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Abstract: The effect of geological modeling largely depends on the normal estimation results of
geological sampling points. However, due to the sparse and uneven characteristics of geological
sampling points, the results of normal estimation have great uncertainty. This paper proposes a
geological modeling method based on the dynamic normal estimation of sparse point clouds. The
improved method consists of three stages: (1) using an improved local plane fitting method to
estimate the normals of the point clouds; (2) using an improved minimum spanning tree method to
redirect the normals of the point clouds; (3) using an implicit function to construct a geological model.
The innovation of this method is an iterative estimation of the point cloud normal. The geological
engineer adjusts the normal direction of some point clouds according to the geological law, and then
the method uses these correct point cloud normals as a reference to estimate the normals of all point
clouds. By continuously repeating the iterative process, the normal estimation result will be more
accurate. Experimental results show that compared with the original method, the improved method
is more suitable for the normal estimation of sparse point clouds by adjusting normals, according to
prior knowledge, dynamically.

Keywords: geological modeling; normal estimation; normal redirection; implicit modeling; point cloud

1. Introduction

Geological modeling mainly studies how to infer the geometric model of the original
geological body described by sparse geological sampling data. Geological sampling data
has three major characteristics, which are multi-source, sparse, and uneven. It is a huge
challenge to use limited sampling data to infer and predict the distribution trend of a
model at unknown regions, and the corresponding modeling results also have greater
uncertainty. The establishment of a reliable three-dimensional geological model (especially
the ore body model) is an important basis for calculation of mineral resources, reserves,
and mining design.

In recent years, an implicit modeling [1–5] method that uses implicit functions to
implicitly express geometric model of geological bodies has attracted increased attention.
Implicit here has two meanings: that the method uses an implicit function to represent
the three-dimensional model; and that the three-dimensional model represented by the
implicit function cannot be directly displayed in the three-dimensional view, as it needs to
be converted into a mesh model by using the surface reconstruction method. At present,
implicit modeling has made great breakthroughs in method and theory. Researchers [6–10]
have proposed a variety of implicit modeling methods based on different interpolation
methods and constraint rules. However, this method is still difficult to interpolate sparse
geological data. Lacking of a reliable theory of geological rules suitable for ore body
modeling, the implicit modeling method has not been widely promoted and applied in
complex ore body modeling.

Implicit modeling methods generally control the shape of the model by constructing
interpolation constraints, and the quality of the modeling results depends largely on the
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determination of the normal direction of the constraint points [11]. Many recent surface
reconstruction algorithms [12–15] also require normal information to obtain faithful recon-
structions. Currently, the point clouds normal estimation methods can be divided into three
types, namely methods based on local surface fitting, Delaunay/Voronoi, robust statistics.

Hoppe et al. [16] proposed a classic method based on local surface fitting. This method
assumes that the surface of the sampled data points is smooth, and that the local surface of
any sampled data point can be well-fitted with a plane. A local fitting plane in the sense of
least squares is calculated using the neighborhood points around the point to be solved,
and the normal direction of the fitting plane is the normal direction of the point to be
solved. Literature [17] improves the method proposed by Hoppe et al. Each neighborhood
point is given a Gaussian weight, which means that neighborhood points that are closer
to the point to be solved will have a greater impact. Literature [18] proposed another
weight representation method, which takes the distance from the neighborhood point to
the projection point of the point to be solved on the fitting plane as the weight. However,
the method based on local plane fitting needs to specify the size of the neighborhood,
and different neighborhood sizes will produce different normal estimation results [19].
Aiming at the problem of how to determine the optimal neighborhood, literature [20]
comprehensively analyzes the noise, sampling density, curvature, and other factors of
the point clouds data, and obtains the upper bound of the error between the estimated
normal directions and the true normal directions. An analytical model is constructed,
which can iteratively find the optimal neighborhood size for each point, given the noise
level of the model.

The method based on Delaunay/Voronoi was first proposed by Amenta et al. [21].
This method involves constructing a Voronoi diagram of the point clouds and performing
Delaunay triangulation. For a point located in a convex hull, the normal direction is the
line connecting the point and the Voronoi vertex (called pole) farthest from the point in the
Voronoi lattice where the point is located. If the point is exactly on the convex hull, then
the point at the infinity outside the convex hull in the direction of the average normal of
the convex hull adjacent to the point is taken as the pole. The method proposed by Amenta
et al. is only suitable for noise-free point clouds data. Literature [22] improved the method
proposed by Amenta et al.; thus, it can process point clouds data with noise. Literature [23]
combines the method based on local plane fitting and the method based on the Voronoi
diagram. First, calculate the fitting plane formed by all the points in the Voronoi lattice
where each point is located, and then the normal direction of this plane is taken as the
normal direction of the point to be solved.

The robust statistics-based methods use techniques in robust statistics to deal with
noise, outliers, and sharp parts in point clouds data [24]. Literature [25] proposed a robust
moving least squares method for reconstructing the surface based on the forward search
mechanism. The method divides the neighborhood of each point into multiple sub-areas
without outliers, and then uses the moving least squares method to reconstruct the surface
in each sub-area. At the same time, the normal direction of each point can be reconstructed
from the smooth surface of the piece. Literature [26] proposed a robust normal estimation
method that can handle the sharp part of the point clouds. The method is similar to the
moving least squares method. The main difference is that the method only requires a
single plane in the neighborhood where each point is located, instead of dividing the
neighborhood into several smooth regions.

In this paper, the problem of geological modeling based on geological sampling data
is transformed into the problem of determining the normal directions of sparse and uneven
point clouds. Because the geological contact points extracted based on geological sampling
data are sparse and uneven, the normals obtained by the traditional normal estimation
methods are generally difficult to meet the requirements of geological modeling. Compared
with dense point clouds data, the normal estimation results of sparse and uneven point
clouds are more uncertain. Conversely, only relying on the spatial position relationship
of the point clouds data to estimate the normals of the geological contact points ignores
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the geological conditions of the corresponding geological environment. It is necessary to
provide a method for geological engineers to dynamically adjust the normal estimation
result interactively. Therefore, the normals of the known points (allowing geological
engineers to determine the normal of certain points according to the geological rules) and
the spatial position relationship between the borehole samples should be considered for
the normal estimation of the point clouds and the normal redirection.

This paper proposes an implicit geological modeling method based on the normal
dynamic estimation of sparse point clouds. This method allows the geological engineer
to interactively adjust the normals of certain points according to the geological rules, and
the method can automatically update the normals of the neighboring points where the
adjustment point is located. It also allows the geological engineer to interactively adjust
the normal polarity directions of certain points according to the geological rules, and the
method can automatically update the normal polarity directions of the neighboring points
in which the adjustment point is located. In addition, the method proposed in this paper
is also suitable for dense point cloud normal estimation and modeling tasks, such as the
usual three-dimensional surface reconstruction tasks.

The remainder of this paper is organized as follows: Section 2 describes in detail the
proposed method. Section 3 presents the experimental results. Section 4 discusses the
method proposed in this paper. Finally, Section 5 concludes this paper.

2. Methods

The method proposed in this paper mainly consists of the following three steps.
Figure 1 shows the overall flow of the method.

Figure 1. Overall flow chart of the method.

1. Extracting the unorganized point clouds data from the original geological sampling
data and using the improved local plane fitting method to estimate the normal of the point
clouds. To ensure that the normals of the point clouds all face the exterior of the geological
model, the improved minimum spanning tree (MST) method is used to redirect the normals
of the point clouds.
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2. The interpolation constraints are constructed based on the oriented point clouds
data, and the radial basis function (RBF) interpolation method [27] is used to obtain the
implicit function that represents the geological model. To obtain the polygonal geological
model, reconstruct the surface of the interpolated implicit function using the marching
cubes (MC) method [28,29] or the multiple marching cubes (M3C) method [30].

3. The geological engineer is allowed to adjust the normals to obtain certain points with
known normal directions, according to prior knowledge, dynamically. Then, the updated
geological model can be reconstructed by re-executing the first and second steps above.

This paper focuses on the dynamic estimation of the normal of the point clouds. In
the geological modeling task, the geological engineer is allowed to dynamically adjust
the normals of certain data points according to the geological rules. The point, whose
normal has been adjusted manually, will affect the normal estimation of other points. First,
this paper improves the point clouds normal estimation method based on the local fitting
plane. It can be assumed that the normals tend to be in the same direction if their points
are relatively close. Therefore, if the normal vector of the point to be solved computes
inner product with the vector in the tangent plane of the neighboring point with a known
normal, the result should be close to zero, which is added to the objective function of
constructing the local fitting plane as a constraint item. Second, this paper improves
the MST-based normal redirection method proposed by Hoppe et al. [16]. The normal
directions of the points that have been dynamically adjusted to normal are viewed as the
right directions, which can be used as the starting point of the normal propagation in the
improved MST method.

2.1. Normal Estimation

This paper improves the point clouds normal estimation method based on local plane
fitting to cause the result of normal estimation to be more accurate. The traditional method
based on local plane fitting does not consider the influence of the points whose normals
have been adjusted manually on the normal estimation of the rest of the point clouds.
For geological modeling, the normals of certain points can be adjusted manually, and the
points whose normals have been adjusted manually will affect the normal estimation of
the neighboring points, as shown in Figure 2. For neighboring points whose normals
have been adjusted manually, a tangent plane is calculated according to the normal of the
neighboring point, and the plane is marked as a reference plane. Since the local plane
fitting method assumes that the local neighborhood of any point can be well-fitted with a
plane, the normal of the point to be solved should be perpendicular to this reference plane.
According to this assumption, the inner product of a normal vector of the point to be solved
and a vector vj on the reference plane should be close zero. It is a constraint imposed on
the point to be solved by those points whose normals have been adjusted manually.

Figure 2. Considering the points whose normals have been adjusted manually.



Mathematics 2021, 9, 1819 5 of 16

If the distance between two points is close enough, the normals of the two points
should tend to be in the same direction. Therefore, the normals of the two points should
be perpendicular to the same plane. At the same time, because the distance from each
neighborhood point to the point to be solved is different, each neighborhood point has a
different influence on the point to be solved. This paper uses the inverse distance weight
to express the different degrees of influence. The neighborhood points that are close to
the point to be solved have a greater influence, while the neighborhood points that are far
away from the point to be solved have less influence.

In the calculation process, the first step is to calculate the coordinates of a vector vj in
the reference plane. The second step is to perform the inner product between the vector vj
and normal vector of the point to be solved and assign the corresponding inverse distance
weight. Then, the result is introduced as a constraint item into the objective function based
on the local plane fitting method. By solving the improved objective function, the normal
estimation result will be more accurate. The calculation formula for the coordinates of
vector vj is as follows:

x× a + y× b + z× c = 0 (1)

where x, y, z represent the coordinates of vector vj to be calculated, and a, b, c represent the
normal coordinates of the point whose normal direction has been adjusted manually.

The coordinates of vector vj have three components to be solved, and Formula (1)
has only one equation. Therefore, it is necessary to manually specify two components.
All the neighboring points of the point to be solved are numbered sequentially (1 ∼ N).
Number value (n) of the neighboring point and number 1 are used to represent the two
components of corresponding vector vj. The third component can be solved by Formula
(1). After obtaining the coordinates of vector vj, it needs to be normalized.

In the process of solving the Formula (1), we need to consider that a certain component
of the coordinates is equal to zero. Therefore, it is necessary to compare the absolute value
of three components to find the component with the largest absolute value. If |a|≥|b| and
|a|≥|c|, then the maximum of three components is x component and its value must not be
zero. Therefore, the coordinates can be set to the form of vj(x, 1, n), and the value of x can
be calculated according to Formula (2).

x =
−b− c

a
(2)

If |b|≥|a| and |b|≥|c|, then maximum of three components is y component and its
value must not be zero. Therefore, the coordinates can be set to the form of vj(1, y, n), and
the value of y can be calculated according to Formula (3).

y =
−a− c

b
(3)

If |c|≥|b| and |c|≥|a|, then the maximum of the three components is z component and
its value must not be zero. Therefore, the coordinates can be set to the form of vj(1, n, z),
and the value of z can be calculated according to Formula (4).

z =
−a− b

c
(4)

The goal of the original method based on local plane fitting is to minimize the sum of
distance from each neighborhood point to the fitting plane. The improvement of this paper
is that when the normal of the neighborhood point is adjusted manually, a vector vj needs
to be selected in the tangent plane of the neighborhood point to compute inner product
with the normal vector of the point to be solved. The result of the inner product should
be given corresponding to the inverse distance weight and then added to the objective
function as a constraint item. The vector formed by the neighborhood point and the point
to be solved is not normalized; thus, its own length has an impact on the result of the
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inner product operation. However, the vector vj is a normalized vector; thus, it should be
multiplied by a length coefficient dj, which represents the distance from a corresponding
neighborhood point to the point to be solved. The improved objective function is shown in
Formula (5):

min(
n
∑

i=1
(λi·

(
xi − x0)

T ·n
)2

+
m
∑

j=1

(
λj·dj·vj·n

)2
)

s.t.nT ·n = 1
(5)

λi =

1
d2

i

∑n
i=1

1
d2

i

(6)

λj =

1
d2

j

∑m
j=1

1
d2

j

(7)

Among them, xi represents the neighborhood point of the point to be solved; x0
represents the point to be solved; n represents normal of the point to be solved, which is
also normal of the fitting plane; n represents the total number of all neighborhood points;
vj represents the vector in the tangent plane of a neighboring point whose normal direction
has been adjusted manually; m represents total number of neighboring points whose
normals have been adjusted manually; λi and λj represent the inverse distance weight;
di represents the distance from the i-th neighborhood point to the point to be solved; dj
represents the distance from the j-th neighborhood point whose normal direction has been
adjusted manually to the point to be solved.

Further derivation of the objective function:

yi = xi − x0 (8)

min(
n
∑

i=1
nTλiyiλiyT

i n +
m
∑

j=1
nTλjdjvjλjdjvT

j n)

s.t.nT ·n = 1
(9)

min(nT(
n
∑

i=1
yi
′y′Ti +

m
∑

j=1
vj
′v′Tj )n)

s.t.nT ·n = 1
(10)

where yi
′ = λiyi, vj

′ = λjdjvj.

min
(

nT
(

YYT + VVT
)

n
)

s.t.nT ·n = 1
(11)

where Y = [y1
′ y2
′ · · · yn

′], V = [v1
′ v2
′ · · · vn

′].

C = YYT + VVT (12)

The final form of the objective function is:

min
(
nTCn

)
s.t.nT ·n = 1

(13)

The improved objective function is the same in form as the original objective function
based on the local surface fitting method; thus, its solution method is the same. The three
eigenvectors are obtained by eigenvalue decomposition of matrix C, and the eigenvector
corresponding to the smallest eigenvalue is the normal vector to be solved.
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2.2. Consistent Normal Orientation

The normal obtained by the local plane fitting method is ambiguous, because only the
line where the normal is located is obtained. The normal direction is not determined. In
geological modeling, the correct normal direction of the point clouds should be toward the
outside of the model. When the normal direction of the point clouds is toward the inside of
the model, the normal direction needs to be flipped. The minimum spanning tree method
proposed by Hoppe et al. [16] is a common normal redirection method. This method uses
the sampled data points and the adjacent relationship between the points to construct a
Riemann graph. The cost of the edges of the Riemann graph is 1− | ni·nj |, where ni and nj
are respectively the unit normal vector of point pi and point pj. If the normal directions of
two adjacent points are the same, the cost of the edge is small. The normal propagation is
performed by calculating the minimum spanning tree of the Riemann graph and traversing
the minimum spanning tree.

Although researchers have improved this method [31,32], this method has inherent
flaws. First, when the normal directions of two adjacent points are both toward the inside
of the model, the inner product of the normal vectors of the two points is greater than 0, and
the normal directions of the two points will not be flipped to facing the correct direction
outside the model. Second, when selecting the starting point of normal propagation, if
the normal direction of the starting point is toward the inside of the model, it will have a
wrong effect on the normal directions of the following points. In this paper, the normal
direction of certain points can be adjusted dynamically. The normal directions of the points
whose normal directions are adjusted are correct and can be used as the starting point of the
normal propagation process. This paper improves the minimum spanning tree method to
produce the result of normal propagation to be more accurate. Figure 3 shows the process
of the improved minimum spanning tree method.

Figure 3. The improved minimum spanning tree method.

The first step of the method is to construct a Riemann graph. All points in the point
clouds are regarded as the vertexes of the Riemann graph. If two points pi and pj are each
other’s k neighboring points, then the adjacency relationship between the two points is
regarded as the edge of the Riemann graph. After constructing the Riemann graph, the cost
of the edges is set to 1− | ni·nj |, where ni and nj are respectively the unit normal vector of
point pi and point pj.

The second step of the method is to construct a virtual tree TV for those points whose
normal has been adjusted manually. By using a set P to represent those points whose
normal has been adjusted manually, a point p in the set P is selected as the parent node
of all the remaining points in the set P, and the remaining points in the set P are all child
nodes of the node p. By using these nodes to construct a virtual tree, each node in the tree is
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numbered in order (0 ∼ N − 1), where N represents the total number. Figure 4a shows the
structure of the virtual tree. This paper uses an array A to store the node information using
the method of union-find sets. The index value i of each element in the array corresponds
to the node numbered i in the virtual tree, and the element value corresponding to each
index value i in the array represents the number of the parent node of the node numbered i
in the virtual tree. The parent node in the virtual tree does not have its own parent node.
To ensure that the element with index 0 in the array exists, this paper assumes a virtual
parent node for the parent node in the virtual tree, and the corresponding value is −N.
Figure 4b shows the structure of array A.

Figure 4. Union-find sets: (a) the virtual tree; (b) the array used to find node information.

The third step of the method is to calculate the minimum spanning tree TM. This
paper presents an improved Kruskal method. The initial state of the Kruskal method only
contains all vertexes, and each vertex is regarded as an independent tree to form a forest.
At each iteration, a minimum cost edge that satisfies the condition is selected to be added
to the forest. Finally, the minimum spanning tree is obtained.

This paper modifies the initial state of the Kruskal method. The virtual tree and other
isolated points in the Riemann graph form the initial state of the improved Kruskal method.
Then, the Kruskal method is used to add edges to obtain the minimum spanning tree.
Figure 5 shows the structure of this minimum spanning tree.

Figure 5. The improved minimum spanning tree.

There are two types of edges in the minimum spanning tree. One is that the normal
of the two vertexes connected on the edge has not been adjusted manually. It can be
represented as a reversible edge, which means that the normal of the two vertexes on the
edge needs to be processed. The other is that the normal of one vertex of the two vertexes
connected on the edge has been adjusted manually. It can be represented as a fixed edge,
which means that the normal of a vertex on the edge is correct. The points on the fixed
edges whose normals have been adjusted manually are selected as starting points in the
process of normal propagation, which are represented as reference vertexes.

The fourth step of the method is to remove virtual tree TV from minimum spanning
tree TM to obtain multiple subtrees Ti. The normals of nodes in the virtual tree TV have
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been adjusted manually. The normals of nodes in the virtual tree can be considered to be
facing outside of the model correctly, and there is no need to flip them in the process of
normal propagation. Therefore, before performing normal propagation, the virtual tree
TV needs to be removed from the minimum spanning tree TM to obtain multiple subtrees
Ti. The normal propagation is performed by selecting the reference vertexes on the fixed
edges of the subtrees as the starting points. Figure 6 shows the structure of the subtrees.

Figure 6. The subtrees used for normal propagation.

The fifth step of the method is to perform normal propagation. Each subtree has
a fixed edge, which connects a reference vertex and a to-be-processed vertex. For each
subtree, a reference vertex is used as the starting point, and the breadth-first search method
is used to traverse all nodes of the tree. If the inner product of the normal vectors of two
adjacent vertexes is negative, the normal toward the inside of the model is flipped to make
it toward the outside of the model.

2.3. Implicit Modeling

The main ideas of the implicit modeling method [33] of ore body based on geological
sampling data are as follows. First, the method uses discretization to convert correspond-
ing types of geological data into interpolation constraints at a certain sampling interval.
Second, the method obtains the implicit function that characterizes the geological model
by solving the interpolation equation constructed by the interpolation constraint. Finally,
the method uses the contour surface extraction method to reconstruct the implicit function
that characterizes the geological model. Figure 7 shows the implicit modeling process.

Figure 7. The process of implicit modeling based on the normal dynamic estimation method.

After determining the normal direction of the constraint point, the existing implicit
modeling method can be directly used to reconstruct geological model. Considering that
the radial basis function interpolation method has superior extrapolation performance,
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this paper uses the radial basis function to interpolate the constraint points whose normal
directions are determined.

The radial basis interpolation function s(x) has the following form:

s(x) = sΦ(x) + p(x) =
N

∑
j=1

ωiΦ
(
x, xj

)
+ p(x) (14)

where {x1, x2, . . . , xN} is a set of different interpolation points, and ωi is the weight co-
efficient to be determined. Φ

(
x, xj

)
is a radial basis kernel function. sΦ(x) is the kernel

function, and p(x) is the polynomial.
The radial basis interpolation function s(x) is usually used for interpolation to satisfy

the following constraints.
s(xi) = fi, i = 1, 2, . . . N (15)

where fi is the function value at the interpolation point xi.
To interpolate the normal direction of the constraint points, the method of adaptive off-

plane constraints can be used to transform the normal constraint into the point constraints.
The constraint point xi on the geological surface satisfies the on-surface constraint f (xi) = 0.
The parameter δ is selected as the offset distance of the constraint point, and the constraint
point is offset along its normal direction ni by a distance of δ to obtain the following
off-surface constraints. {

f (xipos) = +δ
f (xineg) = −δ

(16){
xipos = xi + δn
xineg = xi − δn

(17)

By solving the interpolation equation composed of the above on-surface constraints
and off-surface constraints, the radial basis interpolation function s(x) that represents the
geological model can be obtained.

To visualize the radial basis interpolation function s(x) that implicitly expresses the
geological body model, it is necessary to reconstruct the surface of the abstract implicit
function according to the needs of the practical applications to obtain a polygonal mesh
model. After solving the implicit function, the method of surface reconstruction can be
used to obtain geological mesh models with different sizes.

3. Results

This paper tests the proposed method on five data sets. The data sets contain different
geological bodies data. Table 1 shows the parameter values of the experimented data sets,
including the number of constraint points (NC), the number of neighborhood points in the
normal estimation process (N1), and the number of neighborhood points in the normal
redirection process (N2).

Table 1. Parameter values of the experimented data sets.

Data Sets NC N1 N2

1 236 5 5
2 200 5 5
3 171 5 5
4 171 5 5
5 504 5 5

The sampling points are sparse and uneven, and the original geological bodies are
irregular in shape. The angle and color of the circle surrounding the point clouds in the
figures represent the normal direction and orientation of the point clouds. The circle
surrounding the point clouds is purple; thus, the normal direction of the point is facing
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the inside of the model, which is the wrong normal direction and needs to be flipped. The
circle surrounding the point clouds is green; thus, the normal direction of the point is facing
the outside of the model, which is the correct normal direction.

Figure 8 shows the normal estimation results of the first data set. The experiment did
not model the first set of data. The model shown in the picture is only a model for reference,
and the purpose is to analyze and evaluate the results of normal estimation. Figure 8a,b
respectively show the original geological sampling points and the normal estimation result
obtained by using the original local plane fitting method. It can be clearly seen that when
the original method is used to process sparse and uneven geological sampling points, there
are many problems in the normal estimation result. The normal directions of many points
are inaccurate and the normals are oriented inside the model, which makes it difficult to
meet the requirements of the implicit modeling method. By using the improved method in
this paper, after adjusting the normals of certain points manually, the normal estimation
results have been significantly improved (Figure 8c–f). The normal orientations of the point
clouds are corrected to face the outside of the model, and the normal directions are more
accurate. As the number of points with existing normals increases, the result of normal
estimation will be more improved.

Figure 8. Normal estimation results of the first data set. (a,b) show the original sampling points
and the normal estimation result obtained by the original method. (c,d) show the normal estimation
result obtained after adjusting the normal of only one point. (e,f) show the normal estimation result
obtained after adjusting the normals of two points.

Figure 9 shows the normal estimation results of the second data set. The model
shown in the picture is only a reference model, the purpose is to analyze and evaluate
the results of normal estimation. Figure 9a,b respectively show the original geological
sampling points and the normal estimation result obtained by using the original local plane
fitting method. As the number of the points with existing normals increases, the results of
normal estimation become more accurate. After only specifying the normals of two points,
the normals of most points are greatly improved compared with the original method.
However, as shown in Figure 9b,d, when the normal direction of only one point is adjusted,
the normal estimation result obtained by the improved method has errors. Normals with
correct orientations in the original method are reversed to the wrong orientations. This
is because the improved method in this paper uses the breadth-first search method in
the process of normal propagation. The points whose normals have been adjusted will
preferentially affect the near points, while the far points will not be affected. Therefore,
to obtain more accurate normal estimation result, it is necessary to adjust the normals of
points in different regions. In this way, it can be ensured that the normal estimation result
of each region is correct.
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Figures 10 and 11 show the normal estimation results and geological modeling results
of the third and fourth data set. The sampling points shown in the figure belong to
Formation 2. In Figure 10, the normal directions of four points have been adjusted manually.
In Figure 11, the normal directions of two points have been adjusted manually. The normal
estimation results obtained by the improved method are more accurate, and the normal
orientations of the point clouds are all toward the outside of the model. Figures 10 and 11
show the multi-layer formation modeling results obtained by using the improved method.
Because the original sampling points are sparse and uneven, it is necessary to adjust
the normal directions of certain points dynamically and iteratively estimate the normal
directions of the point clouds. Therefore, the effect of the point clouds normal estimation
can well meet the requirements for implicit geological modeling method.

Figure 9. Normal estimation results of the second data set. (a,b) show the original sampling points
and the normal estimation result obtained by the original method. (c,d) show the normal estimation
result obtained after adjusting the normal of only one point. (e,f) show the normal estimation result
obtained after adjusting the normals of two points.

Figure 10. Normal estimation and modeling results of the third data set. (a) shows that the normal
directions of the four points have been adjusted artificially. (b) is the normal estimation result obtained
by using the original method. (c) is the normal estimation result obtained by using improved method
in this paper. (d–f) show the geological modeling results obtained by using modeling method in
this paper.
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Figure 11. Normal estimation and modeling results of the fourth data set. (a) shows that the normal
directions of the two points have been adjusted artificially. (b) is the normal estimation result obtained
by using the original method. (c) is the normal estimation result obtained by using improved method
in this paper. (d–f) shows the geological modeling results obtained by using modeling method in
this paper.

4. Discussion

Based on the improved normal dynamic estimation method, this paper uses the
implicit modeling method to continue the dynamic geological modeling. Because the
implicit modeling method relies on the normal estimation method based on local surface
fitting, it is suitable for surface reconstruction of smooth geological models. However, it
is difficult to process point clouds with a thin surface and sharp surface. In addition, the
method proposed in this paper has limitations that need to be improved.

In practical applications, it is found that the normal estimation and normal reorien-
tation process are prone to errors when the geological body has a large distortion or thin
surface features. Figure 12 shows the normal estimation results when the geological body
has a large distortion or thin surface. It is an inevitable defect of the method based on
local plane fitting. Since the method uses the inverse distance weighting when estimating
the normal, the point clouds in the large deformation region or thin surface region will
have a greater weighting influence on each other’s normal estimation. However, the point
clouds in these regions belong to different geological body distributions, and they have
little influence on each other. This is an inherent defect of the normal estimation method
based on local plane fitting. In addition, the original minimum spanning tree method needs
to select the starting point for normal propagation. If the normal of the starting point is
toward the inside of the model, the normal direction of the subsequent point cloud will be
incorrectly reversed. This is the defect of the original minimum spanning tree method. At
present, normal estimation methods based on local plane fitting are still mainly applied
to dense point clouds. For sparse and uneven point clouds, the uncertainty of normal
estimation is greater. Although the improved method in this paper considers the additional
constraints of manually specifying the normal directions in the process of point clouds
normal estimation, the method still needs further improvement. Normal estimation and
normal redirection should not only consider the spatial position relationship between unor-
ganized point clouds but should also further consider the shape feature constraints of the
geological body or the geological rules in the corresponding geological environment. For
example, scholars have proposed that the direction constraint of normal propagation can
be considered during constructing a Riemann graph in the normal redirection process; thus,
the normal propagates along the tangential direction of the surface as much as possible to
process geological sampling data with thin surface features.
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Figure 12. Normal estimation results of the fifth data set. (a) shows the original sampling points.
(b) shows the normal estimation result obtained using the original method. (c) shows that the normal
directions of the three points have been adjusted artificially. (d) shows the normal estimation result
obtained by using the improved method, in which the black box area represents the large distortion
and thin surface.

The size of the geological body and the number of point clouds have no effect on the
applicability of the method. The effect of the method is mainly affected by two aspects.
One is the neighborhood size of the point cloud; the other is the sparseness and unevenness
of the point cloud itself.

5. Conclusions

This paper proposes a geological modeling method based on the normal dynamic
estimation of sparse point clouds. The method can be used not only for the normal
estimation of sparse point clouds, but also for the normal estimation of dense point clouds.
In addition, the method is not only used for modeling of geological bodies, but also for 3D
surface reconstruction tasks of general objects. The main innovation of the method is to
allow geological engineers to dynamically adjust the normals of certain points and then
re-estimate the normals of point clouds. First, this paper improves the point clouds normal
estimation method based on local surface fitting. In the normal estimation process, the
influence of the points whose normal directions have been adjusted is considered to be
the normal direction estimation of the surrounding points, and the influence is added to
the objective function as a constraint item. Second, this paper improves the point clouds
normal redirection method based on a minimum spanning tree. The improved normal
redirection method can automatically select the points with the correct normal directions
as the starting points of normal propagation, which overcomes the defects of the original
method. By using multiple sets of geological sampling points for verification, the results
show that the method proposed in this paper can accurately estimate the normal directions
of the sparse and uneven point clouds; thus, the normal direction estimation results can
better meet the requirements of implicit modeling.

The method proposed in this paper is still based on the idea of local surface fitting, and
the premise of this kind of method is that the local surface of any point in the point clouds
can be fitted with a local plane. Therefore, the method proposed in this paper still has
certain defects when handling the thin surface region or the region with large distortion. In
addition, because the distribution of geological sampling points is not uniform, the number
of optimal neighborhood points for fitting a local plane is different for different regions.
However, the method proposed in this paper uses a fixed number of neighborhood points
for fitting the local plane, which needs to be further improved.
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