2]. Furthermore, it has a simple
formula for the generation of random samples. The proposed general G-class though,
goes beyond the Kumaraswamy since for each (any) continuous distribution chosen as
the parent distribution G (i.e., Exponential, Gamma, Weibull, Gumbel, Rayleigh, and
Inverse Gaussian), a new special/specific general (sub)class of densities arises (Generalized
Exponential, Gamma, Weibull, Gumbel, Rayleigh or Inverse Gaussian, etc.). Observe that
each of these general specific subclasses offers additional flexibility to the researcher for
accommodating complex reliability phenomena. Observe further that the G-class in (1)
generates a family of distributions with support that goes beyond the restrictive support
[0, 1] of the baseline distribution in (4) and, in fact, it coincides with the support of the parent
distribution G(·). This characteristic extends even further the applicability of the G-class of
distributions, covering, among others, classical reliability and survival analysis problems,
where the time-to-event is the main feature to be investigated (see, for example, [24]).

2.1. Basic Characteristics of the G-Class of Distributions

The basic functions, including the pdf of the G-class of distributions (1), are given in
the lemma below.

Lemma 1. Let X be a random variable from the G-class of distributions (1) with G(·) being
absolutely continuous with respect to the Lebesgue measure. Then, the density function, f (t), the
hazard (failure) rate function, h(t), the reversed hazard rate function, r(t), and the cumulative
hazard rate function, H(t), are the following:

f (t) = cag(t)G(t)c−1(1− G(t)c)a−1, (5)

h(t) = cag(t)G(t)c−1(1− G(t)c)a−1, (6)

r(t) = cag(t)G(t)c−1(1− G(t)c)a−1[1− (1− G(t)c)a]−1, (7)

H(t) = −a log(1− G(t)c), (8)

where g(t) = dG(t)
dt the pdf associated with G(·).

Proof. The results follow immediately using the following standard definitions:

f (t) = dF(t)/d(t), h(t) = f (t)/(1− F(t)), r(t) = f (t)/F(t), H(t) =
∫ t

0
h(y)dy,
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where F is the cdf of the random variable involved, given in the case at hand, by (1).

Having as the baseline distribution of (1) the Kumaraswamy distribution given in (4),
it is easily seen that the associated pdf is given by the following:

fK(t) = catc−1(1− tc)a−1. (9)

Taking as a parent distribution the Exponential distribution with G(t; λ) = 1− e−λt,
we have the following:

F(t; a; c; λ) = 1−
(

1−
[
1− e−λt

]c)a
, (10)

and

f (t; a; c; λ) = caλe−λt
(

1− e−λt
)c−1(

1−
[
1− e−λt

]c)a−1
, (11)

while for the Weibull distribution with G(t) = 1− e−λtβ
as a parent distribution, we have

the following:

F(t; a; c; β; λ) = 1−
(

1−
[
1− e−λtβ

]c)a
, (12)

and

f (t; a; c; β; λ) = caλβtβ−1e−λtβ
(

1− e−λtβ
)c−1(

1−
[
1− e−λtβ

]c)a−1
. (13)

For the baseline Kumaraswamy distribution K(a, c), observe that if the random variable
X ∼ K(a; 1), then 1− X ∼ K(1; a) and − ln(X) ∼ Exp(a). However, if X ∼ K(1; c), then
1− X ∼ K(c; 1) and − ln(1− X) ∼ Exp(c). In addition, if X ∼ K(1; c), then X ∼ Beta(1; c).
In general, the parameters c and a control the skewness and the tail of the distribution so
that the G-class becomes ideal for fitting skew data, which cannot be otherwise described.

As expected, irrespective of the parent distribution, the resulting distribution is a
member of (1) as summarized below.

Lemma 2. Let G be a specific distribution function with k−dimensional distribution parameter
θ ∈ Rk. Then, for the specific parent continuous distribution G(x), the resulting F(·) is a member
of the G-class of distributions (1).

Proof. Consider a cdf G(x) and define F(t; 1) ≡ Gc(t) such that 1− F(t; a) = (1− Gc(t))a.
Then, the resulted F satisfies expression (1) and the result is immediate.

Reliability Characteristics

In this section, we provide some basic reliability characteristics, including the expres-
sion for the reliability parameter in the case of two random variables with distributions in
the G-class of distributions, with different shape parameters.

Theorem 1. Let T be a random variable with cdf belonging to the G-class. Then, the reliability and
hazard functions of the random variable T are given, respectively, by the following:

R(t; a) := (1− G(t)c)a (14)

and

h(t; α) = cag(t)G(t)c−1(1− G(t)c)−1. (15)
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Proof. The result is immediate from the definitions of the reliability and hazard functions
and the expressions (1) and (6).

Theorem 2. Let X, Y be independent random variables from the G-class with shape parameters α1
and α2, respectively, and common shape parameter c. Then, the reliability parameter R given in (2)
is a constant that depends only on the shape parameters α1 and α2.

Proof. Let X ∼ F(x) = 1− (1− G(x)c)a1 and Y ∼ H(y) = 1− (1− G(y)c)a2 with G(·),
the common parent distribution that may or may not depend on distributional parameters.
The reliability parameter can be written as the following:

R = P(X > Y) = E
[∫ x

0
h(y)dy

]
= E[HY(x)]

=
∫ 1

0
fX(x)

[∫ x

0
hY(y)dy

]
dx =

∫ 1

0
fX(x)HY(x)dx

=
∫ 1

0
ca1g(x)G(x)c−1(1− G(x)c)a1−1(1− (1− G(x)c)a2)dx.

Setting 1− G(x)c = u and −cG(x)c−1g(x)dx = du, the above integration becomes:

− a1

∫ 0

1
ua1−1du + a1

∫ 0

1
ua1+a2−1du

= 1− a1

a1 + a2
=

a2

a1 + a2
.

Remark 1. Consider X and Y, two random variables having the baseline Kumaraswamy distribu-
tion of the G-class. In this case and under the setting of Theorem 2, the reliability parameter between
X and Y is the following:

R =
∫ 1

0
ca11xc−1(1− xc)a1−1(1− (1− xc)a2)dx.

Setting 1− xc = u and −cxc−1dx = du, we have the following:

R = −
∫ 0

1
a1ua1−1(1− ua2)du =

1
1 + a1

a2

.

Remark 2. If we consider as the parent distribution the Exponential distribution G(x) = 1− e−λx,
x > 0, and under the setting of Theorem 2, the reliability parameter associated with X and Y is
the following:

R =
∫ 1

0
ca1λe−λxxc−1

(
1−

(
1− e−λx

)c)a1−1
(

1−
(

1−
(

1− e−λx
)c)a2

)
dx,

which, for 1−
(
1− e−λx)c

= u and −c
(
1− e−λx)c−1

λe−λxdx = du, takes the following form:

R = −
∫ 0

1
a1ua1−1(1− ua2)du =

a2

a1 + a2
.

Remark 3. If R = 1/2, then the two distributions of the G-class (for any continuous G(·)) share
a common shape parameter, i.e., a1 = a2. In general, for δ = a1/a2, then

R =
1

1 + δ
,
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so that R < 1/2 if a1 > a2 while R > 1/2 if a2 > a1. Thus, R increases if a2 increases as compared
to a1; otherwise R decreases.

2.2. Ordered Statistics and Distribution of the Minimum

In this section, we establish that the G-class is closed under minima which is a signifi-
cant property with a pivotal role in inferential statistics under the multi-state setting of the
following section.

Theorem 3. If X1, . . . , Xn are random variables from the G-class, then the distribution function
Fmin of the minimum ordered statistic X(1) is given by the following:

Fmin(x) = 1− (1− G(x)c)na

and belongs to the G-class.

Proof. It is straightforward that

Fmin(x) = P(X(1) ≤ x) = 1−
n

∏
i=1

(P(Xi ≥ x))

= 1− [1− P(Xi ≤ x)]n = 1− [1− [1− (1− G(x)c)a]]n

= 1− (1− G(x)c)na,

which belongs to the G-class with shape parameters c and na.

Lemma 3. Let X1, . . . , Xn be random variables from the G-class of distributions (1), where G is
the Exponential distribution. The distribution function Fmin of the first ordered statistic X(1) falls
into the G-class.

Proof. The result arises naturally from the previous theorem. In fact, by substituting
G(x) = 1− e−λx, the distribution of the minimum becomes the following:

F(x; a; c; λ) = 1−
(

1−
[
1− e−λx

]c)na
.

Remark 4. The results of this section can be generalized by dropping the assumption of identically
distributed random variables. Indeed, if one considers the case of independent but not necessarily
identically distributed (inid) r.v’s and assumes a random sample X1, . . . , Xn with the cdf of Xi,
i = 1, . . . , n being given by

F(t; ai) := 1− (1− G(t; θ)c)ai , (16)

then Theorem 3 still holds true with Fmin belonging to the G-class (1) with parameters c and ∑n
i=1 ai,

namely the following:

Fmin(x; a1, . . . , an) = 1− (1− G(x)c)∑n
i=1 ai .

The next subsection concentrates on inid r.v’s under the multi-state setting with the
sojourn times Tij (the time spend on state i before moving to state j) having a distribution
Fij(·; aij), belonging to (1) with shape parameter aij, and a common parameter c for any
i, j = 1, . . . , N, with N representing the finite number of system states. From a practical
point of view, such a setting is quite meaningful since the transition from one state to
another in multi-state systems is not necessarily described by the iid framework. Thus,
for instance, the waiting time in a state i (before the system moves to state j) could be
properly described by, for example, the Exponential distribution, but the distribution of the
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waiting time in state i or even in state j (before moving to state k) may have a heavier or
lighter tail than the Exponential distribution. Such situations are tractable within our inid
framework by allowing the parameter controlling the tail part of the distribution, i.e., the
parameter a, to vary according to the specific current and next visited states. The case of
varying both a and c parameters is a complex mathematical problem that will be left for
future work.

3. The Semi-Markov Model and Multi-State Systems

A multi-state model is a continuous time stochastic process with values in a discrete
set. Diverting from the standard class of Markov processes to the semi-Markov processes,
we abandon the restriction of memoryless state sojourn times but, at the same time, we
retain the treatment of the data as jump processes in continuous time. In fact, for semi-
Markov processes, the Markov property is assumed only for the embedded chain of distinct
visited states and we also have a Markov property that acts on random time instants, i.e., on
the jump time instants. Such characteristics allow for a great applicability of semi-Markov
processes in fields such as economics, finance, survival analysis, reliability, health care
systems, etc. [25–31].

Consider a stochastic jump process Z = (Zt)t∈R+
with state space E = {1, . . . , N},

N < ∞. We denote by S = (Sn)n∈N the jump times, by J = (Jn)n∈N the visited states at
these times and by X = (Xn)n∈N the sojourn times, Xn = Sn − Sn−1, n ∈ N∗, X0 = S0 = 0.

We assume that Z = (Zt)t∈R+
is a semi-Markov process (SMP) and that (J, S) = (Jn, Sn)n∈N

is a Markov renewal process (MRP) associated to the SMP (cf. [29]). It immediately follows
that (Jn)n∈N is a Markov chain, called the embedded Markov chain. Let us also denote by

N(t) := max{n ∈ N | Sn ≤ t}, t ∈ R+, (17)

the counting process of the number of jumps in the time interval (0, t].
We assume that the SMP is regular, that is Pi(N(t) < ∞) = 1 for all t > 0 and state i ∈ E.
A SMP is defined by the initial law:

α = (α1, . . . , αN), αj := P(J0 = j), j ∈ E,

and the semi-Markov kernel:

Qij(t) := P(Jn = j, Xn ≤ t|Jn−1 = i).

We can also define the transition probabilities of (Jn)n∈N, as follows:

pij := P(Jn = j|Jn−1 = i) = lim
t→∞

Qij(t),

and the conditional sojourn time distribution functions as the following:

Wij(t) := P(Sn − Sn−1 ≤ t|Jn−1 = i, Jn = j);

So, we have the following: Qij(t) = pijWij(t).
The time spent in state i before moving directly to state j is denoted by Tij; let Fij(t; aij)

be the corresponding cumulative distribution function and fij(t; aij) the density function
with respect to the Lebesgue measure.

The model we consider assumes that the next state to be visited after i is the one for
which Tij is the minimum. Under this condition, we have the following:

Qij(t) = P(min
l

Til ≤ t & the min occurs for j|Jn−1 = i)

= pijWi(t),
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where

pij = P(Jn = j|Jn−1 = i) = P(Tij ≤ Til , ∀l|Jn−1 = i)

and

Wij(t) = P(min
l

Til ≤ t|Jn−1 = i) =: Wi(t), independent of j.

We denote by fi(t) the density of Wi(t) w.r.t. the Lebesgue measure. Note that ∑j Qij(t) = Wi(t).
The following proposition holds under the G-class.

Proposition 1.

Qij(t) =
aij

∑
k∈E

aik

[
1− (1− G(t)c)

∑
k∈E

aik
]

, (18)

pij =
aij

∑
k∈E

aik
, (19)

Wi(t) = 1− [1− G(t)c]

N
∑

j=1
aij

(20)

and

fi(t) =
N

∑
j=1

aij(1− G(t)c)

N
∑

j=1
aij cg(t)G(t)c−1

1− G(t)c . (21)

Remark 5. The model considered in this work assumes that the next state to be visited after state
i is the one for which Tij is the minimum. In many cases, especially in reliability applications,
the optimal choice for the next state to be visited is the one with the “lowest cost” or the “minimum
distance”. This can be achieved by setting a system such that j is chosen so that the potential time
spent in state i before moving directly to state j is minimal over all states in the state-space. The
definition for Tij can be adjusted accordingly if one focuses on the cost instead of the time, in which
case Tij is the potential cost for the route from state i to state j.

4. Inference with and without Censoring

We proceed now to the statistical inference with and without censoring. More specifi-
cally, for the latter case, the sojourn times are fully observed, while, for the former, right
censoring is observed at the last visited state.

Let M be the total observation time. Then, the likelihood function for the case without
censoring and for the sample paths{

j(l)0 , x(l)1 , j(l)1 , x(l)2 , . . . , j(l)Nl(M)

}
, l = 1, . . . , L,

is given by the following:

L =
L

∏
l=1

α
(l)
j0

p
j(l)0 j(l)1

f
j(l)0

(x(l)1 ) . . . f
j(l)
Nl (M)−1

(x(l)Nl(M)
) (22)

=

(
∏
i∈E

α
N(L)

i,0
i

)∏
i,j∈E

p

L
∑

l=1
N(l)

ij (M)

ij

×
 L

∏
l=1

∏
i∈E

N(l)
i (M)

∏
k=1

fi(x(l,k)i )

,



Mathematics 2021, 9, 1834 9 of 17

where

• N(L)
i,0 :=

L
∑

l=1
1
{J(l)0 =i}

,

• N(l)
i (M): the number of visits to state i up to time M of the lth trajectory, l = 1, . . . , L,

• N(l)
ij (M): the number of transitions from state i to state j up to time M during the lth

trajectory, l = 1, . . . , L,

• Nij(L, M) :=
L
∑

l=1
N(l)

ij (M),

• x(l,k)i : the sojourn time in state i during the kth visit, k = 1, . . . , N(l)
i (M) of the lth

trajectory, l = 1, . . . , L.

Using the relevant expressions associated with the G-class, Equation (22) becomes
the following:

L = ∏
i∈E

α
N(L)

i,0
i

(
L

∏
l=1

∏
i,j∈E

a
N(l)

ij (M)

ij

)

× ∏
l,i,k


(

1− G
(

x(l,k)i

)c) ∑
j∈E

aij cg
(

x(l,k)i

)
G
(

x(l,k)i

)c−1

1− G
(

x(l,k)i

)c

.

Maximizing accordingly the above function, the maximum likelihood estimators of
the parameters aij and of the initial distribution law αi(L, M) are obtained:

âij(L, M) = −
Nij(L, M)

L
∑

l=1
B(l)

i (M)

(23)

and

α̂i(L, M) =
N(L)

i,0

L
, (24)

where

B(l)
i (M) =

N(l)
i (M)

∑
k=1

log
(

1− G
(

X(l,k)
i

)c)
.

Observe that the results above hold for any number of trajectories. For the special case
of a single sample path the estimator âij(1, M) could be simplified as follows:

âij(M) = −
Nij(1, M)

B(1)
i (M)

≡ −
Nij(M)

Bi(M)
, i, j ∈ E. (25)

Turning now to the case with censoring at time M, we consider L censored sample
paths denoted by

{
j(l)0 , x(l)1 , j(l)1 , x(l)2 , . . . , j(l)Nl(M)

, u(l)
M

}
, l = 1, . . . , L. Then, the associated

likelihood function is equal to the following:
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L =

(
∏
i∈E

α
Ni,0(L)
i

)∏
i,j∈E

p

L
∑

l=1
N(l)

ij (M)

ij


×

 L

∏
l=1

∏
i∈E

N(l)
i (M)

∏
k=1

fi(x(l,k)i )

∏
i∈E

Ni,M(L)

∏
k=1

(
1−Wi(u

(k)
i )
)

, (26)

where

• u(l)
M := M− SNl(M) is the observed censored time of the lth trajectory;

• Ni,M(L) =
L
∑

l=1
1
{J(l)

Nl (M)
=i}

is the number of visits of state i, as last visited state, over the

L trajectories; note that ∑
i∈E

Ni,M(L) = L;

• u(k)
i is the observed censored sojourn time in state i during the kth visit, k = 1, . . . , Ni,M(L).

It should be pointed out that, if M happens to be a jump time, then, for the associated
path(s), we have u(l)

M = 0 and thus the corresponding likelihood term equals 1. If this
happens to occur for all values of l = 1, 2, . . . , L, then the censoring case described above
collapses to the uncensored case discussed earlier.

For the G-class, the likelihood with censoring for the case of L trajectories given in (26)
takes the following form:

L =

(
∏
i∈E

α
N(L)

i,0
i

)(
L

∏
l=1

∏
i,j∈E

a
N(l)

ij (M)

ij

)

×∏
l,i,k

(1− G
(

x(l,k)i

)c) ∑
j∈E

aij

 cg
(

x(l,k)i

)
G
(

x(l,k)i

)c−1

1− G
(

x(l,k)i

)c




×

∏
i∈E

Ni,M(L)

∏
k=1

(
1− G

(
u(k)

i

)c) ∑
j∈E

aij

. (27)

The resulting estimators âij(L, M) and of the initial distribution law α̂i(L, M) are
provided by the following expressions:

âij(L, M) = −
Nij(L, M)

L
∑

l=1
B(l)

i (M) +
Ni,M(L)

∑
k=1

log
(

1− G
(

U(k)
i

)c) (28)

and

α̂i(L, M) =
N(L)

i,0

L
. (29)

Note that, the above results hold for any number of trajectories. For the special case
of L = 1, the parameter estimates take the following simplified form:

âij(1, M) ≡ âij(M) = −
Nij(1, M)

B(1)
i (M) + log

(
1− G(UM)c) , i, j ∈ E, (30)

where UM = M− SN(M) represents the last sojourn censored time.
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Choosing the appropriate estimator from those obtained in this section, we can now
proceed to introduce the estimators of the main components pij, Wi and Qij of the semi-
Markov model:

p̂ij(M) =
âij(L, M)

∑
l∈E

âil(L, M)
=

Nij(M)

Ni(M)
, (31)

Ŵi(t, M) =

[
1− (1− G(t)c)

∑
j∈E

âij(L,M)
]

(32)

and

Q̂ij(t, M) =
âij(L, M)

∑
k∈E

âik(L, M)

[
1− (1− G(t)c)

∑
k∈E

âik(L,M)
]

. (33)

Parameter Estimation for Kumaraswamy Distribution

The estimator of the parameter aij for the Kumaraswamy distribution with G(x) = x
in (1) and without censoring takes the following form:

âij(L, M) = −
Nij(L, M)

L
∑

l=1

N(l)
i (M)

∑
k=1

log
(

1−
(

X(l,k)
i

)c) . (34)

Note that the maximum likelihood estimator ĉ of the shape parameter c is obtained by
solving the equation given by the following:

∂ logL
∂c

= ∑
l,i,j,k

− N(l)
ij (M)

log
(

1−
(

X(l,k)
i

)c) − 1

 N(l)
i (M)

∑
k=1

−
(

x(l,k)i

)c
log x(l,k)i

1−
(

x(l,k)i

)c

+

+

∑
l,i,k

(
1 + c log x(l,k)i

)
c

= 0.

Finally note that, in the censored case, the estimator of aij becomes:

âij(L, M) = −
Nij(L, M)

L
∑

l=1

N(l)
i (M)

∑
k=1

log
(

1−
(

X(l,k)
i

)c)
+

Ni,M(L)
∑

k=1
log
(

1−
(

U(k)
i

)c) . (35)

5. Transition Matrix and Reliability Approach of Semi-Markov Processes

For the purpose of this section, the Markov renewal function, Ψij(t), i, j ∈ E, t ≥ 0, is
defined as the following [29]:

Ψij(t) = Ei[Nj(t)] =
∞

∑
n=1

Q(n)
ij (t), (36)

where Q(n)
ij (t) is the nth convolution of Q by itself.

For i, j ∈ E, the semi-Markov transition matrix is defined as follows [29]:

Pij(t) = P(Zt = j|Z0 = i) =
∫ t

0
Ψij(ds)

(
1− ∑

k∈E
Qjk

)
(t− s). (37)
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The main idea for a reliability analysis is that the space E is divided into two subsets—
U, which contains the functioning states, and D, which contains the failure states—such
that E = U ∪ D and E = U ∩ D = ∅, i.e., U = {1, . . . , n} and D = {n + 1, . . . , N}. We
also consider the corresponding restrictions of any matrix or matrix valued-function, for
example, f , denoted by fUU , fUD, fDU , fDD respectively. We denote by P(t) the semi-
Markov transition matrix, by PUU(t) and PDD(t) the restrictions of P(t) induced by the
corresponding restrictions of the semi-Markov kernel to the set U and D, respectively
(attention: PUU(t) and PDD(t) are not the restrictions of P(t) to the sets U and D) and by
αU and αD the restrictions of the initial law α to the sets U and D, respectively. Finally,
let pUU be the restriction of the embedded Markov chain transition matrix to the set U.
Having this in mind, one can furnish several reliability indices as those derived below.
Indeed, for instance, the reliability function and the failure rate are given respectively by
the following:

R(t) = P(Zs ∈ U, s ≤ t) = αU PUU(t)1n

and

λ(t) = −R ′(t, M)

R(t, M)
, for t > 0.

Furthermore, the availability A(t) and maintainability M(t) at time t for a semi-
Markov system are defined respectively by the following (for details see [29,32]):

A(t) = P(Zt ∈ U) = αP(t)1N;n, (38)

M(t) = 1− P(Zs ∈ D, s ≤ t) = 1− αDPDD(t)1N−n,

where 1N;n = (1, · · · , 1︸ ︷︷ ︸
n

, 0, · · · , 0︸ ︷︷ ︸
N−n

)> and 1m = (1, · · · , 1︸ ︷︷ ︸
m

)>.

Finally, MTTF (the mean time to failure) is given by the following:

E(TD) = αU(In − pUU)
−1mU , (39)

where mU is the restriction to set U of the mean sojourn time in state i, mi, which can be
estimated by the following:

m̂(1)
i (M) :=

∫ ∞

0

(
1− Ŵi(t, M)

)
dt =

∫ ∞

0
(1− G(t)c)

N
∑

j=1
âij(M)

dt

or

m̂(2)
i (M) :=

Ni(M)

∑
k=1

X(k)
i

Ni(M)
.

6. Simulations

The proposed methodology is evaluated via simulations for both cases of one sample
path and several sample paths. In addition, the case of censoring is also taken into account
in some of the above cases. More precisely, in the first part, we consider the case of a single
sample path for several values of observation time M; in the second part, we assume L
sample paths where Tij ∼ K(aij, 2) and the observation time M is set to be 1000 where the
real values for the parameters aij and the transition probabilities of the embedded Markov
chain respectively are given below Table 1.



Mathematics 2021, 9, 1834 13 of 17

Table 1. Real values for the parameters aij and transition probabilities pij.

aij 1 2 3 pij 1 2 3

1 0 0.9 2.1 1 0 0.3 0.7
2 1.5 0 0.3 2 0.833 0 0.167
3 1.2 1.8 0 3 0.4 0.6 0

6.1. Single Sample Path

Table 2 provides the squared errors of the estimators for several values of observation
time M in order to study their accuracy. As was expected, the estimators improve with
respect to the squared error while the value of M is increasing (M = 10, 50, 100 and 1000).

Table 2. Squared errors (S.E.) for the estimators of aij and pij in the case of no censoring, for various
values of M.

M 10 50 100 1000

S.E.(âij(M)) 1.41 1.036 2.82× 10−1 8.97× 10−3

S.E.( p̂ij(M)) 1.76× 10−1 5.06× 10−2 7× 10−3 1.49× 10−6

6.2. Several Sample Paths

The results for the estimated transition probabilities of the semi-Markov process Pij(t)
are provided in this subsection for various times t and for several sample paths, together
with the associated standard errors. Tables 3–5 and Figure 1 refer to the uncensored case,
while Tables 6–8 and Figure 2 refer to the censored case.

According to the results in Tables 4 and 7, the estimators are more accurate as the num-
ber of trajectories is increasing. Furthermore, the estimator of the initial law (Tables 3 and 6)
seems to be very close to the target value for both the censored and the uncensored case.

Figure 1. Real and estimated semi-Markov transition probabilities in the case of uncensored trajectories.
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Table 3. The estimated values of the initial law ai in the case of L = 1000 trajectories without censoring.

i 1 2 3

α̂i(L, M) 0.319 0.355 0.326

Table 4. Squared errors (S.E.) for the estimators of aij and pij in the case of no censoring, for various
values of L.

L 5 10 100 1000

S.E.(âij(L, M)) 5.71× 10−3 1.05× 10−3 7× 10−4 4.35× 10−5

S.E.( p̂ij(L, M)) 2.6× 10−4 1.06× 10−4 1.47× 10−5 7.58× 10−7

Table 5. Squared errors (S.E.) for the estimators of the semi-Markov transition probabilities in the
case of no censoring.

t 0.1 0.2 0.5 0.9

S.E.(P̂ij(t; L, M)) 2.72× 10−6 3.75× 10−5 4.47× 10−4 1.34× 10−4

Table 6. The estimated values of the initial law ai in the case of L = 1000 trajectories with censoring
at the beginning and/or at the end.

i 1 2 3

α̂i(L, M) 0.328 0.328 0.344

Table 7. Squared errors (S.E.) for the estimators of aij and pij in the case of censoring at the beginning
and/or at the end, for various values of L.

L 5 10 100 1000

S.E.(âij(L, M)) 1.13× 10−2 6.18× 10−3 2.79× 10−4 3.27× 10−5

S.E.( p̂ij(L, M)) 2× 10−4 9.24× 10−5 1.13× 10−5 6.91× 10−7

Table 8. Squared errors for the estimators of the semi-Markov transition probabilities in the case of
censoring at the beginning and/or at the end.

t 0.1 0.2 0.5 0.9

S.E.(P̂ij(t; L, M)) 1.69× 10−6 2.39× 10−5 3.91× 10−4 5.37× 10−4

According to the above results, observe that as long as the time is close to the lower
limit of the domain (i.e., close to 0), it is more likely that the process will remain in the
same state (see Tables 9 and 10 and Figures 1 and 2). However, as time goes on, this
changes. More specifically, for t = 0.7, if the semi-Markov process is in state 1 at time
0, the most probable transition is to state 3. If the semi-Markov process starts at time 0
from state 2, the most probable transition is to state 1. If starting from state 3, the most
probable transition is to state 2. For t = 0.99, the semi-Markov process will most likely
transition to state 2, given that at time 0, it has started in state 1 or 3. Finally, if it was
in state 2, the process would most likely move to state 1. For the overall behavior of the
estimators of the transition probabilities, see Tables 5 and 8, where the associated standard
errors are provided.
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Figure 2. Real and estimated semi-Markov transition probabilities in the case of censored trajectories

Table 9. Estimators for the transition probabilities of the semi-Markov process for t = 0.1 and t = 0.5.

P̂ij(t = 0.1) 1 2 3 P̂ij(t = 0.5) 1 2 3

1 0.970 0.009 0.021 1 0.456 0.200 0.358
2 0.014 0.983 0.003 2 0.288 0.625 0.096
3 0.012 0.017 0.971 3 0.226 0.326 0.460

Table 10. Estimators for the transition probabilities of the semi-Markov process for t = 0.7 and
t = 0.99.

P̂ij(t = 0.7) 1 2 3 P̂ij(t = 0.99) 1 2 3

1 0.254 0.334 0.470 1 0.276 0.387 0.337
2 0.459 0.383 0.202 2 0.466 0.207 0.327
3 0.345 0.470 0.239 3 0.365 0.408 0.227

6.3. Reliability Parameter Estimation

In engineering, one of the main problems of interest is the event that the system
remains in a working state during the whole observation period. As mentioned in the
introduction, the performance of a system in mechanical engineering is evaluated via the
reliability parameter. Such a system stays in a functioning condition as long as the stress
(pressure) Y is at a lower level than the strength X. In general, in a multi-state system,
the transition from one state to another may be defined according to whether a component
of the system fails due to the fact that the stress exceeds the strength. In this section, we
provide the performance of the estimator of the reliability parameter when X and Y follow
the Kumaraswamy distribution with shape parameters a1 and a2, respectively. Observe
that in Figures 3 and 4, the estimated values (in blue) almost coincide with the true values
(in green). We provide here the simulated results of the reliability parameter, using, for



Mathematics 2021, 9, 1834 16 of 17

illustrative purposes, selected states i and j from the previous section. The notation Rij
refers to the reliability parameter for i and j.

Figure 3. Reliability parameters for the case of uncensored trajectories.

Figure 4. Reliability parameters for the case of censoring at the beginning and/or at the end.
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