
mathematics

Article

Modeling and Simulation of a miRNA Regulatory Network of
the PTEN Gene

Gionmattia Carancini 1,† , Margherita Carletti 2,*,†,‡ and Giulia Spaletta 3,†,‡

����������
�������

Citation: Carancini, G.; Carletti, M.;

Spaletta, G. Modeling and Simulation

of a miRNA Regulatory Network of

the PTEN Gene. Mathematics 2021, 9,

1803. https://doi.org/10.3390/

math9151803

Academic Editor: Jianjun Paul Tian

Received: 5 June 2021

Accepted: 24 July 2021

Published: 30 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Biotechnology, University of Urbino Carlo Bo, 61029 Urbino, Italy; g.carancini@campus.uniurb.it
2 Department of Pure and Applied Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
3 Department of Statistical Sciences, University of Bologna, 40126 Bologna, Italy; giulia.spaletta@unibo.it
* Correspondence: margherita.carletti@uniurb.it
† These authors contributed equally to this work.
‡ Member of INDAM-GNCS.

Abstract: The PTEN onco-suppressor gene is likely to play an important role in the onset of brain
cancer, namely glioblastoma multiforme. Consequently, the PTEN regulatory network, involving
microRNAs and competitive endogenous RNAs, becomes a crucial tool for understanding the
mechanism related to low levels of expression in cancer patients. This paper introduces a novel
model for the regulation of PTEN whose solution is approximated by a high-dimensional system of
ordinary differential equations under the assumption that the Law of Mass Action applies. Extensive
numerical simulations are presented that mirror parts of the biological subtext that lies behind various
alterations. Given the complexity of processes involved in the acquisition of empirical data, initial
conditions and reaction rates were inferred from the literature. Despite this, the proposed model is
shown to be capable of capturing biologically reasonable behaviors of inter-species interactions, thus
representing a positive result, which encourages pursuing the possibility of experimenting on data
hopefully provided by omics disciplines.

Keywords: numerical modeling; ordinary differential equations; LSODA method; stoichiometric
matrix; propensity function; PTEN onco-suppressor gene; gene regulatory network

1. Introduction

In humans, PTEN (Phosphatase and TENsin homolog) is a gene located on chro-
mosome 10 and involved in several important processes, such as maintaining genomic
stability or cell proliferation, survival and migration [1]. Over the past few decades, how-
ever, something else has been the reason this gene has been put in the spotlight, namely its
role as a tumor suppressor [2].

Since the earliest evidence dating back to 1998, genetic alterations of PTEN have been
reported in several human cancers; for example, in glioblastoma multiforme (GBM), one
of the most common and aggressive brain tumors, PTEN was found to be mutated or
eliminated with an incidence of 70% of cases [2,3].

Several studies have focused on determining its full involvement and importance
in the cellular context, obtaining some interesting results: PTEN, in fact, is not only
a commonly deleted or mutated onco-suppressor in cancer, but it also appears to be
haploinsufficient when it comes to its function [2]. That is to say, having only one functional
copy of PTEN is not enough to provide the levels of protein necessary for the proper
functioning of the cell under physiological conditions. It has also been speculated that even
a slight decrease in PTEN levels may eventually lead to greater vulnerability to cancer or
promote tumor progression [1]. This is why scientists are interested in understanding how
this important gene is regulated, and which other actors are involved in determining its
quantity within the cell and its down-regulation under pathological conditions [3].
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The control of gene expression is a process implementable in all those steps that,
starting from the DNA (the gene) and passing through a RNA intermediary (the messenger
RNA or mRNA), lead to the final functional product (the protein). In the case of PTEN,
for example, some of these mechanisms act before the initial transcription to mRNA, some
affect the transcription itself, others can act at the post-transcriptional level, as in the case
of RNA interference [1].

In the process just mentioned, short endogenous RNAs (microRNAs or miRNAs)
are able to control the expression of a gene by binding to its mRNA. After their initial
transcription and processing, in fact, the miRNAs are loaded into a protein complex called
RNA-induced silencing complex (RISC). Once inside, they can guide the complex towards
their mRNA targets, thereby allowing the RISC to degrade them. Intuitively, this course
of action leads to a substantial decrease in target levels over time, hence to the down-
regulation of the gene under consideration [3].

PTEN has proven to be regulated by a rather extensive network of miRNAs, further
complicated by the presence of competitive endogenous RNA (ceRNA), molecular species
with a sequence similar to the mRNAs of PTEN, that can subsequently act as a bait for
miRNAs [1]. The general picture is that of a complex network, in which miRNAs and
ceRNAs interact, and whose alteration can affect the mRNA levels of PTEN available to be
translated into the final protein. Several articles have been published on this subject, all
indicating the important involvement of this network in various types of cancer, such as
melanoma or even glioblastoma [4,5].

Given the crucial importance of the miRNA regulatory network behind PTEN levels
and the recent advances in biology and omics disciplines, in this work, we make use of
such knowledge to update the stochastic mathematical model presented in [3], which
simulates the regulatory network for PTEN, to improve its biological accuracy. To this
aim, we critically reviewed and rewrote the model in [3], checking each individual reaction
channel and implementing new data on ceRNAs and miRNAs, mainly using databases
(such as Reactome [6], Genecard [7,8] or the Gene Expression Atlas [9]) and the literature
on the subject [10].

2. The Model

The model detailed in this section and in Section 3 seeks to reflect the complex network
of interactions revolving around the post-transcriptional regulation of PTEN due to miR-
NAs and ceRNAs. The main rationale behind the proposed model is that the mRNA levels
of PTEN can be reduced upon interaction with miRNAs and can be increased indirectly if
ceRNAs are present to act as bait for miRNAs, an activity that has been described as sponge
effect in [5].

In Figure 1, the double helix symbolizes the DNA sequences attributable to PTEN,
miRNAs and ceRNAs, respectively indicated by the vertical bars colored in blue (right
helix section), red (middle helix section), green (left section propeller). After their initial
transcription in RNA (corresponding to reactions c1, c2, c3), the species can undergo
spontaneous degradation within the cell (reactions c4, c5, c6), or they can eventually be
translated into a protein, as in the case of the mRNAs of PTEN. For their part, miRNAs can
instead be loaded into RISC (reaction c7), thus becoming capable of targeting and degrading
both mRNAs and ceRNAs (reactions c9, c10, respectively). This loading also affects the
time required for miRNA degradation, which is now higher than for the unloaded miRNAs
(reaction c8).
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Figure 1. Proposed model of the miRNA regulatory network for PTEN.

The importance of our new model resides in a few considerations, which we now
underline and explain. The first observation concerns the introduction of the loading into
RISC as its own reaction, since this process has been repeatedly reported in the literature
and referred to as a biological bottleneck: most miRNAs are degraded before such loading
can occur, so they lack the ability to bind their targets [11,12].

On the other hand, RISC-loaded miRNAs can persist inside the cell for much longer
times [13]; for this reason, a different degradation reaction for loaded miRNAs is provided
in our model. To describe the various processes illustrated in Figure 1, our model includes
the general set (1a) of chemical kinetic reactions, which represents a blueprint for the
further reactions, also present in our model.

DNAp
c1−→ RNAp + DNAp

DNAceRNAi
c2−→ ceRNAi + DNAceRNAi

miDNAj
c3−→ miRNAj + miDNAj

RNAp
c4−→ 0

ceRNAi
c5−→ 0

miRNAj
c6−→ 0

miRNAj
c7−→ lmiRNAj

lmiRNAj
c8−→ 0

lmiRNAj + RNAp
c9−→ lmiRNAj

lmiRNAj + ceRNAp
c10−→ lmiRNAj

(1a)

The notation adopted in set (1a) is as follows:

• DNAp is the DNA sequence for PTEN;
• RNAp is the mRNA of PTEN;
• ceRNAi is the i-th ceRNA;
• DNAceRNAi is the DNA sequence for ceRNAi ;
• miRNAj is the j-th miRNA;
• miDNAj is the DNA sequence for miRNAj ;
• lmiRNAj represents the loaded analogue of miRNAj .
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Each reaction in (1a) is characterized by a specific coefficient cj , linked to the probabil-
ity that such a reaction will indeed occur, as well as to the instant of time at which it may
occur; notice that the same type of reaction may have a different cj value (reaction rate) if the
interacting species are different. Figure 1 and the related set (1a) display a synthetic version
of our model. The complete series of kinetic reactions are in sets (10a)–(10c). Note that
the latter represents a simplified deterministic model, in which the instrinsic stochasticity
of biochemical reactions is neglected: this allows it to cope with their large number, in
addition to the numerous species involved, leading to a high-dimensional differential
system, as described below.

A set of nr monomolecular or bimolecular reactions, the latter having distinct reac-
tants, can be translated into a system of ns ordinary differential equations (ODEs), where ns
is the total number of X species that enter the set of chemical reactions and that, within the
ODE, assume the role of differential variables X1 , . . . , Xk , . . . Xns .

In other words, Xk = Xk(t) is a differential variable representing the k-th X-species
considered and its biological state at time t ; for instance, X1 is DNAp , X2 is RNAp , and
so on.

Correspondences between differential variables Xk and the X-species appearing in
the small model (1a) are shown in Table 1, through which (1a) itself can be rewritten as (1b).

Table 1. X-species involved in the chemical reactions (1a).

k Xk k Xk k Xk k Xk

1 DNAp 3 DNAceRNAi 5 miDNAj 7 lmiRNAj
2 RNAp 4 ceRNAi 6 miRNAj

X1
c1−→ X2 + X1 X6

c6−→ 0

X3
c2−→ X4 + X3 X6

c7−→ X7

X5
c3−→ X6 + X5 X7

c8−→ 0

X2
c4−→ 0 X7 + X2

c9−→ X7

X4
c5−→ 0 X7 + X4

c10−→ X7

(1b)

In a similar way, Table 2 summarizes the correspondences between differential vari-
ables Xk and the X-species considered in the larger simulation presented in Section 3.

The translation from the set of nr reactions to the system of ns ordinary differential
equations is illustrated in the following, employing model (1b) and its corresponding
differential system (7), where the reactions are nr = 10 and the differential equations are
ns = 7 .

Formula (2) provides the general form of the ODE k-th representative, for k =
1 , . . . , ns .

X′k(t) =
nr

∑
j=1

νk j cj Xj(t) , Xj(t) =

{
Xp(t) reaction j monomolecular,
Xp(t) Xq(t) reaction j bimolecular.

(2)

The differential variables Xp and Xq , with p , q ∈ {1 , . . . , ns} , are the reactants
appearing in the j-th reaction, whose reaction rate is cj . The role of the scalar quantities νk j
is introduced shortly.

As an example, the second (k = 2) differential equation in (7) is:

X′k|k=2
= ν2,1 c1 X1 + ν2,4 c4 X2 + ν2,9 c9 X7 X2 ,

since ν2,2 = ν2,3 = ν2,5 = ν2,6 = ν2,7 = ν2,8 = ν2,10 = 0 (see row 2 of Figure 2), which
indicates that the reactions of (1b) contributing to the definition of X′k|k=2

are the first, fourth
and ninth ones, whose reactants are, respectively: X1 in reaction c1 ; X2 in reaction c4 ; the
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pair X7 , X2 in reaction c9 . Indeed, this mirrors the fact that Xk|k=2
appears (as a reactant or

product or both) only in the first, fourth and ninth reactions of (1b).
The scalar quantities νk j in (2) are in fact related to the stoichiometry of the chemical

reactions. They are collected column-wise to form the so-called stoichiometric vectors νj ,
with j = 1 , . . . , nr . For each j-th reaction, the correspondent νj is defined as in (3).

νj =
(

ν1 j , . . . , νk j , . . . , νns j

)T
, νk j =


−1 if Xk is a reactant;

0 if Xk is not involved;
1 if Xk is a product.

(3)

Notice that if Xk is both a reactant and a product in the j-th reaction, then it is
obviously νk j = −1 + 1 = 0 .

A stoichiometric matrix S =
(

νk j
)

of dimensions ns × nr can thus be defined; for
instance, in the case of set (1b), S takes the form outlined in Figure 2.

Figure 2. Stoichiometric matrix for the chemical reactions (1b).

The notation in (2) can be simplified by introducing the so-called propensity functions,
whose j-th entry takes the general form (4), where p , q ∈ {1 , . . . , ns} and j = 1 , . . . , nr .

aj(t) = cj Xj(t) , Xj(t) =

{
Xp(t) reaction j monomolecular,
Xp(t) Xq(t) reaction j bimolecular.

(4)

For each j-th reaction, aj(t) expresses the link between the probability cj and the
reactants involved; for instance, the propensity functions corresponding to (1b) are shown
in (5), where dependence on time t has been temporarily discarded, to ease the notation.

a1 = c1 X1 , a6 = c6 X6 ,
a2 = c2 X3 , a7 = c7 X6 ,
a3 = c3 X5 , a8 = c8 X7 ,
a4 = c4 X2 , a9 = c9 X7 X2 ,
a5 = c5 X4 , a10 = c10 X7 X4 .

(5)

The ODE system can then be written in matrix form:

X′(t) = S a(t) , (6)

where:

X′(t) =
(

X′1(t) , . . . , X′k(t) , . . . , X′ns(t)
)T

,

a(t) =
(

a1(t) , . . . . . . , aj(t) , . . . . . . , anr(t)
)T

.

The system dimensions obviously depend on the number ns of X-species involved (i.e.,
number of differential equations) and the number nr of reactions considered (i.e., number
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of parameters). The ODE system for model (1b) is as in (7), with seven equations and ten
parameters, and where again dependence on time t has been temporarily discarded.

X′1 = 0
X′2 = a1 − a4 − a9 = c1 X1 − c4 X2 − c9 X7 X2
X′3 = 0
X′4 = a2 − a5 − a10 = c2 X3 − c5 X4 − c10 X7 X4
X′5 = 0
X′6 = a3 − a6 − a7 = c3 X5 − c6 X6 − c7 X6
X′7 = a7 − a8 = c7 X6 − c8 X7

(7)

By defining initial conditions at time t = T0 :

Xk(T0) = Xk,0 k = 1 , . . . , ns , (8)

the ODE (6) becomes an Initial Value Problem (IVP), whose integration over the time interval
[T0 , T ] will yield the solution vector (or state vector):

X(t) =
(

X1(t) , . . . , Xk(t) , . . . , Xns(t)
)T

. (9)

3. Simulation

In this section, a complete set of chemical reactions is presented, grouped into three
subsets (10a)–(10c) for readability.

Table 2 reports all the X-species considered in such subsets, as well as their correspon-
dences with the differential variables Xk , which are as follows: the first sixteen reactions
in (10a) involve X1 to X11 ; the next twenty (from 17 to 36) reactions in (10b) involve X12 to
X20 , as well as some among X1 to X11 ; finally, the last thirty-one (from 37 to 67) reactions
in (10c) involve X21 to X37 , and again some among X1 to X11 .

Table 2. X-species involved in the chemical reactions (10a)–(10c).

k Xk k Xk k Xk

1 DNAp 5 DNAVAPA 8 ceRNAVAPA
2 RNAp 6 DNACNOT6L 9 ceRNACNOT6L
3 miDNA17 7 DNAPTENP1 10 ceRNAPTENP1
4 miRNA17 11 lmiRNA17

12 miDNA19a 15 miRNA19a 18 lmiRNA19a
13 miDNA19b 16 miRNA19b 19 lmiRNA19b
14 miDNA214 17 miRNA214 20 lmiRNA214

21 miDNA21 27 miRNA21 33 lmiRNA21
22 miDNA22 28 miRNA22 34 lmiRNA22
23 miDNA25 29 miRNA25 35 lmiRNA25
24 miDNA106 30 miRNA106 36 lmiRNA106
25 miDNA205 31 miRNA205 37 lmiRNA205
26 DNAZEB2 32 ceRNAZEB2
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DNAp
c1−→ RNAp + DNAp

RNAp
c2−→ 0

miDNA17
c3−→ miRNA17 + miDNA17

miRNA17
c4−→ 0

DNAVAPA
c5−→ ceRNAVAPA + DNAVAPA

DNACNOT6L
c6−→ ceRNACNOT6L + DNACNOT6L

DNAPTENP1
c7−→ ceRNAPTENP1 + DNAPTENP1

ceRNAVAPA
c8−→ 0

ceRNACNOT6L
c9−→ 0

ceRNAPTENP1
c10−→ 0

miRNA17
c11−→ lmiRNA17

lmiRNA17 + RNAp
c12−→ lmiRNA17

lmiRNA17 + ceRNAVAPA
c13−→ lmiRNA17

lmiRNA17 + ceRNACNOT6L
c14−→ lmiRNA17

lmiRNA17 + ceRNAPTENP1
c15−→ lmiRNA17

lmiRNA17
c16−→ 0

(10a)

miDNA19a
c17−→ miRNA19a + miDNA19a

miDNA19b
c18−→ miRNA19b + miDNA19b

miDNA214
c19−→ miRNA214 + miDNA214

miRNA19a
c20−→ 0

miRNA19b
c21−→ 0

miRNA214
c22−→ 0

miRNA19a
c23−→ lmiRNA19a

miRNA19b
c24−→ lmiRNA19b

miRNA214
c25−→ lmiRNA214

lmiRNA19a
c26−→ 0

lmiRNA19b
c27−→ 0

lmiRNA214
c28−→ 0

lmiRNA19a + RNAp
c29−→ lmiRNA19a

lmiRNA19b + RNAp
c30−→ lmiRNA19b

lmiRNA214 + RNAp
c31−→ lmiRNA214

lmiRNA19b + ceRNAPTENP1
c32−→ lmiRNA19b

lmiRNA214 + ceRNAPTENP1
c33−→ lmiRNA214

lmiRNA19a + ceRNAVAPA
c34−→ lmiRNA19a

lmiRNA19a + ceRNACNOT6L
c35−→ lmiRNA19a

lmiRNA19b + ceRNACNOT6L
c36−→ lmiRNA19b

(10b)
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miDNA21
c37−→ miRNA21 + miDNA21

miDNA22
c38−→ miRNA22 + miDNA22

miDNA25
c39−→ miRNA25 + miDNA25

miDNA106
c40−→ miRNA106 + miDNA106

miDNA205
c41−→ miRNA205 + miDNA205

DNAZEB2
c42−→ ceRNAZEB2 + DNAZEB2

miRNA21
c43−→ 0

miRNA22
c44−→ 0

miRNA25
c45−→ 0

miRNA106
c46−→ 0

miRNA205
c47−→ 0

ceRNAZEB2
c48−→ 0

miRNA21
c49−→ lmiRNA21

miRNA22
c50−→ lmiRNA22

miRNA25
c51−→ lmiRNA25

miRNA106
c52−→ lmiRNA106

miRNA205
c53−→ lmiRNA205

lmiRNA21 + RNAp
c54−→ lmiRNA21

lmiRNA22 + RNAp
c55−→ lmiRNA22

lmiRNA25 + RNAp
c56−→ lmiRNA25

lmiRNA106 + RNAp
c57−→ lmiRNA106

lmiRNA205 + RNAp
c58−→ lmiRNA205

lmiRNA106 + ceRNAVAPA
c59−→ lmiRNA106

lmiRNA106 + ceRNACNOT6L
c60−→ lmiRNA106

lmiRNA21 + ceRNAPTENP1
c61−→ lmiRNA21

lmiRNA25 + ceRNAZEB2
c62−→ lmiRNA25

lmiRNA21
c63−→ 0

lmiRNA22
c64−→ 0

lmiRNA25
c65−→ 0

lmiRNA106
c66−→ 0

lmiRNA205
c67−→ 0

(10c)

Reactions (10a)–(10c) can then be rewritten in differential form: although their explicit
translation in terms of Xk is not provided here, the procedure to obtain the correspondent
ODE system is the same as that described in Section 2 for the small model (1a).

The stoichiometric matrix S =
(

νk j
)

associated with (10a)–(10c) has dimensions
37× 67 and elements given by (3).
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As for the propensity functions related to (10a)–(10c), they are listed in (11), where we
set aj = aj(t) and Xk = Xk(t) for brevity.

aj = cj Xj j = 1 , . . . , 10 ,
a11 = c11 X4
a12 = c12 X2 X11
aj = cj Xj−5 X11 j = 13 , . . . , 15 ,
a16 = c16 X11

aj = cj Xj−5 j = 17 , . . . , 22 ,
aj = cj Xj−8 j = 23 , . . . , 28 ,
aj = cj X2 Xj−11 j = 29 , . . . , 31 ,
aj = cj X10 Xj−13 j = 32 , 33 ,
a34 = c34 X8 X18
aj = cj X9 Xj−17 j = 35 , 36 ,

aj = cj Xj−16 j = 37 , . . . , 48 ,
aj = cj Xj−22 j = 49 , . . . , 53 ,
aj = cj X2 Xj−21 j = 54 , . . . , 58 ,
aj = cj X36 Xj−51 j = 59 , 60 ,
a61 = c61 X10 X33
a62 = c62 X32 X35
aj = cj Xj−30 j = 63 , . . . , 67 .

(11)

Given the propensity functions (11) and the 37× 67 stoichiometric matrix S , with
entries given by Formula (3) applied to reactions (10a)–(10c), the ODE system that we
consider has thirty-seven equations and sixty-seven parameters and takes the form shown
in (12), where, again, time dependence has been discarded for brevity.

X′1 = 0
X′2 = a1 − a2 − a12 − a29 − a30 − a31 − a54 − a55 − a56 − a57 − a58
X′3 = 0
X′4 = a3 − a4 − a11
X′k = 0 k = 5 , . . . , 7 ,
X′8 = a5 − a8 − a13 − a34 − a59
X′9 = a6 − a9 − a14 − a35 − a36 − a60
X′10 = a7 − a10 − a15 − a32 − a33 − a61
X′11 = a11 − a16

X′k = 0 k = 12 , . . . , 14 ,
X′k = ak+2 − ak+5 − ak+8 k = 15 , . . . , 17 ,
X′k = ak+5 − ak+8 k = 18 , . . . , 20 ,

X′k = 0 k = 21 , . . . , 26 ,
X′k = ak+10 − ak+16 − ak+22 k = 27 , . . . , 31 ,
X′32 = a42 − a48 − a62
X′k = ak+16 − ak+30 k = 33 , . . . , 37 .

(12)

Before leaving this section, we mention again that unsimplified modeling would result
in a discrete and stochastic system, due to intrinsic noise affecting, for each reaction in
the system, the probability to occur, as well as the time instant at which it may occur. In
other words, the X-species (ns in total) interact through nr reactions, forming a system
whose evolution is characterized by a non-linear Markov process, discrete to mirror the
fact that molecules are discrete objects, and whose solution, i.e., the state vector X(t)
in Formula (9), is a discrete jump Markov process. In the case of low dimensions, the
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proper solver should belong to the class of stochastic simulation algorithms [14–16]. However,
such an approach is unfeasible here, due to the high dimensions of the differential system
considered that would result in too slow a simulation. To accelerate the computation,
we then considered neglecting the intrinsic stochasticity of the biochemical reactions
and obtaining X(t) as the solution of a deterministic ODE, interpretable as the limiting
approximation to the stochastic and discrete solution provided by a stochastic simulation.
This is indeed equivalent to regarding the time evolution as a continuous process, modeled
by the so-called reaction-rate system of ODEs [16] that arises when the Law of Mass Action
applies. The latter prescribes that, in a chemical reaction at the equilibrium, the ratio
between the concentration of products and reactants is constant; in our case, in which we
are considering molecular species in a solution inside the cell, hence subject to a dynamical
equilibrium and the Law of Mass Action, such a constant is related to the correspondent cj
for each j-th reaction [3].

4. Numerical Simulation

The ODE system (12), together with the initial conditions Xk(T0) = Xk,0 reported in
Table 3, form an IVP made of thirty-seven equations and sixty-seven parameters. In this
section, we present the results of its numerical integration over a time interval [T0 , T ] ,
where T0 = 0 and T = 105 and where the time unit is expressed in minutes.

Table 3. Initial conditions Xk(T0) = Xk,0 , where T0 = 0 , for the IVP correspondent to reactions (10a)–(10c).

k Xk,0 k Xk,0 k Xk,0

1 2 5 2 8 0
2 0 6 2 9 0
3 4 7 2 10 0
4 0 11 0

12 2 15 0 18 0
13 0 16 0 19 0
14 2 17 0 20 0

21 2 27 0 33 0
22 4 28 0 34 0
23 2 29 0 35 0
24 2 30 0 36 0
25 0 31 0 37 0
26 2 32 0

Values of cj , which enter the definition of the propensity functions aj in (12), are
inferred according to what is known in the literature and the already cited Genecard
database [3,12,17–22]. In a few situations where such bibliographic data were not available,
missing values have been filled in by making assumptions about the underlying biology.
Table 4 reports on the cj values employed in the numerical simulations.
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Table 4. Coefficients cj in the chemical reactions in (10a)–(10c).

k cj j cj j cj j cj

1 7. ×10−1 5 8. × 10−1 9 3. × 10−3 13 1. × 10−5

2 3. × 10−3 6 5.3× 10−1 10 3. × 10−3 14 1. × 10−5

3 1.7× 10−2 7 9.8× 10−1 11 3.05× 10−5 15 1. × 10−5

4 3. × 10−4 8 3. × 10−3 12 1. × 10−5 16 2.4× 10−4

17 1.7× 10−2 22 2.6 × 10−3 27 2.4× 10−4 32 1.× 10−5

18 1.7× 10−2 23 3.05× 10−5 28 2.4× 10−4 33 1.× 10−5

19 1.7× 10−2 24 3.05× 10−5 29 1. × 10−5 34 1.× 10−5

20 2.4× 10−4 25 3.05× 10−5 30 1. × 10−5 35 1.× 10−5

21 2.4× 10−4 26 2.4 × 10−4 31 1. × 10−5 36 1.× 10−5

37 1.7× 10−2 45 2.4 × 10−4 53 3.05× 10−5 61 1. × 10−5

38 1.7× 10−2 46 2.9 × 10−4 54 1. × 10−5 62 1. × 10−5

39 1.7× 10−2 47 1.5 × 10−3 55 1. × 10−5 63 2.4 × 10−4

40 1.7× 10−2 48 3. × 10−3 56 1. × 10−5 64 2.4 × 10−4

41 1.7× 10−2 49 3.05× 10−5 57 1. × 10−5 65 2.4 × 10−4

42 3. × 10−1 50 3.05× 10−5 58 1. × 10−5 66 2.4 × 10−4

43 2.4× 10−4 51 3.05× 10−5 59 1. × 10−5 67 2.4 × 10−4

44 4.1× 10−4 52 3.05× 10−5 60 1. × 10−5

All experiments were carried out on a DELL XPS notebook computer, with 7th gen-
eration Intel Core i7 processor at 2.8 GHz, and 16 GB RAM at 2400 MHz, running under
Ubuntu 20.04.2 LTS operating system. The problem solving environment of Mathematica,
version 12.2, is employed to set up the IVP, formed by (12) with the initial conditions in
Table 3 and the coefficients cj in Table 4, integrate it and plot its solutions.

The IVP considered shows some stiffness, which is trapped by the LSODA method [23]
used by the numerical differential solver NDSolve [24] available in Mathematica. It is a
multi-pass method able to switch from an explicit Adams–Bashforth method [25,26] to
an implicit Backward Differentiation Formula (BDF) method [27,28]. The Mathematica
implementation of these methods also includes order variation based on local error esti-
mates [29,30].

The simulation provides for the subdivision of the overall integration interval [T0 , T]
into two subintervals, [T0 , T1] and then [T1 , T] , to highlight an instant of time T1 in
which some event may occur, such as the expression of a miRNA, or the duplication or
increased expression of a gene.

The IVP is first integrated over the time interval [T0 , T1 ] , where T0 = 0 and
T1 = 1.5 × 104 . An intermediate solution is thus obtained, which we call Physiolog-
ical solution:

Xi(t) =
(

Xi1(t) , . . . , Xik(t) , . . . , Xins(t)
)T

,

where:

Xik(t) has only numerical form k = 2 , 8 , 9 , 10 , 32 ,

Xik(t) has closed form k = 4 , 11 , 15 , 17 , 18 , 20 , 28 , 30 , 33 , 34 , 36 ,
with Xi15(t) = Xi27(t) = Xi29(t) , Xi33(t) = Xi35(t),

Xik(t) = 2 k = 1 , 5 , 6 , 7 , 12 , 14 , 21 , 23 , 24 , 26 ,

Xik(t) = 0 k = 13 , 16 , 19 , 25 , 31 , 37 ,

Xik(t) = 4 k = 3 , 22 .

(13)

We observe that, for k = 2 , 8 , 9 , 10 , 32 , components Xik(t) can only be expressed via
numerical integration; note that they correspond to RNAp and the four ceRNAs involved
in the model. All the other components of Xi(t) are either constant functions or can be
expressed in closed form, in terms of the exponential function; among the latter, it is
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Xi15(t) = Xi27(t) = Xi29(t) and Xi33(t) = Xi35(t) . The IVP solution to the Physiological
case is plotted in Figure 3.

Figure 3. Physiological case.

At this point, a modified IVP is built, formed by (12) with the coefficients cj in Table 4,
and with initial conditions provided by the values of the Physiological solution components
Xi(t) evaluated at time T1 . One exception to the newly computed initial conditions is
Xi13(t) , whose originally null value is modified so that Xi13(T1) = 2 ; this corresponds to
considering an IVP which we denominate Ectopic Expression problem and whose solution
is illustrated in Figure 4.

Figure 4. Ectopic Expression case.

A different experiment is also considered, formed by (12) with the coefficients cj of
Table 4, and with an exception inserted in the new initial conditions (namely, the values of
the Physiological solution evaluated at T1): the value of Xi3(t) , originally equal to 2 , is
modified to become Xi3(T1) = 5 ; this corresponds to forming another IVP, denominated
Duplication problem, whose solution is given in Figure 5.
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Figure 5. Duplication case.

A further experiment is finally carried out; this time, an exception is inserted in the
coefficients cj of Table 4, by setting c3 = 3.4× 10−2 . The new IVP (12), whose new initial
conditions are the values of the Physiological solution evaluated at T1 , is named Increased
Expression problem; its solution is given in Figure 6.

Figure 6. Increased Expression case.

By integrating each of the three modified IVPs over the time interval [T1 , T ] , where
T1 = 1.5× 104 and T = 105 , the corresponding final solution X(t) is obtained, whose
components can be outlined as follows, in all the cases considered:

Xk(t) has only numerical form k = 2 , 8 , 9 , 10 , 32 ,

Xk(t) has closed form k = 4, 11, 15, 16, 17, 18, 19, 20, 28, 30, 33, 34, 36 ,
with X15(t) = X27(t) = X29(t) , X33(t) = X35(t) ,

Xk(t) = 2 k = 1 , 5 , 6 , 7 , 12 , 13 , 14 , 21 , 23 , 24 , 26 ,

Xk(t) = 0 k = 25 , 31 , 37 ,

Xk(t) = 4 k = 3 , 22 .

(14)

Observations that are similar to those related to the intermediate Physiological solution
Xi(t) can also be made on the solution X(t) obtained at the end of the second integration
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step. As before, X2(t) , X8(t) , X9(t) , X10(t) , X32(t) cannot be expressed in closed form
and require numerical integration, while the remaining components of X(t) are constant
or possess an explicit exponential expression; in particular, equalities are verified by
the following closed-form components of the solution: X15(t) = X27(t) = X29(t) and
X33(t) = X35(t) .

5. Discussion

Figures 3–6 illustrate the non-constant solution components to the various IVPs
considered in Section 4.

The color coding employed is as follows. The green curves represent the levels of the
various ceRNAs, while the black curve represents RNAp . Cyan curves are the considered
miRNAs (dashed style) and their lmiRNA counterparts (solid style). Those miRNAs that
are subject to change are rendered in red or purple (dashed curves), while their loaded
versions are given as solid-style curves in the same red or purple colors.

Figure 3 refers to a Physiological case. Here, the initial conditions reflect the various
species that are normally present in the human brain under physiological conditions.
After an initial steep increase in the levels of RNAp and ceRNAs, a slight decrease can be
observed, due to the action of the lmiRNAs on their targets, after both expression of their
miRNA and loading into RISC have occurred. From a biological perspective, our model
mirrors what should happen inside a brain cell under physiological conditions: since PTEN
is an onco-suppressor gene, it is important that its levels reach an equilibrium and do not
drop dramatically, even when miRNAs are present that are capable to down-regulate it.

Figure 4 is related to an Ectopic Expression case. The sudden expression of a miRNA
and its loaded counterpart are simulated here, assumed to occur at the instant of time
T1 and respectively rendered as dashed-purple and solid-purple curves. The ectopic
expression of a gene (i.e., the presence of its product in a biological context in which it
should not be present) has been observed in many pathological conditions, including
tumors. As Figure 4 describes, our model predicts an (obvious) increase in the mRNA
levels of the newly appeared miRNA, together with a small overall decrease in the levels
of RNAp and ceRNAs. This may be explained by the levels of the newly inserted lmiRNA,
which turn out to be comparable to the other lmiRNAs: in other words, even if the new
miRNA gets expressed, only a small fraction of it can be loaded into RISC and can, thus,
become capable of affecting RNAp levels.

Figure 5 illustrates a Duplication case, related to the simulation of the effect of the
duplication of a gene: this translates into the presence of an additional copy of the gene
being expressed inside the cell, together with an overall increase in the levels of its products.
As shown in Figure 5, at the time T1 of duplication, a noticeable leap in the miRNA product
can be observed (dashed red curve), as well as a small upsurge in the lmiRNA levels (solid
red curve). The overall effect on RNAp (and the targeted ceRNAs) levels remains modest,
as in the previous case of ectopic expression of a gene.

Figure 6 refers to an Increased Expression case, that is the simulation of the increased
expression of an already present gene, a condition usually referred to as over-expression in
biology and that can lead to pathological conditions, similar to those potentially caused by
duplications or ectopic expressions. Starting from T1 , a sharp increase can be observed
in the miRNA levels, as well as in the related lmiRNA species (dashed-red and solid-red
curves in Figure 6). Unlike in cases of ectopic expression and duplication, here the miRNA
curve soon overtakes the RNAp curve. However, the overall levels of RNAp are not subject
to a more significant decrease than in the previous two simulation cases. This again seems
to imply the robustness of the ceRNAs network in acting as off-targets and the loading into
RISC as a critical step in regulating the levels of the targeted species.

6. Conclusions

Focus of this work is the modeling of a gene regulatory network, in particular that
of the miRNAs of PTEN, and its impact on target species, the latter being mRNAs or
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ceRNAs. To this aim, a model is designed, related to sixty-seven chemical reactions in
which thirty-seven species appear, that describes the regulation of the PTEN gene and
involves, in particular, four ceRNAs and nine miRNAs. To deal with the large dimensions
involved, the simulations presented relate to a simplified deterministic model, in which
the intrinsic stochasticity of biochemical reactions is neglected, and show the behavior of
the species considered in some biologically relevant situations, as explained in Section 5.

From a biological perspective, our model, although simplified, is able to mirror parts of
the biological subtext that lies behind various alterations and can lead to many pathologies,
such as GBM, in our specific case. In addition, our results suggest a role for RISC, not
just as a restrictive step, but as a kind of safety mechanism. Loading into RISC, being a
biological bottleneck, ensures that alterations (or even fluctuations) in miRNA levels will
not be capable to directly (and dramatically) affect the entire network, thereby increasing
its robustness.

In the model presented, initial conditions and reaction rates are not experimentally
determined, but rather inferred from the literature available on the topic; despite this,
the model is capable to behave properly, that is, in a biologically reasonable fashion. The
interest remains related to the possibility of testing our model on empirical data, currently
not available, due to the complexity of processes involved in obtaining them, making this
task an auspicable and advisable future work.
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