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Abstract: This work is aimed at studying the problem of maintaining the sustainability of a coopera-
tive solution in an n-person hybrid differential game. Specifically, we consider a differential game
whose payoff function is discounted with a discounting function that changes its structure with time.
We solve the problem of time-inconsistency of the cooperative solution using a so-called imputation
distribution procedure, which was adjusted for this general class of differential games. The obtained
results are illustrated with a specific example of a differential game with random duration and a
hybrid cumulative distribution function (CDF). We completely solved the presented example to
demonstrate the application of the developed scheme in detail. All results were obtained in analytical
form and illustrated by numerical simulations.

Keywords: hybrid differential game; cooperative differential game; random time horizon; dynamic
programming principle; imputation distribution procedure; time-consistency

1. Introduction

This contribution aims at bringing together two different concepts: the notion of
sustainable cooperation from game theory and the notion of hybrid optimal control from
the theory of hybrid systems. We first give a brief overview of the related results.

The concept of sustainable cooperation constitutes one of the central ingredients of
cooperative game theory. Indeed, in many works it has been shown that a cooperative
agreement may turn out to be unstable in the sense that the players may decide to break
up the agreement at some intermediate time instant. To overcome this problem, Petrosyan,
in [1], introduced the imputation distribution procedure (IDP) that has proven to be a very
useful tool in the field of cooperative games. In the original paper [1], a fixed and finite-
duration differential game was considered. Later, in [2], the notion of the IDP was extended
to the class of differential games with infinite duration and a discounting function of a
rather general form. Since then, there have been a number of papers devoted to the analysis
of optimal problems with different types of discounting functions and their extension to
the class of differential games (see, e.g., [3–5], where this problem was considered in both
deterministic and stochastic settings, and [6] for the very recent results.)

Although the class of hybrid control systems was introduced more than 20 years ago,
most results on hybrid control were formulated within the control-related framework and
did not address the game-theoretic problems. We will be mostly interested in the hybrid
optimal control, the direction that was actively developed during the first decade of the
21st century. We mention the works [7,8] for an overview of the main results on the hybrid
optimal control. Some more examples of optimal control and—to some extent—differential
games with regime switching can be found in [9–13]. It was only recently that the theory of
hybrid control was formally extended to game-theoretic problems. The first attempt was
made in [14]; later, in [15], a special but rather general class of hybrid differential games
was considered in detail.
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In this paper, we consider the problem of the sustainability of a cooperative solution
in an n-person hybrid differential game. Earlier, a differential game with a random time
horizon and discontinuous distribution was studied in [16], where only one jump was
considered, and in [17], where the method of parametrization for calculation of the optimal
controls was used. In this work we extend and generalize the results of [17] and put them
in the context of hybrid optimal control.

To solve the formulated hybrid optimal control problem we use the method of
parametrization, which is a well-known approach for numerical solution of optimal control
problems, see, e.g., [18], but is relatively rarely used in the context of differential games.
See [15] for some suggestions on how to apply this method to differential games with a
switching structure. In short, the whole optimal control problem is decomposed into a
number of subproblems, whose initial or final states are parametrized by some variables.
These problems are solved backwards by applying the Pontryagin maximum principle [19]
to each interval. If the respective optimal control problems admit analytical solutions, these
solutions can be further used to determine the optimal values of switching states.

The described approach was successfully applied to a particular differential game
with random duration and a composite cumulative distribution function. We computed
the optimal controls and cooperative solutions, and determined the imputation distribu-
tion procedure.

This paper is organized in the following way. In Section 2 we present the formulation
of the problem and formally state all necessary results. In particular, we present a uniform
description of the hybrid discounting function using the notion of the hybrid hazard rate
and give an explicit formula for computing the IDP. In Section 3 we work out a particular
numeric example aimed at illustrating the previously formulated theoretic results. The last
Section of the paper presents a conclusion.

2. Problem Formulation
2.1. Differential Game

Consider a differential game involving n participants (players): Γd(t0, x0) (where the
superscript d refers to discounting). Suppose the set of players is N = {1, . . . , n}. Assume
that the game initiates at the moment t0 with the initial state x0.

The n-person differential game with prescribed duration T − t0 in which the integral
payoff of the player i can be represented in the following form.

• The dynamic constraint conditions for the game are given by{
ẋ = g(x(t), u1(t), . . . , un(t)),
x ∈ Rh, x(t0) = x0.

, (1)

where (1) satisfy the standard requirements of existence and uniqueness. In par-
ticular, we assume that the function g(x(t), u1(t), . . . , un(t)) in (1) is continuously
differentiable w.r.t. all its arguments;

• The controls ui(t) are assumed to be piecewise continuous functions on the interval
[t0, T] that belong to the set of admissible control values Ui, which are consequently
convex compact subsets of Rk. The optimal controls are further assumed to be open-
loop, i.e., they are defined as functions of t.

We will consider a differential game such that the payoff function changes its structure
at specific time instants. Specifically, we will consider the situation in which the discounting
function changes as one goes from one interval to another. Let σ = {T0, . . . , Tj, . . . , Tr} s.t.
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t0 = T0 < T1 < · · · < Tr−1 < Tr = T be an ordered sequence of time instants at which the
switches occur. Then the payoff of player i is defined as follows:

Ki(x0, σ, u) =
r−1

∑
j=0

Tj+1∫
Tj

hi(x(t), u(t))Lj(t)dt, T0 = t0, Tr = T, (2)

where Lj(t) is the discounting function on the time interval t ∈ [Tj; Tj+1), and hi is the
instantaneous payoff of the ith player. For the further analysis of problems with heteroge-
neous discounting see [3].

We assume the following conditions to be fulfilled for Lj(t), j = 0, . . . r− 1:

• L0(T0) = 1 and Lr−1(T) = 0, i.e., the discounting function is equal to 1 at the initial
time and 0 at the final time;

• Lj(t), j = 0, . . . , r− 1 are non-increasing and continuously differentiable a.e. functions
on [Tj; Tj+1];

• The discounting functions on the neighboring intervals agree at the switching points:

Lj(Tj+1) = Lj+1(Tj+1), j = 0, . . . r− 2. (3)

An example of a discounting function is given in Figure 1. Note that this Figure
contains not only the discounting function for the whole game, but also its restriction to a
subgame as described in Section 2.2.

First, we present an approach to construct a composite discounting function for a
given set of not necessarily coordinated functions. Let a set of functions lj(t) = 1− φj(t),
j = 0, . . . , r− 1 be given, where the functions φj(t) satisfy the following conditions:

• φ0(T) = 0; φr−1(T) = 1;
• φj(t), j = 0, . . . , r − 1 are non-decreasing and continuously differentiable a.e. on

[Tj; Tj+1].

We have chosen to use this specific form of individual discounting functions expressed
in terms of φj to ensure that our presentation will be compatible with the subsequent
exposition. However, this choice is merely a convention and can be changed as long as the
individual discounting functions satisfy the required properties.

t

L(t)

1

L̃(t) = 1
L(τ)L(t),

t ∈ [τ, Tn].

0 T0 T1 τ T2
. . .

Tn−1 Tn

Figure 1. Discounting function for a game and for the subgame starting at t = τ.
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We define a composite discounting function L(t) on the base of the individual func-
tions lj(t) = 1− φj(t), j = 0, . . . , r− 1 while ensuring the property (3):

L(t) =



L0(t) = l0(t) = 1− φ0(t), t ∈ [T0, T1),

L1(t) = l1(t)
L0(T1)
l1(T1)

= (1− φ1(t))
L0(T1)

1−φ1(T1)
, t ∈ [T1, T2),

. . .

Lr−1(t) = lr−1(t)
Lr−2(Tr−1)
lr−1(Tr−1)

= (1− φr−1(t))
Lr−2(Tr−1)

1−φr−1(Tr−1)
, t ∈ [Tr−1, T],

(4)

We have previously assumed that φ′j(t) exists a.e. for any j = 0, . . . , r− 1 and t ∈ [t0, T].
Let us define the new function λσ(t), which is referred to as hazard rate in the reliability
theory (see, e.g., [20]):

λσ(t) =



λ0(t) =
φ′0(t)

1−φ0(t)
, t ∈ [T0, T1),

λ1(t) =
φ′1(t)

1−φ1(t)
, t ∈ [T1, T2),

. . .

λr−1(t) =
φ′r−1(t)

1−φr−1(t)
, t ∈ [Tr−1, T].

(5)

Let us consider the first interval [T0; T1) and the hazard function λ0(t). Then we have

λ0(t) =
φ′0(t)

1− φ0(t)
= −

d
dt (1− φ0(t))

1− φ0(t)
= − d

dt
ln(1− φ0(t)). (6)

By integrating both sides of (6) from T0 to t we obtain:∫ t

T0

λ0(τ)dτ = −ln
1− φ0(t)

1− φ0(T0)
,

whence

e−
∫ t

T0
λ0(τ)dτ

=
1− φ0(t)

1− φ0(T0)
, t ∈ [T0, T1). (7)

Finally, we can express 1− φ0(t) from (7) as

1− φ0(t) = (1− φ0(T0))e
−
∫ t

T0
λ0(τ)dτ

= e−
∫ t

T0
λ0(τ)dτ , t ∈ [T0, T1), (8)

and the first component of the payoff function now can be represented as

T1∫
T0

hi(x(t), u(t))(1− φ0(t))dt =
T1∫

T0

hi(x(t), u(t))e−
∫ t

T0
λ0(τ)dτd t.

Similarly to (6)–(8) we obtain the general formula

1− φj(t) = (1− φj(Tj))e
−
∫ t

Tj
λj(τ)dτ

, t ∈ [Tj, Tj+1)). (9)
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Substituting (9) into (5) we obtain an exponential representation for the composite
discounting function L(t):

L(t) =



L0(t) = e−
∫ t

T0
λ0(τ)dτ , t ∈ [T0, T1),

L1(t) = e−
∫ T1

T0
λ0(τ)dτ · e−

∫ t
T1

λ1(τ)dτ , t ∈ [T1, T2),

. . .

Lr−1(t) =
r−2
∏
j=0

e
−
∫ Tj+1

Tj
λj(τ)dτ · e−

∫ t
Tr−1

λr−1(τ)dτ
, t ∈ [Tr−1, T],

(10)

Note that while λr−1(t) is undefined at t = T, it can be shown that limt→T L(t) = 0.
Thus we formulate the following result.

Proposition 1. The payoff of the player i on the interval [Tj, Tj+1), j = 0, . . . r − 1 can be
represented in the following form:

Tj+1∫
Tj

hi(x(t), u(t))Lj(t)dt = e
−
∫ T1

T0
λ0(τ)dτ · e−

∫ T2
T1

λ1(τ)dτ · . . . e
−
∫ Tj

Tj−1
λj−1(τ)dτ

Tj+1∫
Tj

hi(x(t), u(t))e
−
∫ t

Tj
λj(τ)dτ

d t, (11)

and the payoff of the player i at the whole game (12) can be written as

Ki(x0, σ, u) =
r−1

∑
j=0

(
j−1

∏
k=0

e−
∫ Tk+1

Tk
λk(τ)dτ

)
·

Tj+1∫
Tj

hi(x(t), u(t))e
−
∫ t

Tj
λj(τ)dτ

dt, T0 = t0, Tr = T. (12)

Thus the problem was reduced to the problem with different discounting factors λj(t)
on the different time intervals [Tj, Tj+1) (cf. [6]).

Taking (10) into account we can also rewrite the payoff of player i (12) in a more
concise way:

Ki(x0, σ, u) =
T∫

T0

hi(x(t), u(t))L(t)dt. (13)

2.2. Subgame

Let the game evolve and follow the trajectory x∗(t). At any instantaneous time instant
τ the players enter into a subgame Γd(τ, x∗(τ)), which is considered to be a new game from
the position x∗(τ) with duration T − τ.

To this end, we have to redefine the payoff function of the player i (13) to the payoff
in a subgame. First we take into account that the discounting function L̃(t) for the game
(which is a subgame) on time interval [τ; T] should be normalized such that L̃(τ) = 1,
L̃(T) = 0 (see Figure 1).

Let the subgame start at τ ∈ [T0, T]. We define

L̃(t) =
L(t)
L(τ)

. (14)

Let τ ∈ [Tj; Tj+1], j = 0, . . . , r− 1, then for t ∈ [τ; Tj+1] we have

Lj(t)
Lj(τ)

= e
−
∫ t

Tj
λj(τ)dτ · e

∫ τ
Tj

λj(τ)dτ
,



Mathematics 2021, 9, 1830 6 of 14

and for the reason that t ≥ τ we have

Lj(t)
Lj(τ)

= e−
∫ t

τ λj(τ)dτ .

Respectively, the discounting function in the whole subgame is defined as

L̃(t) =



e−
∫ t

τ λj(τ)dτ , t ∈ [τ, Tj+1),

e−
∫ Tj

τ λj(τ)dτ · e−
∫ t

Tj
λj(τ)dτ

, t ∈ [Tj+1, Tj+2),

. . .

e−
∫ Tj

τ λj(τ)dτ · e−
∫ Tj+1

Tj
λj(τ)dτ · . . . e

−
∫ t

Tr−1
λr−1(τ)dτ

, t ∈ [Tr−1, T].

(15)

We have the following form of the payoff of the player i in the subgame started at τ:

Ki(x(τ), τ, σj, u) =
T∫

τ

hi(x(t), u(t))L̃(t)dt =
1

L(τ)

T∫
τ

hi(x(t), u(t))L(t)dt,

where we used the notation σj = σ \ {T0, . . . , Tj−1}.
Now we obtain:

Ki(x0, T0, σ, u) =
T∫

T0

hi(x(t), u(t))L(t)dt

=

τ∫
T0

hi(x(t), u(t))L(t)dt + L(τ) · 1
L(τ)

T∫
τ

hi(x(t), u(t))L(t)dt

=

τ∫
T0

hi(x(t), u(t))L(t)dt + L(τ)Ki(x(τ), τ, σj, u).

2.3. Cooperative Differential Game

Suppose that the game is played in a cooperative circumstance. In general, cooperation
means that a group of participants agrees to cooperate in a form of coalition before starting
the game.

Assume that all players agreed to maximize their total payoff, which we denote by
V(N, x0, σ). Let u∗(t) = {u∗1(t), . . . , u∗n(t)} be the optimal control, s.t.

(u∗1 , . . . , u∗n) = arg max
u∈U1×···×Un

n

∑
i=1

Ki(x0, σ, u)

and the corresponding trajectory x∗(t) obtained from (1) is said to be the optimal trajectory.
We also have

n

∑
i=1

Ki(x0, σ, u∗) = V(N, x0, σ).

As the standard in cooperative games, all players in the coalition unanimously agree
on a distribution mechanism (cooperative agreement) to divide the total payoff V(N, x0, σ).
It is probable that the solution of the current game loses it optimality at some instant based
on the cooperative solution that was initially chosen, which means that the time-consistency
for cooperative solution is not guaranteed. Since we are investigating a dynamic setting, it
is necessary to define and determine an imputation distribution procedure [21–24], which
is supposed to be in accordance with the payoff form.
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Beforehand, we basically recall the notion of imputation: in an n-players cooperative
game, an imputation is a distribution ξ = (ξ1, . . . , ξn) among players such that the sum of
its coordinates is equivalent to the maximal payoff of the grand coalition and the component
ξi distributed to the i-th player is not less than what the player would acquire through a
sole game. To be specific, suppose the set of players is N and the characteristic function [24]
of the game is v : 2N −→ R, then ξ is an imputation if ξ1 + · · ·+ ξn = v(N) and ξi ≥ v({i})
for all i = 1, . . . , n. The first property called efficiency makes sure that the imputation is a
distribution method for the total gain among all players [25].

We adopt the definition of an imputation distribution procedure (IDP) first introduced
in [21] for differential games with prescribed duration.

Definition 1. Given an imputation ξ = (ξ1, . . . , ξn) ∈ Rn
+, such that for all i = 1, . . . , n we have

ξi =

T∫
T0

βi(t)L(t)dt =
r−1

∑
j=0

Tj+1∫
Tj

βi(t)Lj(t)dt =
r−1

∑
j=0

j−1

∏
k=0

e−
∫ Tk+1

Tk
λj(τ)dτ

Tj+1∫
Tj

βi(t)e
−
∫ t

Tj
λj(τ)dτ

dt, (16)

then the vector function β(t) = (β1(t), . . . , βn(t)) ∈ Rn
+ is called an imputation distribution

procedure (IDP) in the game Γd(t0, x0).

Furthermore, we define the notion of time-consistency of an imputation.

Definition 2. An imputation ξ = (ξ1, . . . , ξn) ∈ Rn in the game Γd(t0, x0) is time-consistent if
there exists an IDP β(t) = (β1(t), . . . , βn(t)) ∈ RN such that for any ϑ ∈ [0, T] the vector

ξϑ
i =

1
L(ϑ)

T∫
ϑ

βi(t)L(t)dt =
T∫

ϑ

βi(t)L̃(t)dt (17)

belongs to the same cooperative agreement in the subgame Γd(ϑ, x∗), i.e., ξϑ is an imputation in
Γd(ϑ, x∗).

We now check the time consistency property in detail. Let ϑ ∈ [Tj; Tj+1). Then

ξϑ
i =

Tj+1∫
ϑ

βi(t)e−
∫ t

ϑ
λk(τ)dτdt +

r−1

∑
k=j+1

Tk+1∫
Tk

βi(t)e−
∫ Tj+1

ϑ λk(τ)dτ
k−1

∏
l=j+1

e−
∫ Tl+1

Tl
λl(τ)dτe−

∫ t
Tk

λk(τ)dτdt.

Then we obtain

ξi =
j−1

∑
k=0

Tk+1∫
Tk

βi(t)Lk(t)dt +
ϑ∫

Tj

βi(t)Lj(t)dt + e−
∫ T1

T0
λ0(τ)dτ · e−

∫ T2
T1

λ1(τ)dτ · . . . e
−
∫ ϑ

Tj
λj(τ)dτ

ξϑ
i .

By taking the derivative with respect to ϑ, ϑ ∈ [Tj; Tj+1) and noting that ξi is a
constant, we obtain

βi(ϑ)Lj(ϑ) +
j−1

∏
k=0

e−
∫ Tk+1

Tk
λk(τ)dτ · e−

∫ ϑ

Tj
λj(τ)dτ

(ξϑ
i )
′
ϑ − λj(ϑ)

j−1

∏
k=0

e−
∫ Tk+1

Tk
λk(τ)dτ · e−

∫ ϑ

Tj
λj(τ)dτ

ξϑ
i = 0.

Recall that Lj(ϑ) = ∏
j−1
k=0 e−

∫ Tk+1
Tk

λk(τ)dτ · e−
∫ ϑ

Tj
λj(τ)dτ

. Canceling the respective terms
we obtain

βi(ϑ) + (ξϑ
i )
′
ϑ − λj(ϑ)ξ

ϑ
i = 0,
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whence the final expression for βi(ϑ) results:

βi(ϑ) = λj(ϑ)ξ
ϑ
i − (ξϑ

i )
′
ϑ, ϑ ∈ [Tj; Tj+1), j = 0, . . . , r− 1.

We now formally state this result.

Theorem 1. Let the imputation ξt
i of the game Γd(t, x∗(t)) be an absolutely continuous function

of t ∈ [0, T]. If the IDP has the form

βi(ϑ) = λσ(ϑ)ξ
ϑ
i − (ξϑ

i )
′
ϑ, (18)

for any ϑ ∈ [0, T] then ξi is a time-consistent imputation in the game Γd(0, x0) with IDP given
by (16).

Note that this formula has the same form [2,24] as the IDP computed for a problem
with a single discounting function with the only difference that instead of λ(t) we use the
composite hazard rate function λσ(t). Furthermore, if we consider a game with a prescribed
duration and without discounting, we have λσ(ϑ) ≡ 0, and (18) takes the standard form
as, e.g., in [23].

3. Computation of IDP: A Numerical Example
3.1. Description of the Model

This Section will build upon the results presented in [17]. We will skip most results
that were previously reported except for those that are necessary for the understanding of
the current material.

Consider a model example describing the differential game of investment into the
stock of knowledge. Assume that there are N individuals investing in a public stock of
knowledge [26]. Let x(t) be the stock of knowledge at time t and ui(t) be the ith agent’s
investment in public knowledge at time t. The dynamics of the stock of knowledge is
described by

ẋ(t) =
N

∑
i=1

ui(t), x ∈ R, ui ∈ U ⊆ R, x(t0) = x0. (19)

If each agent derives linear utility from the consumption of knowledge, the instanta-
neous payoff of the ith player is described by

hi(x(t), u(t)) = qix(t)− riu2
i (t), qi > 0, ri > 0. (20)

Further assume that the time instants are σ = {0, T̄− δ, T̄ + δ, T1, T2, T3}, where T̄ > δ
and T̄ + δ < T1 < T2 < T3. We define the φi(t) functions as follows:

φk(t) =


0, if k = 0, t ∈ [0, T̄ − δ),
(1− p1 − p2)

t−T̄+δ
2δ , if k = 1, t ∈ [T̄ − δ, T̄ + δ),

1− p1 − p2, if k = 2, t ∈ [T̄ + δ, T1),
1− p2, if k = 3, t ∈ [T1, T2),
1, if k = 4, t ∈ [T2, T3].

(21)

Note that the conditions formulated in Section 2 hold, i.e., φ0(0) = 0, φ4(T3) = 1,
and all functions φi(τ) are continuously differentiable.

This choice can be interpreted as a problem with random duration in which the
game ends at the random time instant with a known cumulative distribution function (21).
For instance, this c.d.f. means that the game cannot stop before T̄ − δ but then it may stop
with the probability given by the uniform distribution at the time interval [T̄ − δ; T̄ + δ].
Let us denote this game as Γr(t0, x0), where the superscript r refers to random duration.
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3.2. Optimal Solution

We consider the cooperative game. Assume that all players opt to cooperate and,
hence, group their efforts to maximize the total payoff.

n

∑
i=1

Ki(x0, σ, u)→ max
u

The optimization problem can be tackled using state parametrization under four
continuous intervals (see [17] for details):

I1 : [0; T̄ − δ] ← both sides are fixed {x0, x1}
I2 : [T̄ − δ; T̄ + δ] ← both sides are fixed {x1, x2}
I3 : [T̄ + δ; T1] ← both sides are fixed {x2, x3}
I4 : [T1; T2] ← only one side is fixed {x3}

Note that we do not consider the fifth interval [T2, T3] because on this interval φ4(t) = 0
and, respectively, l4(t) = 0.

For the interval I1, we obtain the following expressions for the optimal trajectory and
control:

x∗(t)I1 =
(x1 − x0)t
(T̄ − δ)

+
1
4

q̂t(T̄ − δ− t)
n

∑
i=1

1
ri
+ x0,

u∗i (t)I1 =
x1 − x0

ri ∑n
i=1

1
ri
(T̄ − δ)

+
q̂(T̄ − δ)

4ri
− q̂t

2ri
. (22)

For the interval I2, we have the expressions for the optimal trajectory and control
shown below:

x∗(t)I2 =
q̂ ∑n

i=1
1
ri

2(1− p1 − p2)2

(
δ2 − χ(t)2

4

)
+

+
2(x2 − x1)(1− p1 − p2)− q̂ ∑n

i=1
1
ri

δ2(1 + p1 + p2)

2 ln(p1 + p2)(1− p1 − p2)
ln

χ(t)
2δ

+ x1,

u∗i (t)I2 =
q̂χ(t)

4ri(1− p1 − p2)
−

2(x2 − x1)(1− p1 − p2)− q̂δ2 ∑n
i=1

1
ri
(1 + p1 + p2)

2ri ∑n
i=1

1
ri

χ(t) ln(p1 + p2)
, (23)

where χ(t) = 2δ− (1− p1 − p2)(t− T̄ + δ).
For the interval I3, we obtain:

x∗(t)I3 =
n

∑
i=1

1
ri

[
(x3 − x2)(t− T̄ − δ)

∑n
i=1

1
ri
(T1 − T̄ − δ)

+
q̂(T1 − T̄ − δ)(t− T̄ − δ)

4
− q̂(t− T̄ − δ)2

4

]
+ x2,

u∗i (t)I3 =
(x3 − x2)

ri ∑n
i=1

1
ri
(T1 − T̄ − δ)

+
q̂(T1 + T̄ + δ− 2t)

4ri
. (24)

For the interval I4, we have:

x∗(t)I4 = −q̂
n

∑
i=1

1
4ri

[(t− T1)(t + T1 − 2T2)] + x3,

u∗i (t)I4 =
q̂(T2 − t)

2ri
. (25)
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The switching states x1, x2, x3 are given below:

x∗1 =
q̂(T̄ − δ)(p1(T1 − T̄) + p2(T2 − T̄) + T̄+δ

2 )∑n
i=1

1
ri

2
+ x0,

x∗2 =
q̂δ2 ∑n

i=1
1
ri

2(1− p1 − p2)2 ((p1 + p2)
2(2 ln(p1 + p2)− 1) + 1)−

−
q̂δ ∑n

i=1
1
ri

ln(p1 + p2)

1− p1 − p2
(p1(T1 − T̄ − δ) + p2(T2 − T̄ − δ)) + x1,

x∗3 =
∑n

i=1
1
ri

q̂(T1 − T̄ − δ)

2(p1 + p2)

[
(p1 + p2)(T1 − T̄ − δ)

2
+ p2(T2 − T1)

]
+ x2.

(26)

Note that all optimal values of the switching states depend (either directly or indirectly)
on the initial state x0.

3.3. Optimal Solutions for Subgames

In this section we consider the optimal solutions in a subgame starting from some
time ϑ ∈ [0, T3]. The formal definition of a subgame and the respective analysis of the
related optimal control problems is presented in Section 2.2.

Subgame starting at ϑ ∈ [T̄ − δ, T̄ + δ): Consider a subgame Γr(ϑ, x∗) such that
ϑ ∈ [T̄− δ, T̄ + δ). The conditional c.d.f., which corresponds to the function L̃(t) defined
in Section 2.2, takes the following form:

Fϑ(t) =



φ(t)− φ(ϑ)

1− φ(ϑ)
, t ∈ [ϑ, T̄ + δ)

1− p1 − p2 − φ(ϑ)

1− φ(ϑ)
, t ∈ [T̄ + δ, T1)

1− p2 − φ(ϑ)

1− φ(ϑ)
, t ∈ [T1, T2),

1, t ≥ T2

.

The expected integral payoff for player i in this subgame is given by the following
formula:

Ki(ϑ, x∗, u1, . . . , un) =
1

1− φ(ϑ)

 T̄+δ∫
ϑ

(1− φ(t))hi(t)dt +
T1∫

T̄+δ

(p1 + p2)hi(t)dt +
T2∫

T1

p2hi(t)dt

.

Subgame starting at ϑ ∈ [T̄ + δ, T1]: Consider a subgame Γr(ϑ, x∗) such that ϑ ∈
[T̄ + δ, T1]. The conditional c.d.f. takes the following form:

Fϑ(t) =


0, t ∈ [ϑ, T1)

p1

p1 + p2
, t ∈ [T1, T2)

1, t ≥ T2

.

The expected integral payoff for player i in this subgame is given by the following
formula:

Ki(ϑ, x∗, u1, . . . , un) =
1

p1 + p2

 T1∫
ϑ

(p1 + p2)hi(t)dt +
T2∫

T1

p2hi(t)dt

.

Subgame starting at ϑ ∈ [T1, T2]: Consider a subgame Γr(ϑ, x∗) such that ϑ ∈ [T1, T2].
The conditional c.d.f. takes the following form:
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Fϑ(t) =

{
0, t ∈ [ϑ, T2)

1, t ≥ T2
.

The expected integral payoff for player i in this subgame is indicated in the following
formula:

Ki(ϑ, x∗, u1, . . . , un) =
1
p2

T2∫
ϑ

p2hi(t)dt.

Finally, we reach the following general expression for the expected integral payoff of
player i in the subgame Γr(ϑ, x∗), ϑ ∈ [t0, T2]:

Ki(ϑ, x∗, u1, . . . , un) =

T̄−δ∫
ϑ

hi(τ)dτ +
T̄+δ∫

T̄−δ

(1− φ(τ))hi(τ)dτ +
T1∫

T̄+δ

(p1 + p2)hi(τ)dτ +
T2∫

T1

p2hi(τ)dτ, if ϑ ∈ [t0; T̄ − δ);

1
1− φ(ϑ)

[
T̄+δ∫
ϑ

(1− φ(t))hi(t)dt +
T1∫

T̄+δ

(p1 + p2)hi(t)dt +
T2∫

T1

p2hi(t)dt

]
, if ϑ ∈ [T̄ − δ, T̄ + δ);

1
p1 + p2

[
T1∫̄
ϑ

(p1 + p2)hi(t)dt +
T2∫

T1

p2hi(t)dt

]
, if ϑ ∈ [T̄ + δ, T1);

1
p2

T2∫̄̄
ϑ

p2hi(t)dt, if ϑ ∈ [T1, T2].

(27)

3.4. Computation of the Imputation Distribution Procedure (IDP)

The definition of the imputation and the imputation distribution procedure were
given in Section 2.3. Here we specify the previously given definitions for the considered
differential game.

Specifically, we have that for a given imputation ξ = (ξ1, . . . , ξn) ∈ Rn
+ in a game

Γr(t0, x0), the imputation distribution procedure satisfies the following equation (compare
to the equation in Definition 1):

ξi =

T̄−δ∫
t0

βi(τ)dτ +

T̄+δ∫
T̄−δ

(1− φ(τ))βi(τ)dτ +

T1∫
T̄+δ

(p1 + p2)βi(τ)dτ +

T2∫
T1

p2βi(τ)dτ. (28)

The next Definition formalizes the property of time-consistency for imputations.

Definition 3. An imputation ξ = (ξ1, . . . , ξN) ∈ RN
+ in a game Γr(t0, x∗) is time-consistent if

there exists an IDP β(t) = (β1(t), . . . , βn(t)) ∈ Rn
+ such that:

1. For all ϑ ∈ [t0, T̄ − δ) the vector ξϑ = (ξϑ
1 , . . . , ξϑ

n), where

ξϑ
i =

T̄−δ∫
ϑ

βi(τ)dτ +

T̄+δ∫
T̄−δ

(1− φ(τ))βi(τ)dτ +

T1∫
T̄+δ

(p1 + p2)βi(τ)dτ +

T2∫
T1

p2βi(τ)dτ.

for all i = 1, . . . , n, belongs to the same optimality principle in the subgame Γr(ϑ, x∗), i.e., ξϑ

is an imputation in Γr(ϑ, x∗);
2. For all ϑ ∈ [T̄ − δ, T̄ + δ) the vector ξϑ = (ξϑ

1 , . . . , ξϑ
n), where

ξϑ
i =

1
1− φ(ϑ)

 T̄+δ∫
ϑ

(1− φ(t))βi(t)dt +
T1∫

T̄+δ

(p1 + p2)βi(t)dt +
T2∫

T1

p2βi(t)dt

.
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for all i = 1, . . . , n, belongs to the same optimality principle in the subgame Γr(ϑ, x∗), i.e., ξϑ

is an imputation in Γr(ϑ, x∗);
3. For all ϑ ∈ [T̄ + δ, T1] the vector ξϑ =

(
ξϑ

1 , . . . , ξϑ
n
)
, where

ξϑ
i =

1
p1 + p2

 T1∫
ϑ

(p1 + p2)βi(t)dt +
T2∫

T1

p2βi(t)dt

,

for all i = 1, . . . , n, belongs to the same optimality principle in the subgame Γr(ϑ, x∗), i.e., ξϑ

is an imputation in Γr(ϑ, x∗);
4. For all ϑ ∈ [T1, T2] the vector ξϑ =

(
ξϑ

1 , . . . , ξϑ
n
)
, where

ξϑ
i =

1
p2

T2∫
ϑ

p2βi(t)dt,

for all i = 1, . . . , n, belongs to the same optimality principle in the subgame Γr(ϑ, x∗), i.e., ξϑ

is an imputation in Γr(ϑ, x∗).

Following the analysis presented in Section 2.3, we formulate the following formulas
for determining the IDP.

Proposition 2. If ϑ ∈ [t0, T̄ − δ), then for all i = 1, . . . , n, the i-th coordinate of the IDP is
given by:

βi(ϑ) = −(ξϑ
i )
′. (29)

If ϑ ∈ [T̄ − δ, T̄ + δ), then for all i = 1, . . . , n, the i-th coordinate of the IDP is given by:

βi(ϑ) =
(φ(ϑ))′

1− φ(ϑ)
ξϑ

i − (ξϑ
i )
′. (30)

If ϑ ∈ [T̄ + δ, T1), then for all i = 1, . . . , n, the i-th coordinate of the IDP is given by:

βi(ϑ) = −(ξϑ
i )
′. (31)

If ϑ ∈ [T1, T2], then for all i = 1, . . . , n, the i-th coordinate of the IDP is given by:

βi(ϑ) = −(ξϑ
i )
′. (32)

We conclude this part with the following proposition.

Proposition 3. The imputation {ξi} given by (28) is time-consistent if the respective IDPs are
defined according to (29)–(32).

3.5. Numerical Illustration of the Computed IDP Numeric Example

To illustrate the obtained results we will consider the same parameter set as in [17]:

n = 3 − number of players

x0 = 20 − initial number of funds

t0 = 0 − initial time

T̄ = 10, δ = 3, T1 = 70, T2 = 75 − time structure parameters

q1 = 1, q2 = 3, q3 = 6, − values of coefficients of payoffs

r1 = 20, r2 = 1, r3 = 4

p1 = 0.1, p2 = 0.2 − probabilities to stop the investment at T1, T2.
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Both the imputation and the imputation distribution procedure are illustrated in
Figure 2. Note that the optimal solution undergoes a discontinuity at time t = T1, where
the cumulative probability function is discontinuous as well. One can observe that the
imputation distribution procedure is positive during the whole interval of time except a
short period of time between t = 11 and t = 13.

Figure 2. The imputation for the player (green) and the imputation distribution procedure (IDP) (blue).

The resulting imputation and the imputation distribution function are computed in an
egalitarian way in which the distribution for each player is taken in the form of the average
of total payoff. Obviously, this approach can be extended to any further type of imputation.

4. Conclusions

The aim of this paper was not only to describe an approach of computing the IDP for
a class of hybrid differential games, but also to present a worked-out example aimed at
demonstrating the described procedure in full detail. The main points of the paper are as
follows: (1) The differential game with hybrid discounting function can well describe a
wide class of differential games, including the games with random horizon and a hybrid
CDF; (2) the considered class of differential games can be described in a uniform way by
using the notion of a hybrid hazard rate; (3) finally, it is possible to completely solve a
problem of reasonable complexity. Our future work will be concentrated on extending the
class of hybrid games.
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