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Abstract: A cure rate model under the competing risks setup is proposed. For the number of
competing causes related to the occurrence of the event of interest, we posit the one-parameter
Bell distribution, which accommodates overdispersed counts. The model is parameterized in the
cure rate, which is linked to covariates. Parameter estimation is based on the maximum likelihood
method. Estimates are computed via the EM algorithm. In order to compare different models,
a selection criterion for non-nested models is implemented. Results from simulation studies indicate
that the estimation method and the model selection criterion have a good performance. A dataset on
melanoma is analyzed using the proposed model as well as some models from the literature.

Keywords: bell distribution; EM algorithm; long-term survival model; maximum likelihood;
model comparison

1. Introduction

The usual approach in models for time-to-event data is built on the assumption that all
subjects will experience the event of interest if the follow-up time is long enough. In many
studies in different areas, there are subjects insusceptible to the event of interest. We
call cure rate the proportion of insusceptible subjects. Cure rate models, also known as
long-term survival models, are capable to deal with this situation.

Cure rate models have had an intense research activity in last years. From the seminal
contributions in [1,2] and the approach based on competing risks for cure rate models
in [3], we find many papers in recent years on this research area. The competing risks
approach is summarized as follows. Let M be an unobserved variable denoting the initial
number of competing causes related to the occurrence of the event of interest. For instance,
in cancer studies M represents the number of carcinogenic cells at the end of treatment that
can produce a detectable cancer. For M following the Bernoulli or the Poisson distribution,
we obtain the models in [2,3], respectively. The time for the j-th competing cause to
produce the event of interest (that is, the promotion time) is denoted by Zj, j = 1, . . . , M.
We also assume that, conditional on M, the latent times Z1, . . . , ZM are independent and
identically distributed with cumulative distribution function (cdf) F(z; λ) and survival
function S(z; λ) = 1− F(z; λ), where λ is the parameter vector. Under a competing risks
setup, the time elapsed until the event of interest is given by T = min(Z0, Z1, . . . , ZM),
where Z0 is a random variable degenerate at +∞. Our paper is based on the competing
risks approach for cure rate models.

Many cure rate models proposed in last years are formulated from different distri-
butions for the number of competing causes M. This research line includes the negative
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binomial [4], COM-Poisson [5], power series [6], Yule-Simon [7], polylogarithm [8], mod-
ified power series [9], zero inflated power series [10] and zero-modified geometric [11]
distributions, among many others. In this vein, we adopt the one-parameter Bell distribu-
tion recently proposed in [12], with probability mass function (pmf)

P(M = m; θ) =
Bmθme−eθ+1

m!
, m = 0, 1, 2, . . . , (1)

for θ > 0, where Bm is the Bell number defined as Bm = e−1 ∑∞
k=0 km/k!. The first

few Bell numbers are B0 = B1 = 1, B2 = 2, B3 = 5, B4 = 15, B5 = 52, B6 = 203,
B7 = 877, B8 = 4140, B9 = 21147 and B10 = 115975. We denote M ∼ Bell(θ) to say
that M follows a distribution with pmf in (1). Denoting the mean and the variance of M by
E(M) and Var(M), respectively, we have that E(M) = θeθ and Var(M) = θ(1 + θ)eθ . Since
Var(M) > E(W), the Bell distribution accommodates overdispersed counts. For cure rate
models, this distribution is interesting due to some characteristics:

1. The distribution has only one parameter, being an alternative to traditional discrete
distributions such as Poisson and Geometric.

2. The probability generating function (pgf) of the distribution has a simple expression.
In fact, if M ∼ Bell(θ), then its pgf is given by G(s; θ) = exp(eθs − eθ), for |s| < 1. See
Proposition 1 in [12]. This fact is relevant from the point of view of cure rate models
because the population survival function depends on this function.

3. P(M = 0; θ) = exp(−eθ + 1) has a simple form. This fact is important because
this probability is the cure rate of the model. The simplicity of this term allows,
among other things, to reparameterize the model in terms of the cure rate.

4. The distribution belongs to the power series family of distributions [13] with pmf
P(M = m; θ) = amθm/A(θ), where am = Bm/m!, m = 0, 1, 2, . . ., and
A(θ) = ∑∞

m=0 amθm = exp(eθ − 1). Recently, ref. [14] proposed an EM-type algorithm
for a class of cure rate models based on the power series family. The maximization
(M) step of the EM algorithm is decomposed in two steps involving the distribution
of the number of competing causes M and the distribution of the latent times Z.

5. To the best of our knowledge, the Bell distribution has not yet been proposed to model
the number of competing causes in a cure rate models context.

The remaining of the paper is organized as follows. In Section 2, we present the cure
rate rate model. Inference methods are presented in Section 3. Section 4 is dedicated to a
simulation study covering properties of the estimators and model selection. A dataset on
melanoma is analyzed in Section 5. Closing remarks are given in Section 6.

2. Model

Let M be an unobserved variable denoting the initial number of competing causes
related to the occurrence of an event of interest. We assume that M ∼ Bell(θ). Under the
competing risks setup in Section 1, from Theorem 2 in [4], see also [15], we have that the
(improper) population survival function of the Bell cure rate (Bellcr) model is given by

Spop(t; θ, λ) = P(T > t; θ, λ) = G
(
S(t; λ); θ

)
= exp[eθS(t;λ) − eθ ]. (2)

It is immediate that the cure rate of the model is given by p = limt→∞ Spop(t; ψ) =

exp(1− eθ) = P(M = 0; θ). Henceforth, we adopt the parameterization p = exp(1− eθ),
i.e., θ = log[1− log(p)]. In this way, covariates can be directly linked to the cure rate
p, allowing to compare regression coefficients among different models parameterized in
terms of the cure rate.

An interesting family of cure rate models parameterized in the cure rate is studied
in [16]. Such family includes the Bernoulli cure rate (Berncr) model, also known as mixture
cure model [1,2], the Poisson cure rate (Pocr) model, also known as the promotion time
cure model [3,17], the logarithmic cure rate (Locr) model and the negative binomial cure
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rate (NBcr) model, noticing that the NBcr model has an additional parameter q (q > 0) and
q = 1 corresponds to the geometric cure rate (Geocr) model.

Table 1 and Figure 1 show the variance of the number of competing causes M in terms
of the cure rate for some models. Note that the curve for the Bellcr model lies between
the Geocr and Pocr models. Also, the curves for the NBcr model with q = 0.3, 5 and 10 are
close to the Locr, Bellcr and Pocr models, respectively. In fact, by applying the L’Hopital’s
rule, we have limq→∞ q(1 − p1/q)p−2/q = − log(p) so that the proximity between the
NBcr(q = 10) and Pocr curves is justified.

Table 1. Variance of the number of competing causes as a function of the cure rate for some models
parameterized in the cure rate (p).

Model Var(M) Model Var(M)

Berncr p(1− p) NBcr q(1− p1/q)p−2/q

Pocr − log(p) Locr * θ[θ + log(1− θ)]/[(1− θ) log(1− θ)]2

Geocr (1− p)p−2 Bellcr [1− log(p)] log[1− log(p)]{1 + log[1− log(p)]}
* θ = θ(p) = 1 + pW[− exp(−1/p)/p], where W(·) denotes the Lambert function [18].
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Figure 1. Variance of the number of competing causes as a function of the cure rate for some models.

With the parameterization in the cure rate p, the population survival function for the
Bellcr model in (2) is recast, leading to

Spop(t; p, λ) = p exp{[1− log(p)]S(t;λ) − 1}, (3)

so that the population density and hazard functions are given by

fpop(t; p, λ) = Spop(t; p, λ)[1− log(p)]S(t;λ) log[1− log(p)] f (t; λ) (4)

and hpop(t; p, λ) = [1− log(p)]S(t;λ) log[1− log(p)] f (t; λ).

In a sample of size n, for the i-th subject the covariates are represented by
xi = (1, x1i, . . . , xri)

>, i = 1, . . . , n, where the symbol “>” denotes the transpose oper-
ator. The cure rate pi is linked to xi through the logistic function, that is,

log
(

pi
1− pi

)
= x>i β, (5)

where β = (β0, β1, . . . , βr)> is the vector of regression coefficients of dimension r + 1.
Therefore, interpretations about the regression coefficients can be obtained in terms of the
odds ratio for the cure probability.
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3. Inference

In this section, we present some details about the estimation procedure for the param-
eters of the model in Section 2. We consider a framework in which the lifetimes are subject
to right censoring. Let Yi and Ci be the failure and censoring time variables for the i-th
subject, respectively. In a sample of size n, the observed variables are Ti = min(Yi, Ci) and
δi = I(Yi ≤ Ci), where δi = 1 and δi = 0 denote either if a failure or a censored time was
observed for the i-th subject, respectively, i = 1, . . . , n. Under the usual assumption of non-
informative censoring and with pi as in (5), the log-likelihood function of ψ = (β>, λ>)>

is given by

`(ψ) =
n

∑
i=1

(
log(pi) + log{[1− log(pi)t]S(t;λ) − 1}+ δi{S(ti; λ) log[1− log(pi)]

+ log{(log[1− log(pi)]}+ log[ f (ti; λ)]}
)

. (6)

The maximum likelihood (ML) estimator of ψ, ψ̂ say, is obtained by maximizing (6)
with respect to ψ. However, direct maximization is not computationally simple because
some terms in (6) involve both β and λ. For this reason and taking advantage of the EM
algorithm developed for the power series family of cure rate models in [14], ML estimates
in the Bellcr model are computed using this algorithm. In short, the k-th iteration of the
EM algorithm goes as follows:

• E step: For i = 1, . . . , n, compute M̃(k)
i = µ

(k−1)
i exp(µ(k−1)

i ) + δi(1 + µ
(k−1)
i ), where

µ
(k−1)
i = θ

(k−1)
i S(ti; λ(k−1)) with θ

(k−1)
i = log[1 − log(p(k−1)

i )] and p(k−1)
i comes

from (5).

• M step 1: Given M̃
(k)

= (M̃(k)
1 , . . . , M̃(k)

n )>, find β(k) that maximizes Q1(β|ψ(k)) with
respect to β, where

Q1(β|ψ(k)) =
n

∑
i=1

(
M̃(k)

i log{log[1− log(pi)]} − log(pi)
)

. (7)

• M step 2: Given M̃
(k)

, find λ(k) that maximizes Q2(λ|ψ(k)) with respect to λ, where

Q2(λ|ψ(k)) =
n

∑
i=1
{M̃(k)

i log[S(ti; λ)] + δi log[h(ti; λ)]}. (8)

The E and M steps are cycled until a suitable convergence criterion is attained, for in-
stance, ||ψ(k) −ψ(k−1)|| < ε, where “|| · ||” denotes the Euclidean norm and ε is a specified
tolerance. Maximization of the functions in (7) and (8) can be performed using the optim
function in R language [19].

We stress that the proposed EM algorithm procedure is general in the sense that it can
accommodate different distributions for the latent time Z in Section 1. In this work, we
assume the Weibull distribution, denoted by Wei(α, ν), because it is a suitable model in
a cure rate model context. With λ = (α, ν)>, the survival function for this distribution is
given by S(t; λ) = exp(−eαtν), for t > 0, ν > 0 and α ∈ R.

On the other hand, the normal theory asymptotic covariance matrix of the maximum
likelihood estimator ψ̂ can be estimated from minus the Hessian matrix of the log-likelihood
function in (6) evaluated at ψ = ψ̂. The numDeriv R package [20] provides a numerical
approximation to this matrix. Interval estimates of the parameters are computed from
the asymptotic standard errors. Computational codes are available from the authors
upon request.

Finally, inference usually is made on the cure rate. However, we might also be
interested in the cure rate for subjects who survived up to a certain time t0, denoted by
pt0 . First, for t > t0, from (3) we have P(T > t | T > t0) = P(T > t)/P(T > t0) =
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Spop(t; p, λ)/Spop(t0; p, λ) = exp{[1− log(p)]S(t;λ) − [1− log(p)]S(t0;λ)}. Then, omitting
the dependence on the covariates and passing to the limit for t → ∞ we obtain the
conditional cure rate

pt0 = lim
t→∞

P(T > t)/P(T > t0) = exp{1− [1− log(p)]S(t0;λ)}. (9)

Of course, if t0 = 0 in (9), pt0 reduces to the cure rate p in (5). For comparatives
purposes, Remark 1 gives expressions for pt0 under the Pocr, Locr, NBcr and Bincr models.

Remark 1. For the Pocr, Locr, NBcr and Bincr models, routine calculation shows that pt0 is given by

pt0 = pS(t0;λ), for the Pocr model,

pt0 =
(

1− (1− p1/q)S(t0; λ)
)q

, for the NBcr model,

pt0 = (1 + (1/p− 1)S(t0; λ))−q, for the Bincr model and

pt0 =
−θ(p)S(t0; λ)

log(1− θ(p)S(t0; λ))
, for the Locr model,

where θ(p) = 1 + pW[− exp(−1/p)/p].

4. Simulation Studies

In this section, we present two simulation studies. The main goal of the first study
is to assess the performance of the ML estimates for the parameters of the Bellcr model
computed with the EM algorithm in Section 3. The second study is devoted to model
selection based on Vuong’s test statistic in [21] (see Appendix A) when the true cure rate
model is the Bellcr model or may be wrongly specified. The null hypothesis states that the
two compared models are undistinguishable. If the null hypothesis is rejected, the model
with the highest value of the likelihood function is preferable. We pick a model with three
covariates x1, x2 and x3. Figure 2 shows the scheme to draw the covariates.

x1 ∼ Bern(0.5)

vv ((
x1 = 0

ww ��

x1 = 1

�� ((
x2 ∼ U(0, 5) x3 ∼ U(0, 2) x2 ∼ U(0, 10) x3 ∼ U(0, 2)

Figure 2. Scheme to draw the covariates in the simulation study. Bern (0.5) denotes the Bernoulli distribution with
probability 0.5 and U(a, b) denotes the uniform distribution on (a, b).

The true value of β = (β0, β1, β2, β3)
> is computed from four combinations of values

of (x1, x2, x3) and cure rates pc1, . . . , pc4. For (x1, x2, x3), we choose (0, 0, 0), (1, 0, 0), (0, 5, 2)
and (1, 10, 5). Solving the equations in (5), we get β0 = logit(pc1), β1 = −logit(pc1) +
logit(pc2), β2 = −logit(pc1) + (2/5)logit(pc2) + logit(pc3)− (2/5)logit(pc4) and β3 = 2
logit(pc1)− logit(pc2)− 2logit(pc3) + logit(pc4), where logit(p) = log(p)− log(1− p), for
p ∈ (0, 1). In the studies presented here, cure rates (pc1, . . . , pc4) are (0.9, 0.8, 0.65, 0.5),
(0.8, 0.7, 0.55, 0.4) and (0.7, 0.6, 0.45, 0.3), labeled as Cure 1, Cure 2 and Cure 3, respectively.
On the other hand, to set the vector λ = (α, ν)> we choose values for the expected value
E(Z) and the variance Var(Z) of the latent time Z in Section 1. For the Wei(α, ν) distribution
in Section 3, these conditions imply that α = ν{log[Γ(1 + 1/ν)]− log[E(Z)]} and ν is the
solution to the equation Γ(1+ 2/ν)/Γ2(1+ 1/ν) = 1+Var(Z)/[E(Z)]2. Table 2 showcases
the true values of the parameters for the simulations.
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Table 2. True values of the parameters in the simulation studies.

Cure Rate β0 β1 β2 β3 (E(Z), Var(Z)) α ν

Cure 1 2.197 −0.811 −1.024 1.770 (7 , 4) −8.018 3.920
Cure 2 1.386 −0.539 −0.684 1.118 (5 , 3) −5.444 3.165
Cure 3 0.847 −0.442 −0.547 0.843 (2 , 1) −1.712 2.101

The simulations comprise two sample sizes, n = 200 and n = 400, and two cases for
the latent time Z in Section 1, namely, (i) E(Z) = 7 and Var(Z) = 4 and (ii) E(Z) = 5
and Var(Z) = 3. For each combination of sample size, cure rate (pc1, . . . , pc4) and(
E(Z), Var(Z)

)
, we compute θi = log[1− log(pi)], with pi as in (5). Next, Mi is drawn

from the Bell(θi) distribution. If Mi = 0, the failure time is Ti = +∞. If Mi ≥ 1, we draw
Z1, . . . , ZMi from the Wei(α, ν) distribution and the failure time is Ti = min(Z1, . . . , ZMi ).
The censoring time Ci is sampled from the U(0, 15) distribution. A simulated dataset is
formed by xi = (1, x1i, x2i, x3i)

>, Yi = min(Ti, Ci) and δi = I(Ti ≤ Ci), i = 1, . . . , n. For the
Pocr, Locr, NBcr, Geocr and Berncr models in Section 4.2, the data generation process
is similar.

Each scenario was replicated 1000 times. The average proportion of censored times
ranges from 56% to 77%. The vectors of covariates xi, i = 1, . . . , n, are kept fixed throughout
the replications.

4.1. Estimation

Having in mind the goal of assessing the behavior of the ML estimates of the pa-
rameters in the Bellcr model, Table 3 reports the simulated bias for each parameter (Bias),
the average of the asymptotic standard errors (SE) based on the covariance matrix in
Section 3, the root of the simulated mean squared error (RMSE) and the coverage probabil-
ity of the normal theory 95% asymptotic confidence intervals (CP). In general, the estimators
show a good behavior in all scenarios of our study. We see that Bias is low so that SE and
RMSE are close and get closer when the sample size is 400. It is noteworthy that CP is close
to the nominal value for both sample sizes, ranging from 0.939 to 0.963. Overall, we see
that within the scope of our study, the estimators and the estimation algorithm in Section 3
have a good performance.

4.2. Model Comparison

In this section, we present a simulation study aimed to test the Bellcr model against
the Pocr, Locr, NBcr and Geocr models. In our comparisons, the models are compared with
the Bellcr model whichever the model generating the data (True model in Tables 4 and 5).
The models are tested against the Bellcr model using the Vuong’s test statistic. The nominal
significance level is 5%.

In Table 4, when the data generating model is the Bellcr model, rejection rates of the
Bellcr model are very low regardless of the model being compared, as expected. When the
true model is the Pocr model, the highest rejection rates of the Bellcr model, between 11.4%
and 24.4%, correspond to the Pocr and NBcr models. We recall the Pocr model is a limiting
case of the NBcr model. In Tables 4 and 5, we see null rejection rates (up to one decimal
place) of the Bellcr model against the Berncr model. This is not surprising because the
Berncr model (mixture cure model) is too simple to cope with the structure of the data
generated in our simulation study.

When the data are drawn from the NBcr (q = 3) model, rejection rates in Table 4
are low, as expected in light of Figure 1. The largest rejection rates of the Bellcr model
are achieved when the true model is the Locr model in Table 4 (rates between 75.8%
and 80.9%) and the Geocr model in Table 5 (rates between 15.8% and 96.2%). In all
scenarios in Tables 4 and 5, rejection rates of the Bellcr model are consistent with the
patterns in Figure 1.
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Table 3. Simulated bias (Bias), average of the asymptotic standard errors (SE), root of the simulated mean squared error
(RMSE) and coverage probability of the 95% asymptotic confidence intervals (CP) for the Bellcr model.

Cure (E(Z),
Parameter

n = 200 n = 400

Rate Var(Z)) Bias SE RMSE CP Bias SE RMSE CP

Cure 1

(7, 4)

β0 0.109 0.594 0.659 0.945 0.046 0.403 0.422 0.952
β1 −0.003 0.692 0.737 0.949 −0.003 0.471 0.474 0.954
β2 −0.067 0.210 0.257 0.963 −0.027 0.138 0.143 0.950
β3 0.112 0.396 0.467 0.957 0.049 0.260 0.269 0.955
α −0.335 0.823 0.898 0.953 −0.221 0.572 0.647 0.951
ν 0.164 0.446 0.487 0.951 0.107 0.307 0.339 0.951

(5, 3)

β0 0.118 0.532 0.597 0.944 0.050 0.363 0.383 0.948
β1 0.006 0.621 0.641 0.958 0.005 0.427 0.451 0.949
β2 −0.057 0.183 0.208 0.950 −0.021 0.123 0.132 0.950
β3 0.082 0.344 0.366 0.955 0.023 0.232 0.247 0.949
α −0.206 0.518 0.563 0.943 −0.124 0.361 0.397 0.946
ν 0.111 0.321 0.348 0.943 0.073 0.223 0.237 0.945

Cure 2

(7, 4)

β0 0.043 0.471 0.501 0.945 0.021 0.323 0.323 0.953
β1 0.005 0.590 0.600 0.955 −0.003 0.408 0.434 0.953
β2 −0.035 0.139 0.147 0.950 −0.015 0.095 0.100 0.950
β3 0.058 0.268 0.288 0.941 0.028 0.183 0.191 0.945
α −0.276 0.820 0.889 0.940 −0.132 0.569 0.590 0.949
ν 0.137 0.431 0.458 0.947 0.069 0.298 0.309 0.952

(5, 3)

β0 0.051 0.421 0.433 0.948 0.020 0.291 0.288 0.952
β1 −0.019 0.534 0.552 0.956 −0.001 0.369 0.390 0.951
β2 −0.026 0.124 0.127 0.964 −0.013 0.086 0.087 0.950
β3 0.045 0.240 0.248 0.951 0.022 0.165 0.171 0.950
α −0.146 0.514 0.534 0.944 −0.078 0.358 0.360 0.953
ν 0.090 0.311 0.324 0.948 0.051 0.216 0.220 0.952

Cure 3

(7, 4)

β0 0.005 0.420 0.414 0.957 0.004 0.290 0.300 0.949
β1 0.000 0.542 0.541 0.957 −0.003 0.375 0.387 0.950
β2 −0.024 0.116 0.119 0.956 −0.011 0.079 0.083 0.953
β3 0.050 0.227 0.234 0.951 0.013 0.155 0.160 0.950
α −0.192 0.765 0.814 0.957 −0.132 0.534 0.567 0.953
ν 0.096 0.401 0.421 0.956 0.071 0.279 0.297 0.948

(5, 3)

β0 0.013 0.376 0.387 0.954 0.013 0.261 0.275 0.948
β1 −0.010 0.490 0.500 0.950 −0.005 0.341 0.336 0.950
β2 −0.018 0.104 0.110 0.955 −0.012 0.072 0.074 0.948
β3 0.029 0.203 0.211 0.946 0.017 0.141 0.145 0.950
α −0.129 0.479 0.515 0.939 −0.061 0.334 0.339 0.953
ν 0.081 0.289 0.307 0.951 0.035 0.201 0.200 0.950
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Table 4. Rejection rate (in %) of the Bellcr model when compared with different models using the Vuong’s test statistic—Part 1.

n = 200 n = 400

True (E(Z), Model Compared Cure Rate Cure Rate

Model Var(Z)) with Bellcr Cure 1 Cure 2 Cure 3 Cure 1 Cure 2 Cure 3

Bellcr

(7, 4)

Pocr 2.7 2.4 2.9 1.8 2.1 1.6
Locr 0.0 0.0 0.0 0.0 0.0 0.0
NBcr 4.2 3.3 3.7 3.8 3.6 3.1
Geocr 0.4 0.3 0.2 0.0 0.0 0.5
Berncr 0.0 0.0 0.0 0.0 0.0 0.0

(5, 3)

Pocr 1.7 2.1 2.8 1.0 1.0 1.8
Locr 0.0 0.0 0.0 0.0 0.0 0.0
NBcr 3.6 2.9 3.5 2.3 2.2 2.8
Geocr 0.2 0.6 0.5 0.0 0.0 0.3
Berncr 0.0 0.0 0.0 0.0 0.0 0.0

(2, 1)

Pocr 1.3 1.5 2.8 0.7 0.9 0.7
Locr 0.0 0.0 0.0 0.0 0.0 0.0
NBcr 2.7 2.7 3.7 2.3 2.0 1.6
Geocr 0.5 0.7 0.8 0.0 0.0 0.1
Berncr 0.0 0.0 0.0 0.0 0.0 0.0

Pocr

(7, 4)

Pocr 13.6 11.4 11.8 16.6 13.6 14.2
Locr 0.0 0.0 0.1 0.0 0.0 0.0
NBcr 16.1 12.4 12.9 19.6 15.5 16.0
Geocr 0.2 0.1 0.0 0.0 0.0 0.0
Berncr 0.0 0.0 0.0 0.0 0.0 0.0

(5, 3)

Pocr 12.9 14.5 11.7 21.7 17.2 15.2
Locr 0.0 0.0 0.0 0.0 0.0 0.0
NBcr 14.9 15.3 12.2 24.4 18.6 17.2
Geocr 0.0 0.2 0.1 0.0 0.0 0.0
Berncr 0.0 0.0 0.0 0.0 0.0 0.0

(2, 1)

Pocr 15.6 15.0 13.9 20.9 18.3 15.1
Locr 0.0 0.0 0.0 0.0 0.0 0.0
NBcr 17.2 16.4 14.6 22.8 20.1 16.8
Geocr 0.1 0.0 0.1 0.0 0.0 0.0
Berncr 0.0 0.0 0.0 0.0 0.0 0.0

Locr

(7, 4)

Pocr 6.2 1.6 0.4 9.5 0.0 0.3
Locr 79.9 79.7 79.6 80.9 80.8 80.8
NBcr 5.9 5.0 6.0 9.5 2.3 6.3
Geocr 0.5 3.7 9.7 0.0 4.5 11.3
Berncr 0.0 0.0 0.0 0.0 0.0 0.0

(5, 3)

Pocr 6.8 0.8 0.7 6.7 0.6 0.2
Locr 76.1 75.9 75.8 80.5 80.4 80.3
NBcr 7.4 3.4 4.8 6.7 3.9 7.9
Geocr 0.3 4.3 9.4 0.1 4.4 14.7
Berncr 0.0 0.0 0.0 0.0 0.0 0.0

(2, 1)

Pocr 5.7 0.9 0.4 7.2 0.3 0.1
Locr 80.0 79.9 79.7 78.6 78.5 78.6
NBcr 6.1 4.7 6.7 7.2 4.1 10.9
Geocr 0.5 6.7 10.7 0.1 6.3 18.2
Berncr 0.0 0.0 0.0 0.0 0.0 0.0
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Table 5. Rejection rate (in %) of the Bellcr model when compared with different models using the Vuong’s test statistic—Part 2.

n = 200 n = 400

True (E(Z), Model Compared Cure Rate Cure Rate

Model Var(Z)) with Bellcr Case 1 Case 2 Case 3 Case 1 Case 2 Case 3

NBcr (q = 3)

(7, 4)

Pocr 0.9 2.3 3.4 0.4 1.4 1.6
Locr 0.0 0.0 0.0 0.0 0.0 0.0
NBcr 4.8 3.5 5.3 6.5 4.6 3.9
Geocr 0.8 1.4 0.6 0.3 0.5 0.5
Berncr 0.0 0.0 0.0 0.0 0.0 0.0

(5, 3)

Pocr 0.8 2.5 3.0 0.4 0.4 1.5
Locr 0.0 0.0 0.0 0.0 0.0 0.0
NBcr 7.2 4.8 4.2 11.2 3.4 4.1
Geocr 1.7 1.0 0.7 0.5 0.3 0.7
Berncr 0.0 0.0 0.0 0.0 0.0 0.0

(2, 1)

Pocr 0.7 1.4 2.8 0.1 1.0 1.7
Locr 0.0 0.0 0.0 0.0 0.0 0.0
NBcr 5.0 4.2 3.9 9.8 4.6 4.7
Geocr 1.0 0.8 0.5 0.6 0.2 0.5
Berncr 0.0 0.0 0.0 0.0 0.0 0.0

Geocr

(7, 4)

Pocr 0.0 0.0 0.0 0.0 0.0 0.0
Locr 0.4 0.8 0.5 0.1 0.1 0.4
NBcr 64.7 19.4 13.3 92.4 49.8 34.3
Geocr 58.7 25.7 18.8 83.5 49.1 38.8
Berncr 0.0 0.0 0.0 0.0 0.0 0.0

(5, 3)

Pocr 0.0 0.0 0.0 0.0 0.0 0.0
Locr 0.0 0.1 0.3 0.0 0.0 0.1
NBcr 69.8 25.8 15.8 94.8 55.6 36.8
Geocr 62.5 30.8 22.1 87.4 52.0 39.5
Berncr 0.0 0.0 0.0 0.0 0.0 0.0

(2, 1)

Pocr 0.0 0.0 0.0 0.0 0.0 0.0
Locr 0.0 0.0 0.0 0.0 0.0 0.0
NBcr 72.2 29.4 17.3 96.2 60.4 40.7
Geocr 63.9 33.4 24.2 89.6 56.7 42.7
Berncr 0.0 0.0 0.0 0.0 0.0 0.0

5. Data Analysis

In this section, we conduct an analysis of a dataset on melanoma available at the
timereg R package [22]. The study includes 205 patients, with survival times observed
after an operation for removal of a malignant melanoma. The observed times vary from
10 to 5565 days (from 0.03 to 15.24 years), with mean and median 5.89 and 5.49 years,
respectively, and standard deviation 3.07 years. The dataset comprises 148 censored
observations (72.2%), corresponding to patients who died from other causes or were
still alive at the end of the study. The dataset includes the covariates ulceration status
(x1) (absent, n = 115; present, n = 90) and tumor thickness (x2) (in mm, mean = 2.91,
median = 1.94 and standard deviation = 2.96).

We consider the Bell cure rate model for analyzing this dataset. For comparison
purposes, we also consider the Pocr, Locr, NBcr, Geocr and Bincr models. We assume the
Weibull distribution for the time-to-event for the concurrent causes. First we assess the
goodness of fit of the models. For such purpose, we use the Cox-Snell residual, see, e.g., [23]
and the normalized quantile residual [24]. In Figure 3, we see that the Bellcr, Pocr, Locr
and Geocr models yield a reasonable fit. However, the deviation from the identity line in
both residuals plot is evident for the NBcr model. We omit the results for the Bincr model
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because the plots are similar to the ones for the NBcr model. For this reason, we disregard
the NBcr and Bincr models. The Cox-Snell residuals highlight observations 200–205, which
correspond to the largest censored times. On the other hand, the normalized quantile
residuals do not suggest the presence of possible poorly fitted observations. Table 6
displays parameter estimates and odds ratio for the Bellcr, Locr, Pocr and Geocr models.
At a 5% significance level, the coefficients of ulceration status (β1) and tumor thickness (β2)
are significant and the negative sign is as expected. Moreover, the estimates of ν indicate
that the exponential distribution for the latent times in Section 1 is not adequate.
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Figure 3. Cox-Snell residuals (upper panels) and normalized quantile residuals plots (lower panels): (a) Bellcr, (b) Pocr,
(c) Locr, (d) NBcr and (e) Geocr models.

Table 6. Parameter estimates, standard errors (SE) and maximum value of the log-likelihood function
(
`(ψ̂)

)
for

different models.

Parameter

Model

Bellcr Pocr Locr Geocr

Estimate SE Estimate SE Estimate SE Estimate SE

β0 1.8759 0.2449 1.9039 0.3431 1.6771 0.3566 1.8127 0.3501
β1 −1.4536 0.2843 −1.4814 0.3901 −1.4816 0.3278 −1.4807 0.3569
β2 −0.1908 0.0416 −0.1960 0.0705 −0.1412 0.0356 −0.1785 0.0537
α −3.2461 0.3124 −2.9435 0.3411 −4.1863 0.5154 −3.4907 0.3916
ν 1.8287 0.1808 1.7368 0.2178 2.2110 0.2725 1.9132 0.2357

exp(β1) 0.2337 0.0664 0.2273 0.0887 0.2273 0.0745 0.2275 0.0812
exp(β2) 0.8263 0.0344 0.8220 0.0580 0.8683 0.0309 0.8365 0.0449

`(ψ̂) −206.3 −207.5 −203.7 −205.4

Note that for all the models, exp(β̂1) ≈ 0.23. Therefore, patients with ulceration
have approximately their probability of being cured reduced by a quarter in relation with
patients without ulceration.

Table 7 shows the Vuong’s statistic for the fitted models. At a 5% significance level,
we conclude that the Bellcr model is preferred to the Pocr model. Moreover, there is no
significant difference among the Bellcr and the Locr and Geocr models.
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Table 7. Vuong’s statistic and p-value when testing the Bell cure rate model against some alternatives.

Model Pocr Locr Geocr

Vuong’s statistic −2.473 1.238 1.146
p-Value 0.013 0.216 0.252

Figure 4 shows the estimates of the mean of the conditional distribution of Mi | ti, δi; ψ̂,
say M̃i, for i = 1, . . . , n. As previously discussed, values closer to 0 suggest which individu-
als are cured. Note that the Bellcr and Locr models provide very similar values. For instance,
the observation 6 corresponds to a patient who died after 204 days (0.56 years), with ul-
ceration and a tumor thickness of 4.84 cm., providing M̃i equal to 2.988, 2.985 and 2.156
for Bellcr, Locr and Geocr models, respectively. Therefore, the three models suggest that
this observation has a greater number of carcinogenic cells (a susceptible individual). Simi-
larly, the observation 149 corresponds to a patient who died after 2782 days (7.62 years),
without ulceration and a tumor thickness of 1.94 cm., providing M̃i equal to 1.076, 1.076
and 1.453 for Bellcr, Locr and Geocr models. This explains why the patient 6 fails in a time
considerably lower than patient 149. In a similar way, the observation 203 has a censored
time after 4688 days (12.84 years), without ulceration and a tumor thickness of 0.48 cm.,
resulting in M̃i equal to 0.002, 0.002 and 0.015 for the three models. In this case, the models
agree that this patients is a potentially cured individual.
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Figure 4. Estimate of the mean of the conditional distribution of Mi | ti, δi; ψ̂ in melanoma data set using (a) Bellcr, (b) Locr
and (c) Geocr models.

Finally, Figure 5 presents the width of the 95% confidence intervals for the conditional
cure rate in (9) and Figure 6 displays estimates of cure rate under the Bellcr, Locr and Geocr
models. In all models, the confidence intervals are computed using the delta method [25]
(Theorem 3.4.5) using expressions of the covariance matrix of the estimators in the power
series cure rate model presented in Gallardo et al. [14]. For the Locr and Geocr models,
the conditional cure rate is computed as in Remark 1. Note that the Bellcr model provides
more accurate confidence intervals for some settings in Figure 5. Finally, Figure 6 shows
the conditional cure rate in Equation (9) for different in terms of the tumor thickness for
t0 = 0 and t0 = 5 years and patients with and without ulceration.
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Figure 5. Width of the 95% confidence interval for the conditional cure rate: (a) without ulceration
and t0 = 0 year, (b) without ulceration and t0 = 5 years, (c) with ulceration and t0 = 5 years and
(d) with ulceration and t0 = 10 years.
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Figure 6. Estimates of the conditional cure rate (pt0 in Equation (9)) for t0 = 5 years: (a) without
ulceration and (b) with ulceration. Estimated survival function for a tumor thickness of 10 cms:
(c) without ulceration and (d) with ulceration.
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6. Conclusions

In this paper, a cure rate model is proposed under the competing risks setup. For the
number of competing causes of the event of interest, we posit the Bell distribution. This is
a one-parameter distribution that accommodates overdispersed counts. [26] emphasized
that the Poisson distribution represents a strong assumption when modelling the number
of competing causes. Therefore, compared to the two-parameter negative binomial distri-
bution, the proposed model is more parsimonious. The cure rate is a parameter linked to
covariates, facilitating the comparison with other models. Parameter estimates are com-
puted through iterative steps of the EM algorithm. In order to compare different models,
the test statistic proposed in [21] is implemented. In our simulation studies, the estimation
method and the test statistic have a good performance.

A dataset on melanoma is analyzed using the proposed model as well as some models
from the literature. Extensions of the proposed model to accommodate other types of
censoring (e.g., interval censoring) might be a theme for future work.
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Appendix A. Model Selection

Now we present the Vuong’s statistic [21] to test the hypothesis H0: The data are
generated from the Bellcr model against H1: The data are generated from an alterna-
tive cure rate model. Let ψ̂0 and ψ̂1 denote the ML estimators of the model parameter
ψ under H0 and H1, respectively. The test statistic is given by V = n−1/2ξ/ω, where
ξ = ∑n

i=1 log[ fi(ψ̂0)/gi(ψ̂1)] and ω = {n−1 ∑n
i=1 log2[ fi(ψ̂0)/gi(ψ̂1)]− ξ2}1/2, with

fi(ψ0) = fpop(ti; p, λ)δi Spop(ti; p, λ)1−δi ,

where Spop and fpop are given in (3) and (4), respectively and gi(ψ1) denotes the contribu-
tion of the i-th individual in the likelihood function under H1 (Pocr, Locr, NBcr, Geocr or
Bincr model).
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