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Abstract: In this paper, we study the dynamics of a fractional-order epidemic model with general
nonlinear incidence rate functionals and time-delay. We investigate the local and global stability
of the steady-states. We deduce the basic reproductive threshold parameter, so that if R0 < 1, the
disease-free steady-state is locally and globally asymptotically stable. However, for R0 > 1, there
exists a positive (endemic) steady-state which is locally and globally asymptotically stable. A Holling
type III response function is considered in the numerical simulations to illustrate the effectiveness of
the theoretical results.
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1. Introduction

The study of the spread of disease is one of the main directions of mathematical
modeling. There has been enormous effort to study the dynamics of infectious disease and
various generalizations of the epidemic models that exist in the literature. More recently,
there has been an increasing interest in epidemic models that involve time-delays and
fractional-order derivatives [1–5]. The need for fractional-order differential equations
(FODE) comes from real-world application problems. These equations are generalizations
of ordinary differential equations and believed to take their origin from the question of
L’Hopital to Leibniz in a report letter at the end of the 17th century [6]. Many famous
mathematicians, such as Liouville, Riemann, Fourier, and Abel contributed to the Theory
of Fractional Calculus. FODE models have advantages over classical ODE and/or delay
differential equation models, since integer-order derivatives are used to gain information
only about local features of a state, whereas fractional-order derivatives describe the whole
space [7]. In other words, in the FODE models, the next certain position for a physical phe-
nomenon does not only depend on the current state, but also on all historical states. Thus,
fractional-order models not only give more realistic biological models involving memory,
but also enlarge the stability region of the states. It is worth mentioning that FODEs
have been successfully applied to various fields, such as finance [8], control theory [9],
ecology [10], and medicine [11–17].

Incidence rate refers to the frequency with which a disease occurs over a specified
period of time. It is numerically defined as the number of new cases of a disease within
a time period, as a proportion of the number of people at risk for the disease. This
rate provides the capacity to anticipate future incidents and plan accordingly. Thus, the
incidence rate function type plays a key role in understanding the dynamics of infectious
diseases. However, in most cases, it has been observed that the incidence rate starts to
slow down after some time. In the last few decades, there have been studies considering
nonlinear incidence rates given by a general function F (S, I) which satisfies certain mild
conditions [18–24]. On the other hand, there are fractional-order epidemic models with a
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bilinear incidence rate and standard incidence rate, as well as specific nonlinear incidence-
rate functions [5,16,25–27]. However, these models need to be modified by means of the
general incidence-rate function. More recently, the authors in [26] considered a fractional-
order Susceptible-Exposed-Infected-Recovered (SEIR) model with a generalized incidence
rate function of the type S f (I), where f satisfies some certain conditions. Furthermore,
Lahrouz et al. studied a fractional-order Susceptible-Infected-Recovered (SIR) model with
a general incidence rate function and carried out Mittag–Leffler stability and bifurcation
analysis for the model with and without delays [24]. It should be noted that the authors
considered the model with a delay on the recovered/removed population (R(t)) and
investigated the global dynamics.

In the modeling of infectious diseases, it is assumed that there exists a latent period
before an infected individual becomes infectious. In other words, it takes some time
for an infected person to be able to transmit a disease to another susceptible host. This
time-interval is called the latency period, and is modeled by delay differential equations.
There are many interesting papers which study epidemic models with a constant delay in
integer-order [28,29] and fractional-order differentiation [7,30].

Historically, the study of a so-called Susceptible-Infected-Recovered (SIR) model goes
back to the work by Kermack and McKendrick [31]. Since then, this model has been widely
studied to predict the dynamics of different infectious diseases. In the present paper, we
introduce the fractional-order SIR model with a general incidence rate and time-delay. In
Section 2, we provide the epidemic model and in Section 3, we study the local stability of
the steady-states. In Section 4, we discuss the global stability of the endemic model. In
Section 5, we display some numerical simulations, and then we conclude in Section 6.

Some preliminaries and definitions about fractional-order derivatives are given in
the Appendix A.

2. Fractional Epidemic Model with a General Incidence Rate

Consider a system of delay differential equations for an SIR model

dS
dt

= Ψ− µS(t)−F (S(t), I(t− τ)),

dI
dt

= F (S(t), I(t− τ))− (ρ + µ + δ)I(t), (1)

dR
dt

= ρI(t)− µR(t),

Ψ is the recruitment rate, µ is the natural death rate, ρ is the recovery rate, δ is the disease-
induced death rate, and τ > 0 is the delay due to the latency period. We assume the
nonlinear incidence rate function F (S, I) satisfies the following conditions:

(A1) F (S, 0) = F (0, I) = 0;
(A2) F (S, I) is always positive, continuous, differentiable, and monotonically increasing:

∂F (S, I)
∂I

> 0,
∂F (S, I)

∂S
> 0 f or all S, I > 0;

(A3) F (S, I) is concave with respect to I:

∂2F (S, I)
∂I2 ≤ 0 f or all S, I > 0.

One can easily check that the following incidence-rate functions satisfy the conditions
(A1)–(A3) :

βSI,
βSI

S + I + R
,

βSI
1 + α1S + α2 I + α3SI

,
βSn I

1 + ηSn , n ≥ 2.

In this paper, we do not consider a specific incidence rate function, but a general one that
satisfies mild conditions. Consequently, the results of this paper can be applied with any
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incidence rate function that satisfies the conditions (A1)–(A3). In Section 5, we implement

the theoretical results with a Holling type III functional response, that is, F (S, I) =
βS2 I

1 + ηS2 .

After integrating from t0 to t, the model (1) reads as

S(t) = S(t0) +
∫ t

t0

K(t− s)[Ψ− µS(s)−F (S(s), I(s− τ))]ds,

I(t) = I(t0) +
∫ t

t0

K(t− s)[F (S(s), I(s− τ))− (ρ + µ + δ)I(s)]ds, (2)

R(t) = R(t0) +
∫ t

t0

K(t− s)[ρI(s)− µR(s)]ds,

where the constant kernel function K satisfies K(t− s) = 1. For some biological systems,
fractional differential equations are more consistent with real phenomena than integer-
order models. This is because fractional derivatives and integrals can be used to describe
the memory and hereditary properties. In order to consider the historical effects in the
above system, we modify the kernel function K as follows:

K(t− s) =
(t− s)α−1

Γ(α)
, (3)

where 0 < α ≤ 1 and Γ is the Gamma function, as specified in Appendix A. Introducing a
power-law memory kernel function that allows near-past events to have a greater effect on
the model than distant past events, by Definition A1, the modified model now reads as:

S(t) = S(t0) + I[t0,t][Ψ− µS(t)−F (S(t), I(t− τ))],

I(t) = I(t0) + I[t0,t][F (S(t), I(t− τ))− (ρ + µ + δ)I(t)], (4)

R(t) = R(t0) + I[t0,t][ρI(t)− µR(t)].

By applying Lemma A1, see Appendix A, the last model is equivalent to the following
SIR model:

DαS(t) = Ψ− µS(t)−F (S(t), I(t− τ)),

Dα I(t) = F (S(t), I(t− τ))− (ρ + µ + δ)I(t), (5)

DαR(t) = ρI(t)− µR(t),

with initial conditions S(0) > 0, R(0) > 0, I(s) = χ(s) > 0, s ∈ [−τ, 0], and χ(s) is a
smooth function.

The fractional derivative α ∈ (0, 1] is defined by the Caputo sense, so introducing a
convolution integral with a power-law memory kernel (3) benefits in describing memory
effects in dynamical systems. The decaying rate of the memory kernel depends on α.
A lower value of α corresponding to more slowly-decaying time-correlation functions leads
a long memory. Therefore, as α→ 1, the influence of memory decreases.

Under the condition (A1), it is easy to check that the model (5) has a disease-free
steady-state solution E0 = (S0, I0) = (Ψ/µ, 0). In the analysis of epidemic models, it is of
utmost importance to find so-called basic reproductive numbers, R0, which serves as a
threshold value. We computeR0 by using the next-generation matrix technique [32]:

R0 =
1

(ρ + µ + δ)

∂F (S0, 0)
∂I

. (6)

The existence of a unique endemic steady-state solution E∗ = (S∗, I∗) usually depends
onR0 and satisfies the following algebraic equations:

Φ = F (S∗, I∗) + µS∗ and F (S∗, I∗) = (ρ + µ + δ)I∗. (7)
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The following lemma [23] ensures the uniqueness of the positive steady-state solution
E∗(S∗, I∗) ifR0 > 1.

Lemma 1. [23] IfR0 > 1, and in addition to the conditions (A2)–(A3)

lim
I→0

F (S0, I)
F (S, I)

> 1

holds for all S ∈ (0, S0), then (5) has a unique positive endemic steady-state solution E∗(S∗, I∗). If
R0 ≤ 1, and then the disease-free steady-state solution E0(S0, I0) is the only equilibrium state of
the system (5).

3. Local Stability of the Epidemic Model

The corresponding linearized system of model (5) at any steady-state (S∗, I∗, R∗) is
described as

DαS(t) =
(
− µ− ∂F

∂S
(S∗, I∗)

)
S(t)−

(∂F
∂I

(S∗, I∗)
)

I(t− τ),

Dα I(t) =
(∂F

∂S
(S∗, I∗)

)
S(t)− (ρ + µ + δ)I(t) +

(∂F
∂I

(S∗, I∗)
)

I(t− τ), (8)

DαR(t) = ρI(t)− µR(t).

Taking the Laplace transform on both sides of (8) yields

sαS(s)− sα−1S(0) =
(
− µ− ∂F

∂S
(S∗, I∗)

)
S(s)− ∂F

∂I
(S∗, I∗)e−sτ [I(s) +

∫ 0

−τ
e−stχ(t)dt],

sαI(s)− sα−1 I(0) =
∂F
∂S

(S∗, I∗)S(s)− (ρ + µ + δ− ∂F
∂I

(S∗, I∗)e−sτ)I(s)

+
∂F
∂I

(S∗, I∗)e−sτ
∫ 0

−τ
e−stχ(t)dt, (9)

sαR(s)− sα−1R(0) = ρI(s)− µR(s).

Here, S(s), I(s), R(s) are the Laplace transform of S(t), I(t), and R(t) with S(s) =
L(S(t)), I(s) = L(I(t)) andR(s) = L(R(t)). The above Equation (9) can be written as

∆(s) ?

(
S(s)
I(s)
R(s)

)
=

(
b1(s)
b2(s)
b3(s)

)

where

b1(s) = sα−1S(0)− ∂F
∂S

(S∗, I∗)e−sτ
∫ 0

−τ
e−stχ(t)dt,

b2(s) = sα−1 I(0) +
∂F
∂I

(S∗, I∗)e−sτ
∫ 0

−τ
e−stχ(t)dt,

b3(s) = sα−1R(0).

and

∆(s) =


sα + µ +

∂F
∂S

(S∗, I∗)
∂F
∂I

(S∗, I∗)e−sτ 0

−∂F
∂S

(S∗, I∗) sα + ρ + µ + δ− ∂F
∂I

(S∗, I∗)e−sτ 0

0 −ρ sα + µ

.

∆(s) is the characteristic matrix for the system (8) at (S∗, I∗, R∗). The stability conditions
are also related to the fractional-order α.
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Theorem 1. The disease-free equilibrium point E0 = (S0, I0, R0) = (Ψ/µ, 0, 0) is locally asymp-
totically stable if

∂F
∂I

(S0, 0) < ρ + µ + δ,

i.e., ifR0 < 1.

Proof. The characteristic equation at E0 is described by

sα + µ = 0, sα + ρ + µ + δ− ∂F
∂I

(S0, 0)e−sτ = 0. (10)

• Case (i), when τ = 0.

Therefore, the disease-free equilibrium point is locally asymptotically stable if
∂F
∂I (S0, 0) < ρ + µ + δ orR0 < 1.

• Case (ii), when τ 6= 0.

In this case, Equation (10) becomes

sα + ρ + µ + δ− ∂F
∂I

(S0, 0)e−sτ = 0. (11)

Put s = iw, w > 0

(iw)α + ρ + µ + δ− ∂F
∂I

(S0, 0)e−iwτ = 0,

wα(cos
πα

2
+ i sin

πα

2
) + ρ + µ + δ− ∂F

∂I
(S0, 0) cos wτ +

∂F
∂I

(S0, 0) sin wτ = 0.

Separate the real and imaginary parts of the above equation

wα cos
πα

2
+ ρ + µ + δ =

∂F
∂I

(S0, 0) cos wτ,

wα sin
πα

2
= −∂F

∂I
(S0, 0) sin wτ.

If we square and add both sides, one can have

w2α + 2(ρ + µ + δ) cos
πα

2
wα + (ρ + µ + δ)2 −

(∂F
∂I

(S0, 0)
)2

= 0. (12)

Obviously, wα > 0, cos πα
2 > 0 and the assumption ∂F

∂I (S0, 0) < ρ + µ + δ imply that
the Equation (12) has no real solutions. Furthermore, we can infer that Equation (11) has no
purely imaginary roots (eigenvalues) for any τ > 0. From Lemma 1 in [10] and Corollary 3
in [33], the equilibrium point E0 is asymptotically stable for delay τ ≥ 0.

For τ = 0, it has been shown in [34] that the steady-state is locally asymptotically

stable if all the eigenvalues satisfy the condition | arg λi| >
απ

2
. The fractional order

enlarges the stability region of the solution of the model.
Next, we discuss the local stability at an endemic equilibrium point E1, at which the

characteristic equation is∣∣∣∣∣∣
sα + a1 a2e−sτ 0

a3 sα + a4 − a2e−sτ 0
0 a5 sα + a6

∣∣∣∣∣∣ = 0.
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Therefore,

s3α + s2α(a1 + a4 + a6) + sα(a1a6 + a4(a1 + a6)) + a1a4a6

− e−sτ
(

a2s2α + (a2(a1 + a6) + a2a3)sα + a2a6(a1 + a3)
)
= 0, (13)

where, a1 = µ +
∂F
∂S

(S1, I1), a2 =
∂F
∂I

(S1, I1), a3 = −∂F
∂S

(S1, I1), a4 = ρ + µ + δ,

a5 = −ρ, a6 = µ, A1 = a1 + a4 + a6, A2 = a1a6 + a4(a1 + a6), A3 = a1a4a6, A4 = −a2,

A5 = −(a2(a1 + a6) + a2a3), A6 = −(a2a6(a1 + a3)).

The discriminant of (13) is given by

D(sα) = −

∣∣∣∣∣∣∣∣∣
1 A1 + A4 A2 + A5 A3 + A6 0
0 1 A1 + A4 A2 + A5 A3 + A6
3 2(A1 + A4) A2 + A5 0 0
0 3 2(A1 + A4) A2 + A5 0
0 0 3 2(A1 + A4) A2 + A5

∣∣∣∣∣∣∣∣∣
=18(A1 + A4)(A2 + A5)(A3 + A6) + [(A1 + A4)(A2 + A5)]

2 − 4(A1 + A4)
3(A3 + A6)

− 4(A2 + A5)
3 − 27(A3 + A6)

2.

Theorem 2. Let A2
6 − A2

3 ≥ 0, A2
2 − 2(A1 + A4)A6 − A2

5 > 0, then the interior equilibrium
point E1 is locally asymptotically stable for τ ≥ 0, if the following conditions are satisfied

(i) D(sα) > 0, A1 + A4 > 0, (A3 + A6) > 0, (A1 + A4)(A2 + A5) − (A3 + A6) > 0
(or)

(ii) D(sα) < 0, A1 + A4 > 0, (A2 + A5) > 0, (A1 + A4)(A2 + A5) = (A3 + A6), α ∈
(2/3, 1).

Proof. Case (i) τ = 0, Equation (13) becomes

s3α + s2α(A1 + A4) + sα(A2 + A5) + (A3 + A6) = 0.

Based on [35], the point E1 is asymptotically stable if the following hold:

(i) D(sα) > 0, A1 + A4 > 0, (A3 + A6) > 0, (A1 + A4)(A2 + A5) − (A3 + A6) > 0
(or)

(ii) D(sα) < 0, A1 + A4 > 0, (A2 + A5) > 0, (A1 + A4)(A2 + A5) = (A3 + A6), α ∈
(2/3, 1).

Case (ii) τ 6= 0, let us assume that the equation (13) has pure imaginary roots s = ±iw,
for τ > 0, then we will finally obtain that if A2

6− A2
3 ≥ 0, and A2

2− 2(A1 + A4)A6− A2
5 > 0

are satisfied. Similarly to the proof of Theorem 1, it is hence omitted. Therefore, all the
roots of Equation (13) are the negative real part for all τ > 0.

3.1. Holling Type III Functional Response

In this subsection, we consider the system (5) in the case with the Holling type III

functional response. That is, we take F (S, I) =
βS2 I

1 + ηS2 , as an incidence rate function. We

derive the linearized system, and applying the Laplace transform, one can finally get the
following characteristic matrix at (S∗, I∗, R∗),
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∆(s) =


sα + µ +

βI∗

(1 + η(S∗)2)2
β(S∗)2

1 + η(S∗)2 e−sτ 0

− βI∗

(1 + η(S∗)2)2 sα + ρ + µ + δ− β(S∗)2

1 + η(S∗)2 e−sτ 0

0 −ρ sα + µ

.

Theorem 3. The disease-free equilibrium point E0 = (S0, I0, R0) = (Ψ/µ, 0, 0) is locally asymp-
totically stable if

β(S0)
2

1 + ηS2
0
< ρ + µ + δ.

Proof. The characteristic equation at E0 is described by

sα + µ = 0, sα + ρ + µ + δ− β(S0)
2

1 + η(S0)2 e−sτ = 0. (14)

• Case (i) when τ = 0.

Therefore, the disease-free equilibrium point is locally asymptotically stable if β(S0)
2

1+ηS2
0
<

ρ + µ + δ.

• Case(ii) When τ 6= 0.

In this case, Equation (14) becomes

sα + ρ + µ + δ− β(S0)
2

1 + η(S0)2 e−sτ = 0. (15)

Put s = iw, w > 0

(iw)α + ρ + µ + δ− β(S0)
2

1 + η(S0)2 e−iwτ = 0,

wα(cos
πα

2
+ i sin

πα

2
) + ρ + µ + δ− β(S0)

2

1 + η(S0)2 cos wτ +
β(S0)

2

1 + η(S0)2 sin wτ = 0.

Separate the real and imaginary parts of the above equation

wα cos
πα

2
+ ρ + µ + δ =

β(S0)
2

1 + η(S0)2 cos wτ,

wα sin
πα

2
= − β(S0)

2

1 + η(S0)2 sin wτ.

If we square and add both sides, one can have

w2α + 2(ρ + µ + δ) cos
πα

2
wα + (ρ + µ + δ)2 −

( β(S0)
2

1 + η(S0)2

)2
= 0. (16)

Obviously, wα > 0, cos πα
2 > 0 and the assumption β(S0)

2

1+ηS2
0
< ρ + µ + δ, imply that the

Equation (16) has no real solutions. Furthermore, we can infer that Equation (15) has no
purely imaginary roots for any τ > 0. From Lemma 1 in [10] and Corollary 3 in [33], the
equilibrium point E0 is asymptotically stable for delay τ ≥ 0.

The local stability at an endemic equilibrium point E1 for this case, follows the same
proof of Theorem 2.
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4. Global Stability Analysis

Now, we study the global stability of the infection-free and endemic steady-states
using a certain Lyapunov functional. Summing all equations in (5) yields

DαS(t)+Dα I(t)+DαR(t) = Ψ−µS(t)− (µ+ δ)I(t)−µR(t) ≤ Ψ−µ(S(t) + I(t) + R(t)).

One can easily show that the last inequality implies that

S(t) + I(t) + R(t) ≤
(

S(0) + I(0) + R(0)− Ψ
µ

)
Eα(µtα) +

Ψ
µ

,

where Eα is the standard Mittag–Leffler function, see Appendix A for the definition. The

last inequality implies that if S(0) + I(0) + R(0) ≤ Ψ
µ

, then S(t) + I(t) + R(t) ≤ Ψ
µ

. In

other words, the region

Ω = {(S, I, R)| S > 0, I ≥ 0, R ≥ 0; S + I + R ≤ Ψ/µ}

is a positively invariant set of the system (5). Thus, we consider the model (5) in a biologi-
cally feasible region Ω.

Theorem 4. Assume that (A1)− (A3) hold and R0 ≤ 1. Then, the disease-free steady-state
solution E0(S0, I0) is globally asymptotically stable.

Proof. Let us consider the following Lyapunov functional:

V1(S(t), I(t)) = S(t)− S0 − Iα
[0,t]

[
lim
I→0

F (S0, I(t))
F (S(t), I(t)) 0DαS(t)

]
+ (µ + ρ + δ)Iα

[t−τ,t][I(t)] + I(t).

Note that V1(S0, 0) = 0 and (µ + ρ + δ)Iα
[t−τ,t][I(t)] + I(t) ≥ 0 since I ≥ 0. Further,

since lim
I→0

F (S0, I(t))
F (S(t), I(t))

> 1 it follows that S(t)− S0 − Iα
[0,t]

[
lim
I→0

F (S0, I(t))
F (S(t), I(t)) 0DαS(t)

]
≥

S(t) − S0 − Iα
[0,t](0DαS(t)) ≥ 0. Thus, V1(S(t), I(t)) is positive-definite. Differentiating

V1(S(t), I(t)) in fractional-order along the trajectories of (5) yields:

0DαV1(S(t), I(t)) = Ψ− µS(t)−F (S(t), I(t− τ))

− lim
I(t)→0

F (S0, I(t))
F (S(t), I(t))

(
Ψ− µS(t)−F (S(t), I(t− τ))

)
+ (µ + ρ + δ)I(t)− (µ + ρ + δ)I(t− τ) +F (S(t), I(t− τ))− (µ + ρ + δ)I(t)

= Ψ
(

1− µ

Ψ
S(t)

)(
1− lim

I→0

F (S0, I(t))
F (S(t), I(t))

)
+F (S(t), I(t− τ)) lim

I→0

F (S0, I(t))
F (S(t), I(t))

− (µ + ρ + δ)I(t− τ)

= Ψ
(

1− S(t)
S0

)(
1− lim

I→0

F (S0, I(t))
F (S(t), I(t))

)
+ (µ + ρ + δ)I(t− τ)

(
F (S(t), I(t− τ))

(µ + ρ + δ)I(t− τ)
lim
I→0

F (S0, I(t))
F (S(t), I(t))

− 1
)

.

By theorem hypotheses, and from the monotonicity of F (S, I) with respect to S,
we have (

1− S(t)
S0

)(
1− lim

I→0

F (S0, I(t))
F (S(t), I(t))

)
≤ 0.
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The concavity of F (S, I) with respect to I leads to F (S, I) ≤ I
∂F (S, 0)

∂I
, and hence

we have

F (S(t), I(t− τ)) ≤ I(t− τ)
∂F (S(t), 0)

∂I
.

Therefore,

F (S(t), I(t− τ))

(µ + ρ + δ)I(t− τ)
lim
I→0

F (S0, I(t))
F (S(t), I(t))

=
F (S(t), I(t− τ))

(µ + ρ + δ)I(t− τ)

∂F (S0,0)
∂I

∂F (S(t),0)
∂I

≤ I(t− τ)

(µ + ρ + δ)I(t− τ)

∂F (S0, 0)
∂I

= R0.

Thus, 0DαV1(S(t), I(t)) ≤ 0 for all S, I > 0. On the other hand, one can show that the
largest invariant set of 0DαV1(S(t), I(t)) = 0 is the singleton E0(S0, I0), that is, the disease-
free steady-state solution. Thus, by the Lyapunov–Lasalle theorem for FODE (Lemma 4.6
in [11]), we conclude that E0(S0, I0) is globally asymptotically stable. This finalizes the
proof.

In what follows, the auxiliary lemma on the estimate of a Volterra-type Lyapunov
function will be useful to prove the global stability of the endemic steady-state solution.

Lemma 2. [4] Suppose that x(t) ∈ C(R,R+) is a differentiable function in the Caputo sense.
Then,

t0Dα

(
x(t)− x∗ − x∗ ln

x(t)
x∗

)
≤
(

1− x(t)
x∗

)
t0Dαx(t),

for t ≥ t0, x∗ ∈ R+, and α ∈ (0, 1).

To carry out further stability analysis, we need the following condition:

(A4) I
I∗
≤ F (S, I)
F (S, I∗)

≤ 1 for 0 < I ≤ I∗,

1 ≤ F (S, I)
F (S, I∗)

≤ I
I∗

for I ≥ I∗.

Theorem 5. Assume that (A1)−(A4) hold andR0 > 1. Then, the endemic positive equilibrium
state E∗(S∗, I∗) is globally asymptotically stable.

Consider the following Lyapunov function: V2(S, I) = S(t)−S∗−Iα
[0,t]

(
F (S∗ ,I∗)
F (S(t),I∗) 0DαS(t)

)
+ I(t) − I∗ − I∗ ln I(t)

I∗ + F (S∗ ,I∗)
I∗ Iα

[t−τ,t]

(
I(t)− I∗ − I∗ ln I(t)

I∗

)
. Note that V2(S∗, I∗) = 0,

I(t) − I∗ − I∗ ln I(t)
I∗ ≥ 0 and F (S∗ ,I∗)

I∗ Iα
[t−τ,t]

(
I(t)− I∗ − I∗ ln I(t)

I∗

)
≥ 0 since x − x∗ −

x∗ ln x
x∗ is a Volterra-type Lyapunov function for any x, x∗ ≥ 0. Due to monotonicity of the

function F (S, I), we have F (S(t), I∗) ≥ F (S∗, I∗) if S(t) ≥ S∗ and F (S(t), I∗) ≤ F (S∗, I∗)
if S(t) ≤ S∗. In either case, one can show that S(t) − S∗ − Iα

[0,t]

(
F (S∗ ,I∗)
F (S(t),I∗) 0DαS(t)

)
≥

S(t)− S∗ − Iα
[0,t](0DαS(t)) = 0. Thus, V2(S, I) is a Lyapunov functional. Differentiating

V2(S(t), I(t)) in fractional-order along the trajectories of (5) and implementing Lemma 2
together with (7) yields
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0DαV2(S, I) ≤ Ψ− µS(t)−F (S(t), I(t− τ))− F (S
∗, I∗)

F (S(t), I∗) 0DαS(t)

+F (S(t), I(t− τ))− (µ + ρ + δ)I(t)

− I∗

I(t)

(
F (S(t), I(t− τ))− (µ + ρ + δ)I(t)

)
+
F (S∗, I∗)

I∗

(
I(t)− I(t− τ) + I∗ ln

I(t− τ)

I(t)

)
= µS∗ +F (S∗, I∗)− µS(t)− F (S

∗, I∗)
F (S(t), I∗) 0DαS(t)− (µ + ρ + δ)I(t)

− I∗

I(t)

(
F (S(t), I(t− τ))− (µ + ρ + δ)I(t)

)
+
F (S∗, I∗)

I∗

(
I(t)− I(t− τ) + I∗ ln

I(t− τ)F (S(t), I∗)
I∗F (S(t), I(t− τ))

+ I∗ ln
I∗F (S(t), I(t− τ))

I(t)F (S∗, I∗)
+ I∗ ln

F (S∗, I∗)
F (S(t), I∗)

)
= µS∗

(
1− S(t)

S∗
)
+F (S∗, I∗)

− F (S
∗, I∗)

F (S(t), I∗)

(
µS∗ +F (S∗, I∗)− µS(t)−F (S(t), I(t− τ))

)
− (µ + ρ + δ)I(t)− I∗

I(t)
F (S(t), I(t− τ))

+ (µ + ρ + δ)I∗ + (µ + ρ + δ)I(t)

+
F (S∗, I∗)

I∗

(
− I(t− τ) + I∗ ln

I(t− τ)F (S(t), I∗)
I∗F (S(t), I(t− τ))

+ I∗ ln
I∗F (S(t), I(t− τ))

I(t)F (S∗, I∗)
+ I∗ ln

F (S∗, I∗)
F (S(t), I∗)

)
= µS∗

(
1− S(t)

S∗
)(

1− F (S
∗, I∗)

F (S(t), I∗)

)
+F (S∗, I∗)

(
1− F (S

∗, I∗)
F (S(t), I∗)

+ ln
F (S∗, I∗)
F (S(t), I∗)

)
+F (S∗, I∗)

(
1− I∗F (S(t), I(t− τ))

I(t)F (S∗, I∗)
+ ln

I∗F (S(t), I(t− τ))

I(t)F (S∗, I∗)

)
+F (S∗, I∗)

(
1− I(t− τ)F (S(t), I∗)

I∗F (S(t), I(t− τ))
+ ln

I(t− τ)F (S(t), I∗)
I∗F (S(t), I(t− τ))

)
+F (S∗, I∗)

(
−1− I(t− τ)

I∗
+
F (S(t), I(t− τ))

F (S(t), I∗)
+

I(t− τ)F (S(t), I∗)
I∗F (S(t), I(t− τ))

)
.
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After factoring the last term of the above expression, we obtain

0DαV2(S, I) ≤ µS∗
(

1− S(t)
S∗
)(

1− F (S
∗, I∗)

F (S(t), I∗)

)
+F (S∗, I∗)

(
1− F (S

∗, I∗)
F (S(t), I∗)

+ ln
F (S∗, I∗)
F (S(t), I∗)

)
+F (S∗, I∗)

(
1− I∗F (S(t), I(t− τ))

I(t)F (S∗, I∗)
+ ln

I∗F (S(t), I(t− τ))

I(t)F (S∗, I∗)

)
+F (S∗, I∗)

(
1− I(t− τ)F (S(t), I∗)

I∗F (S(t), I(t− τ))
+ ln

I(t− τ)F (S(t), I∗)
I∗F (S(t), I(t− τ))

)
+F (S∗, I∗)

(
I(t− τ)

I∗
− F (S(t), I(t− τ))

F (S(t), I∗)

)(
F (S(t), I∗)

F (S(t), I(t− τ))
− 1
)

.

(17)

Due to the monotonicity of F (S, I) with respect to S, we have(
1− S(t)

S∗

)(
1− F (S

∗, I∗)
F (S(t), I∗)

)
≤ 0.

Moreover, since x − 1− ln x is a Volterra-type Lyapunov function with x∗ = 1, we
have 1− x + ln x ≤ 0. Thus, the second, third, and fourth lines in (17) are non-positive.
Finally, the condition (A4) implies that(

I(t− τ)

I∗
− F (S(t), I(t− τ))

F (S(t), I∗)

)(
F (S(t), I∗)

F (S(t), I(t− τ))
− 1
)
≤ 0.

Hence, 0DαV2(S, I) ≤ 0 holds for S, I > 0, since µS∗ and F (S∗, I∗) are positive
numbers. Thus, by the similar arguments as in Theorem 4, we conclude that E∗(S∗, I∗) is
globally asymptotically stable.

5. Numerical Simulations

To illustrate the theoretical results obtained in the previous sections, we provide a
numerical scheme for finding the solution of the fractional-order ODEs. To this end, we
follow the modified Adams—Bashforth—Moulton method which has proven to be an
effective tool to numerically solve fractional-order delay differential equations [5,7,9]. Let us
highlight the main features of the algorithm of the modified Adams—Bashforth—Moulton
method. In this regard, consider the following fractional-order delay differential equation.

Dαx(t) = f (t, x(t), x(t− τ)), t ∈ J = [0, T],

x(t) = φ(t), t ∈ [−τ, 0], α ∈ (0, 1], (18)

where x(t) = [x1(t), x2(t), · · · , xn(t)]T and f : J×Rn×Rn → Rn is a Lipschitz-continuous
function. This initial value problem is equivalent to the following Volterra-integral equation

x(t) = φ(0) +
1

Γ(α)

∫ t

0
(t− s)α−1 f (s, x(s), x(s− τ))ds. (19)

For given mesh points, T = {t−m, t−m+1,, · · · , t−1, t0, t1, · · · tn} with step-size h =
τ/m such that t−m = −τ, t0 = 0 and tn = T let xF (ti) = φ(ti) and xF (ti − τ) =
φ(tih − mh) for i = −m,−m + 1, · · · , 0. Assume further that xF (ti) ≈ x(ti) are calcu-
lated for i = −m,−m + 1, · · · , n. Then the numerical scheme for the integral Equation (19)
is given by

xF (tn+1) = φ(0) +
1

Γ(α)

∫ tn+1

0
(tn+1 − s)α−1 f (s, x(s), x(s− τ))ds. (20)
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Next, we consider the nodes ti, i = 0, · · · , n = 1, with the weight function (tn+1 −
s)α−1 and apply the product trapezoidal quadrature formula to approximate the integral
of (20) on the right-hand side.

∫ tn+1

0
(tn+1 − s)α−1 f (s, x(s), x(s− τ))ds ≈ hα

α(α + 1)

n+1

∑
i=1

ri,n+1 f (ti, x(ti), x(ti − τ)), (21)

where

ri,n+1 =


nα+1 − (n− α)(n + 1)α, for i = 0
(n− i + 2)α+1 − (n− α)(n + 1)α − 2(n− i + 1)α+1, for 1 ≤ i ≤ n
1, for i = n + 1

.

Hence, we can formulate the numerical scheme for the IVP (18) as follows.

xF (tn+1) = φ(0) +
hα

Γ(α + 2)
f (tn+1, x(tn+1), x(tn+1 − τ))

+
hα

Γ(α + 2)

n

∑
i=1

ri,n+1 f (ti, x(ti), x(ti − τ))

= φ(0) +
hα

Γ(α + 2)
f (tn+1, x(tn+1), x(tn+1−k))

+
hα

Γ(α + 2)

n

∑
i=1

ri,n+1 f (ti, x(ti), x(ti−k)).

The term xF (tn+1) is approximated by the so-called predictor, xp
h(tn+1), evaluated by

the product rectangle rule by means of the Equation (20).

xp
h(tn+1) = φ(0) +

1
Γ(α)

n

∑
i=1

qi,n+1 f (ti, x(ti), x(ti−k)), (22)

where
qi,n+1 =

hα

α
((n + 1− i)α − (n− i)α).

For the simulation part, we use the algorithm (22) and Holling type III function,

F (S, I) =
βS2 I

1 + ηS2 , as an incidence rate response for the fractional-order SIR model (5).

One can easily check that the conditions (A1)–(A3) are satisfied. Thus, by using the
next-generation matrix technique, one can compute the basic reproduction number as

R0 =
βΨ2

µ2 + ηΨ2 . Thus, let us write the numerical scheme (22) for the model (5) with

Holling type III function:

S(tn+1) = S(0) +
1

Γ(α)

n

∑
i=1

qi,n+1

(
Ψ− µS(ti)−

βS2(ti)I(ti−k)

1 + ηS2(ti)

)
,

I(tn+1) = I(0) +
1

Γ(α)

n

∑
i=1

qi,n+1

(
βS2(ti)I(ti−k)

1 + ηS2(ti)
− (ρ + µ + δ)I(ti)

)
, (23)

R(tn+1) = R(0) +
1

Γ(α)

n

∑
i=1

qi,n+1(ρI(ti)− µR(ti)),

where qi,n+1 is defined as before.
In what follows, we use different values of α and the parameters to show the ef-

fectiveness of the theoretical results obtained in Theorems 4 and 5. For the choice of
the parameters Ψ = 0.75, µ = 0.5, η = 0.1, β = 0.3, ρ = 0.15, δ = 0.05, and τ = 0.1
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we have R0 = 0.551 < 1. The numerical simulations in Figure 1 reveal that the sus-
ceptible population asymptotically converges to S0 = 1.5 = Ψ/µ, whereas the infected
population asymptotically converges to I0 = 0 for α = 0.85, 0.9, 1. Thus, the disease-free
steady-state solution is asymptotically stable. Hence, the numerical simulations support
the theoretical result obtained in Theorem 4. On the other hand, for the choice of the
parameters Ψ = 0.75, µ = 0.3, η = 0.1, β = 0.3, ρ = 0.15, δ = 0.05, and τ = 0.1,
one can show that R0 = 1.1538 > 1 and there exists a positive steady-state solution

E∗ = (S∗, I∗) =

(√
µ + ρ + δ

β− η(µ + ρ + δ)
,

Ψ− µS∗

µ + ρ + δ

)
= (1.4142, 0.6515). The numerical sim-

ulations in Figures 2 and 3 reveal that the susceptible population asymptotically converges
to S∗ = 1.4142, whereas the infected population asymptotically converges to I∗ = 0.6515
for α = 0.85, 0.9, 1. Thus, the endemic steady-state solution is asymptotically stable. Hence,
the numerical simulations support the theoretical result obtained in Theorem 5.
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(a) The initial condition is set to be S(0) = 0.8
for α = 0.85, 0.9, 1. The susceptible population
converges asymptotically to S0 = 1.5 = Ψ/µ.
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(b) The initial condition is set to be I(0) = 0.6
for α = 0.85, 0.9, 1. The infected population
converges asymptotically to I0 = 0.

Figure 1. Numerical simulations of the model (5) with different α values and the Holling type III
function response. For the set of parameters Ψ = 0.75, µ = 0.5, η = 0.1, β = 0.3, ρ = 0.15, δ = 0.05 and
τ = 0.1 we haveR0 = 1.1538 > 1. Thus, the endemic steady-state solution is asymptotically stable.
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(a) The initial condition is set to be S(0) = 1.6
for α = 0.85, 0.9, 1. The susceptible population
converges asymptotically to S∗ = 1.4142.
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(b) The initial condition is set to be I(0) = 0.6
for α = 0.85, 0.9, 1. The infected population
converges asymptotically to I∗ = 0.6515.

Figure 2. Numerical simulations of the model (5) with different α values and the Holling type III
function response. For the set of parameters Ψ = 0.75, µ = 0.3, η = 0.1, β = 0.3, ρ = 0.15, δ = 0.05 and
τ = 0.1 we haveR0 = 0.551 < 1. Thus, the disease-free steady-state solution is asymptotically stable.
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Figure 3. Phase portrait of the model (5) with different α = 0.85, 0.9, 1 values, the Holling type III
function response and the set of parameters Ψ = 0.75, µ = 0.3, η = 0.1, β = 0.3, ρ = 0.15, δ = 0.05
and τ = 0.1. The solutions with the initial condition (I.C.) (S(0), I(0)) = (1.6, 0.6) converges
asymptotically to the endemic steady-state solution E∗ = (S∗, I∗) = (1.4142, 0.6515).

6. Concluding Remarks

In the present paper, we studied local and global stability analyses of the delayed
fractional-order SIR epidemic model with a general incidence rate function that satis-
fies some mild conditions. The fractional derivative is considered in the Caputo sense,
which is suitable for initial-value problems. The disease-free steady-state solution of the
underlying model is locally and globally asymptotically stable when R0 ≤ 1, whereas
when R0 > 1, there exists a positive endemic steady-state solution which is locally and
globally asymptotically stable. To illustrate our theoretical results, we considered the
Hooling type III functional response as the incidence-rate function and used the modified
Adams—Bashforth—Moulton method to simulate an example. Fractional-order differential
equations are at least as stable as their integer-order counterparts. Further, the presence of
a fractional differential order and time-delay in a differential equation can result in a signif-
icant increase in the complexity of the observed behavior, and the solution continuously
depends on the previous states.
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Appendix A

We briefly give the definitions that play an important role in the theory of fractional-
order ordinary differential equations (FODE). The Gamma function is given by Γ(x) =∫ ∞

0
e−ttx−1dt and the standard Mittag–Leffler function is given by Eα(x) =

∞

∑
k=0

xk

Γ(αk + 1)
,

where α > 0.

Definition A1. [6] The Riemann–Liouville integral operator of order α is given by

I[a,t] f (t) =
1

Γ(α)

∫ t

a
(t− s)α−1 f (s)ds.

Although the fractional-order integral is known by the previous definition, there are
many notions of fractional derivatives. Due to its advantage in application to various fields
and in particular to initial value problems in this study we use the definition by Caputo.

Definition A2. [6] The Caputo fractional derivative of order α ∈ (n − 1, n] of a function f :
R+ → R is defined by In−αDn f (t), i.e.,

t0Dα f (t) =
1

Γ(n− α)

∫ t

t0

f (n)(s)
(t− s)α+1−n ds,

where f (n)(s) =
dn f
dsn .

To make the manuscript self-contained we summarize the properties of fractional
calculus in the following lemma.

Lemma A1. For α ∈ R+, k = dαe, t ∈ [0, T], f ∈ L1[0, T] we have

• 0DαIα
[0,t] f (t) = f (t);

• Iα
[0,t]0D

α f (t) = f (t)−
k−1

∑
j=0

f (j)(0+)
tj

j!
.
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