

Article

On the Ternary Exponential Diophantine Equation Equating a Perfect Power and Sum of Products of Consecutive Integers

S. Subburam ^{1,†}, Lewis Nkenyereye ^{2,†}, N. Anbazhagan ¹^(D), S. Amutha ³^(D), M. Kameswari ⁴, Woong Cho ^{5,*}^(D) and Gyanendra Prasad Joshi ^{6,*}^(D)

- ¹ Department of Mathematics, Alagappa University, Karaikudi 630004, India;
- subburam@alagappauniversity.ac.in (S.S.); anbazhagann@alagappauniversity.ac.in (N.A.)
 ² Department of Computer and Information Security, Sejong University, Seoul 05006, Korea; nkenvele@gmail.com
- ³ Ramanujan Centre for Higher Mathematics, Alagappa University, Karaikudi 630003, India; amuthas@alagappauniversity.ac.in
- ⁴ Department of Mathematics, School of Advanced Sciences, Kalasalingam Academy of Research and Education, Krishnankoil, Srivilliputhur 626128, India; m.kameshwari@klu.ac.in
- ⁵ Department of Automotive ICT Convergence Engineering, Daegu Catholic University, Gyeongsan 38430, Korea
- ⁶ Department of Computer Science and Engineering, Sejong University, Seoul 05006, Korea
- Correspondence: wcho@cu.ac.kr (W.C.); joshi@sejong.ac.kr (G.P.J.)
- † These authors contributed equally to this work.

Abstract: Consider the Diophantine equation $y^n = x + x(x+1) + \cdots + x(x+1) \cdots (x+k)$, where x, y, n, and k are integers. In 2016, a research article, entitled – 'power values of sums of products of consecutive integers', primarily proved the inequality n = 19,736 to obtain all solutions (x, y, n) of the equation for the fixed positive integers $k \le 10$. In this paper, we improve the bound as $n \le 10,000$ for the same case $k \le 10$, and for any fixed general positive integer k, we give an upper bound depending only on k for n.

Keywords: Diophantine equation; Ternary Diophantine equation

MSC: 11D61; 11D45

1. Introduction

In 1976, Tijdeman proved that all integral solutions (x, y, n), n > 0 and |y| > 1, of the equation

 $y^n = f(x)$

satisfy $n < c_0$, where c_0 is an effectively computable constant depending only on f if f(x) is an integer polynomial with at least two distinct roots (Shorey-Tijdeman [1], Tijdeman [2], Waldschmidt [3]). In 1987, Brindza in [4] obtained the unconditional form of the result for $f(x) = f_1^{k_1}(x) + f_2^{k_2}(x) + \cdots + f_s^{k_s}(x)$, where f_1, f_2, \ldots, f_s are integer polynomials and k_1, k_2, \ldots, k_s are positive integers such that min $\{k_i : 1 \le i \le s\} > s(s-1)$. In 2016, Hajdu, Laishram, and Tengely in [5] proved the above result for $f(x) = x + x(x+1) + \cdots + x(x+1) \cdots (x+k)$. In 2018, Subburam [6] assured that, for each positive, real $\epsilon < 1$, there exists an effectively computable constant $c(\epsilon)$ such that

$$\max\{x, y, n\} \le c(\epsilon) (\log \max\{a, b, c\})^{2+\epsilon},$$

where (x, y, n) is a positive integral solution of the ternary exponential Diophantine equation

$$a^n = b^x + c^y$$

Citation: Subburam, S.; Nkenyereye, L.; Anbazhagan, N.; Amutha, S.; Kameswari, M.; Cho, W.; Joshi, G.P. On the Ternary Exponential Diophantine Equation Equating a Perfect Power and Sum of Products of Consecutive Integers. *Mathematics* **2021**, *9*, 1813. https://doi.org/ 10.3390/math9151813

Academic Editor: Dumitru Baleanu

Received: 30 June 2021 Accepted: 27 July 2021 Published: 30 July 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). and *a*, *b*, and *c* are fixed positive integers with gcd(a, b, c) = 1. In 2019, Subburam [7] provided the unconditional form of the first result for $f(x) = (x + a_1)^{r_1} + (x + a_2)^{r_2} + \cdots + (x + a_m)^{r_m}$, where $m \ge 2$; a_1, a_2, \ldots, a_m ; $r = r_1, r_2, \ldots, r_m$ are integers such that $r_1 \ge r_2 \ge \cdots \ge r_m > 0$; $gcd(\eta, cont(f(x))) = 1$; $\eta^{1/r}$ is not an integer > 1; $r_2 < r_1 - 1$ when $r_2 < r_1$; $\eta = |\{r_i : r_1 = r_i\}|$; and cont(f(x)) is the content of f(x). For further results related to this paper, see Bazsó [8]; Bazsó, Berczes, Hajdu, and Luca [9]; and Tengely and Ulas [10].

In this paper, we consider the Diophantine equation

$$y^{n} = x + x(x+1) + \dots + x(x+1) \cdots (x+k) =: f_{k}(x)$$
(1)

in integral variables x, y, and n, with n > 0, where k is a fixed positive integer. In Theorem 2.1 of [5], Hajdu, Laishram, and Tengely proved that there exists an effectively computable constant c(k) depending only on k such that (x, y, n) satisfy

 $n \leq c(k)$

if $y \neq 0, -1$. For the case $1 \leq k \leq 10$, they explicitly calculated c(k) as

 $n \le 19,736.$

Here, we prove the following theorem. For any positive integers s, p_1 , p_2 , ..., p_m , we denote

$$\lambda_s(p_1,\ldots,p_m) = \sum_{\substack{i_1,\ldots,i_s\\1 \le i_1 < \cdots < i_s \le m}} p_{i_1}p_{i_2}\cdots p_{i_s}$$

and $\lambda_0(p_1, ..., p_m) = 1$. This elementary symmetric polynomial and its upper bound have been studied in Subburam [11].

Theorem 1. Let k be any positive integer and

$$\mathfrak{b} = 4 \left| \sum_{i=0}^{k-1} (-1)^i A_{k-i-1} 2^i \right|,$$

where $A_0 = 1$, $A_1 = 1 + \alpha_1$, $A_{k-1} = 1 + \alpha_{k-2}$, and $A_j = \alpha_{j-1} + \alpha_j$ for j = 2, 3, ..., k-2and where

$$\alpha_m = 1 + \sum_{i=0}^{m-1} \lambda_{i+1}(3, \dots, k+i-m+1)$$

for m = 1, 2, ..., k - 2. Then, all integral solutions (x, y, n), with $y \neq 0, -1, x \neq 1, n \geq 1$, of (1) satisfy

$$n \leq c_2 \log \mathfrak{b},$$

where c_2 can be bounded using the linear form of the logarithmic method in Laurent, Mignotte, and Nesterenko [12], and an immediate estimation is

$$c_2 = \begin{cases} 21,468 & \text{if } 21 > \log n \\ 26,561(\log \log \mathfrak{b})^2 & \text{if } 21 \le \log n. \end{cases}$$

If

$$\mathfrak{b} \leq 4 \times 9 \times 11 \times 467 \times 2,018,957,$$

then all integral solutions (x, y, n), with $y \neq 0, -1, x \neq 1, n \geq 1$, of (1) satisfy

$$n \leq \begin{cases} \max\{1000, 824.338 \log \mathfrak{b} + 0.258\} & \text{if } \mathfrak{b} \leq 100 \\ \max\{2000, 769.218 \log \mathfrak{b} + 0.258\} & \text{if } 100 < \mathfrak{b} \leq 10,000 \\ \max\{10,000, 740.683 \log \mathfrak{b} + 0.234\} & \text{if } \mathfrak{b} > 10,000. \end{cases}$$

The result of Hajdu, Laishram, and Tengely in [5] is much stronger than the following corollary. They explicitly obtained all solutions for the values $k \le 10$ using the MAGMA computer program along with two well-known methods (See Subburam [6], Srikanth and Subburam [13], and Subburam and Togbe [14]), after proving that $n \le 19,736$ for $1 \le k \le 10$. Here, we have

Corollary 1. *If* $1 \le k \le 10$ *, then* $n \le 10,000$ *.*

Hajdu, Laishram, and Tengely studied each of the cases "(n, k) where n = 2 and k is odd with $1 \le k \le 10$ " in the proof of Theorem 2.2 of [5]. Here, we prove the following theorem for any odd k. This can be written as a suitable computer program by considering each step of the following theorem as a sub-program that can be separately and directly run.

Theorem 2. Let *k* be odd. Then, we have the following:

(*i*) There uniquely exist rational polynomials B(x) and C(x) with $deg(C(x)) \leq \frac{k-1}{2}$ such that

$$f_k(x) = B^2(x) + C(x).$$

(*ii*) Let *l* be the least positive integer such that lB(x) and $l^2C(x)$ have integer coefficients for any nonnegative integer *i* and $\delta \in \{1, -1\}$

$$P_{i,\delta}(x) = \delta(lB(x) + \delta i)^2 - \delta(lB(x))^2 - \delta l^2 C(x),$$

r is any positive integer,

$$H_1 = \{ \alpha \in \mathbb{Z} : P_{i,\delta}(\alpha) = 0, \delta \in \{1, -1\}, i = 0, 1, 2, \dots, r-1 \},\$$

and

$$H_2 = \{ \alpha \in \mathbb{R} : P_{r,1}(\alpha) = 0 \text{ or } P_{r,-1}(\alpha) = 0 \},\$$

where \mathbb{R} and \mathbb{Z} are the sets of all real numbers and integers, respectively. If H_1 and H_2 are empty, then (1) has no integral solution (x, y, 2). Otherwise, all integral solutions (x, y, 2) of (1) satisfy $x \in H_1$ or

$$\min H_2 \leq x \leq \max H_2.$$

2. Proofs

Lemma 1. Let $k \ge 3$. Then, all integral solutions (x, y, n), n > 0 and $y \ne 0$, of (1) satisfy the equation

$$a_2b_1y_2^n - b_2a_1y_1^n = 2b_1a_1,$$

where a_1, a_2, b_1 , and b_2 are positive integers such that

$$a_1a_2b_1b_2 \mid 4\sum_{i=0}^{k-1}(-1)^iA_{k-i-1}2^i,$$

 A_i is the coefficient of x^{k-i-1} in the polynomial $f_k(x)/x(x+2)$,

$$x = \left(\frac{b_2}{b_1}\right)y_1^n$$
 , and $x + 2 = \left(\frac{a_2}{a_1}\right)y_2^n$

for some nonzero integers y_1 and y_2 .

Proof. Let $k \ge 3$. Let (x, y, n), with n > 0 and $y \ne 0$, be any integral solution of the Diophantine equation

$$y^n = x + x(x+1) + \dots + x(x+1) \cdots (x+k).$$

This can be written as

$$y^n = x(x+2)g_k(x)$$

for some integer polynomial $g_k(x)$, which is not divided by x and x + 2, since $k \ge 3$. Let d and q be positive integers such that

$$gcd(x, (x+2)g_k(x)) = d$$
 and $gcd((x+2), xg_k(x)) = q$.

Let d_1, d_2, q_1 , and q_2 be positive integers such that $d_1d_2 = d \operatorname{gcd}(d_1, d_2) = 1, \operatorname{gcd}(d_2^2, (x/d)) =$ $\operatorname{gcd}(d_1^2, ((x+2)g_k(x)/d)) = 1, q_1q_2 = q$, and $\operatorname{gcd}(q_1, q_2) = 1 = \operatorname{gcd}(q_2^2, ((x+2)/q)) =$ $\operatorname{gcd}(q_1^2, (xg_k(x)/q)) = 1$. Then,

$$\left(\frac{d_1^2}{d}\right)x = y_1^n \text{ and } \left(\frac{q_1^2}{q}\right)(x+2) = y_2^n$$

for some nonzero integers y_1 and y_2 , since $y \neq 0$ and $n \ge 1$. From this, we have

$$qd_1^2y_2^n - dq_1^2y_1^n = 2q_1^2d_1^2$$
 and so $q_2d_1y_2^n - d_2q_1y_1^n = 2q_1d_1$.

Let

$$g_k(x) = f_k(x)/(x(x+2)) = x^{k-1} + A_1 x^{k-2} + \dots + A_{k-1}$$

and

$$g(x) = x^2 + 2x$$

Then, for each integer *l* with $0 \le l \le k - 1$,

$$h_l(x) = \left(\sum_{i=0}^l (-1)^i A_{l-i} 2^i\right) x^{k-l-1} + A_{l+1} x^{k-l-2} + \dots + A_{k-1}.$$

In particular,

$$h_{k-1}(x) = \sum_{i=0}^{k-1} (-1)^i A_{k-i-1} 2^i.$$

This implies that

$$gcd(g(x),g_k(x)) \mid \sum_{i=0}^{k-1} (-1)^i A_{k-i-1} 2^i,$$

where A_i is the coefficient of x^{k-i-1} in the polynomial $g_k(x)$.

If *x* is odd, then $d \mid x, d \mid g_k(x), q \mid (x+2), q \mid g_k(x)$ and so $dq \mid gcd(g(x), g_k(x))$. Suppose that *x* is even. Then,

$$\frac{dq}{4} \mid \frac{x(x+2)}{4}$$
 and $\frac{dq}{4} \mid g_k(x)$.

Hence, we have

$$dq \mid 4 \operatorname{gcd}(g(x), g_k(x)) \text{ and so } dq \mid 4 \sum_{i=0}^{k-1} (-1)^i A_{k-i-1} 2^i.$$

This proves the lemma. \Box

Lemma 2 (Hajdu, Laishram, and Tengely [5]). *Let a, b, and c be positive integers with a* $< b \le 4 \times 2,018,957 \times 99 \times 467$ and $c \le 2ab$. Then, the Diophantine equation

$$au^n-bv^n=\pm c,$$

in integral variables u > v > 1, implies

$$n \leq \begin{cases} \max\{1000, 824.338 \log b + 0.258\} & \text{if } b \leq 100 \\ \max\{2000, 769.218 \log b + 0.258\} & \text{if } 100 < b \leq 10,000 \\ \max\{10,000, 740.683 \log b + 0.234\} & \text{if } b > 10,000 \end{cases}$$

Lemma 3 (Szalay [15]). Suppose that $p \ge 2$ and $r \ge 1$ are integers and that

$$F(x) = x^{rp} + a_{rp-1}x^{rp-1} + \dots + a_0$$

is a polynomial with integer coefficients. Then, rational polynomials

$$B(x) = x^r + b_{r-1}x^{r-1} + \dots + b_0$$

and C(x) with $\deg(C(x)) \leq rp - r - 1$ uniquely exist for which

$$F(x) = B^p(x) + C(x).$$

Lemma 4 (Srikanth and Subburam [13]). Let *p* be a prime number, B(x) and C(x) be nonzero rational polynomials with $\deg(C(x)) < (p-1) \deg(B(x))$, *l* be a positive integer such that lB(x) and $l^pC(x)$ have integer coefficients for any nonnegative integer *i* and $\delta \in \{1, -1\}$:

$$P_{i,\delta}(x) = \delta(lB(x) + \delta i)^p - \delta(lB(x))^p - \delta l^p C(x),$$

r be any positive integer,

$$H_1 = \{ \alpha \in \mathbb{Z} : P_{i,\delta}(\alpha) = 0, \delta \in \{1, -1\}, i = 0, 1, 2, \dots, r-1 \},\$$

and

$$H_2 = \{ \alpha \in \mathbb{R} : P_{r,1}(\alpha) = 0 \text{ or } P_{r,-1}(\alpha) = 0 \}.$$

If H_1 and H_2 are empty, then the Diophantine equation

$$y^p = B(x)^p + C(x)$$

has no integral solution (x, y). Otherwise, all integral solutions (x, y) of the equation satisfy $x \in H_1$ or

$$\min H_2 \le x \le \max H_2.$$

In some other new way as per Note 2, using Laurent's result leads to a better result. For our present purpose, the following lemma is enough.

Lemma 5 (Laurent, Mignotte, and Nesterenko [12]). Let $l, m, \alpha_1, \alpha_2, \beta_1, and \beta_2$ be positive integers such that $l \log(\alpha_1/\alpha_2) - m \log(\beta_1/\beta_2) \neq 0$. Let

$$\Gamma = \left| \left(\frac{\alpha_1}{\alpha_2} \right)^l \left(\frac{\beta_1}{\beta_2} \right)^m - 1 \right|.$$

Then, we have

$$|\Gamma| > 0.5 \exp\{-24.34 \log \alpha \log \beta (\max\{\gamma + 0.14, 21\})^2\},\$$

where
$$\alpha = \max\{3, \alpha_1, \alpha_2\}, \beta = \max\{3, \beta_1, \beta_2\}$$
 and $\gamma = \log\left(\frac{1}{\log \beta} + \frac{m}{\log \alpha}\right)$

Proof of Theorem 1. Assume that $k \ge 3$. Then, by Lemma 1, all integral solutions (x, y, n), $y \ne 0, -1$ and $n \ge 1$, of (1) satisfy the equation

$$ay_2^n - by_1^n = c, (2)$$

where y_1 and y_2 are nonzero integers, *a* and *b* are positive integers such that $c \leq 2ab$,

$$ab \mid 4\sum_{i=0}^{k-1} (-1)^i A_{k-i-1} 2^i,$$

and A_i is the coefficient of x^{k-i-1} in the polynomial $f_k(x)/x(x+2)$. Without loss of generality, we can take $y_1 > y_2$ to prove the result. From (2), we write

$$\left|1 - \left(\frac{a}{b}\right) \left(\frac{y_2}{y_1}\right)^n\right| = \frac{c}{by_1^n}$$

Next, take $\alpha_1 = a$, $\alpha_2 = b$, $\beta_1 = y_2$, $\beta_2 = y_1$, l = 1, and m = n in Lemma 5. Then, by the lemma, we obtain

$$\frac{c}{by_1^n} \ge \exp\{-24.3414(\log\max\{3,a,b\})(\log\max\{3,y_1\})\max\{21,(\log n)\}^2\}$$

From this, we obtain the required bound. Next, assume that $1 \le k \le 2$. Then, we can write Equation (1) as $y_1^n = c_1 x$

$$y_2^2 = c_2(x+2)^i$$
,

where

and

$$c_1, c_2 \in \{1/4, 1/2, 1, 2, 4\}$$

and $i \in \{1, 2\}$. In the same way, we can obtain the required bound. To find the exact values of $A_0, A_1, \ldots, A_{k-1}$, equate the coefficients of the polynomials

$$g_k(x) = 1 + (x+1)(1 + (x+3) + \dots + (x+3)(x+4) \dots + (x+k))$$

and

$$g_k(x) = x^{k-1} + A_1 x^{k-2} + \dots + A_{k-1}.$$

Then, we obtain $A_0 = 1$, $A_1 = 1 + \alpha_1$, $A_{k-1} = 1 + \alpha_{k-2}$, and $A_j = \alpha_{j-1} + \alpha_j$ for j = 2, 3, ..., k - 2 and

$$\alpha_m = 1 + \sum_{i=0}^{m-1} \lambda_{i+1}(3, \dots, k+i-m+1)$$

for m = 1, 2, ..., k - 2. \Box

Next, we consider the case that

$$\mathfrak{b} \leq 4 \times 9 \times 11 \times 467 \times 2,018,957.$$

If $y_1 = 1$, $y_2 = 1$, or $y_1 = y_2$, then we have

$$x = \frac{d_2}{d_1} = 1, x = \frac{q_2}{q_1} - 2 = -1, x = \frac{2q_1d_2}{d_1q_2 - q_1d_2},$$

where d_1 , d_2 , q_1 and q_2 are positive integers such that $d_1d_2q_1q_2 = ab$. These three equations give the required upper bound. Hence, Lemma 2 completes the theorem.

Proof of Corollary 1. Take k = 10 in Theorem 1. Then, $A_0 = 1$, $A_1 = 54$, $A_2 = 1258$, $A_3 = 16,541$, $A_4 = 134,716$, $A_5 = 700,776$, $A_6 = 2,309,303$, $A_7 = 4,589,458$, $A_8 = 4,880,507$, $A_9 = 2,018,957$, and b/4 = 46,233 and so

 $740.683 \log \mathfrak{b} \le 8982.9.$

In a similar way, for the case k < 10, we have

 $\max\{10,000,740.683 \log \mathfrak{b} + 0.23\} \le 10,000.$

Hence, Lemma 2 confirms the result. \Box

Proof of Theorem 2. Take $F(x) = x + x(x+1) + \cdots + x(x+1) \cdots (x+k)$ in Lemma 3. Since *k* is odd, so 2 | deg(F(x)), p = 2, and $r = \frac{k+1}{2}$. Then, by Lemma 3, there uniquely exist rational polynomials B(x) and C(x) with deg(C(x)) $\leq \frac{k-1}{2}$ such that

$$F(x) = B^2(x) + C(x).$$

Now, by Lemma 4, we have the theorem. \Box

Note 1. First, find the values of the elementary symmetric forms $\lambda_{i+1}(3, \ldots, k+i-m+1)$ for $i = 0, \ldots, m-1$ and $m = 1, 2, \ldots, k-2$. Next, obtain $\alpha_1, \alpha_2, \ldots, \alpha_{k-2}$ and so $A_0, A_1, \ldots, A_{k-1}$. Using this, calculate $|A_{k-i-1} - 2A_{k-i-2}|$ and so

$$2^{i}|A_{k-i-1} - 2A_{k-i-2}| = |A_{k-i-1}2^{i} - A_{k-i-2}2^{i+1}|$$

for i = 0, 2, 4, ... In this way, for any positive integer k, we can find the exact value of b in Theorem 1. Therefore, it is not so hard to decide for which k is

$$\mathfrak{b} \leq 4 \times 9 \times 11 \times 467 \times 2,018,957$$

as in Theorem 1. For this work, we can use a suitable computer program.

Note 2. The result of Laurent [16] is an improvement on the result of Laurent, Mignotte, and Nesterenko [12]. From the proof, using the result of Laurent [16] and Proposition 4.1 in Hajdu, Laishram, and Tengely [5], we write the following:

Let A, *B*, and *C* be positive integers with $C \le 2AB$, B > A and $B \le 4 \times 9 \times 11 \times 467 \times 2,018,957$. Then, the equation

$$Au^n - Bv^n = \pm C$$

in integer variables u > v > 1, n > 3 implies

$$n \leq C_m(\max\{m, h_n\})^2(\log B)\left(2 + \frac{(\tau - 1)q_0}{\log u_0} + \frac{1}{\log u_0}\right) + \frac{\log 4}{\log u_0},$$

where

$$h_n = \log\left(\frac{n}{(\tau+1)\log B} + \frac{1}{2\log u + (\tau-1)q_0}\right) + \epsilon_m,$$

in which q_0 , u_0 , C_m , m, τ , and ϵ_m are positive real numbers such that $u \ge u_0$, $\log(u/v) \le q_0$, $C_m > 1$, $\epsilon_m > 1$, and $\tau > 1$.

If we use the above observation in Lemma 1 of this paper, then we obtain the bound

$$n \le c_2' (\log n - \log \log \mathfrak{b})^2 \log \mathfrak{b}$$

and so an immediate estimation is

$$n \leq c_2 \log \mathfrak{b},$$

where c_2 is as in Theorem 1 and c'_2 is a positive real number depending on u_0, q_0, C_m, m, τ , and ϵ_m . Though there are better bounds in the literature than what the linear form of the logarithmic method in Laurent, Mignotte, and Nesterenko [12] gives, it is sufficient to obtain an explicit bound only in terms of k using our method, which simplifies the arguments in Section 5 of [5] as well.

3. Conclusions

This article implied a method to obtain an upper bound for all *n* where (x, y, n) is an integral solution of (1) and to improve the method and algorithm of [4]. The same method can be applied to study the general Diophantine equation (see [8–10]),

$$y^n = a_0 x + a_1 x(x+1) + \dots + a_k x(x+1) \cdots (x+k),$$

where k, a_0, a_1, \dots, a_k are fixed integers and x, y, n are integral variables in obtaining a better upper bound (depending only on k, a_0, a_1, \dots, a_k) for all $max\{x, y, n\}$, where (x, y, n) is an integral solution of the general equation.

Author Contributions: Conceptualization, S.S.; data curation, S.A.; formal analysis, S.S., N.A., and M.K.; methodology, N.A. and S.A.; project administration, W.C. and G.P.J.; resources, W.C. and G.P.J.; software, M.K.; supervision, W.C. and G.P.J.; validation, L.N.; visualization, L.N.; writing—original draft, S.S. and N.A.; writing—review and editing, G.P.J. All authors have read and agreed to the published version of the manuscript.

Funding: Anbazhagan and Amutha thank the RUSA grant sanctioned vide letter No. F 24-51/2014-U, Policy (TN Multi-Gen), Dept. of Edn. Govt. of India, Dt. 9 October 2018; the DST-PURSE 2nd Phase programme vide letter No. SR/PURSE Phase 2/38 (G) Dt. 21 February 2017; and the DST (FST—level I) 657876570 vide letter No. SR/FIST/MS-I/2018/17 Dt. 20 December 2018. S. Subburam's research has been honored by the National Board of Higher Mathematics (NBHM), Department of Atomic Energy, Government of India (IN).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Shorey, T.N.; Tijdeman, R. Exponential Diophantine Equations; Cambridge University Press: Cambridge, UK, 1986.
- Tijdeman, R. Applications of the Gel'fond-Baker method to rational number theory. In *Topics in Number Theory, Proceedings of the Conference Debrecen 1974;* Colloquia Mathematica Societatis Janos Bolyai; North-Holland: Amsterdam, The Netherlands, 1976; Volume 13, pp. 399–416.
- 3. Waldschmidt, M. Open Diophantine problems. *Mosc. Math. J.* 2004, *4*, 245–305. [CrossRef]
- 4. Brindza, B. Zeros of polynomials and exponential Diophantine equations. *Comp. Math* **1987**, *61*, 137–157.
- 5. Hajdu, L.; Laishram, S.; Tengely, S. Power values of sums of products of consecutive integers. *Acta Arith* **2016**, 172, 333–349. [CrossRef]
- 6. Subburam, S. On the Diophantine equation $la^x + mb^y = nc^z$. Res. Number Theory **2018**, 4, 25. [CrossRef]
- 7. Subburam, S. A note on the Diophantine equation $(x + a_1)^{r_1} + (x + a_2)^{r_2} + \dots + (x + a_m)^{r_m} = y^n$. Afrika Mat. 2019, 30, 957–958. [CrossRef]
- 8. Bazsó, A. On linear combinations of products of consecutive integers. Acta Math. Hung. 2020, 162, 690–704. [CrossRef]
- Bazsó, A.; Berczes, A.; Hajdu, L.; Luca, F. Polynomial values of sums of products of consecutive integers. *Monatsh. Math* 2018, 187, 21–34. [CrossRef]
- 10. Tengely, S.; Ulas, M. Power values of sums of certain products of consecutive integers and related results. *J. Number Theory* **2019**, 197, 341–360. [CrossRef]
- 11. Subburam, S. The Diophantine equation $(y + q_1)(y + q_2) \cdots (y + q_m) = f(x)$. Acta Math. Hung. 2015, 146, 40–46. [CrossRef]

- Laurent, M.; Mignotte, M.; Nesterenko, Y. Formes linéaires en deux logarithmes et determinants d'interpolation. J. Number Theory 12. 1995, 55, 285-321. [CrossRef]
- Srikanth, R.; Subburam, S. On the Diophantine equation $y^2 = \prod_{i \le 8} (x + k_i)$. *Proc. Indian Acad. Sci. (Math. Sci.)* **2018**, 128, 41. 13. [CrossRef]
- 14.
- 15.
- Subburam, S.; Togbe, A. On the Diophantine equation $y^n = f(x)/g(x)$. Acta Math. Hung. **2019**, 157, 1–9. [CrossRef] Szalay, L. Superelliptic equation $y^p = x^{kp} + a_{kp-1}x^{kp-1} + \cdots + a_0$. Bull. Greek Math. Soc. **2002**, 46, 23–33. Laurent, M. Linear forms in two logarithms and interpolation determinants II. Acta Arith. **2008**, 133, 325–348. [CrossRef] 16.