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Abstract: Dengue disease is caused by four serotypes of the dengue virus: DEN-1, DEN-2, DEN-3,
and DEN-4. The chimeric yellow fever dengue tetravalent dengue vaccine (CYD-TDV) is a vaccine
currently used in Thailand. This research investigates what the optimal control is when only individ-
uals having documented past dengue infection history are vaccinated. This is the present practice in
Thailand and is the latest recommendation of the WHO. The model used is the Susceptible-Infected-
Recovered (SIR) model in series configuration for the human population and the Susceptible-Infected
(SI) model for the vector population. Both dynamical models for the two populations were recast
as optimal control problems with two optimal control parameters. The analysis showed that the
equilibrium states were locally asymptotically stable. The numerical solution of the control systems
and conclusions are presented.

Keywords: dengue disease; optimal control; vaccination

1. Introduction

The dengue epidemic first occurred in the Philippines in 1954. It reached Thailand in
1958. The disease is caused by an infection by any one of the four serotypes of dengue virus,
which are labeled as DEN-1, DEN-2, DEN-3, and DEN-4. The dengue viruses are trans-
mitted by two species of the Aedes mosquitoes, the Aedes aegypti and the Aedes albopictus.
All four serotypes have a common antigen, resulting in cross-reaction and cross-protection
of the four serotypes. The cross protection is not permanent. A person infected by one
of the serotypes will have permanent immunity to that serotype, but only partial immu-
nity to the other three. Some of the immunity will last for a short period, approximately
6–12 months. Those people might be re-infected if they happen to meet a different serotype
of dengue virus. This second infection is different from the initial infection and is labeled
as a secondary dengue infection [1–4] since the symptoms and outcomes of the primary
and secondary dengue infections can be quite different. In some individuals (infants or
young children), infection by the dengue virus may lead to undifferentiated fever (uf).
The individuals are said to have the viral syndrome of dengue fever, which can only be
detected through laboratory tests. In older children and adults, infection by the dengue
viruses leads to what is usually labeled as dengue fever (DF). People with DF exhibit
symptoms such a mild fever, headaches, pain around the eyes, muscular pain, and pain in
the bones. If an individual experiences the clinical symptoms of high fever accompanied
by bleeding, enlarged liver, and severe shock, he is said to have dengue hemorrhagic fever
(DHF). During the fever, there will also be a low platelet count and plasma leakage. If large
amounts of plasma leak out, the patient will have a shock condition called dengue shock
syndrome (DSS) [5–7]. The last two (DHF and DSS) are the symptoms that the individuals
in the secondary dengue infection group experience. These symptoms can be viewed as an
allergic reaction.
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Since millions of people can be infected by the dengue virus, there is an economic
cost to these people becoming sick, and vaccines have been developed. Chimeric yellow
fever dengue tetravalent dengue vaccine (CYD-TDV) is one of these vaccines. It was first
registered as a dengue vaccine in Mexico. It is now registered in 13 countries around the
world, including Thailand, which had a role in its development. This dengue vaccine is the
first and only vaccine in the world at the moment to cover all four strains of the dengue
virus and is called Dengvaxia®, which is developed by Sanofi Pasteur to help protect
against the dengue disease. The vaccine has an overall effectiveness of 56.5%, which is
74% more effective in older children, 12–14 years old, and 75% effective for DEN-3 and
DEN-4 [8,9]. It is reported that the efficacy of the vaccine is higher in children who have
previously been infected with dengue fever. The dengue vaccine reduces the severity of the
disease by 88.5% and hospitalization by 67.2% [10–12]. In December 2017, the WHO [13]
issued a new recommendation that states that the WHO recommends vaccination (with
Dengvaxia) only in individuals with a documented past dengue infection. This should be
taken into consideration in any models used.

Esteva and Vargas [4,14] were among the first to study the transmission of dengue
disease. They developed a mathematical model in which there were compartmental models
for both the human and mosquito populations. The human population was described
by a Susceptible-Infected-Recovered (SIR) model while the mosquito population was
described by an SI (no recovered) model. Pongsumpun et al. [15–17] have also studied
the transmission of dengue virus. Most of Pongsumpun’s work has been centered on
the situation in Thailand since the dengue fever is of major concern to Thailand. She has
included an exposed class (E) to the model, making the Susceptible-Infected-Exposed-
Recovered (SEIR) model, to describe the dynamics of the human population. In Ref. [16],
the author used the SIR model to simulate the possible outcomes of vertical transmission
of the virus among mosquitos. She and her coworkers [17] included vertical transmission
in a SEIR model. Syafruddin and Noorani [18] studied the mathematical model for dengue
transmission and applied it to the situations in Indonesia and Malaysia. Yaacob [19] studied
the mathematical model of the dengue disease in people who have no immunity.

Singh et al. [20] and Tasman et al. [21] considered the effects of vaccination on a
model in which the human population is divided into children and adults. They also
considered that there were two types of infections, primary and secondary dengue infection.
It was assumed that individuals experiencing a secondary infection were at a higher
risk. In these studies, the adults were further divided in two groups, so the human
population consisted to three groups: less than 9 years, between 9 and 45 years, and
between 45 and 65 years [22,23]. Using a similar model to study the transmission of
another disease, melioidosis, Tavaen and Viriyapong [24] studied the local and global
stability analyses and optimal control for this disease. There are many studies about the
effects of the dengue vaccination on the spread of the dengue disease. [25–28]. They have
introduced various models to simulate the dynamic of the programs when there is complete
vaccination, random mass vaccination, imperfect random mass vaccination, and random
mass vaccination with waning immunity levels. They have used optimal control strategies
to simulate the results of the programs.

The number of cases and deaths by month and the number of cases and deaths each
year in Thailand from 2003–2020 data from the Bureau of Epidemiology at the Ministry of
Health is shown in Figure 1. It can be seen in the figure that the dengue fever is prevalent
in the rainy season from June to September. The incidence is the highest in July. The
number of cases, which fluctuated month to month, tended to increase yearly from 2003
to 2020. The same is true for the number of deaths. When the number of cases is high,
there will be more deaths. The percentage of deaths is very small. Using the sources
that gave these results, we were interested in the outcome of a vaccination program in
which only individuals with a documented past dengue infection (i.e., an individual who
would have a secondary dengue infection if bitten by a mosquito infected with a different
serotype of the virus) are vaccinated. We used the double Susceptible-Infected-Recovered



Mathematics 2021, 9, 1833 3 of 33

(SIR) model for the human population and the Susceptible-Infected (SI) model for the
vector population. The analysis of the stability of the model was carried out by using
dynamic analysis. The Routh–Hurwitz criteria were applied to analyze the system model
for stability. The reproductive number was calculated. The optimal control theory was
applied in the transmission model in order to minimize the number of infected humans
with primary and secondary infections. Numerical simulation was performed. Results and
conclusion are presented in this paper.

Figure 1. The number of cases by month and the number of cases and deaths each year from 2003–2020 [29]: (a) the number
of cases by month; (b) the number of cases and deaths by year.

2. Materials and Methods
2.1. Mathematical Model

The basic mathematical model was the SEIR model presented in ref. [15]. The equa-
tions in that model describe the dynamics of the spread of dengue fever when there is
only one serotype of the virus present. In this work, the basic SEIR model of [15] was
extended to include secondary infection of a different serotype, whereby the members of
the recovered population become the susceptible members in the second SIR, effectively
providing a framework for describing a vaccination program in which only people who
have been infected are considered. In Thailand, the medical status of each Thai citizen is
kept at the District Office in each province in the country. It is easy to determine from the
past medical histories anyone who was infected with the dengue virus. Dengue fever is one
of the five diseases that must be reported to the Thai Ministry of Health. The susceptible
human population in the second SIR model used here are the not sick humans who have
been infected by the serotype A virus, since they will be the only ones given the vaccine. A
person who has no prior history of any dengue infection is not considered to be a candidate
for the vaccination. The vector population was divided into two compartments: susceptible
and infected (SI). The infected mosquito was the subset of infected mosquitoes transmitting
virus B. The human population was subdivided into six population groups. It should
be remembered that all of the recovered individuals have the antibodies to a particular
serotype of the dengue virus at the end of primary infection. Susceptible people of this
kind are not born into this group; they emerge after several months of being infected by a
serotype virus. The vector population was classified into two subclasses. The variables are
defined in Table 1.
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Table 1. The definition of the variables used in the differential system of Equations (1)–(10).

Variables Definition

SHP The number of humans susceptible to primary infection
IHP The number of humans with a primary infection
RHP The number of humans who have recovered from a primary infection
SHS The number of humans susceptible to secondary infection
IHS The number of humans with a secondary infection
RHS The number of humans who have recovered from a secondary infection
SV The number of susceptible vectors
IV The number of infected vectors

The dynamic transmission of dengue disease with the vaccination model is shown in
Figure 2.

Figure 2. Diagram of the transmission model of dengue disease with the vaccination model of human
and vector populations.

The dynamics of human and vector populations and the system of differential equa-
tions are given by:

dSHP
dt

= bNH − αβHSHP IV − bSHP (1)

dIHP
dt

= αβHSHP IV − γP IHP − (b + dd)IHP (2)

dRHP
dt

= γP IHP − (1− ψ)θRHP − bRHP (3)

dSHS
dt

= (1− ψ)θRHP − αβHSHS IV − bSHS (4)

dIHS
dt

= αβHSHS IV − γP IHS − bIHS (5)
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dRHS
dt

= γS IHS − bRHS (6)

dSV
dt

= A− βVSV
(

IHP + IHS
)
− dVSV (7)

dIV
dt

= βVSV
(

IHP + IHS
)
− (dV + dk)IV (8)

with the conditions:

SHP + IHP + RHP + SHS + IHS + RHS = NH (9)

SV + IV = NV (10)

where the parameters of Equations (1)–(10) are defined in Table 2.

Table 2. The definition of the parameters of the differential system of Equations (1)–(10).

Parameters Definition

α The biting rate of the vector population
ψ The vaccine efficiency
θ The recurrent infection rate

NH The total number of humans in the study population
NV The total number of vectors in the study population
βH The transmission rate of dengue virus from vector to human
βV The transmission rate of dengue virus from human to vector
b The birth and natural mortality rate of the human population

dV The natural mortality rate of the vector population
dd The mortality rate from infection of the human population
dk The mortality rate from infection of the vector population
γP The recovery rate of those with a primary infection
γS The recovery rate of those with a secondary infection

The rate of change of both the total population of humans and vectors is zero and
given by:

dSHP
dt

+
dIHP

dt
+

dRHP
dt

+
dSHS

dt
+

dIHS
dt

+
dRHS

dt
= 0 (11)

dSV
dt

+
dIV
dt

= 0 (12)

with conditions, we get:
dd IHP = 0 (13)

dk IV + dV NV = A (14)

Normalizing the equations by introducing the following normalized variables:

SHP =
SHP
NH

, IHP =
IHP
NH

, RHP =
RHP
NH

, SHS =
SHS
NH

, IHS =
IHS
NH

, RHS =
RHS
NH

(15)

SV =
SV
NV

, IV =
IV
NV

(16)

with the additional condition:

SHP + IHP + RHP + SHS + IHS + RHS = 1 (17)

SV + IV = 1 (18)
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The mathematical model of Equations (1)–(8) is now reduced to the following equation:

dSHP
dt

= b− αβHSHP IV NV − bSHP (19)

dIHP
dt

= αβHSHP IV NV − γP IHP − (b + dd)IHP (20)

dRHP
dt

= γP IHP − (1− ψ)θRHP − bRHP (21)

dSHS
dt

= (1− ψ)θRHP − αβHSHS IV NV − bSHS (22)

dIHS
dt

= αβHSHS IV NV − γS IHS − bIHS (23)

dIV
dt

= βV(1− IV)(IHP + IHS)NH − (dV + dk)IV (24)

2.2. The Equilibrium Points

Definition 1 ([17]). The point X̃ ∈ Rn is an equilibrium point for the differential equation
dX
dt = f (t, X) if f

(
t, X̃
)
= 0 for all t.

Since epidemiological models are inherently dynamical systems, the knowledge of the
equilibrium points is vital for determining the behavior of long-term dynamics. Towards
this goal, the most important parameter for determining whether an outbreak will occur or
not is the basic reproductive number R0. The equilibrium points are obtained by setting
the right-hand side of Equations (19)–(24) to zero. This system model now admits two
equilibrium points, namely the disease-free point and an endemic equilibrium point. The
disease-free equilibrium point E1 is:

E1 = (1, 0, 0, 0, 0, 0) (25)

The endemic equilibrium point E2 =
(
S∗HP, I∗HP, R∗HP, S∗HS, I∗HS, I∗V

)
is:

S∗HP =
τ1(b(2θ(ψ−1)γP)−τ2)−τ7+

√
τ3(τ4+τ5)+τ2

7
τ6

I∗HP =
bτ1τ2+τ7−

√
τ3(τ4+τ5)+τ2

7
τ6

R∗HP =
bτ1τ2+τ7+

√
τ3(τ4+τ5)+τ2

7
τ6

S∗HS =
τ7+(τ3−τ25+τ26)

√
τ3(τ4+τ5)+τ2

7 +τ22
τ18τ19τ20τ21

I∗HS =
τ7+(τ3−τ25+τ26)

√
τ3(τ4+τ5)+τ2

7−τ22
τ18τ19τ20τ21

I∗V =

√
τ3(τ4+τ5)+τ2

7−τ22−τ7
τ27+τ28

(26)
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where:

τ1 = bαNH NV βH βV , τ2 = (b + θ − θψ)(b + γS), τ3 = b2α2NH N2
V β2

H βV ,

τ4 = 4θ(ψ− 1)(dV + dk)(b + αNV βH)(b + dd + γP)γPτ2,

τ5 = NH βVbτ2, τ6 = 2αθ(ψ− 1)NH NV βH(b + αNV βH)βVγP(b + dd + γP),

τ7 = αNV βH(θ(ψ− 1)γP) + τ2, τ8 = 2(b + dd + γP)τ2,

τ9 = 2b2αθ(ψ− 1)(dV + dk)NV βHγP,

τ10 = 2bα2θ2(ψ− 1)2(dV + dk)N2
V β2

HγP(dd + γP)γS,

τ11 = θ − θψ + dd + αNV βH + γP + γS,

τ12 = θ(ψ− 1)(γP + dd)− αNV βH − γS,

τ13 = (θ(ψ− 1)− γP − γS)(αNV βH + 1),

τ14 = αθ(ψ− 1)NV βH(dd + γP), τ15 = dd(θ(ψ− 1)− αNV βH),

τ16 = (2bαNV βH(θ − θψ)γP + (b + θ − θψ)(b + γS))
2,

τ17 = b2
(

2θ2(ψ− 1)2γ2
P − 2θ(ψ− 1)γPτ2 + τ2

2

)
,

τ18 = 4b2α2θ(ψ− 1)(b + θ − θψ)NH N2
V β2

H(b + αNV βH)
2, τ19 = βVγP(b + dd + γP),

τ20 = τ2(dk(b + dd + γP)− dV(b + dd + γP) + 1), τ21 = bNH βV(θ − θψ)γP,

τ22 = bαNV βHτ8(dV + dk) + NH βVbτ7,

τ23 = τ9
(
b3 + b2τ11 − bτ12 − τ14τ15

)
− τ10 + τ13 + τ1τ16τ17,

τ24 = b2(θψ− αNV βH + γS) + bαθNV βH(ψ− 1),

τ25 = θ(ψ + 1)(2bθγS + αNV βHγP + bγS),

τ26 = NV βHγS(αθψ− bα− αθ) + b2(1 + b),

τ27 = 2α2N2
V β2

H(dV + dk)τ8, τ28 = bNH βV(θ − θψ)γP + τ2

2.3. The Basic Reproductive Number

Definition 2 ([24]). Basic reproductive number (R0) is defined as the average number of secondary
infections when a single infective enters an entirely susceptible population.

The basic reproductive number (R0) is obtained using the next-generation matrix
method [30–32]. We selected IHP, IHS, and IV to be the classes to construct the F and V
matrices, which are important to this method. For our system, the matrices F and V contain
new infection terms and transition terms. We evaluated the Jacobian matrices F and V at
the disease-free equilibrium point E1 = (1, 0, 0, 0, 0, 0), where F is non-negative and V is
non-singular. The F (gains) and V (losses) matrices are:

F =


∂ f1

∂IHP
(E1)

∂ f1
∂IHS

(E1)
∂ f1
∂IV

(E1)
∂ f2

∂IHP
(E1)

∂ f2
∂IHS

(E1)
∂ f2
∂IV

(E1)
∂ f3

∂IHP
(E1)

∂ f3
∂IHS

(E1)
∂ f3
∂IV

(E1)

, V =


∂v1

∂IHP
(E1)

∂v1
∂IHS

(E1)
∂v1
∂IV

(E1)
∂v2

∂IHP
(E1)

∂v2
∂IHS

(E1)
∂v2
∂IV

(E1)
∂v3

∂IHP
(E1)

∂v3
∂IHS

(E1)
∂v3
∂IV

(E1)


where:

f =

 f1
f2
f3

 =

 αβHSHP IV NV
αβHSHS IV NV

βV(IHP + IHS)NH

 , v =

 v1
v2
v3

 =

 (γP + b + dd)IHP
(γS + b)IHS
(dV + dk)IV
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The required matrices are:

F =

 0 0 αβH NV
0 0 0

βV NH βV NH 0

, V =

 γP + b + dd 0 0
0 γS + b 0
0 0 dV + dk


V−1 =


1

γP+b+dd
0 0

0 1
γS+b 0

0 0 1
dV+dk


Since R = FV−1, we have:

R =

 0 0 αNV βH
dV+dk

0 0 0
NH βV

b+dd+γP

NH βV
b+γS

0


R0 is the dominant eigenvalue of the matrix R; then, the value of the basic reproductive
number is given by:

R0 =

√
αNH NV βH βV

dk(b + dd) + dV(b + dd) + γP(dV + dk)
(27)

2.4. Local Stability of Equilibrium Points

Definition 3 ([14]). The equilibrium point E0 of the system
.

X = f (X) is locally asymptotically
stable if the matrix J = ∂ f

∂X (E0) has all its eigenvalues with negative real parts. The equilibrium
point E0 is not stable if at least one of the eigenvalues of the matrix J has a positive real part.

The local stability of each equilibrium point states of this model is determined from
the Jacobian matrix at that equilibrium point of the system of Equations (19)–(24). The
Jacobian matrix is:

JEi =



−αβH IV NV − b 0 0 0 0 −αβHSHP NV
αβH IV NV −γP − dd − b 0 0 0 αβHSHP NV

0 γP −(1− ψ)θ − b 0 0 0
0 0 (1− ψ)θ −αβH IV NV − b 0 −αβHSHS NH
0 0 0 αβH IV N −γS − b αβHSHS NH
0 βV NH(1− IV) 0 0 βV NH(1− IV) −βV NH(IHP + IHS)− (dV + dk)

 (28)

Theorem 1. At the equilibrium point E1, the disease-free state is locally asymptotically stable when
R0 < 1.

Proof. See the proof of Theorem A1 in Appendix A. �

Theorem 2. The equilibrium point E2 is locally asymptotically stable when R0 > 1.

Proof. See the proof of Theorem A2 in Appendix A. �

3. Numerical Simulation

In this section, the numerical analysis of the transmission of dengue disease with the
vaccination will only consider individuals who have a documented history of past dengue
infection or have died from the infection. The parameter values within this model are
listed in Table 3. Note that though most of the parameters are taken from the literature,
some of the values need to be assumed for the purpose of this investigation. The use of NH
and NV values of 10,000 for both cases reflects a small rural town, for example, one like
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Mae Hong Son, with a lower socio-economic status, which is very useful for investigating
the efficiency of the vaccination program. Note that we also assume a constant vector
population, which is appropriate for this case since the town is small, and far away from
larger cities such as Bangkok. The value of dd will be assumed to be 1/180 for both the
disease-free and endemic equilibrium cases. This value is close to the reported values
of 500 deaths per population of 100,000 [33]. The value of dk is assumed to be the same
as the reported natural mortality rate. The model is then simulated with the use of the
Runge–Kutta differential equation solver in MATLAB. The numerical results are shown in
Figures 3–6.

Table 3. The parameters used in the numerical simulation.

Parameters Disease-Free Endemic References

α 1/7 1/7 [1,9], [15–17], [29,33]
ψ 1/2 1/2 [1,9], [15–17], [29,33]
θ 1/(30 × 6) 1/(30 × 6) [1–4]

NH 10.000 10.000 assumed
NV 10.000 10.000 assumed
βH 0.0000080 0.0050 assumed
βV 0.0000065 0.0030 assumed
b 1/(365 × 70) 1/(365 × 70) [1,9], [15–17], [29,33]

dV 1/14 1/14 [1,9], [15–17], [29,33]
dd 1/180 1/180 assumed
dk 1/14 1/14 assumed
γP 1/10 1/10 [1,9], [15–17], [29,33]
γS 1/14 1/14 [1,9], [15–17], [29,33]

For the case of larger cities such as Chiang Mai or Khon Kaen, etc., we assume that:

Case 1: the number humans NH = 500, 000 and the number of vectors NV = 100, 000,
while for
Case 2: the number of humans NH = 500, 000 and the number of vectors NV = 100, 000e(−1/14)t

to investigate their implications.

Note that Case 2 simulates the situation where the size of the vector population is not
constant but is rather a function of time. The exponential power of −1/14 is also used to
reflect the natural death rate of the vector population. It can be seen from Figures 7 and 8
that there is a small change in trajectory from Case 1 to Case 2, which is to be expected
since the total vector population slowly decays.
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Figure 3. The trajectory of SHP, IHP, RHP, SHS, IHS and IV toward the disease-free equilibrium point for R0 < 1 with
parameter values according to Table 1. (a) Susceptibles of primary infection (b) Infected population with primary infection
(c) Recovered human of primary infection (d) Susceptibles of secondary infection (e) Infected human of secondary infection
(f) Infected vector.



Mathematics 2021, 9, 1833 11 of 33

Figure 4. The trajectory of SHP, IHP, RHP, SHS, IHS and IV toward the endemic equilibrium point, for R0 > 1 with
parameter values according to Table 3. (a) Susceptibles of primary infection (b) Infected population with primary infection
(c) Recovered human of primary infection (d) Susceptibles of secondary infection (e) Infected human of secondary infection
(f) Infected vector.
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Figure 5. The trajectory of SHP, IHP, RHP, SHS, IHS and IV toward the endemic equilibrium point for R0 > 1 with a
comparison of the transmission rate of the dengue virus from vector to human, βH = 0.0020, 0.0040, 0.0060, 0.0080, 0.0100,
and parameter values according to Table 3. (a) Susceptibles of primary infection (b) Infected population with primary
infection (c) Recovered human of primary infection (d) Susceptibles of secondary infection (e) Infected human of secondary
infection (f) Infected vector.
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Figure 6. The trajectory of SHP, IHP, RHP, SHS, IHS and IV toward the endemic equilibrium point for R0 > 1 with a
comparison of the transmission rate of the dengue virus from human to vector, βV = 0.0010, 0.0030, 0.0050, 0.0070, 0.0090,
and parameter values according to Table 3. (a) Susceptibles of primary infection (b) Infected population with primary
infection (c) Recovered human of primary infection (d) Susceptibles of secondary infection (e) Infected human of secondary
infection (f) Infected vector.
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Figure 7. The trajectory of SHP, IHP, RHP, SHS, IHS and IV toward the endemic equilibrium point for R0 > 1 with
parameter values according to Table 3; changes NH = 500,000, and NV = 100,000 . (a) Susceptibles of primary infection
(b) Infected population with primary infection (c) Recovered human of primary infection (d) Susceptibles of secondary
infection (e) Infected human of secondary infection (f) Infected vector.
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Figure 8. The trajectory of SHP, IHP, RHP, SHS, IHS and IV toward the endemic equilibrium point for R0 > 1 with
parameter values according to Table 3; changes NH = 500,000, and NV = 100,000e(−1/14)t. (a) Susceptibles of primary
infection (b) Infected population with primary infection (c) Recovered human of primary infection (d) Susceptibles of
secondary infection (e) Infected human of secondary infection (f) Infected vector.
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Sensitivity Analysis of Parameters

The index tells us which parameters have a high impact on the basic reproductive
number, R0, and should be targeted by intervention strategies. In addition, the sensitivity
index allows us to measure relative changes in variables as parameters change. The
normalized forward sensitivity index of a variable related to a parameter is the ratio of the
relative change in the variable to the relative change in the parameter [34].

Definition 4 (Chitnis, Hyman, and Cushing [34]). The normalized forward sensitivity index of
R0, which depends differentiably on a parameter p, is defined by:

R0
p =

∂R0

∂p
× p

R0
(29)

Given an expression for R0 in Equation (27), the sensitivity index of Equation (29)
can now be used to evaluate the index of each parameter. Note that the sensitivity index
could be a function of some parameters, or a number, signifying its independence of any
parameter. Table 4 shows the sensitivity index of R0 to all the parameters of Table 3.

Table 4. Sensitivity indices R0
p evaluated at the baseline parameter values of Table 1.

Parameters Sensitivity

α 0.5
NH 0.5
NV 0.5
βH 0.5
βV 0.5
b −0.0001141

dV −0.1666667
dd −0.20825858
dk −0.3333333
γP −0.2916001

Figure 9 plots a comparison of the R0 values against the changes in dd and γP. It can
be seen that as the dd and γP values change, the increment of R0 in dd is more pronounced
than that of γP. This is reflected in the R0

p index, where R0
dd

is significantly larger than R0
γP .

Note that a similar definition to Equation (29) with regards to the sensitivity of I∗V with
respect to the parameters could also be given. However, due to the algebraic complexities
of I∗V in Equation (26), a numerical plot is instead given. It is apparent in Figure 10 that as
βV changes, the endemic equilibrium I∗V also changes somewhat linearly.
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Figure 9. A comparison of parameters between dd and γP with R0.

Figure 10. A comparison of parameters between βV with IV
∗.

4. The Optimal Control Problem

In this section, the solution of the optimal control problem is discussed. The Pontryagin
Minimum Principle (PMP) theory is used to solve this problem. Equations (19)–(24) will
be recast as a control problem. The purpose of this is to recast the problem as one of
minimizing the number of infected humans to achieve an optimal outcome. Since, the
system consists of two dynamics, one for the humans and the other for the vectors, two
control parameters will be needed, u1 for the human population and u2 for the vector
population. u1 is the vaccination rate and u2 is the rate at which the breeding of the
Aegypti mosquitoes is annihilated. This model can be written as the system of the equation
as follows:

dSHP
dt

= b− αβHSHP IV NV − bSHP (30)

dIHP
dt

= αβHSHP IV NV − γP IHP − (b + dd)IHP (31)

dRHP
dt

= γP IHP − (1− ψ)θRHP − bRHP (32)
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dSHS
dt

= (1− ψ)θRHP − αβHSHS IV NV − bSHS − u1(t)IHS (33)

dIHS
dt

= αβHSHS IV NV − γS IHS − bIHS (34)

dRHS
dt

= γS IHS − bRHS (35)

dSV
dt

=
A

NV
− βVSV(IHP + IHS)NH − dVSV − u2(t)SV (36)

dIV
dt

= βVSV(IHP + IHS)NH − (dV + dk)IV − u2(t)βVSV(IHP + IHS)NH (37)

In terms of the normalized compartments, the differential equations become:

dSHP
dt

= b− αβHSHP IV NV − bSHP (38)

dIHP
dt

= αβHSHP IV NV − γP IHP − (b + dd)IHP (39)

dRHP
dt

= γP IHP − (1− ψ)θRHP − bRHP (40)

dSHS
dt

= (1− ψ)θRHP − αβHSHS IV NV − bSHS − u1(t)IHS (41)

dIHS
dt

= αβHSHS IV NV − γS IHS − bIHS (42)

dIV
dt

= βVSV(IHP + IHS)NH − (dV + dk)IV − u2(t)βVSV(IHP + IHS)NH (43)

All parameters retain same definitions as before. The optimal control problems of
Equations (38)–(43), require a definition of the objective function given as:

J(u1, u2) = min
T∫

0

[
X1 IHP + X2 IHS +

1
2

(
X3u2

1(t) + X4u2
2(t)

)]
dt (44)

with initial condition SHP ≥ 0, IHP ≥ 0, RHP ≥ 0, SHS ≥ 0, IHS ≥ 0, RHS ≥ 0, SV ≥ 0,
and IV ≥ 0. The constants X1, X2, X3, and X4 are weight constants and the terms X3u2

1(t)
and X4u2

2(t) represent the costs associated with the control variables u1 and u2, respectively.
We can assign an optimal solution of this model optimal control problem by using the
Lagrangian and the Hamiltonian of the problems. The Lagrangian of the optimal control
problem is given by:

L(IH , IV , u1, u2) = X1 IHP + X2 IHS +
1
2

(
X3u2

1(t) + X4u2
2(t)

)
(45)

Theorem 3. We consider the objective function J given by Equation (44) with (u1, u2) ∈ U
subjecting to the control system of Equations (38)–(43) with initial condition. There exists u∗(t) ={

u∗1(t), u∗2(t)
}
∈ U such that J

(
u∗1 , u∗2

)
= min{J(u1, u2)|(u1, u2) ∈ U }.

Proof. See the proof of Theorem A3 in Appendix A. �

Theorem 4. There exists the adjoint variables λ1, λ2, λ3, λ4, λ5, and λ6 under the control that
satisfies the following:
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dλ1
dt = λ1(t)(αβH IV NV + b)− λ2(t)(αβH IV NV),

dλ2
dt = −X1 + λ2(t)(γP + dd + b)− λ3(t)γP − λ6(t)(βV NH(1− IV − u∗2(t) + IVu∗2(t))),

dλ3
dt = λ3(t)((1− ψ)θ + b)− λ4(t)((1− ψ)θ),

dλ4
dt = λ4(t)(αβH IV NV + b)− λ5(t)(αβH IV NV),

dλ5
dt = −X2 + λ4(t)

(
u∗1(t)

)
+ λ5(t)(γS + b)− λ6(t)(βV NH(1− IV − u∗2(t) + IVu∗2(t))),

dλ6
dt = λ1(t)(αβHSHPNV)− λ2(t)(αβHSHPNV) + λ4(t)(αβHSHSNV)

−λ5(t)(αβHSHSNV) + λ6(t)(βV NH(1− u∗2(t))(IHP + IHS) + (dV + dk)).

(46)

with the boundary conditions:

λ1(t) = λ2(t) = λ3(t) = λ4(t) = λ5(t) = λ6(t) = 0 (47)

In addition, the optimal control variables are given by:

u∗1(t) = max
(

min
(

λ4 I∗HS
X3

, umax
1

)
, 0
)

(48)

u∗2(t) = max

(
min

(
λ6
(
1− I∗V

)
βV
(

I∗HP + I∗HS
)

NH

X4
, umax

2

)
, 0

)
(49)

Proof. See the proof of Theorem A4 in Appendix A. �

The simulation results for the optimal states are presented in Figures 11–15 and the
optimal controls are shown in Figure 14 using parameter values according to Table 1.

Figures 11–15 show the simulation results of the system of Equations (38)–(43) with
and without controls of SHP, IHP, RHP, SHS, IHS, and IV . The plot of Figure 11 is obtained
by setting the weight X1 to be equal to X2. Figure 12 presents the case in which the weight
X1 less than X2. Figure 13 presents the case where X1 is at least 10 times greater than X2.
Figure 14 presents the case in which the weight X1 is greater than X2. Figure 15 presents
the case where X1 is at least 10 times greater than X2. Note that the main goal of the control
is to minimize the number of infected humans with primary infection IHP, as well as the
secondary infection IHS. The main emphasis, however, is on the secondary infectious
individuals. For each of these scenarios, a comparison is also made with the case where
no control is applied. If X1 = X2, the convergence time to equilibrium is significantly
faster than if X1 is less than X2, X1 is much less than X2, X1 is greater than X2, and X1
much greater than X2. Moreover, as the weight of X1 increases, the steady state of infected
individuals of the secondary population I∗HS gradually decreases to zero. The trajectory
of the infected vectors gradually deviates from the no-control case. No significant change
seems to occur to the trajectories as the weight X2 is increased, except for the infected
vectors, which appear to approach zero for a large weight of 100. With no control measures,
it will take longer for equilibrium to be reached.
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Figure 11. Simulation results of system of Equations (38)–(43) with and without controls of SHP, IHP, RHP, SHS, IHS

and IV for X1 = 100, X2 = 100. (a) Susceptibles of primary infection (b) Infected population with primary infection
(c) Recovered human of primary infection (d) Susceptibles of secondary infection (e) Infected human of secondary infection
(f) Infected vector.
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Figure 12. Simulation results of system of Equations (38)–(43) with and without controls of SHP, IHP, RHP, SHS, IHS

and IV with X1 = 50, X2 = 100. (a) Susceptibles of primary infection (b) Infected population with primary infection
(c) Recovered human of primary infection (d) Susceptibles of secondary infection (e) Infected human of secondary infection
(f) Infected vector.
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Figure 13. Simulation results of system of Equations (38)–(43) with and without controls of SHP, IHP, RHP, SHS, IHS and
IV when X1 = 0.00001, X2 = 100. (a) Susceptibles of primary infection (b) Infected population with primary infection
(c) Recovered human of primary infection (d) Susceptibles of secondary infection (e) Infected human of secondary infection
(f) Infected vector.
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Figure 14. Simulation results of system of Equations (38)–(43) with and without controls of SHP, IHP, RHP, SHS, IHS

and IV when X1 = 100, X2 = 50. (a) Susceptibles of primary infection (b) Infected population with primary infection
(c) Recovered human of primary infection (d) Susceptibles of secondary infection (e) Infected human of secondary infection
(f) Infected vector.
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 Figure 15. Simulation results of system of Equations (38)–(43) with and without controls of SHP, IHP, RHP, SHS, IHS and
IV when X1 = 100, X2 = 0.00001. (a) Susceptibles of primary infection (b) Infected population with primary infection
(c) Recovered human of primary infection (d) Susceptibles of secondary infection (e) Infected human of secondary infection
(f) Infected vector.

Figure 16a shows that to maintain the optimal control of the infected population,
u1(t) would have to be at 50%, 70%, and 90% for the first 25 days, after which the control
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required will show an exponential decline to zero. Figure 16b shows the values required
to maintain optimal control when u2(t) is used as the controlling factor. The application
of 50%, 70%, and 90% of u2(t) for achieving optimal control should be maintained for the
first 47 days, after which the amount of control steadily decreases to zero.

Figure 16. Simulation results of the control: (a) The vaccination rate u1(t) and (b) the Aegypti breeding destroying rate u2(t)
when X1 = 100, X2 = 100.

Figures 17 and 18 plot the cases of NH = 500,000 and NV = 100,000, and of NH = 500,000
and NV = 100,000e(−1/14)t, respectively. The later values were chosen to investigate the
case where the total vector population is not constant. Both figures show a significant
decay of both the primary and secondary infective populations to zero in the controlled
population compared to the uncontrolled population, which peaks at around 0.25 before
decaying to about zero. Note that there is again a small change across the trajectories from
Figure 17 to Figure 18, which is to be expected since the total number of vectors is slowly
decayed as a function of time.
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Figure 17. Simulation results of system of Equations (38)–(43) with and without controls of SHP, IHP, RHP, SHS, IHS and
IV with X1 = 100, X2 = 100, NH = 500,000, NV = 100,000 . (a) Susceptibles of primary infection (b) Infected population with
primary infection (c) Recovered human of primary infection (d) Susceptibles of secondary infection (e) Infected human of
secondary infection (f) Infected vector.
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Figure 18. Simulation results of system of Equations (38)–(43) with and without controls of SHP, IHP, RHP, SHS, IHS and IV

with X1 = 100, X2 = 100, NH = 500,000, NV = 100,000e(−1/14)t. (a) Susceptibles of primary infection (b) Infected population
with primary infection (c) Recovered human of primary infection (d) Susceptibles of secondary infection (e) Infected human
of secondary infection (f) Infected vector.
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5. Discussion and Conclusions

In this paper, we analyzed the effects of different vaccination strategies to prevent
secondary dengue infection in order to reduce the severity of the disease. The dynamic
of the dengue fever transmission model assumes that the human and vector population
are constant. The analysis was based on the use of the Routh–Hurwitz criteria to establish
local asymptotic stability. The equilibrium points that we found were disease-free conver-
gence to E1 = (1, 0, 0, 0, 0, 0) and the endemic equilibrium point. The basic reproductive
number was defined as R0. If R0 is less than one, then the disease-free state exits and is
locally asymptotically stable; it is unstable when R0 is greater than one. We simulated the
numerical solution of the parameters with different values, as shown in Figure 5. We can
see that if the transmission rate of dengue virus from vector to human βH is large, then the
convergence to an equilibrium point becomes slower for susceptible humans to primary
and secondary infection. The number of humans recovered from primary infection, the
number of humans with primary or secondary infection, and the number of infected vectors
will converge to an equilibrium point more rapidly. Likewise, in Figure 6, we see that if
the transmission rate of the dengue virus from human to vector βV is large, then there is a
slower convergence to an equilibrium point of the susceptible humans. Similarly, humans
who recovered from a primary infection, humans infected with a primary or secondary
infection, and infected humans will converge to an equilibrium point more quickly, i.e.,
E2(SHP = 0.00003, IHP = 0.00022, RHP = 0.00810, SHS = 0.00002, IHS = 0.00031). However,
the infected vector will converge to a different equilibrium point. In addition, this will also
make the basic reproductive number R0 greater than one. Changing βV to a different value
affects the convergence time for reaching the equilibrium point, as shown in Figure 8. To
investigate whether there is a limitation on the model when there is a non-constant total
vector population NV , two further cases were also considered. The first case had the largest
total human population NH at 500,000, and a large NV of 100,000. The second case kept NH
the same, whilst the NV was treated as an exponential function of time. Results showed
that although having a non-constant NV does have some effect on the trajectories, such a
change is quite small compared to that of the constant vector population case.

We adopted an optimal control approach using the vaccination rate and a rate for
destroying the breeding of the Aegypti mosquito in order to minimize the number of humans
with primary or secondary infections. To do this, we used the Pontryagin Minimum
Principle (PMP) method to solve the optimal control problem with conditions X1 equal
X2, X1 less than X2, X1 much less than X2, X1 greater than X2, and X1 much greater
than X2. We can see that, if there are no controls, the number of humans with primary or
secondary infections increases. This will cause the solution to converge to the equilibrium
point over a longer time. With the controls in place, the number of mosquitoes in the
infected vector population and the number of people who need to be vaccinated will
decrease over time, as shown in Figures 11–18.
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Appendix A

Theorem A1. At the equilibrium point E1, the disease-free state is locally asymptotically stable
when R0 < 1.

Proof. The eigenvalues of the Jacobian at the equilibrium point of the disease-free state are
obtained by first evaluating the matrix equation at the disease-free state E1 = (1, 0, 0, 0, 0, 0).

det
(

JE1 − λI
)
= 0 (A1)

where I is a 6× 6 identity matrix. Solving this equation, we obtain the characteristic equa-
tion, a six-order polynomial equation. The eigenvalues are the solutions of the equations:

λ1 = λ2 = −b, λ3 = −(b + θ(1 + ψ)), λ4 = −(b + γS),

λ5 = −
(

1
2 ε1 +

√
ε2

1 − 4ε2 − ε3

)
, and λ6 = −

(
1
2 ε1 −

√
ε2

1 − 4ε2 − ε3

)
.

where ε1 = (b + dd + dk + dV + γP), ε2 = b(dk + dV)+ dd(dk + dV), and ε3 = αNH NV βH βV
+γP(dk + dV). As we see, all the eigenvalues have a negative real part and the disease-free
equilibrium point (E1) is locally asymptotically stable. �

Theorem A2. The equilibrium point E2 is locally asymptotically stable when R0 > 1.

Proof. The Jacobian for this case is obtained when the endemic state E2 defined by Equation
(26) is substituted in the Jacobian matrix of Equation (28) JE2 =

(
S∗HP, I∗HP, R∗HP, S∗HS, I∗HS, I∗V

)
where S∗HP, I∗HP, R∗HP, S∗HS, I∗HS, and I∗V are defined by the equation of the endemic equilib-
rium point (E2), we set:

det
(

JE2 − λI
)
= 0 (A2)

For the first eigenvalue we have λ1 = −(b + γS) < 0 and λ2 = −(b + dd + γS) < 0.
The characteristic equation is:

λ4 + a1λ3 + a2λ2 + a3λ + a4 = 0 (A3)

where:
a1 = 3b + θ(1− ψ) + dk + dV + 2αNV βH I∗V + NH(I∗HP − I∗HS + αNV(S∗HP − S∗HS)(I∗V − 1)βH)βV ,

a2 =
(
b + αNV βH I∗V

)(
3b− 2θ(ψ− 1) + αNV βH I∗V

)
+ dk

(
3b + θ − θψ + 2αNV βH I∗V

)
+NH

(
αNV

(
S∗HP − S∗HS

)(
I∗V − 1

)(
3b + θ − θψ + 2αNV βH I∗V

)(
βH + I∗HP − I∗HS

))
βV

+dV
(
3b + θ − θψ + 2αNV βH I∗V

)
,

a3 = b2(b + θ − θψ) + 2bαNV βH I2
V
∗(b + θ − θψ) + α2N2

V β2
H I∗V

2(b + θ − θψ)

+
(
b + αNV βH I∗V

)(
3b + 2θ − 2θψ + αNV βH I∗V

)
(dk + dV)

+bαNH NV βH βVS∗HP

(
2bI∗V − 2b− 2bθ I∗V + 2αNV βH − αNV βH I∗V + αNVψI∗V
+αθNV + 2αNV βH I∗V + α2NV βH I∗V + α2θψNV βH I∗V

)

+bαNH NV βH βVS∗HS

(
3b + 2bθ − 2bψ− 3b2 − 2bI∗V + 2bψI∗V + 2αNV βH I∗V

−αψNV I∗V − 3αNV βH I∗V + αψNV βH I∗V

)
+bαNH NV βH βV T∗HP

(
6I∗V + 2ψ + αNV βH I∗V

)
+ bαNH NV βH βV I∗HS I∗V(6 + 2ψ− αNV βH),

a4 = (b + θ − θψ)
(
b + αNV βH I∗V

)2
(dk + dV) + NH βV(b + θ − θψ)

(
b + αNV βH I∗V

)2(I∗HP − I∗HS
)

+bαNV
(

I∗V − 1
)

βH
(
(b + θ − θψ)

(
S∗HP − S∗HS

)(
b + αNV βH I∗V

)
+ αθ(ψ− 1)NVS∗HP I∗V βHγP

)
.

where S∗HP, I∗HP, S∗HS, I∗HS, and I∗V are defined in Section 2.2 (The Equilibrium Point) and
all parameter values are defined in Table 3. Using Routh–Hurwitz criteria [35,36] for
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n = 4, the endemic equilibrium point is stable if conditions (i)− (iv) below are satisfied.
Since symbolic computation may be difficult, to illustrate whether conditions (i)− (iv)
are indeed satisfied due to the algebraic numerical complexities, numerical simulations of
conditions (i)− (iv) are instead given. It is seen from Figure 1A that conditions (i)− (iv)
are indeed satisfied. This means that the polynomial of Equation (A3) is Hurwitz.

(i) a1 > 0(ii) a3 > 0(iii) a4 > 0(iv) a1a2a3 − a2
3 − a2

1a4 > 0

Hence, the endemic equilibrium point will be locally asymptotically stable. �

Figure A1. All parameter spaces of endemic equilibrium are satisfied with the Routh–Hurwitz criteria.

Theorem A3. We consider the objective function J given by Equation (44) with (u1, u2) ∈ U
subjecting to the control system of Equations (38)–(43) with initial condition. There exists u∗(t) ={

u∗1(t), u∗2(t)
}
∈ U such that J

(
u∗1 , u∗2

)
= min{J(u1, u2)|(u1, u2) ∈ U }.

Proof. We apply the existence of an optimal control problem from [37,38]. �

The control set U is closed and convex by its definition above and the integrand of the
function Equation (38) is also convex in U. It is obvious that these states and the control
variable are nonnegative. Since the solution to the systems given by Equations (38)–(43) are
bounded, the control function will be convex in U. Let q1 and q2 be two positive constants
and ζ > 1. If we now set q2 = min(IHP(t), IHS(t)), q1 = min(X3, X4), and ζ = 2, the
Lagrangian function L can be rewritten as:

L(IHP, IHS, u1, u2) = X1 IHP + X2 IHS +
1
2
(
X3u2

1(t) + X4u2
2(t)

)
≥ q2(IHP + IHS) + q1

(
|u1|2 + |u2|2

)
= q2 + q1

(
|u1|2 + |u2|2

) (A4)

The optimal control of this model is obtained by applying Pontryagin’s Minimum
Principle [38].
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Theorem A4. There exists the adjoint variables λ1, λ2, λ3, λ4, λ5 and λ6 under the control that
satisfies the following:

dλ1
dt = λ1(t)(αβH IV NV + b)− λ2(t)(αβH IV NV),

dλ2
dt = −X1 + λ2(t)(γP + dd + b)− λ3(t)γP − λ6(t)(βV NH(1− IV − u∗2(t) + IVu∗2(t))),

dλ3
dt = λ3(t)((1− ψ)θ + b)− λ4(t)((1− ψ)θ),

dλ4
dt = λ4(t)(αβH IV NV + b)− λ5(t)(αβH IV NV),

dλ5
dt = −X2 + λ4(t)

(
u∗1(t)

)
+ λ5(t)(γS + b)− λ6(t)(βV NH(1− IV − u∗2(t) + IVu∗2(t))),

dλ6
dt = λ1(t)(αβHSHPNV)− λ2(t)(αβHSHPNV) + λ4(t)(αβHSHSNV)

−λ5(t)(αβHSHSNV) + λ6(t)(βV NH(1− u∗2(t))(IHP + IHS) + (dV + dk)).

(A5)

with the boundary conditions:

λ1(t) = λ2(t) = λ3(t) = λ4(t) = λ5(t) = λ6(t) = 0 (A6)

In addition, the optimal control variables are given by:

u∗1(t) = max
(

min
(

λ4 I∗HS
X3

, umax
1

)
, 0
)

(A7)

u∗2(t) = max

(
min

(
λ6
(
1− I∗V

)
βV
(

I∗HP + I∗HS
)

NH

X4
, umax

2

)
, 0

)
(A8)

Proof. The Hamiltonian for the optimal control of this model is defined as given by:

H = L(IHP, IHS, u1, u2) + λ1
dSHP

dt
+ λ2

dIHP
dt

+ λ3
dRHP

dt
+ λ4

dSHS
dt

+ λ5
dIHS

dt
+ λ6

dIV
dt

(A9)

H = X1 IHP + X2 IHS +
1
2
(
X3u∗1(t) + X4u∗2(t)

)
+λ1[b− αβHSHP IV NV − bSHP]

+λ2[αβHSHP IV NV − γP IHP − (b + dd)IHP]

+λ3[γP IHP − (1− ψ)θRHP − bRHP]

+λ4[(1− ψ)θRHP − αβHSHS IV NV − bSHS − u1(t)IHS]

+λ5[αβHSHS IV NV − γS IHS − bIHS]

+λ6[(1− u2(t))βV(1− IV)(IHP + IHS)NH − (dV + dk)IV ]

(A10)

The adjoint associated system is obtained as follows:

dλ1
dt = λ1(t)(αβH IV NV + b)− λ2(t)(αβH IV NV),

dλ2
dt = −X1 + λ2(t)(γP + dd + b)− λ3(t)γP − λ6(t)(βV NH(1− IV − u∗2(t) + IVu∗2(t))),

dλ3
dt = λ3(t)((1− ψ)θ + b)− λ4(t)((1− ψ)θ),

dλ4
dt = λ4(t)(αβH IV NV + b)− λ5(t)(αβH IV NV),

dλ5
dt = −X2 + λ4(t)

(
u∗1(t)

)
+ λ5(t)(γS + b)− λ6(t)(βV NH(1− IV − u∗2(t) + IVu∗2(t))),

dλ6
dt = λ1(t)(αβHSHPNV)− λ2(t)(αβHSHPNV) + λ4(t)(αβHSHSNV)

−λ5(t)(αβHSHSNV) + λ6(t)(βV NH(1− u∗2(t))(IHP + IHS) + (dV + dk)).

(A11)

Using the optimal conditions, we find that:

∂H
∂u1

=
∂H
∂u2

= 0 at u1 = u∗1(t) and u2 = u∗2(t) (A12)
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Therefore:
∂H
∂u1

= X3u1 − λ4 IHS = 0

u∗1(t) =
λ4 IHS

X3

(A13)

∂H
∂u2

= X4u2 − λ6(1− IV)βV(IHP + IHS)NH = 0

u∗2(t) =
λ6(1−IV)βV(IHP+IHS)NH

X4

(A14)

Using the property of the control set, we can say that:

u∗1(t) =


0 i f λ4 IHS

X3
≤ 0,

λ4 IHS
X3

i f λ4 IHS
X3

< umax
1 ,

umax
1 i f λ4 IHS

X3
≥ umax

1 .

(A15)

u∗2 =


0 i f λ6(1−IV)βV(IHP+IHS)NH

X4
≤ 0,

λ6(1−IV)βV(IHP+IHS)NH
X4

i f λ6(1−IV)βV(IHP+IHS)NH
X4

< umax
2

umax
2 i f λ6(1−IV)βV(IHP+IHS)NH

X4
≥ umax

2

(A16)

The simulation results for the optimal states are presented in Figures 11–15 and the
optimal controls are shown in Figure 16. �

References
1. World Health Organization. Dengue and Severe Dengue. Available online: https://www.who.int/news-room/fact-sheets/

detail/dengue-and-severe-dengue (accessed on 5 January 2021).
2. Aguas, R.; Dorigatti, I.; Coudeville, L.; Luxembrurger, C.; Ferguson, N.M. Cross-serotype interactions and disease outcome

prediction of dengue infections in Vietnam. Sci. Rep. 2019, 9, 1–12. [CrossRef]
3. Guzman, M.G.; Harris, E. Dengue. Lancet 2015, 385, 453–465. [CrossRef]
4. Esteva, L.; Vargas, C. Coexistence of different serotypes of dengue virus. J. Math. Biol. 2003, 46, 31–47. [CrossRef] [PubMed]
5. Gubler, D.J. Dengue and dengue hemorrhagic fever. Clin. Microbiol. Rev. 1998, 11, 480–496. [CrossRef]
6. Chaturvedi, U.C.; Nagar, R. Dengue and dengue haemorrhagic fever: Indian perspective. J. Biosci. 2008, 33, 429–441. [CrossRef]
7. Adams, B.; Holmes, E.C.; Zhang, C.; Mammen, M.P., Jr.; Nimmannitya, S.; Kalayanarooj, S.; Boots, M. Cross-protective immunity

can account for the alternating epidemic pattern of dengue virus serotypes circulating in Bangkok. Proc. Natl. Acad. Sci. USA
2006, 103, 14234–14239. [CrossRef] [PubMed]

8. Capeding, M.R.; Tran, N.H.; Hadinegoro, S.R.S.; Ismail, H.I.H.M.; Chotpitayasunondh, T.; Chua, M.N.; Luong, C.Q.; Rusmil, K.;
Wirawan, D.N.; Nallusamy, R.; et al. Clinical efficacy and safety of a novel tetravalent dengue vaccine in healthy children in Asia:
A phase 3, randomised, observer-masked, placebo-controlled trial. Lancet 2014, 384, 1358–1365. [CrossRef]

9. World Health Organization. Fact Sheet: Questions and Answers on Dengue Vaccines: Phase III Study of CYD-TDV. Available
online: http://www.who.int/immunization/research/development/WHO_dengue_vaccine_QA_July2014.pdf (accessed on
5 January 2021).

10. Villar, L.; Dayan, G.H.; Arredondo-Garcia, J.L.; Rivera, D.M.; Cunha, R.; Deseda, C.; Reynales, H.; Costa, M.S.; Morales-Ramirez, J.O.;
Carrasquilla, G.; et al. Efficacy of a tetravalent dengue vaccine in children in Latin America. N. Engl. J. Med. 2015, 372, 113–123.
[CrossRef]

11. Biswal, S.; Reynales, H.; Saez-Llorens, X.; Lopez, P.; Borja-Tabora, C.; Kosalaraksa, P.; Sirivichayakul, C.; Watanaveeradej, V.;
Rivera, L.; Espinoza, F.; et al. Efficacy of a tetravalent dengue vaccine in healthy children and adolescents. N. Engl. J. Med. 2019,
381, 2009–2019. [CrossRef]

12. Sabchareon, A.; Wallace, D.; Sirivichayakul, C.; Limkittikul, K.; Chanthavanich, P.; Suvannadabba, S.; Jiwariyavej, V.;
Dulyachai, W.; Pengsaa, K.; Wartel, T.A.; et al. Protective efficacy of the recombinant, live-attenuated, CYD tetravalent dengue
vaccine in Thai schoolchildren: A randomised, controlled phase 2b trial. Lancet 2012, 380, 1559–1567. [CrossRef]

13. World Health Organization. Updated Questions and Answers Related to the Dengue Vaccine Dengvaxia®and Its Use. Available
online: https://www.who.int/immunization/diseases/dengue/q_and_a_dengue_vaccine_dengvaxia_use/en/ (accessed on
5 January 2021).

14. Esteva, L.; Vargas, C. A model for dengue disease with variable human population. J. Math. Biol. 1999, 38, 220–240. [CrossRef]
15. Pongsumpun, P.; Kongnuy, R.; Lopez, D.G.; Tang, I.M.; Dubois, M.A. Contact infection spread in an SEIR model: An analytical

approach. Sci. Asia 2013, 39, 410–415. [CrossRef]
16. Pongsumpun, P. The dynamical model of dengue vertical transmission. Curr. Appl. Sci. Technol. 2017, 17, 48–61.

https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue
https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue
http://doi.org/10.1038/s41598-019-45816-6
http://doi.org/10.1016/S0140-6736(14)60572-9
http://doi.org/10.1007/s00285-002-0168-4
http://www.ncbi.nlm.nih.gov/pubmed/12525934
http://doi.org/10.1128/CMR.11.3.480
http://doi.org/10.1007/s12038-008-0062-3
http://doi.org/10.1073/pnas.0602768103
http://www.ncbi.nlm.nih.gov/pubmed/16966609
http://doi.org/10.1016/S0140-6736(14)61060-6
http://www.who.int/immunization/research/development/WHO_dengue_vaccine_QA_July2014.pdf
http://doi.org/10.1056/NEJMoa1411037
http://doi.org/10.1056/NEJMoa1903869
http://doi.org/10.1016/S0140-6736(12)61428-7
https://www.who.int/immunization/diseases/dengue/q_and_a_dengue_vaccine_dengvaxia_use/en/
http://doi.org/10.1007/s002850050147
http://doi.org/10.2306/scienceasia1513-1874.2013.39.410


Mathematics 2021, 9, 1833 33 of 33

17. Chanprasopchai, P.; Tang, I.M.; Pongsumpun, P. The SEIR dynamical transmission model of dengue disease with and without the
vertical transmission of the virus. Am. J. Appl. Sci. 2017, 14, 1123–1145. [CrossRef]

18. Syafruddin, S.; Noorani, S.M. A SIR model for spread of dengue fever disease (simulation for south sulawesi Indonesia and
selangor Malaysia). World J. Model. Simul. 2013, 9, 96–105.

19. Yaacob, Y. Analysis of a dengue disease transmission model without immunity. MATEMATIKA Malays. J. Ind. Appl. Math. 2007,
23, 75–81.

20. Singh, B.; Jain, S.; Khandelwal, R.; Porwal, S.; Ujjainkar, G. Analysis of a dengue disease transmission model with vaccination.
Adv. Appl. Sci. Res. 2014, 5, 237–242.

21. Tasman, H.; Supriatna, A.K.; Nuraini, N.; Soewono, E. A dengue vaccination model for immigrants in a two-age-class population.
Int. J. Math. Math. Sci. 2012, 2012, 236352. [CrossRef]

22. Aguiar, M.; Stollenwerk, N.; Halstead, S.B. The impact of the newly licensed dengue vaccine in endemic countries. PLoS Negl Trop
Dis. 2016, 10, e0005179. [CrossRef] [PubMed]

23. Aguiar, M.; Stollenwerk, N. Mathematical models of dengue fever epidemiology: Multi-strain dynamics, immunological aspects
associated to disease severity and vaccines. Commun. Biomath. Sci. 2017, 1, 1–12. [CrossRef]

24. Viriyapong, R.; Tavaen, S. Global stability and optimal control of melioidosis transmission model with hygiene care and treatment.
NU. Int. J. Sci. 2019, 16, 31–48.

25. Rodrigues, H.S.; Monteiro, M.T.T.; Torres, D.F.M. Dynamics of dengue epidemics when using optimal control. Math. Comput.
Model. 2010, 52, 1667–1673. [CrossRef]

26. Rodrigues, H.S.; Monteiro, M.T.T.; Torres, D.F.M. Vaccination models and optimal control strategies to dengue. Math. Biosci. 2014,
247, 1–12. [CrossRef] [PubMed]

27. Agustoa, A.B.; Khan, M.A. Optimal control strategies for dengue transmission in Pakistan. Math. Biosci. 2018, 305, 102–121.
[CrossRef]

28. Ndii, M.Z.; Mage, A.R.; Messakh, J.J.; Djahi, B.S. Optimal vaccination strategy for dengue transmission in Kupang city, Indonesia.
Heliyon 2020, 6, e05345. [CrossRef] [PubMed]

29. Ministry of Public Health Thailand. Dengue Fever. Available online: http://www.boe.moph.go.th/boedb/surdata/disease.php?
dcontent=old&ds=66 (accessed on 5 January 2021).

30. Diekmann, O.; Heesterbeek, J.A.P.; Roberts, M.G. The construction of next-generation matrices for compartmental epidemic
models. J. R. Soc. Interface 2010, 7, 873–885. [CrossRef]

31. Wu, C.Q.; Wong, P.J.Y. Dengue transmission: Mathematical model with discrete time delays and estimation of the reproduction
number. J. Biol. Dyn. 2019, 13, 1–25. [CrossRef] [PubMed]

32. Prathumwan, D.; Trachoo, K.; Chaiya, I. Mathematical modeling for prediction dynamics of the coronavirus disease 2019
(COVID-19) pandemic, quarantine control measures. Symmetry 2020, 12, 1404. [CrossRef]

33. NewsDesk. Thailand Reports 71,000 Dengue Cases in 2020. Available online: outbreaknewstoday.com/thailand-reports-71000-
dengue-cases-in-2020/ (accessed on 16 July 2021).

34. Chitnis, N.; Hyman, J.M.; Cushing, J.M. Determining important parameters in the spread of malaria through the sensitivity
analysis of a mathematical model. Bull. Math. Biol. 2008, 70, 1272–1296. [CrossRef]

35. Lukes, D.L. Differential Equations: Classical to Controlled; Academic Press: London, UK; New York, NY, USA, 1982.
36. Chanprasopchai, P.; Tang, I.M.; Pongsumpun, P. SIR model for dengue disease with effect of dengue vaccination. Comput. Math.

Methods Med. 2018, 2018, 9861572. [CrossRef]
37. Xue, L.; Ren, X.; Magpantay, F.; Sun, W.; Zhu, H. Optimal control of mitigation strategies for dengue virus transmission. Bull.

Math. Biol. 2021, 83, 1–28. [CrossRef] [PubMed]
38. Lenhart, S.; Workman, J.T. Optimal Control Applied to Biological Models; Chapman and Hall/CRC: Boca Raton, FL, USA; New York,

NY, USA, 2007.

http://doi.org/10.3844/ajassp.2017.1123.1145
http://doi.org/10.1155/2012/236352
http://doi.org/10.1371/journal.pntd.0005179
http://www.ncbi.nlm.nih.gov/pubmed/28002420
http://doi.org/10.5614/cbms.2017.1.1.1
http://doi.org/10.1016/j.mcm.2010.06.034
http://doi.org/10.1016/j.mbs.2013.10.006
http://www.ncbi.nlm.nih.gov/pubmed/24513243
http://doi.org/10.1016/j.mbs.2018.09.007
http://doi.org/10.1016/j.heliyon.2020.e05345
http://www.ncbi.nlm.nih.gov/pubmed/33204872
http://www.boe.moph.go.th/boedb/surdata/disease.php?dcontent=old&ds=66
http://www.boe.moph.go.th/boedb/surdata/disease.php?dcontent=old&ds=66
http://doi.org/10.1098/rsif.2009.0386
http://doi.org/10.1080/17513758.2018.1562572
http://www.ncbi.nlm.nih.gov/pubmed/31793412
http://doi.org/10.3390/sym12091404
outbreaknewstoday.com/thailand-reports-71000-dengue-cases-in-2020/
outbreaknewstoday.com/thailand-reports-71000-dengue-cases-in-2020/
http://doi.org/10.1007/s11538-008-9299-0
http://doi.org/10.1155/2018/9861572
http://doi.org/10.1007/s11538-020-00839-3
http://www.ncbi.nlm.nih.gov/pubmed/33404917

	Introduction 
	Materials and Methods 
	Mathematical Model 
	The Equilibrium Points 
	The Basic Reproductive Number 
	Local Stability of Equilibrium Points 

	Numerical Simulation 
	The Optimal Control Problem 
	Discussion and Conclusions 
	
	References

