On the Ternary Exponential Diophantine Equation Equating a Perfect Power and Sum of Products of Consecutive Integers

S. Subburam ${ }^{1, \dagger}$, Lewis Nkenyereye ${ }^{2, \dagger}$, N. Anbazhagan ${ }^{1}{ }^{(D}$, S. Amutha ${ }^{3}{ }^{(\mathbb{D}}$, M. Kameswari ${ }^{4}$, Woong Cho ${ }^{5, *}$ (D) and Gyanendra Prasad Joshi $6, *$ (D)

1 Department of Mathematics, Alagappa University, Karaikudi 630004, India; subburam@alagappauniversity.ac.in (S.S.); anbazhagann@alagappauniversity.ac.in (N.A.)
2 Department of Computer and Information Security, Sejong University, Seoul 05006, Korea; nkenyele@gmail.com
3 Ramanujan Centre for Higher Mathematics, Alagappa University, Karaikudi 630003, India; amuthas@alagappauniversity.ac.in
4 Department of Mathematics, School of Advanced Sciences, Kalasalingam Academy of Research and Education, Krishnankoil, Srivilliputhur 626128, India; m.kameshwari@klu.ac.in
5 Department of Automotive ICT Convergence Engineering, Daegu Catholic University, Gyeongsan 38430, Korea
${ }^{6}$ Department of Computer Science and Engineering, Sejong University, Seoul 05006, Korea

* Correspondence: wcho@cu.ac.kr (W.C.); joshi@sejong.ac.kr (G.P.J.)
\dagger These authors contributed equally to this work.

Citation: Subburam, S.; Nkenyereye, L.; Anbazhagan, N.; Amutha, S.; Kameswari, M.; Cho, W.; Joshi, G.P. On the Ternary Exponential Diophantine Equation Equating a Perfect Power and Sum of Products of Consecutive Integers. Mathematics 2021, 9, 1813. https://doi.org/ 10.3390/math9151813

Academic Editor: Dumitru Baleanu

Received: 30 June 2021
Accepted: 27 July 2021
Published: 30 July 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Abstract

Consider the Diophantine equation $y^{n}=x+x(x+1)+\cdots+x(x+1) \cdots(x+k)$, where x, y, n, and k are integers. In 2016, a research article, entitled - 'power values of sums of products of consecutive integers', primarily proved the inequality $n=19,736$ to obtain all solutions (x, y, n) of the equation for the fixed positive integers $k \leq 10$. In this paper, we improve the bound as $n \leq 10,000$ for the same case $k \leq 10$, and for any fixed general positive integer k, we give an upper bound depending only on k for n.

Keywords: Diophantine equation; Ternary Diophantine equation

MSC: 11D61; 11D45

1. Introduction

In 1976, Tijdeman proved that all integral solutions $(x, y, n), n>0$ and $|y|>1$, of the equation

$$
y^{n}=f(x)
$$

satisfy $n<c_{0}$, where c_{0} is an effectively computable constant depending only on f if $f(x)$ is an integer polynomial with at least two distinct roots (Shorey-Tijdeman [1], Tijdeman [2], Waldschmidt [3]). In 1987, Brindza in [4] obtained the unconditional form of the result for $f(x)=f_{1}^{k_{1}}(x)+f_{2}^{k_{2}}(x)+\cdots+f_{s}^{k_{s}}(x)$, where $f_{1}, f_{2}, \ldots, f_{s}$ are integer polynomials and $k_{1}, k_{2}, \ldots, k_{s}$ are positive integers such that $\min \left\{k_{i}: 1 \leq i \leq s\right\}>s(s-1)$. In 2016, Hajdu, Laishram, and Tengely in [5] proved the above result for $f(x)=x+x(x+1)+\cdots+x(x+$ 1) $\cdots(x+k)$. In 2018, Subburam [6] assured that, for each positive, real $\epsilon<1$, there exists an effectively computable constant $c(\epsilon)$ such that

$$
\max \{x, y, n\} \leq c(\epsilon)(\log \max \{a, b, c\})^{2+\epsilon}
$$

where (x, y, n) is a positive integral solution of the ternary exponential Diophantine equation

$$
a^{n}=b^{x}+c^{y}
$$

and a, b, and c are fixed positive integers with $\operatorname{gcd}(a, b, c)=1$. In 2019, Subburam [7] provided the unconditional form of the first result for $f(x)=\left(x+a_{1}\right)^{r_{1}}+\left(x+a_{2}\right)^{r_{2}}+$ $\cdots+\left(x+a_{m}\right)^{r_{m}}$, where $m \geq 2 ; a_{1}, a_{2}, \ldots, a_{m} ; r=r_{1}, r_{2}, \ldots, r_{m}$ are integers such that $r_{1} \geq r_{2} \geq \cdots \geq r_{m}>0 ; \operatorname{gcd}(\eta, \operatorname{cont}(f(x)))=1 ; \eta^{1 / r}$ is not an integer $>1 ; r_{2}<r_{1}-1$ when $r_{2}<r_{1} ; \eta=\left|\left\{r_{i}: r_{1}=r_{i}\right\}\right| ;$ and $\operatorname{cont}(f(x))$ is the content of $f(x)$. For further results related to this paper, see Bazsó [8]; Bazsó, Berczes, Hajdu, and Luca [9]; and Tengely and Ulas [10].

In this paper, we consider the Diophantine equation

$$
\begin{equation*}
y^{n}=x+x(x+1)+\cdots+x(x+1) \cdots(x+k)=: f_{k}(x) \tag{1}
\end{equation*}
$$

in integral variables x, y, and n, with $n>0$, where k is a fixed positive integer. In Theorem 2.1 of [5], Hajdu, Laishram, and Tengely proved that there exists an effectively computable constant $c(k)$ depending only on k such that (x, y, n) satisfy

$$
n \leq c(k)
$$

if $y \neq 0,-1$. For the case $1 \leq k \leq 10$, they explicitly calculated $c(k)$ as

$$
n \leq 19,736
$$

Here, we prove the following theorem. For any positive integers $s, p_{1}, p_{2}, \ldots, p_{m}$, we denote

$$
\lambda_{s}\left(p_{1}, \ldots, p_{m}\right)=\sum_{\substack{i_{1}, \cdots, i_{s} \\ 1 \leq i_{1}<\cdots<i_{s} \leq m}}^{\sum p_{i_{1}} p_{i_{2}} \cdots p_{i_{s}}}
$$

and $\lambda_{0}\left(p_{1}, \ldots, p_{m}\right)=1$. This elementary symmetric polynomial and its upper bound have been studied in Subburam [11].

Theorem 1. Let k be any positive integer and

$$
\mathfrak{b}=4\left|\sum_{i=0}^{k-1}(-1)^{i} A_{k-i-1} 2^{i}\right|
$$

where $A_{0}=1, A_{1}=1+\alpha_{1}, A_{k-1}=1+\alpha_{k-2}$, and $A_{j}=\alpha_{j-1}+\alpha_{j}$ for $j=2,3, \ldots, k-2$ and where

$$
\alpha_{m}=1+\sum_{i=0}^{m-1} \lambda_{i+1}(3, \ldots, k+i-m+1)
$$

for $m=1,2, \ldots, k-2$. Then, all integral solutions (x, y, n), with $y \neq 0,-1, x \neq 1, n \geq 1$, of (1) satisfy

$$
n \leq c_{2} \log \mathfrak{b}
$$

where c_{2} can be bounded using the linear form of the logarithmic method in Laurent, Mignotte, and Nesterenko [12], and an immediate estimation is

$$
c_{2}= \begin{cases}21,468 & \text { if } 21>\log n \\ 26,561(\log \log \mathfrak{b})^{2} & \text { if } 21 \leq \log n\end{cases}
$$

If

$$
\mathfrak{b} \leq 4 \times 9 \times 11 \times 467 \times 2,018,957
$$

then all integral solutions (x, y, n), with $y \neq 0,-1, x \neq 1, n \geq 1$, of (1) satisfy

$$
n \leq \begin{cases}\max \{1000,824.338 \log \mathfrak{b}+0.258\} & \text { if } \mathfrak{b} \leq 100 \\ \max \{2000,769.218 \log \mathfrak{b}+0.258\} & \text { if } 100<\mathfrak{b} \leq 10,000 \\ \max \{10,000,740.683 \log \mathfrak{b}+0.234\} & \text { if } \mathfrak{b}>10,000\end{cases}
$$

The result of Hajdu, Laishram, and Tengely in [5] is much stronger than the following corollary. They explicitly obtained all solutions for the values $k \leq 10$ using the MAGMA computer program along with two well-known methods (See Subburam [6], Srikanth and Subburam [13], and Subburam and Togbe [14]), after proving that $n \leq 19,736$ for $1 \leq k \leq 10$. Here, we have

Corollary 1. If $1 \leq k \leq 10$, then $n \leq 10,000$.
Hajdu, Laishram, and Tengely studied each of the cases " (n, k) where $n=2$ and k is odd with $1 \leq k \leq 10^{\prime \prime}$ in the proof of Theorem 2.2 of [5]. Here, we prove the following theorem for any odd k. This can be written as a suitable computer program by considering each step of the following theorem as a sub-program that can be separately and directly run.

Theorem 2. Let k be odd. Then, we have the following:
(i) There uniquely exist rational polynomials $B(x)$ and $C(x)$ with $\operatorname{deg}(C(x)) \leq \frac{k-1}{2}$ such that

$$
f_{k}(x)=B^{2}(x)+C(x)
$$

(ii) Let l be the least positive integer such that $l B(x)$ and $l^{2} C(x)$ have integer coefficients for any nonnegative integer i and $\delta \in\{1,-1\}$

$$
P_{i, \delta}(x)=\delta(l B(x)+\delta i)^{2}-\delta(l B(x))^{2}-\delta l^{2} C(x)
$$

r is any positive integer,

$$
H_{1}=\left\{\alpha \in \mathbb{Z}: P_{i, \delta}(\alpha)=0, \delta \in\{1,-1\}, i=0,1,2, \ldots, r-1\right\}
$$

and

$$
H_{2}=\left\{\alpha \in \mathbb{R}: P_{r, 1}(\alpha)=0 \text { or } P_{r,-1}(\alpha)=0\right\}
$$

where \mathbb{R} and \mathbb{Z} are the sets of all real numbers and integers, respectively. If H_{1} and H_{2} are empty, then (1) has no integral solution $(x, y, 2)$. Otherwise, all integral solutions $(x, y, 2)$ of (1) satisfy $x \in H_{1}$ or

$$
\min H_{2} \leq x \leq \max H_{2}
$$

2. Proofs

Lemma 1. Let $k \geq 3$. Then, all integral solutions $(x, y, n), n>0$ and $y \neq 0$, of (1) satisfy the equation

$$
a_{2} b_{1} y_{2}^{n}-b_{2} a_{1} y_{1}^{n}=2 b_{1} a_{1}
$$

where a_{1}, a_{2}, b_{1}, and b_{2} are positive integers such that

$$
a_{1} a_{2} b_{1} b_{2} \mid 4 \sum_{i=0}^{k-1}(-1)^{i} A_{k-i-1} 2^{i}
$$

A_{i} is the coefficient of x^{k-i-1} in the polynomial $f_{k}(x) / x(x+2)$,

$$
x=\left(\frac{b_{2}}{b_{1}}\right) y_{1}^{n}, \text { and } x+2=\left(\frac{a_{2}}{a_{1}}\right) y_{2}^{n}
$$

for some nonzero integers y_{1} and y_{2}.
Proof. Let $k \geq 3$. Let (x, y, n), with $n>0$ and $y \neq 0$, be any integral solution of the Diophantine equation

$$
y^{n}=x+x(x+1)+\cdots+x(x+1) \cdots(x+k)
$$

This can be written as

$$
y^{n}=x(x+2) g_{k}(x)
$$

for some integer polynomial $g_{k}(x)$, which is not divided by x and $x+2$, since $k \geq 3$. Let d and q be positive integers such that

$$
\operatorname{gcd}\left(x,(x+2) g_{k}(x)\right)=d \text { and } \operatorname{gcd}\left((x+2), x g_{k}(x)\right)=q .
$$

Let d_{1}, d_{2}, q_{1}, and q_{2} be positive integers such that $d_{1} d_{2}=d \operatorname{gcd}\left(d_{1}, d_{2}\right)=1, \operatorname{gcd}\left(d_{2}^{2},(x / d)\right)=$ $\operatorname{gcd}\left(d_{1}^{2},\left((x+2) g_{k}(x) / d\right)\right)=1, q_{1} q_{2}=q$, and $\operatorname{gcd}\left(q_{1}, q_{2}\right)=1=\operatorname{gcd}\left(q_{2}^{2},((x+2) / q)\right)=$ $\operatorname{gcd}\left(q_{1}^{2},\left(x g_{k}(x) / q\right)\right)=1$. Then,

$$
\left(\frac{d_{1}^{2}}{d}\right) x=y_{1}^{n} \text { and }\left(\frac{q_{1}^{2}}{q}\right)(x+2)=y_{2}^{n}
$$

for some nonzero integers y_{1} and y_{2}, since $y \neq 0$ and $n \geq 1$. From this, we have

$$
q d_{1}^{2} y_{2}^{n}-d q_{1}^{2} y_{1}^{n}=2 q_{1}^{2} d_{1}^{2} \quad \text { and so } \quad q_{2} d_{1} y_{2}^{n}-d_{2} q_{1} y_{1}^{n}=2 q_{1} d_{1} .
$$

Let

$$
g_{k}(x)=f_{k}(x) /(x(x+2))=x^{k-1}+A_{1} x^{k-2}+\cdots+A_{k-1}
$$

and

$$
g(x)=x^{2}+2 x
$$

Then, for each integer l with $0 \leq l \leq k-1$,

$$
h_{l}(x)=\left(\sum_{i=0}^{l}(-1)^{i} A_{l-i} 2^{i}\right) x^{k-l-1}+A_{l+1} x^{k-l-2}+\cdots+A_{k-1} .
$$

In particular,

$$
h_{k-1}(x)=\sum_{i=0}^{k-1}(-1)^{i} A_{k-i-1} 2^{i} .
$$

This implies that

$$
\operatorname{gcd}\left(g(x), g_{k}(x)\right) \mid \sum_{i=0}^{k-1}(-1)^{i} A_{k-i-1} 2^{i}
$$

where A_{i} is the coefficient of x^{k-i-1} in the polynomial $g_{k}(x)$.
If x is odd, then $d|x, d| g_{k}(x), q|(x+2), q| g_{k}(x)$ and so $d q \mid \operatorname{gcd}\left(g(x), g_{k}(x)\right)$. Suppose that x is even. Then,

$$
\frac{d q}{4} \left\lvert\, \frac{x(x+2)}{4}\right. \text { and } \left.\frac{d q}{4} \right\rvert\, g_{k}(x) .
$$

Hence, we have

$$
d q \mid 4 \operatorname{gcd}\left(g(x), g_{k}(x)\right) \text { and so } d q \mid 4 \sum_{i=0}^{k-1}(-1)^{i} A_{k-i-1} 2^{i}
$$

This proves the lemma.

Lemma 2 (Hajdu, Laishram, and Tengely [5]). Let a, b, and c be positive integers with $a<b \leq$ $4 \times 2,018,957 \times 99 \times 467$ and $c \leq 2 a b$. Then, the Diophantine equation

$$
a u^{n}-b v^{n}= \pm c
$$

in integral variables $u>v>1$, implies

$$
n \leq \begin{cases}\max \{1000,824.338 \log b+0.258\} & \text { if } b \leq 100 \\ \max \{2000,769.218 \log b+0.258\} & \text { if } 100<b \leq 10,000 \\ \max \{10,000,740.683 \log b+0.234\} & \text { if } b>10,000\end{cases}
$$

Lemma 3 (Szalay [15]). Suppose that $p \geq 2$ and $r \geq 1$ are integers and that

$$
F(x)=x^{r p}+a_{r p-1} x^{r p-1}+\cdots+a_{0}
$$

is a polynomial with integer coefficients. Then, rational polynomials

$$
B(x)=x^{r}+b_{r-1} x^{r-1}+\cdots+b_{0}
$$

and $C(x)$ with $\operatorname{deg}(C(x)) \leq r p-r-1$ uniquely exist for which

$$
F(x)=B^{p}(x)+C(x)
$$

Lemma 4 (Srikanth and Subburam [13]). Let p be a prime number, $B(x)$ and $C(x)$ be nonzero rational polynomials with $\operatorname{deg}(C(x))<(p-1) \operatorname{deg}(B(x))$, l be a positive integer such that $l B(x)$ and $l^{p} C(x)$ have integer coefficients for any nonnegative integer i and $\delta \in\{1,-1\}$:

$$
P_{i, \delta}(x)=\delta(l B(x)+\delta i)^{p}-\delta(l B(x))^{p}-\delta l^{p} C(x)
$$

r be any positive integer,

$$
H_{1}=\left\{\alpha \in \mathbb{Z}: P_{i, \delta}(\alpha)=0, \delta \in\{1,-1\}, i=0,1,2, \ldots, r-1\right\}
$$

and

$$
H_{2}=\left\{\alpha \in \mathbb{R}: P_{r, 1}(\alpha)=0 \text { or } P_{r,-1}(\alpha)=0\right\}
$$

If H_{1} and H_{2} are empty, then the Diophantine equation

$$
y^{p}=B(x)^{p}+C(x)
$$

has no integral solution (x, y). Otherwise, all integral solutions (x, y) of the equation satisfy $x \in H_{1}$ or

$$
\min H_{2} \leq x \leq \max H_{2}
$$

In some other new way as per Note 2, using Laurent's result leads to a better result. For our present purpose, the following lemma is enough.

Lemma 5 (Laurent, Mignotte, and Nesterenko [12]). Let $l, m, \alpha_{1}, \alpha_{2}, \beta_{1}$, and β_{2} be positive integers such that $l \log \left(\alpha_{1} / \alpha_{2}\right)-m \log \left(\beta_{1} / \beta_{2}\right) \neq 0$. Let

$$
\Gamma=\left|\left(\frac{\alpha_{1}}{\alpha_{2}}\right)^{l}\left(\frac{\beta_{1}}{\beta_{2}}\right)^{m}-1\right| .
$$

Then, we have

$$
|\Gamma|>0.5 \exp \left\{-24.34 \log \alpha \log \beta(\max \{\gamma+0.14,21\})^{2}\right\}
$$

where $\alpha=\max \left\{3, \alpha_{1}, \alpha_{2}\right\}, \beta=\max \left\{3, \beta_{1}, \beta_{2}\right\}$ and $\gamma=\log \left(\frac{l}{\log \beta}+\frac{m}{\log \alpha}\right)$.
Proof of Theorem 1. Assume that $k \geq 3$. Then, by Lemma 1, all integral solutions (x, y, n), $y \neq 0,-1$ and $n \geq 1$, of (1) satisfy the equation

$$
\begin{equation*}
a y_{2}^{n}-b y_{1}^{n}=c \tag{2}
\end{equation*}
$$

where y_{1} and y_{2} are nonzero integers, a and b are positive integers such that $c \leq 2 a b$,

$$
a b \mid 4 \sum_{i=0}^{k-1}(-1)^{i} A_{k-i-1} 2^{i}
$$

and A_{i} is the coefficient of x^{k-i-1} in the polynomial $f_{k}(x) / x(x+2)$. Without loss of generality, we can take $y_{1}>y_{2}$ to prove the result. From (2), we write

$$
\left|1-\left(\frac{a}{b}\right)\left(\frac{y_{2}}{y_{1}}\right)^{n}\right|=\frac{c}{b y_{1}^{n}}
$$

Next, take $\alpha_{1}=a, \alpha_{2}=b, \beta_{1}=y_{2}, \beta_{2}=y_{1}, l=1$, and $m=n$ in Lemma 5. Then, by the lemma, we obtain

$$
\frac{c}{b y_{1}^{n}} \geq \exp \left\{-24.3414(\log \max \{3, a, b\})\left(\log \max \left\{3, y_{1}\right\}\right) \max \{21,(\log n)\}^{2}\right.
$$

From this, we obtain the required bound. Next, assume that $1 \leq k \leq 2$. Then, we can write Equation (1) as

$$
y_{1}^{n}=c_{1} x
$$

and

$$
y_{2}^{2}=c_{2}(x+2)^{i}
$$

where

$$
c_{1}, c_{2} \in\{1 / 4,1 / 2,1,2,4\}
$$

and $i \in\{1,2\}$. In the same way, we can obtain the required bound. To find the exact values of $A_{0}, A_{1}, \ldots, A_{k-1}$, equate the coefficients of the polynomials

$$
g_{k}(x)=1+(x+1)(1+(x+3)+\cdots+(x+3)(x+4) \cdots(x+k))
$$

and

$$
g_{k}(x)=x^{k-1}+A_{1} x^{k-2}+\cdots+A_{k-1}
$$

Then, we obtain $A_{0}=1, A_{1}=1+\alpha_{1}, A_{k-1}=1+\alpha_{k-2}$, and $A_{j}=\alpha_{j-1}+\alpha_{j}$ for $j=2,3, \ldots, k-2$ and

$$
\alpha_{m}=1+\sum_{i=0}^{m-1} \lambda_{i+1}(3, \ldots, k+i-m+1)
$$

for $m=1,2, \ldots, k-2$.
Next, we consider the case that

$$
\mathfrak{b} \leq 4 \times 9 \times 11 \times 467 \times 2,018,957
$$

If $y_{1}=1, y_{2}=1$, or $y_{1}=y_{2}$, then we have

$$
x=\frac{d_{2}}{d_{1}}=1, x=\frac{q_{2}}{q_{1}}-2=-1, x=\frac{2 q_{1} d_{2}}{d_{1} q_{2}-q_{1} d_{2}}
$$

where d_{1}, d_{2}, q_{1} and q_{2} are positive integers such that $d_{1} d_{2} q_{1} q_{2}=a b$. These three equations give the required upper bound. Hence, Lemma 2 completes the theorem.

Proof of Corollary 1. Take $k=10$ in Theorem 1. Then, $A_{0}=1, A_{1}=54, A_{2}=1258$, $A_{3}=16,541, A_{4}=134,716, A_{5}=700,776, A_{6}=2,309,303, A_{7}=4,589,458, A_{8}=4,880,507$, $A_{9}=2,018,957$, and $b / 4=46,233$ and so

$$
740.683 \log \mathfrak{b} \leq 8982.9
$$

In a similar way, for the case $k<10$, we have

$$
\max \{10,000,740.683 \log \mathfrak{b}+0.23\} \leq 10,000
$$

Hence, Lemma 2 confirms the result.
Proof of Theorem 2. Take $F(x)=x+x(x+1)+\cdots+x(x+1) \cdots(x+k)$ in Lemma 3. Since k is odd, so $2 \mid \operatorname{deg}(F(x)), p=2$, and $r=\frac{k+1}{2}$. Then, by Lemma 3, there uniquely exist rational polynomials $B(x)$ and $C(x)$ with $\operatorname{deg}(C(x)) \leq \frac{k-1}{2}$ such that

$$
F(x)=B^{2}(x)+C(x)
$$

Now, by Lemma 4, we have the theorem.
Note 1. First, find the values of the elementary symmetric forms $\lambda_{i+1}(3, \ldots, k+i-m+1)$ for $i=0, \ldots, m-1$ and $m=1,2, \ldots, k-2$. Next, obtain $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k-2}$ and so $A_{0}, A_{1}, \ldots, A_{k-1}$. Using this, calculate $\left|A_{k-i-1}-2 A_{k-i-2}\right|$ and so

$$
2^{i}\left|A_{k-i-1}-2 A_{k-i-2}\right|=\left|A_{k-i-1} 2^{i}-A_{k-i-2} 2^{i+1}\right|
$$

for $i=0,2,4, \ldots$. In this way, for any positive integer k, we can find the exact value of \mathfrak{b} in Theorem 1. Therefore, it is not so hard to decide for which k is

$$
\mathfrak{b} \leq 4 \times 9 \times 11 \times 467 \times 2,018,957
$$

as in Theorem 1. For this work, we can use a suitable computer program.
Note 2. The result of Laurent [16] is an improvement on the result of Laurent, Mignotte, and Nesterenko [12]. From the proof, using the result of Laurent [16] and Proposition 4.1 in Hajdu, Laishram, and Tengely [5], we write the following:

Let A, B, and C be positive integers with $C \leq 2 A B, B>A$ and $B \leq 4 \times 9 \times 11 \times 467 \times$ $2,018,957$. Then, the equation

$$
A u^{n}-B v^{n}= \pm C
$$

in integer variables $u>v>1, n>3$ implies

$$
n \leq C_{m}\left(\max \left\{m, h_{n}\right\}\right)^{2}(\log B)\left(2+\frac{(\tau-1) q_{0}}{\log u_{0}}+\frac{1}{\log u_{0}}\right)+\frac{\log 4}{\log u_{0}}
$$

where

$$
h_{n}=\log \left(\frac{n}{(\tau+1) \log B}+\frac{1}{2 \log u+(\tau-1) q_{0}}\right)+\epsilon_{m}
$$

in which $q_{0}, u_{0}, C_{m}, m, \tau$, and ϵ_{m} are positive real numbers such that $u \geq u_{0}, \log (u / v) \leq q_{0}$, $C_{m}>1, \epsilon_{m}>1$, and $\tau>1$.

If we use the above observation in Lemma 1 of this paper, then we obtain the bound

$$
n \leq c_{2}^{\prime}(\log n-\log \log \mathfrak{b})^{2} \log \mathfrak{b}
$$

and so an immediate estimation is

$$
n \leq c_{2} \log \mathfrak{b}
$$

where c_{2} is as in Theorem 1 and c_{2}^{\prime} is a positive real number depending on $u_{0}, q_{0}, C_{m}, m, \tau$, and ϵ_{m}. Though there are better bounds in the literature than what the linear form of the logarithmic method in Laurent, Mignotte, and Nesterenko [12] gives, it is sufficient to obtain an explicit bound only in terms of k using our method, which simplifies the arguments in Section 5 of [5] as well.

3. Conclusions

This article implied a method to obtain an upper bound for all n where (x, y, n) is an integral solution of (1) and to improve the method and algorithm of [4]. The same method can be applied to study the general Diophantine equation (see [8-10]),

$$
y^{n}=a_{0} x+a_{1} x(x+1)+\cdots+a_{k} x(x+1) \cdots(x+k)
$$

where $k, a_{0}, a_{1}, \cdots, a_{k}$ are fixed integers and x, y, n are integral variables in obtaining a better upper bound (depending only on $k, a_{0}, a_{1}, \cdots, a_{k}$) for all $\max \{x, y, n\}$, where (x, y, n) is an integral solution of the general equation.

Author Contributions: Conceptualization, S.S.; data curation, S.A.; formal analysis, S.S., N.A., and M.K.; methodology, N.A. and S.A.; project administration, W.C. and G.P.J.; resources, W.C. and G.P.J.;; software, M.K.; supervision, W.C. and G.P.J.; validation, L.N.; visualization, L.N.; writing-original draft, S.S. and N.A.; writing-review and editing, G.P.J. All authors have read and agreed to the published version of the manuscript.
Funding: Anbazhagan and Amutha thank the RUSA grant sanctioned vide letter No. F 24-51/2014-U, Policy (TN Multi-Gen), Dept. of Edn. Govt. of India, Dt. 9 October 2018; the DST-PURSE 2nd Phase programme vide letter No. SR/PURSE Phase 2/38 (G) Dt. 21 February 2017; and the DST (FST—level I) 657876570 vide letter No. SR/FIST/MS-I/2018/17 Dt. 20 December 2018. S. Subburam's research has been honored by the National Board of Higher Mathematics (NBHM), Department of Atomic Energy, Government of India (IN).
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.
Conflicts of Interest: The authors declare no conflict of interest.

References

1. Shorey, T.N.; Tijdeman, R. Exponential Diophantine Equations; Cambridge University Press: Cambridge, UK, 1986.
2. Tijdeman, R. Applications of the Gel'fond-Baker method to rational number theory. In Topics in Number Theory, Proceedings of the Conference Debrecen 1974; Colloquia Mathematica Societatis Janos Bolyai; North-Holland: Amsterdam, The Netherlands, 1976; Volume 13, pp. 399-416.
3. Waldschmidt, M. Open Diophantine problems. Mosc. Math. J. 2004, 4, 245-305. [CrossRef]
4. Brindza, B. Zeros of polynomials and exponential Diophantine equations. Comp. Math 1987, 61, 137-157.
5. Hajdu, L.; Laishram, S.; Tengely, S. Power values of sums of products of consecutive integers. Acta Arith 2016, 172, 333-349. [CrossRef]
6. Subburam, S. On the Diophantine equation $l a^{x}+m b^{y}=n c^{z}$. Res. Number Theory 2018, 4, 25. [CrossRef]
7. Subburam, S. A note on the Diophantine equation $\left(x+a_{1}\right)^{r_{1}}+\left(x+a_{2}\right)^{r_{2}}+\cdots+\left(x+a_{m}\right)^{r_{m}}=y^{n}$. Afrika Mat. 2019, 30, 957-958. [CrossRef]
8. Bazsó, A. On linear combinations of products of consecutive integers. Acta Math. Hung. 2020, 162, 690-704. [CrossRef]
9. Bazsó, A.; Berczes, A.; Hajdu, L.; Luca, F. Polynomial values of sums of products of consecutive integers. Monatsh. Math 2018, 187, 21-34. [CrossRef]
10. Tengely, S.; Ulas, M. Power values of sums of certain products of consecutive integers and related results. J. Number Theory 2019, 197, 341-360. [CrossRef]
11. Subburam, S . The Diophantine equation $\left(y+q_{1}\right)\left(y+q_{2}\right) \cdots\left(y+q_{m}\right)=f(x)$. Acta Math. Hung. 2015, 146, 40-46. [CrossRef]
12. Laurent, M.; Mignotte, M.; Nesterenko, Y. Formes linéaires en deux logarithmes et determinants d'interpolation. J. Number Theory 1995, 55, 285-321. [CrossRef]
13. Srikanth, R.; Subburam, S. On the Diophantine equation $y^{2}=\prod_{i \leq 8}\left(x+k_{i}\right)$. Proc. Indian Acad. Sci. (Math. Sci.) 2018, 128, 41. [CrossRef]
14. Subburam, S.; Togbe, A. On the Diophantine equation $y^{n}=f(x) / g(x)$. Acta Math. Hung. 2019, 157, 1-9. [CrossRef]
15. Szalay, L. Superelliptic equation $y^{p}=x^{k p}+a_{k p-1} x^{k p-1}+\cdots+a_{0}$. Bull. Greek Math. Soc. 2002, 46, 23-33.
16. Laurent, M. Linear forms in two logarithms and interpolation determinants II. Acta Arith. 2008, 133, 325-348. [CrossRef]
